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Initial-value problem of general relativity. III. Coupled fields and the scalar-tensor theory *
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The initial-value problem of general relativity is treated in the case where the external sources are
electromagnetic or neutrino fields. Taking into account the initial conditions that must be satisfied by these fields,
we show that the resulting equations in each case form a quasilinear elliptic system of a type that has been
treated extensively in previous work. %e also treat the initial-value problem of the scalar-tensor theory of
gravitation. Throughout this work we use first-order "canonical" gravitational variables. The principal
mathematical tools are conformal transformations and a covariant decomposition of symmetric tensors.

I INTRODUCTION

In previous work' we have discussed the con-
struction of solutions of the initial-value problem
of general relativity. The gravitational field on a
spacelike hypersurface is found by prescribing
freely certain of the data (unbarred variables in
the succeeding analysis) in a conformally co-
variant manner. It was shown how to construct a
particular conformal transformation of the given
independent quantities in such a way that the
transformed data (barred variables) satisfy the
constraints. The transf ormations of the various
parts of the gravitational field and its sources, if
any, lead to four coupled quasilinear elliptic equa-
tions which almost always have unique solutions. '
Definitions, conventions, and relevant results
from papers I and II are given in the Appendix.

In this paper we shall discuss in more detail the
initial-value problem in the presence of pure
electromagnetic and neutrino fields, as well as the
initial-value problem of the scalar-tensor theory
of gravitation. We focus attention here on these
particular examples because of their practical in-
terest. Elsewhere, ' the initial-value analysis for
gravity, including gravity with torsion, coupled to
general boson and fermion fields will be dealt with
thoroughly using conformal techniques of the type
developed in recent work' and used in the present
study.

External sources of the gravitational field are
characterized by a stress-energy tensor T""with
energy density p, = T"'n„n, and current density
v' =s&T"'n„where n" is the unit timelike normal
of the initial hypersurface and x'„ is an operator of
projection into this hypersurface. The Einstein
equations constrain the initial data to satisfy

—2V;P" =16mv',

ff —(p;,p"——,p ') = 16vg. (1 2)

The gravitational data are the spacelike three-
metric g;, of the initial slice (with covariant deriv-
ative V; and scalar curvature A) and a "momentum"
tensor P" =KI,"-K", where K;, is the second funda-
mental tensor of the slice and K=g"K;, In the
following these quantities will be dealt with just as
in previous papers. (See the Appendix for a sum-
mary. ) In particular, the dependent data for which
(1.1) and (1.2) are solved are a scalar conformal
factor $(x)&0 and a three-vector W'(x). The
scalar defines a conformal mapping g, , = p'g„and
the vector defines the "longitudinal" or constrained
part of P" in (1.2). On asymptotically flat mani-
folds, we choose the boundary conditions &f&-1

and R" —0 at spatial infinity. Gn closed manifolds
there are no boundary conditions.

The two levels at which p, and v' may be dealt with
are (1) as scalar and three-vector point functions
p. (x), v'(x) on the initial manifold, and (2) as
scalar and three-vector functions constructed from
a basic underlying field, e.g. , in the case of electro-
magnetism one has g= (8v) '(E'E'+B'B')g;, . We shall
first consider JLi, and v' as point functions and ask how
they might change under a conformal transformation
of the other initial data. We may assume for
simplicity that p = p[Q, p], v' = v'[P, v'], where p
and v' are the "trial*' energy and current densities
which must be transformed, i.e., conformally
deformed, into p, and v' along with the other data
in such a way that (1.1) and (1.2) are satisfied.
Elementary physical considerations guide us in
constructing these transf ormations. To simplif y
the analysis and guarantee physically meaningful
results, we may require that (a) p(x)» 0 implies
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p. (x) ~ 0, and that (b) p. 'v;v' ~1 implies
g 'v;v' = 1. Condition (a) guarantees the local
positiveness of energy density and (b) guarantees
the dominance-of-energy requirement, which rules
our sources with spacelike local energy-momentum
four-vectors. For pragmatic reasons, we can re-
quire both (a) and (b) to hold for all Q(x) & 0 because
we cannot know the value of P before the complete
initial-value problem is solved. It follows that
from (a) and (b) p. 'v; v' is independent of Q. A
final natural condition to impose is (c) the trans-
formations reduce to the identity when P =1. From
(a), (b), and (c), we conclude that an acceptable
transformation is

