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Abstract The concept of smooth deformations of Riemannian manifolds, recently
evidenced by the solution of the Poincaré conjecture, is applied to Einstein’s gravita-
tional theory and in particular to the standard FLRW cosmology. We present a brief
review of the deformation of Riemannian geometry, showing how such deformations
can be derived from the Einstein-Hilbert dynamical principle. We show that such
deformations of space-times of general relativity produce observable effects that can
be measured by four-dimensional observers. In the case of the FLRW cosmology, one
such observable effect is shown to be consistent with the accelerated expansion of the
universe.
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2686 M. D. Maia et al.

1 Introduction

The �CDM paradigm for the accelerated expansion of the universe makes use the
cosmological constant �, interpreted as the vacuum energy density of quantum fields,
as the main cause of the acceleration. However, it has been proven to be very difficult
to explain the large difference between the very small observed value �/8πG ≈
10−47Gev2/c4 and the very large averaged value of the quantum vacuum energy den-
sity < ρv >≈ 1075Gev2/c4. The lack of a feasible explanation for such cosmological
constant problem makes the �CDM paradigm unacceptable as a preferred theoretical
option. In face of this difficulty a variety of alternative explanations have been pro-
posed, including the possible existence of new and previously unheard of essences; the
postulation of specific scalar fields; or even the possible existence of non observable
extra dimensions in space.

The extra dimensional proposition is interesting because it may solve another fun-
damental issue, namely the hierarchy of the fundamental interactions, the huge ratio
of the Planck to the electroweak energy scale (MPl/MEW ∼ 1016). Indeed, Newton’s
gravitational constant G depends on the dimension of space. It has been shown that
in a higher dimensional space the constant G must change to another value G∗, such
that gravitating masses can be correctly evaluated by a (higher dimensional) volume
integration of given mass densities [1].

Yet, the hypothetical existence of extra dimensions must be compatible with the
experimentally proven and mathematically consistent four-dimensionality of space-
times. For example it took about 60 years to find out that the Kaluza-Klein theory based
on the Einstein-Hilbert principle and having a product topology space, is not compat-
ible with the observed fermion chirality at the electroweak scale, mainly because the
diameter of the compact internal space is too small (the Planck length).

In a more recent proposal the product topology of the higher dimensional space
has been replaced by an embedding space with metric defined by the Einstein-Hilbert
principle. The four-dimensionality of space-time is maintained, but the gravitational
field propagates also along the extra dimensions. Several interesting models have been
proposed along this line, mostly belonging to the brane-world paradigm in [1,2], where
additional conditions [3,4], or other specific embedding assumptions as for example
in e.g. [5–15] are used. In spite of such efforts we still do not have a model independent
solution of the present cosmological problems [16].

The main purpose of this paper is to study the dynamics of deformation of space-
times. We will see that such deformations are associated with a conserved quantity, the
deformation tensor, which leads to an observable effect in space-time. We will show
that the predictions of such deformations are consistent with the current observations
on the acceleration of the universe.

2 Smooth deformations of space-times

The concept of smooth deformation of Riemannian manifolds was defined by John
Nash as a means to correct the inability of the Riemann tensor to specify the local
shape of the manifold. This problem lies at the foundations of Riemannian geometry
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The deformable universe 2687

and it is worth reviewing it, starting from Riemann’s own words as we quote: ...We
may, however, abstract from external relations by considering deformations which
leave the lengths of lines within the surfaces unaltered, i. e, by considering arbitrary
bendings -without stretching- of such surfaces, and by regarding all surfaces obtained
from one another in this way as equivalent. Thus, for example, arbitrary cylindrical
or conical surfaces count as equivalent to a plane... B. Riemann [17].1

In the application of Riemannian geometry to Einstein’s gravitational theory,
the observables of the gravitational field are determined by the eigenvalues of the
Riemann tensor (or its trace-free Weyl tensor for pure gravitation), with respect to the
zero gravitational field of the flat-plane Minkowski space-time of special relativity.
However as pointed out by Riemann, the same tensor also vanishes for cones, ruled
hyperboloids, actually for any ruled manifold. This leads to the belief that in general
relativity the differences between these shapes are not relevant to gravitation (see e.g.
[19]). We will show that to a certain degree these differences can be detected by an
observer in a four-dimensional space-time.

