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Causal Theories of Time
and the Conventionality of Simultaneity

DAvVID MALAMENT

THE UNIVERSITY OF CHICAGO

1. Adolf Griinbaum maintains that, within the framework of
special relativity, the relation of simultaneity relative to an
inertial observer is conventional rather than factual in character.
His argument turns on two assertions:

(1) The relation is not uniquely definable in terms of the
relation of causal connectibility.

(2) Temporal relations are non-conventional if and only if
they are so definable.

The second assertion constitutes a version of the “causal theory
of time”.

So far as I know, criticism of Griinbaum’s argument has
always focused on (2). Michael Friedman ([1]), for example,
sees no reason why we must adopt a causal theory of time or,
for that matter, any other reductionist analysis of temporal
relations. Even if (1) is true, he argues, it does not follow that
there is no fact to the matter whether two events are
simultaneous relative to a particular inertial observer.

I am entirely sympathetic with Friedman’s scepticism
concerning (2). But even while avoiding debate over convention-
alism and causal theories of time, one has grounds for rejecting
Griinbaum’s argument. On what seems to me a natural reading,
assertion (1) is false. In a straight forward sense, the relative
simultaneity relation- of special relativity s uniquely definable
from the causal connectibility relation. It is rather ironic. To
the extent that one is committed to the “if” clause of (2) one
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should be committed to the non-conventionality of the relative
simultaneity relation.

Making precise and proving this claim of unique definabi-
lity is the object of this note. Technically speaking, the result
established is a trivial consequence of basic facts about the
geometric structure of Minkowski spacetime first noted by A.
A. Robb.! Unfortunately, most philosophers have couched
their discussions of the relative simultaneity relation in terms of
e-values and coordinate transformations, rather than invariant
four-dimensional structure. In doing so they buried Robb’s
insights.

2. Two point events are said to be causally connectible if and
only if it is possible for a photon or particle with non-zero rest
mass to travel between them (in either direction). One
standardly characterizes the causal connectibility relation in
terms of a mathematical model. Suppose p = (po, p1, P2, P3)
and ¢ = (9o, 91, 92, g3) are points in R*. The Minkowski
inner product on R* is defined by

(®,9) = Pogo - P191 - P292 - P3qs-

The inner product induces a norm on R* defined by Ip| = (p, p)
and a symmetric two-place relation Kk defined by
pKkgqg = lp - gl> 0. It is a basic assumption of the theory of
special relativity that the class of all point events under the
relation of causal connectibility is isomorphic to (R*, k).? To
simplify notation, it is convenient to suppress the distinction
between the two structures and refer directly to k as the causal
connectibility relation. This will be done in what follows.

Our problem, then, is that of determining what would-be
“simultaneity relations” are definable in terms of k. The
problem could be posed in terms of other ‘“causal relations”.
One standardly considers the relations of timelike and lightlike
relatedness

pTg = lp-gql > 0
pAg = lp-ql =0

too. But the three relations k, 7, and A are explicitly, first order
definable in terms of one another.> So it makes no difference
which one works with.

Suppose that O is a time-like line representing an inertial
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observer. Let Simgp be the standard (€ =Y%) relation of
simultaneity relative to O. Our first claim is that Simg is
explicitly, first order definable from k and the relation of
membership in O. (One cannot expect to define simultaneity
relative to O without making reference to O.) It is convenient to
state this claim in the following form.

Proposition 1 Suppose Orth is the four-place relation defined
by Orth (p, g, 7,s) = (p-q,7-s) = 0. Then:

(i) Simo (p, q) iff (37r)(3s)(r # s & €0 & s€O & Orth

B ®, q,7,5)) )
ii) Orth is explicitly, first order definable in terms of k.
p y

Discussions of the relative simultaneity relation conducted
solely in terms of e-values tend to obscure the fact that the
relation, conceived geometrically, is nothing but orthogonality
relative to O. This is what is asserted in (i). To see the
connection between €-values and orthogonality it suffices to
perform a simple calculation. (An elaboration of the computa-
tion would constitute a proof of (i).) Suppose that 7, g, s are
distinct points on O satisfying: (a)g = r+¢(s-r) where
0 < € < 1. Suppose further that p is a point not on O satisfying:
(b) Ap and pAs. Then it is easy to check that:

(*) (g-p,sr) = 0 iff €=",
From (b) we have:

0 = (sp,sp) = (srtrp, srirp)
(s-7y s-7) + 2(s-r, r-p).