physically important examples.
It is interesting to note that the conformal analy-

sis of the initial-value problem of gravitation with
sources, as developed in this paper and in pre-
vious papers, can be used as a basis for formu-
lating Wheeler's version of Mach's principle.
This issue is discussed elsewhere. '

II. INITIAL-VALUE PROBLEM WITH

ELECTROMAGNETIC SOU RCES

The coupled initial-value problem for the
Einstein-Maxwell field consists of the gravitational
initial-value equations (1.1) and (1.2), and the
electromagnetic constraints

(1.3) V;E'=~;E'+E F)'; = 0, (2.1)
where ~ is a real number. We wish to point out
that transformations of the type (1.3) are not

actually necessary in order to construct physically
significant solutions for arbitrary types of matter-
field sources. ' However, they have the virtue of
simplicity and are precisely of the form required
in the problems being treated in the present work,
as we shall see.

A more fundamental point of view is possible
whenever the energy and current densities are
constructed from an underlying field. This source
field may have an initial-value problem of its own

that must be solved along with the gravitational
constraints. The relations between the "trial"
quantities p, and v' and the physically relevant final
values p, and v' in this ease are found by requiring
that the initial-value constraints on the source
fields should be solved as far 3s possible without
dependence on the unknowns Q and W' of the gravi-
tational problem. That is, the gravity constraints
and the source constraints are to be posed in such
a way that their mutual coupling is minimal. This
program is carried out for electromagnetic and
neutrino fields in Secs. II and III. One finds in
these cases the unique relations p. = VQ
v' = v'P ", which are in accord with (1.3) in the
case o. = —8. This result then turns out to imply
that the gravitational constraints have precisely
the form for which existence and uniqueness' and

stability of solutions of the initial-value equations'
have been established.

The scalar-tensor theory' has an initial-value
problem that can be posed in terms of a scalar
field and the same tensor variables g;; and P'~

that are used in conventional general relativity. '
In Sec. IV this problem is treated and the con-
straints are written as elliptic equations that have
the same properties as they do in general rela-
tivity. The final section contains a brief discus-
sion of the results and how they may be easily
generalized to encompass a number of other

V;'B'= 9;B +B l"'.; =0, (2.2)

p = (8w) 'g;„(E'E ~. +B'B'), (2.4)

where e,~ is the covariant unit alternating tensor
density of weight -1 with values +1, -1,0. We

observe that

(2.5)

Hence, if we define

we find'

y-6Ea Bl y -6Ba (2.6)

v, E'=y-'V, .E', v, B' =y-'V,-B'. (2.7)

In the gravitational initial-value problem, the
"base" or "trial" metric g;,. is prescribed freely.
Then we ean construct in a well-known manner'
two covariantly transverse vector fields E~ and

B~, i.e. , solutions of the equations

V E —8 Ez +E~F) —0 (2.8)

Once E~ and B~ have been chosen in this way,
(2.6) and (2.7) ensure that V;Fr =0, V&Br =0 for
any P, and thus in particular for that Q which
satisfies the gravitational constraints. The trans-
formation (2.6) is unique in this respect. The
sources (2.3) and (2.4) become, using (2.6),

v ~

y -10vl y-10(4v)- 1g 1/2g 'llll e E f~Bk (2 10)

P, =Q 'P=Q '(8m) 'g;&(E'rE'r+B'rBr). (2.11)

Therefore, n= —8 in the transformations (1,3).
The gravitational constraints, which constitute

which must also be satisfied on the initial spacelike
hypersurface. In (1.1) and (1.2) we have the elec-
tromagnetic field current density and energy
density as sources of gravity,