A general solution for the shape problem in Riemannian geometry was suggested
by Schlaefli in 1871, proposing that all Riemannian manifolds must be embedded in
a larger space, in such a way that their Riemann tensors would be compared with
the geometry of the embedding space. Specifically, the local shape of a Riemannian
manifold can be determined by the difference between the Riemann tensors of the
embedded and the embedding manifolds (in the original proposition the embedding
space was assumed to be flat) [20]. Most importantly, the intrinsic geometry can be
recovered by the application of the inverse embedding map.

However, such solution of the shape problem in Riemannian geometry depends on
solving the Gauss-Codazzi-Ricci equations, which are non-linear differential equa-
tions involving the metric, the extrinsic curvature and the third fundamental form as
independent variables. They provide the necessary and sufficient conditions for the
existence of the embedding functions for a given Riemannian manifold [21]. Until
very recently only particular solutions of those equations could be obtained with the
help of positive power series expansions of the embedding functions or by try and
error.

Nash’s theorem of 1956 changed this picture when he proposed that the metric
of a given Riemannian manifold could be smoothly deformed along an orthogonal
direction with parameter y, according to

kμν = −1

2

∂gμν

∂y
(1)

where kμν denotes the extrinsic curvature and y represents a coordinate on a direc-
tion orthogonal to the embedded geometry [22]. Thus, Nash’s theorem introduced the
concept of deformable Riemannian manifolds in arbitrary directions, at the same time
that it solved the embedding problem.

The condition (1) is a generalization of the well known York relation used in the
study of the initial value problem for 3-dimensional surfaces in general relativity [23],

1 See also comments in [18].
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to the case where y is not necessarily the time coordinate. It is also analogous, but far
more general than the “ Ricci flow” condition proposed much latter by Hamilton [24]
using the Fourier heat flux law to obtain the expression

Rμν = −1

2

∂gμν

∂y
(2)

where y represents any coordinate of a 3-dimensional manifold. This result was sub-
sequently applied with success by Perelman [25] to solve the Poincaré conjecture.
Unfortunately this condition is not relativistic in the sense that it is not compatible
with Einstein’s equations and with relativistic cosmology. Indeed, when this condi-
tion is placed together with Einstein’s equations, we obtain a linear equation for the
gravitational field with respect to an arbitrary space-time direction y,

∂gμν

∂y
= −16πG

(
Tμν − 1

2
T gμν

)

representing a strong constraint on the propagation of Einstein’s gravitation. Even so,
the purely intrinsic characteristic of the Ricci flow condition has motivated a surge of
interest in its applications to non-isotropic linearized cosmology as in e. g. [26].

On the other hand, (1) does not have such limitation because in each embedded
space-time gμν and kμν are independent variables satisfying the Gauss-Codazzi-Ricci
equations, instead of (2). Although it is based on the extrinsic curvature, we will see
that Nash’s geometric flow condition (1) lends to purely intrinsic observable quantities
in space-times.

In the following we present a derivation of (1) for the simple case of just one extra
dimension.2 Higher dimensional cases were also implicit in Nash’s paper, and it was
applied as a possible extension of the ADM quantization of the gravitational field [27].

Consider a Riemannian manifold V̄n with metric ḡμν , and its local isometric embed-
ding in a D-dimensional Riemannian manifold VD, D = n + 1, given by a differen-
tiable and regular map X̄ : V̄n → VD satisfying the embedding equations

X̄ A
,μ X̄ B

,νG AB = gμν, X̄ A
,μη̄BGAB = 0, η̄Aη̄BGAB = 1 (3)

where we have denoted by GAB the metric components of VD in arbitrary coordinates,
and where η̄ denotes the unit vector field orthogonal to V̄n . The extrinsic curvature of
V̄n is by definition the projection of the variation of η on the tangent plane [21]:

k̄μν = −X̄ A
,μη̄B

,νGAB = X̄ A
,μν η̄

BGAB (4)

The integration of the system of equations (3) gives the required embedding map X̄ .
Next, construct the one-parameter group of diffeomorphisms defined by the map

hy(p) : VD → VD , describing a continuous curve α(y) = hy(p), passing through the