From this and (a) we have:

(g-p,sr) (r+e(s-r)-p, s-r) = (r-p,sr) + €(sr,sr)

(%) (s, s-r).

Hence (*) follows from the fact that (s-r, s-r) > 0.

Part (ii) of Proposition 1 is (essentially) due to Robb.*
Details of the construction can be found in Robb’s book and in
John Winnie’s exposition ([4]). At least in the very special case
where p, g, r, s are as in the figure, Orth (p, ¢, 7, s) can be
expressed in the following simple form:

Orth (p, q,7,s) = (3¢) (As & AAr &
~(Ju) (ult & ulg & ulp)).
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The imbedded condition ‘~(Ju)(ult & ulg & ulp)’ asserts
that the light cones of the three points p, ¢, t do not have a
common point of intersection. For triples of points no two of
which are causally connectible, this condition is equivalent to
collinearity.

3. It remains to show that the relation Simgp is the only
would-be relative simultaneity relation which is definable from
k and O. To be sure, there are other two-place relations which
are definable from k and O. But all these are ruled out if
minimal, seemingly innocuous conditions are imposed.

Suppose S is a candidate for the relation of “simultaneity
relative to O”. Whatever else is the case, one may argue, S
should at least be an equivalence relation. It should also not be
vacuous. It'should render at least some point on O “‘simultane-
ous” with some point not on O. And it should do so without
rendering absolutely all points “simultaneous”. Our claim is
that Simp is the only relation which satisfies these conditions
while being definable from k and O (in any sense of “definable”
no matter how weak).

To make the claim precise we need a few definitions. A
bijective map f: R* > R* is a causal automorphism iff for all
points p and ¢ in R*, pkq iff f(p)kf(q). If in addition f satisfies
pEO iff f(p)EO, then fis an O causal automorphism. If an
n-place relation is definable from k and O, in any sense of
“definable” no matter how weak, then it will certainly be
preserved under all O causal automorphisms. So it is useful to
work with a notion of implicit definability. We say that an
n-place relation R is implicitly definable from i (respectively
implicitly definable from k and O) iff for all causal automor-
phisms (respectively all O causal automorphisms) f and all points

Pis---5p,:
R(pl)°°' ’pn) iff R(f(pl))°'°’f(pn))’

Proposition 2 Suppose S is a two-place relation on R* where

(i) S is (even just) implicitly definable from k and O;

(i1) S is an equivalence relation; -

(iii) S is non-trivial in the sense that there exist points p€O
and q¢0 such that S(p, q).
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Then S is either Simp or the universal relation (which holds of
all points).

To prove the proposition one need only keep in mind what
the class of O causal automorphisms looks like. It includes all
rotations, translations, and scalar expansions which map O onto
itself. It also includes all reflections of R* with respect to
hypersurfaces orthogonal to O which map O onto itself.

Proof By (iii) there exist points p€O and ¢g¢O such that S(p,
g). There are two cases to consider: either Simo (p, ¢) holds or
it does not. Suppose Q is the set of points 7 such that there
exists an O causal automorphism f with f(p) =p and f(q) =r. If
Simg (p, g) holds then Q is just the hypersurface orthogonal to
O containing p. If Simg (p, ¢) does not hold then Q is a “double
cone” with vertex p which (in general) is distinct from the null
cone with vertex p. Since S is preserved by all O causal
automorphisms, we have (in both cases) that S(p, r) for all 7 in

0.