" =(4~) g 2g ~mgaE B
~ (2.3)
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g~Prr=0 ~

VJ (L W}'~ + 6(LW)"V, Inp + —,
' V'7

+ 2y-6g I/mg (me E j Bk 0

(2.12)

—8V @ = —R&f)+Mrrg +2MrL Q '+(M~ —8r2)$5

four of the ten Einstein equations, have been ex-
tensively developed and discussed in terms of the
scalar and vector potentials Q and W' in previous
articles. " These equations are summarized in
the Appendix. Referring to the equations for
gravity (A5), (A12), and (A13) in the Appendix, we
see that the complete gravitational-electromagnetic
initial-value equations are (2.8), (2.9), and

T„,= .Q-*y„D,V (D—A*}y,7+V*y.D„4
—(Dp 4*)yv 41 (3.1)

where the four-spinor g satisfies the massless
Dirac equation

y~D„y=O. (3.2)

Here, let us recall our notational convention that
a bar over a quantity indicates that it satisfies the
constraints, as opposed to the unbarred "trial"
quantities. For a spinor g, we denote its adjoint
by g*= (Hermitian conjugate of p) x("Hermitizing
matrix"). ' The Dirac matrices satisfy

(3.3)

where

+2g~(Er E'r+B rBr)$ ', (2.14) and the covariant derivative D„acts on spinors
according to the rule

ia gr
MTT gi j8kl~TTI TTN

Mrl. =g.~gaiP'r'r(LW)",

M, =g„g„(I.W)"(L W)".

(2.15}

=0 (3.5)

where I'„ is the spinor connection determined up
to a. multiple of the identity matrix by'

To satisfy this system of equations for a, given

g;&, one first constructs in a straightforward
manner" the solutions Er, Br, and P'r'r of (2.8),
(2.9), and (2.12). These quantities, together with

g;,. and a freely specified scalar 7, are the input
data of (2.13) and (2.14}, which are then solved for
W' and Q. Now we have a complete set of initial
data g;;, P", E', B' that satisfy the Einstein-
Maxwell constraints (1.1), (1.2), (2.1), and (2.2)
simultaneously. In terms of the unbarred varia-
bles, we have the solution

4Ri =0 gij I

P" =e "Pr'r+e 'I («-)'+-."g-"1,
Ei P-6Ef

B'=P 'B'

(2.16)

III. INITIAL-VALUE PROBLEM WITH NEUTRINO SOURCES

The relativistic theory of neutrinos requires the
introduction of spinors. In order to facilitate ex-
tension of the results below to the coupled gravity-
electron theory (Sec. V), we shall use here the
language of Dirac four-spinors. We shall denote
by D„ the four-dimensional covariant derivative.
(In the preceding sections, only the covariant
derivative V'; induced on three-dimensional space-
like hypersurfaces has been used. ) The stress-
energy tensor for the neutrino field in Einstein's
equations is given by"

The neutrino field must also satisfy

(I —iy, )P =0,
where

y, =[4t (-"'g)"1-""'&y.»y,y. .

(3.6)

(3.7)

we may write the neutrino equations (3.2) in the
form

n, y "n"D„g= &; y'D;iP, (3.9)

which expresses the time derivative of g in terms
of quantities that have been projected onto the

Equation (3.6) incorporates the experimentally
established fact that neutrinos have only one
helicity.

The initial-value problem for the gravity-neu-
trino theory can be posed in terms of the gravi-
tational variables g;, , P ' together with the spinors
g and g*. To show this, following Dirac, "we
must first pick a "hypersurface-compatible'*
orthonormal tetrad A~() that satisfies

Aiy —~ i ~
~ ~(a)(i)s

—(a)-(r)
(3.8)

n" =4,),
where n" is the timelike unit normal of the hyper-
surface. One can now express all the needed
quantities in a form suitable for the initial-value
analysis. By introducing the operator that pro-
jects quantities onto the hypersurface,
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hypersurface and that are, therefore, expressed
in terms of initial data. Equation (3.9) will be
useful below. In contrast to the dynamical equa-
tions (3.2) or (3.9), the helicity condition (3.6)
constitutes a constraint on the initial value of tj."
If this constraint is satisfied initially, it con-
tinues to hold at later times by virtue of the equa-
tions of motion.