2 Throughout the paper, except when explicitly stated in contrary , we will use D = n + 1. Capital Latin
indices run from 1 to D and components indices in Vn are denoted by Greek letters.
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point p ∈ V̄n , with unit normal vector α′(p) = η(p). This group is characterized by

the composition hy ◦ h±y′(p)
de f= hy±y′(p), h0(p)

de f= p. Applying this diffeomor-
phisms to all points of a neighborhood of p, with a smooth variation of the parameter
y (regardless if the parameter y is time-like or not, or if it is positive or negative), we
obtain a congruence of curves (the orbits of the group), all orthogonal to V̄n , describing
a smooth flow of points in VD .

Given a geometric object 	̄ in V̄n , its Lie transport along that flow for a small
distance δy is given by 	 = 	̄ + δy£η	̄, where £η denotes the Lie derivative with
respect to η [28]. In particular, the Lie transport of the Gaussian frame {X̄ A

,μ, η̄A
a } of

the original manifold V̄n gives

Z A
,μ = X̄ A

,μ + δy £η̄ X̄ A
,μ = X̄ A

,μ + δy η̄A
,μ (5)

ηA = η̄A + δy [η̄, η̄]A = η̄A (6)

However, it should be noted from (4) that in general ηA
,μ 	= η̄A

,μ.
The set of coordinates Z A obtained by integrating these equations does not neces-

sarily describe another manifold. In order to be so, they need to satisfy embedding
equations similar to (3):

Z A
,μZ B

,νGAB = gμν, Z A
,μηBGAB = 0, ηAηBGAB = 1 (7)

Replacing (5) and (6) in (7) and using the definition (4) we obtain the metric and
extrinsic curvature of the new manifold

gμν = ḡμν − 2yk̄μν + y2 ḡρσ k̄μρ k̄νσ (8)

kμν = k̄μν − 2yḡρσ k̄μρ k̄νσ (9)

It is easy to see that Nash’s deformation condition (1) follows from the derivative of
(8) with respect to y and comparing the result with (9).

Of course, in order to define a new differentiable manifold, equations (7) need to be
integrated. The integrability conditions for these equations are intimately associated
with the differentiable (smooth) properties of the embedding functions, providing the
proposed solution of the shape problem. That is, the components of the Riemann tensor
of the embedding space,3 are evaluated in the Gaussian frame {Z A

μ, ηA}, producing
the Gauss-Codazzi equations (A third equation, the Ricci equation, is a trivial identity
in the case of just one extra dimension.).

5RABC D Z A
,α Z B

,β ZC
,γ Z D

,δ = Rαβγ δ +(kαγ kβδ−kαδkβγ ) (10)
5RABC D Z A

,α Z B
,β ZC

,γ ηD = kα[β;γ ] (11)

3 The five-dimensional Riemann tensor is denoted by 5RABC D . The extrinsic curvature terms in the right
hand side of these equations follows from the five-dimensional Christoffel symbols together with the use
of (1).
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We obtain the Gauss-Codazzi equations [21]. The first of these equation (the Gauss
equation) clearly shows that the Riemann curvature of the embedding space acts as a
reference for the Riemann curvature of the embedded space-time. It is true that both
Riemann curvature tensors carry the same shape problem in the sense described by
Riemann, but the differences between the two Riemann tensors given by the extrinsic
curvature defines the shape of the embedded geometry relative to D-dimensional cur-
vature. The second equation (Codazzi) complements this interpretation, stating that
projection of the Riemann tensor of the embedding space along the normal direction
is given by the tangent variation of the extrinsic curvature.

3 Deformation dynamics

From this point on we shall restrict our discussion to the case of space-times embed-
ded in a 5-dimensional manifold V5. From the Nash geometric embeddings generated
by (1) we obtain a foliation of V5 by space-times with geometry given by (8) and
(9), parameterized by y. As in Kaluza-Klein and brane-world theories, the embedding
space V5 has a metric geometry defined by the Einstein-Hilbert principle

δ

δGAB

∫
5R

√
Gdv = 0

which has a differentiable interpretation: The Riemannian geometries satisfying this
principle are those with the smoothest Riemannian curvature.