Suppose first that Simg (p, ¢) does not obtain. We show
that S(p, v) for all v in R*. It will follow that S must be the
universal relation. Let v first be an arbitrary point on O. There
is an O causal automorphism such that f(p) =v. Function f
maps Q onto a double cone f[Q] with vertex f(p) which is
congruent to Q. Since f preserves S it follows that S(f(p), r) for
allref[Q]. Now Q and f[Q] must intersect in some point w. So
we have S(p, w) and S(f(p), w). Hence S(f(p), p); i.e. S(v, p).
Now let v be any point not on O. There is an O causal
automorphism f where f(q) =v. Since f preserves S we have
S(f(p), f(g)); i.e. S(f(p), v). But f(p)€O and so (invoking the
first half of this argument) S(p, f(p)). Hence S(p, v).

Next suppose that Simg (p, ¢) does obtain. It follows that
Sim, CS. For suppose Sim, (r, s). Then there exists an O causal
automorphism f (it is just a translation) such that f(r) and f{(s)
belong to Q. Hence S(p, f(r)) and S(p, f(s)). Therefore S(f(r),
f(s)) and S(r, s). Now if S¢€ Simo then there must exist points 7
and s such that S(r, s) but not Simg (7, s). Furthermore we may
assume that exactly one of the points 7 and s lies on O. (If r and
s are both on O then we can work' with the points s and f(q)
where f is an O causal automorphism such that f(p) =r. If
neither 7 nor s is on O then we can work with s and f(p) where f
is an O causal automorphism such that f(g) =r.) But now the
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argument from the previous paragraph is applicable (with r and
s playing the roles of p and g). It follows that S must be the
universal relation. Q.E.D.

Propositions 1 and 2 together make precise the sense in
which the relative simultaneity relation of special relativity s
uniquely definable from the causal connectibility relation. In
contrast, of course, no ‘“absolute” simultaneity relation is
definable from that relation. This fact is made precise in the
following simple proposition.

Proposition 3 Suppose S is a two-place relation of R* where

(i) S is (even just) implicitly definable from «;

(ii) S is an equivalence relation;

(iii) S is non-trivial in the sense that there exist distinct
points p and ¢ such that S(p, g).

Then § is the universal relation (which holds of all points).

Proof By (iii) there exist distinct points p and g such that S(p, q).
We may as well suppose that p and q are spacelike related. (If p
and g are timelike or null related than a parallel argument will
apply.)

Now all translations, scalar expansions, and Lorentz
transformations (i.e. linear bijections which preserve the norm
I'1) are causal automorphisms of R*. So given any pair of
spacelike related points {r,s}, there is a causal automorphism f
where f(p) =7 and f(g) =s. By (i) it follows that S(r, s). Thus
S(r, s) holds for all spacelike related points r and s.

Finally let # and v be any points whatsoever. There must
exist a point ¢ which is spacelike related to both « and v. Hence
S(u, t) and S(v, t) and, therefore, S(u, v). Thus S must be the
universal relation. Q.E.D.

Proposition 3 pinpoints the difference between the situa-
tion in special relativity and in classical physics.
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NoOTES

! Cf. [3]. Discussions of Robb’s work can be found in [2] and [4].

2Notice that in the formulation of this assumption no reference is made to
clocks, rigid rods, or the velocity of light as measured in different directions by
inertial observers. Furthermore, at least in some idealized sense, one can justify the
adoption of the assumption without reference to any of these things. One can do so
by means of a representation theorem. In a suitable second order formal language
containing a single two-place predicate symbol (for k) one can formulate a finite set
of axioms every model of which is isomorphic to (R*, k). One can think of these
axioms as “laws of causal connectibility” and then their adoption commits one to the
basic assumption. This representation theorem is proven, more or less, in Robb’s
book.

3For example, pAq is equivalent to:

prqg & (p=q v (37) (r#p & r#q & (s)(skp & skq— skr))).

So A is explicitly first order definable in terms of k.

4The qualification is necessary since Robb used an asymmetic relatlon ‘after’ in
his construction rather than.one of our symmetric relations. Also he did not worry
about the niceties of first order (as against higher order) definitions. This
qualification also applies to the attribution made above in Note 2.