The four gravitational constraints are given by
(1.1}and (1.2) with p, and v' determined by con-
tracting T„, in (3.1) with X~&» =n" and X~&;~. Using
(3.9), one finds

(3.10)

+0 r ~ +a+j4 (+I &a~jV*}r0]
where n'=y„y' and y„=n,y'. Note that, as re-
quired, p, and v' contain no reference to the lapse
and shift functions (- ~@goo) ' ' and ~'~g„.. The only
role of the lapse and shift functions is to describe
how the spacetime coordinate system is to be
continued away from the initial hypersurface.
Clearly, then, the initial-value equations are
independent of these quantities. In fact, the only
part of the gravitational initial data [g,&, P ') on
which p. and v' depend is, as is the case with the
electromagnetic field, the three-metric g&, (and
the X&;&'s) and its spatial derivatives. This point
is more easily seen by examining Dirac's equiva-
lent expressions, (35) and (36) in Ref. 13, or
those in Ref. 3, both of which involve a more com-
plete (3+1)-dimensional breakup than we have
presented here. However, (3.9), and (3.10) are
in very convenient form for the remaining part of
our analysis.

The complete initial-value problem is now the
gravity constraints (1.1) and (1.2), with (3.10) and
(3.1.1}incorporated, plus (3.6). We want to choose,
as in the electromagnetic case, appropriate con-
formal mappings that uncouple the constraints as
much as possible and result in the simplest possi-
ble equations. Since the constraint (3.6) is alge-
braic, it is invariant with respect to any trans-
formation of the type g = gQ "(r, is clearly scale-
invariant). Thus the choice of n can be deter-
mined by requiring that the resulting transfor-
mations p,- pand v'- v' are homogeneous in Q
and involve no terms such as V, &j&, etc. To carry
out the conformal transformation of (3.10) and
(3.11), it is convenient to work in terms of a four-
dimensional conformal mapping ~'~g» =~4~g&,g'. Qf
course, only the three-dimensional part g&;

——Q'g;&
[and X~ ~ = Q'X~ I from (3.8)] is actually involved in
(3.10) and (3.11) since these expressions are in-
dependent of 'g«and 'g«. The transformed
spinor connection is given by

(3.12)

Qne finds from the above that if g =gP '
(and (*=P*Q ') then p. = pQ

' and v' = v'Q " just
as for the case of an electromagnetic field. Inas-
much as the product (Hermitian conjugate of
y}x(y) is the probability density (per unit proper
three-volume), one sees that the transformation
g = gg

~ is entirely natural.
Our analysis can now be summarized as follows:

On an initial spacelike hypersurface pick a three-
metric g, &

(and a related hypersurface-compatible
set of A. vectors}, a transverse-tracefree tensor
P~~, and a scalar T. We also choose a single-
helicity spinor g that satisfies the energy condi-
tions p, & 0, p, 'v;v' «1. Using the conformal
transformations we arrive at a set of equations for
Q and W' of precisely the form (A.12) and (A. 13).
Then, for the Q and W' that satisfy these equations,
a complete set of initial data satisfying the con-
straints is given by

P aj

y-loping

+ y-4[(L W) 1 + +g kl]

IV. SCALAR-TENSOR THEORY

(3.13)

Although originally expressed in a form with a
variable gravitational constant, the scalar-tensor
theory of gravitation was put by Dicke in an alter-
native form in which the scalar field acts along
with other sources in the Einstein equations to
produce a spacetime metric. " The scalar field,
here denoted by X, obeys field equations in addi-
tion to the Einstein equations, but introduces no
additional constraints on the choice of initial data.
This fact makes it quite straightforward to adapt
our techniques to this case, as only the initial-
value equations (1.1) and (1.2), suitably modified
in terms of source structure, need to be con-
sidered.