From this principle and the inclusion of a source Lagrangian we obtain the 5-dimen-
sional Einstein’s equations

5RAB − 1

2
5RGAB = G∗T ∗

AB (12)

where G∗ is a gravitational constant compatible with the higher dimensional gravita-
tional field, and where T ∗

AB denote the components of the energy-momentum tensor
of the known material sources. Here we have dispensed with a cosmological constant
so that the equations admit a Minkowski-like solution (A cosmological constant was
included in [29],4 but here we see no reason for it.).

The source terms in (12) is composed of observable matter and fields. Since these
observations involve gauge field interactions and gauge fields, they are consistently
defined only in four dimensions, it follows that these observable sources are and
remain confined to the four-dimensional embedded space-times. Consequently, all
known observable sources of gravitation composing TAB are necessarily confined to
four-dimensional embedded space-times. Such confinement can be implemented sim-
ply by writing Einstein’s equation (12) in the Gaussian frame of every space-time of
the foliation where the energy-momentum tensor source Tμν is such that

4 See also [30].
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8πGTμν = G∗Z A
,μZ B

,νT ∗
AB, Z A

,μηB T ∗
AB = 0, and ηAηB T ∗

AB = 0 (13)

For each fixed value of y, we obtain a deformed space-time which, if so desired, they
can be locally de-embedded, with the application of the local inverse embedding map,
which always exists provided the embedding is regular. In this way we may recover
the intrinsic Riemannian geometry.

In some brane-world models the addition of extra conditions may prevent not only
the construction of the foliation, but also the recovery of the Riemannian structure. One
particular class of models (e.g. [3,4]) uses the Israel-Lanczos boundary condition [31]

kμν = G∗
(

Tμν − 1

3
T gμν

)
(14)

When applying Nash’s theorem we cannot have such condition. In the first place
because it fixes once for all the value of the extrinsic curvature in terms of the con-
fined sources, thus preventing the application of (1). The condition (14) is also limited
to hypersurfaces, so that if the embedding requires additional dimensions it does not
apply. Finally, to obtain (14) we also require that the embedded space-time is a fixed
boundary between two sides of the embedding space with mirror symmetry. To see
this, consider again Einstein’s equations in five dimensions, now written as

5RAB = G∗
(

T ∗
AB − 1

3
T ∗GAB

)
(15)

the left hand side may be evaluated in the embedded space-time frames by contract-
ing it with Z A

,μZ B
,ν , using (1), (7) and the confinement conditions (13), obtaining the

tangent components

5Rμν = Rμν + ∂kμν

∂y
− 2kμρkρ

ν + hhμν = 8πG∗
(

Tμν − 1

2
T gμν

)
(16)

In order to obtain the Israel-Lanczos condition from these equations it becomes nec-
essary to fix the embedding, say at y = 0, find the values of (16) on both sides and
finally evaluate the difference between these values. We find that all tangent compo-
nents cancel, except the terms ∂kμν/∂y, which add when the y change sign from one
side to another of the boundary. Finally, by integrating that difference in y, using a
Dirac’s function for the source term at y = 0, we obtain (14).

With these remarks we may proceed with the deformation dynamics, now contract-
ing (12) in its original form with {Z A

,μ, ηA} using (7) and the confinement conditions
obtaining two gravitational equations

Rμν − 1

2
Rgμν − Qμν = 8πGTμν (17)

k ρ

μ;ρ − h,μ = 0 , (18)
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where h = gμνkμν is the mean curvature and K 2 = kμνkμν is the (squared) Gauss
curvature and where Qμν is

Qμν = gρσ kμρkνσ − kμνh − 1

2

(
K 2 − h2

)
gμν , (19)

This geometrical quantity, the deformation tensor is conserved in the sense of

Qμν ;ν = 0. (20)

This means that there may exist observables effects associated with the extrinsic curva-
ture in the four-dimensional space-time. To understand the nature of the observables
associated with the extrinsic curvature, consider again the one-parameter group of
diffeomorphism defined by points in an embedded space-time, and the unit normal
vector η, with orbit α(y) = hy(p). The Frenet equation for this orbit tells that there is
a transverse acceleration orthogonal to its velocity η, which is therefore tangent to the
embedded space-time. As such, this vector can be written as a a linear combination of
the tangent basis {Z A

,μ} expressed as

ηA
,μ = gρσ kμρ Z A

,σ (21)

As it happens, except for a difference in sign this is the definition of the extrinsic curva-
ture (see e.g. [21].). Therefore, the presence of the extrinsic curvature associated with
(1) represents an acceleration tangent to space-time. Since such acceleration always
points to the concave side of the curve, then in the case of a deformation with volume
expansion, it implies in the emergence of the Riemann stretching on the space-time
geometry, which in principle can be responsible for the accelerated expansion of the
universe.

Nash’s deformation condition (1) tells how the embedding space can be filled by
a continuous succession of deformed space-times, each one given by a fixed value
of y. In each of these space-times the metric gμν and the extrinsic curvature kμν are
independent variables satisfying the Gauss-Codazzi equations. Therefore each of them
requires the determination of 20 unknowns, whereas counting from (12) we have only
15 dynamical equations, suggesting that the missing equations describe the extrinsic
curvature.

Since kμν is a symmetric rank-2 tensor, it corresponds also to a spin-2 field whose
dynamics is determined by a well known theorem due to Gupta. This theorem tells
that any such tensor necessarily satisfy an Einstein-like system of equations, having
the Pauli-Fierz equation as its linear approximation [32–34]. The original theorem of
Gupta was set in the Minkowski space-time. Here we need to derive Gupta’s equations
for the extrinsic curvature in a deformed space-time with metric gμν .

Using an analogy with the derivation of Einstein’s equations, we start by noting
that kμνkμν = K 2 	= 4, so that we need to normalize the extrinsic curvature, defining
a temporary tensor
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The deformable universe 2693

fμν = 2

K
kμν, (22)

and define its inverse by f μρ fρν = δ
μ
ν . It follows that f μν = 2

K kμν .
Denoting by || the covariant derivative with respect to a connection defined by fμν ,

while keeping the usual semicolon notation for the covariant derivative with respect
to gμν , the analogous to the “Levi-Civita” connection associated with fμν such that ”
fμν||ρ = 0, is:

ϒμνσ = 1

2

(
∂μ fσν + ∂ν fσμ − ∂σ fμν

)
(23)

Defining

ϒμν
λ = f λσ ϒμνσ

The “Riemann tensor” for fμν has components

Fναλμ = ∂αϒμλν − ∂λϒμαν + ϒασμϒσ
λν − ϒλσμϒσ

αν

and the analogous to the “Ricci tensor” and the “Ricci scalar” for fμν are, respectively
given by

Fμν = f αλFναλμ and F = f μνFμν

Finally, Gupta’s equations for fμν can be obtained from the contracted Bianchi identity

Fμν − 1

2
F fμν = α∗Tμν (24)

where Tμν represents the source of this field such that T μν ||ν = 0 and α∗ is a coupling
constant.

In spite of the resemblances, kμν cannot be taken as a metric because it exists
only after the Riemannian geometry with the metric gμν has been previously defined.
Furthermore, Einstein’s equations for the metric (the gravitational field) originated
from Newton’s phenomenological gravitation, while here we do not have a prelimi-
nary phenomenology for the physics of the extrinsic curvature. Possible clues to the
physics of the extrinsic curvature are given by the ADM space-time 3+1 decompo-
sition with the use of York’s relation similar to (1); The eventual deformation of the
Minkowski space-time into a small Schwarzschild black-hole at the LHC and finally
the acceleration of the universe which we explore below.

4 Deforming the FLRW universe

As we have seen, Nash’s deformations of a space-time defined by the extrinsic cur-
vature satisfying Gupta’s equation produces a tangent acceleration in space-time. We
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have seen also that the same extrinsic curvature produces an observable quantity Qμν .
These results suggest that the currently observed acceleration of the distant supernova
type Ia (SN Ia), can be related to the deformations of the standard FLRW universe, a
prediction that has to be experimentally verified.

Consider the line element of the FLRW universe written as

ds2 = gαβdxαdxβ = −dt2 + a2
[
dr2 + f(r)

(
dθ2 + sen2θdϕ2

)]

where f(r) = sin r, r, sinh r corresponds to the spatial curvature k = 1, 0,−1, respec-
tively. The the confined source is the perfect fluid given in co-moving coordinates
written as

Tαβ = (p + ρ)UαUβ + pgαβ, Uα = δ4
α. (25)

The embedding of the FLRW universe in a five dimensional flat space gives the solution
(for details see [29])

ki j = b

a2 gi j , i, j = 1, 2, 3, k44 = −1

ȧ

d

dt

b

a
, (26)

Just for notational simplicity denote b = −k11, ξ = k44, H = ȧ/a and B = ḃ/b.
Then the components of the extrinsic curvature and related functions can be written as

ξ = b

a2

(
B

H
− 1

)
g44, (27)

K 2 = b2

a4

(
B2

H2 − 2
B

H
+ 4

)
, h = b

a2

(
B

H
+ 2

)
(28)

Qi j = b2

a4

(
2

B

H
− 1

)
gi j , Q44 = −3b2

a4 , (29)

Q = −(K 2 − h2) = 6b2

a4

B

H
, (30)

Replacing the above results in (17) we obtain the Friedman equation modified by the
presence of the extrinsic curvature, i.e.,

(
ȧ

a

)2

+ κ

a2 = 8

3
πGρ + b2

a4 (31)

Applying (26) to the definition (22) we obtain for the FLRW metric

fi j = 2

K
gi j , i, j = 1..3, f44 = − 2

K

1

ȧ

d

dt

(
b

a

)
(32)

Notice that the function b(t) = k11 remains undefined.
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To find it we submit it to the Gupta equation (24). The main difficulty here is the
determination of the source Tμν of that equation for, if for no other philosophical
reasons (e.g. if the universe expands, it expands to where?), we have no previous
experience on the dynamics of space-time deformations. In this case, the correct pro-
cedure is to look for models that fit the experimental data on the expansion of the
universe, as for example the perfect fluid used in [29]. However, within the context
of a geometry and topology of the universe as determined from the observations, the
acceleration of the universe can be seen as the observable effect associated with the
deformation of the universe defined by the extrinsic curvature. The simplest option for
the external source of equation (24) is the void characterized by Tμν = 0, arguing that
the universe contains all known sources and that they have contributed to the metric
geometry through Einstein’s equations. In this case we end up with a Ricci-flat-like
equation

Fμν = 0 (33)

Using (32) we derive the components of the f-connection (23), of the f-curvature
Fμνρσ and finally we may write the Ricci-flat equations (33). In the particular FLRW
example they are

F11 = 1

4

−4b2ξ K̇ 2+5bξ K̇ ḃK −ḃ2ξ K 2+2b2ξ K K̈ −2bb̈ξ K 2−b2 K̇ ξ̇ K +bK 2ḃξ̇

ξ2 K 2b
= 0 (34)

F22 = r2 −4b2ξ K̇ 2+5bξ K̇ ḃK −ḃ2ξ K 2+2b2ξ K K̈ −2bb̈ξ K 2 − b2 K̇ ξ̇ K + bK 2ḃξ̇

4ξ2 K 2b
= 0 (35)

F33 = sin2(θ)F22 = 0 (36)

F44 = −3

4

ḃ2ξ K 2 + 2b2ξ K K̈ − 2bb̈ξ K 2−b2 K̇ ξ̇ K + bK 2ḃξ̇−2b2ξ K̇ 2 + bξ K K̇ ḃ

ξ K 2b2

= 0 (37)

The only essential equations in the above set are the first and last equations. By sub-
tracting these equations we obtain b2 K̇ 2 + K 2ḃ2 = 2bK ḃK̇ or, equivalently,

(
K̇

K

)2

− 2
ḃ

b

K̇

K
= −

(
ḃ

b

)2

(38)

which has a simple solution K(t) = 2η0b(t), where we have denoted by 2η0 its inte-
gration constant. Replacing the expression of K given by (28), we obtain

B

H
= 1 ±

√
4η2

0a4 − 3 (39)
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Of course, to obtain real values of a and b, we must have the condition

η2
0 ≥ 3

4

1

a4 (40)

On the other hand, expressing Qμν in terms of B/H given by (29), the conservation
equation (20) can be readily integrated giving

2
B

H
− 1 = β0 (41)

where β0 is a second integration constant.
Subtracting (41) from (39), we obtain the searched equation on b(t) expressed as a

function of the expansion parameter a(t)

ḃ

b
= ȧ

a
(β0 ∓

√
4η2

0a4 − 3) (42)

The integration of which is very simple. Merging all remaining integration constants
into a single one α0 the final solution can be expressed as

b(t) = α0aβ0 e∓γ(a) (43)

where γ(a) is given by

γ(a) =
√

4η2
0a4 − 3 −√

3 arctan

(√
3

3

√
4η2

0a4 − 3

)
(44)

Replacing (40) and (43) in (31) we obtain the Friedman equation modified by the
extrinsic curvature as a spin-2 field:

(
ȧ

a

)2

+ κ

a2 = 4

3
πGρ + α2

0a2β0 e∓2γ(a)

a4 (45)

As we see the result depends on a choice of three integration constants α0, β0 and η0
which must be adjusted by known boundary conditions:

(a) The constant α0 is a scale factor for b(t) and as such it can be fixed once for all
for today’s (t = 0) by setting b(0) = aβ0 e∓γ (a=1), where we have denoted

eγ (a=1) =
√

4η2
0 − 3 − √

3 arctan

(√
3

3

√
4η2

0 − 3

)

(b) The equal sign in (40) gives γ(a) = 0, which corresponds to the particular case
previously studied in our previous paper [29], where a comparison of the extrinsic
curvature with a phenomenological fluid (the X-fluid) was used. In the following
we consider the more general cases corresponding to the greater sign (>) in (40).
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In order to evaluate the above results with the presently available data we translate
the equations in terms of the redshift z, when the expansion parameter becomes a(z) =
1/(1 + z) and the condition (40) becomes η2

0 ≥ 3
4 (1 + z)4. Furthermore, we express

(45) in terms of the relative densities 	k, 	�, 	matter = 	m, 	extrinsic = 	ext ,
with the following observations.

(1) Since the value of the spatial curvature κ in (45) has been consistently verified
to be zero [35], we will simple ignore the contribution of 	k .

(2) From our previous arguments on the cosmological constant problem we have
eliminated the cosmological constant contribution in this analysis, so that we
also take 	� = 0. We will see that the contribution of � is not really rele-
vant to the accelerated expansion in presence of the contribution of the extrinsic
curvature.

(3) The baryonic matter relative density and the extrinsic relative density are respec-
tively denoted by 	m and 	ext. Assuming the standard normalization condition
H
z=0 = H0 = 100 hkm.s−1 Mpc−1 (the Hubble constant), we may write these
in terms of z as

	m = 8πG

3ρ(1 + z)3 and 	ext = 1 − 	m

eγ (z=0)
(46)

With these considerations the modified Friedman equation (45) written in terms
of the redshift becomes

E(z) = ȧ(z)

a(z)
=

[
	m(1 + z)3 + 	ext(1 + z)4−2β0

]1/2
(47)

To find if this result corresponds to the observations we use a statistical analysis
which gives a model independent probe of the accelerating expansion of the universe
[35]. This is given by the dimensionless luminosity-distance expression

dL(z) = (1 + z)

∫ z
0

dz′
E(z′)

H0
(48)

For the two considered density parameters 	m and 	ext, the luminosity distance is
related to the distance modulus (with dL(z) measured in Mpc) as

μ(z, u) = m − M = 5 log dL(z) + 25

where the parameters m and M represent, respectively the apparent and absolute bolo-
metric magnitudes [36].

In the following we evaluate the contribution of the extrinsic curvature by plotting
the contours in the planes (	m, β0) for different values of η0.
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Using the SN Ia database, the best fit values is given by the likelihood analysis is
based on the calculation of the standard distribution

χ2(u) =
115∑
i=1

[
μi

p(z|u) − μi
0(z|u)

]2

σ 2
i

where μi
0(z|u) is the extinction corrected distance modulus for a given SNe Ia at zi

and σi is the standard deviation of the uncertainty in the individual distance moduli
(including uncertatinties in galaxy red shifts). The above summation was taken over
the 115 observational Hubble data for SN Ia at redshifts zi [37] (For more details on
such SN Ia statistical analysis we refer the reader to [38–44] and refs. therein.). We
may estimate the admissible values of β0 for the best fit values of the known data set
on SN Ia in the parametric plane (	m, β0), with constant �χ2 = 2.30, 6.17, 11.8,
respectively for η0 = 3.5, 5.0, 7.0, corresponding to the above mentioned 115 obser-
vations. The first value η0 > 3.5 was taken from (40). The other two values, i.e.,
η0 = 5.0 and η0 = 7.0 were taken arbitrarily in the sequence.

Using data from [37] and since the highest-z supernova Ia in our sample is at
z � 1.01 at 68.3% (C.L.) we have found for the three above values of for η0, respec-
tively

for η0 = 3.5, β0 = −1.45+0.30
−0.25 and 	m = 0.14 ± 0.03,

for η0 = 5.0, β0 = −3.09+0.5
−0.4 and 	m = 0.20 ± 0.03,

for η0 = 7.0, β0 = −5.35+0.7
−0.6 and 	m = 0.24 ± 0.03.

(a) (b) (c)

Fig. 1 Contours of the χ2 test in the parametric space 	m (horizontal axis) versus β0 (vertical axis). The
contours are drawn for �χ2 = 2.30, 6.17 and 11.8. As explained in the text, the value of η0 has been fixed
at 3.5 (a), 5.0 (b) and 7.0 (c). In particular, we note that for η0 = 7.0, the allowed σ interval for the matter
density parameter is very close to that provided by current dynamical estimates, i.e., 	m � 0.2 − 0.3
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By combining the above results with the normalized expression in (46), we may esti-
mate that the extrinsic curvature density parameter lies in the interval

10−2 ≥ 	ext ≥ 10−6

showing a wide range of the parameters of the extrinsic curvature density which fit
the observations. Three choice of β0 are shown in Fig. 1.

As a last remark we note that the contribution of the extrinsic curvature is also
consistent with the expected age of the universe. This can be seen directly from (47),
from which we extract the the age of the universe

t = 1

H0

∞∫
0

dz

(1 + z)
√

	m(1 + z)3 + 	ext(1 + z)4+β0

From this expression we conclude from the contour (b) in Fig 1 that for 0.14 ≤ 	m ≤
0.3, he age of the universe lies between 12 ≤ t ≤ 16, which is compatible with the
estimated formation of the large structures [45].

Summary

We have applied the concept of smoothly deformable Riemannian manifolds to rel-
ativistic cosmology. The concept is similar to the one used by Perelman’s solution
of the Poincaré conjecture, but where we applied Nash’s deformation instead of the
Ricci flow. The advantage Nash’s geometric flow condition over the Ricci flow is that
it is entirely relativistic and compatible with Einstein’s equations. However, Nash’s
geometric description involve a new variable, the extrinsic curvature, so that it also
requires a proper dynamical process in place of the Fourier heat equation.

The spin-statistic theorem suggests that the dynamics of the extrinsic curvature is
given by an Einstein-like dynamical equation for the extrinsic curvature adapted from
the original equation of Gupta. Using a model independent statistical analysis, we find
that in presence of the deformation, the cosmological constant does not play a signif-
icant role on the acceleration of the universe, at least within the present observational
range.

The deformation process defined by (1) requires the embedding of the space-time
in a larger space. However, since the standard gauge fields, which are required for
our experimental basis, are defined only in four-dimensions, the end result is a four-
dimensional deformed space-time. The four-dimensional observers with its gauge
field based technology will measure the end effects of the deformations without
being aware of the embedding. Nonetheless, the presence of the extrinsic curvature
leads also to a new conserved quantity the deformation tensor Qμν , and so to an
observational effect which adds some topological qualities to Einstein’s gravitation
theory. This interpretation is supported by the Gauss and Riemann views that the
true geometry will at the end be determined by the observations. Therefore, we con-
clude that the observed acceleration of the universe is an evidence of the existence
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of a deformation at the cosmological scale, giving to the universe some notion of its
shape.
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