A first-order formalism for the above version of
scalar-tensor theory was developed by Toton. ' He
used the "canonical" variables g„and m's= g'h~'s
to describe the tensor field and introduced a
canonical pair which we denote by A. and n to
characterize the scalar field, where n= g' 'a is
the canonical momentum density. In terms of
these variables, the initial-value equations be-
come

—2V&P'~ =aV'X+ 16m v, (4.1)

+ (6+4+) 'X'i'+16m p, . (4.2)

The dimensionless coupling constant for the scalar
field is denoted by u and, as before, p. and v' are
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the energy density and current density of other
fields (not including the scalar and tensor fields).
We shall assume here that g = V, Q

' and
v = v'Q "as in the preceding sections.

Examination of the structure of (4.1) and (4.2)
indicates that the conformally transformed
scalar-field initial data should be defined by

A. =A., a=/ 'a, (4 3)

—8V'Q = —tR —(6+4&v)A. '(V, A)(V'A)]Q

+IMrr+(6+4&v) 'A.'a']Q '

+2Mr~g '+(M~ —-', T')Q'+16vV. P '.
(4 5)

in order to maintain consistency with the trans-
formation properties in the tensor and matter
variables. Note that (4.3) implies o. =n so that the
commutator (Poisson bracket) of A. and n is pre-
served under this mapping. Also, (4.3) ensures
that no new terms involving V, Q appear to compli-
cate the analysis. Taking (4.3) and the previous
results embodied in (A12) and (A13) into account
we find

V (Igr)'&+ 6(Lg )'~V. in/ + 2V T+ p (8mv'+,'-aV'X)= 0,
(4.4)

T = constant +5T(x), v'= 5v'(x). ' Likewise, here
the same affirmative results are obtained if the
scalar field current density aV'A. is assumed to be
small. The proofs of these assertions rest en-
tirely upon the facts that (1) the term added to
M» in (4.5) is positive-definite, and (2) the sign
of the term added to R is irrelevant, as shown in
Ref. 2. Thus, the analysis of existence and unique-
ness of solutions given in Ref. 2 carries directly
over to the present case and we shall not repeat it
here. Our conclusion is, therefore, that the
character of initial-value equations for the scalar-
tensor theory does not differ in any important way
from that of standard general relativity.

V. DISCUSSION AND GENERALIZATIONS

In this paper we have illustrated the analysis of
initial-value problems for fundamental fields
coupled to the gravitational field in general rela-
tivity. The results we have given can be readily
generalized in several directions.

The electromagnetic field can possess charges
and currents as sources. The only change in the
initial-value equations is that the constraint on
the electric field becomes

V,- E' =4mp, (5.1)
It is of some interest to compare the behavior of
the scalar field as a source of the tensor field to
the behavior of the other sources we have treated.
In particular, note that the current density of the
scalar field aV'A, transforms according to
aV'X= / "aV'X, just as for the other sources,
where we found v =P "v'. On the other hand, the
energy density has two parts that transform dif-
ferently": (1) a "density of potential energy"
X 'g" (V&X)(V;X) =Q 'X 'g" (V;A)(V;A), which can be
compared with the analogous expression for the
tensor field R = Q 'R —8$ 'V'Q, and (2) a "density
of kinetic energy" X.'a' =P "A.'a', which is analo-
gous to the kinetic term g;,g» p rr$rr
= Q "g;,g»P 'r~rP rj'r of the tensor field. Of course,
it is the inhomogeneous term in the scalar curva-
ture R involving V'P that enables the gravitational
initial-value equations to be solved by the present
method. Since this term arises from the tensor
gravitational field, the presence of an additional
scalar field makes no essential difference in the
character of the resulting equations.

In previous papers, "the existence and unique-
ness of solutions for P and W' were estab-
lished for the exact equations when 7 = constant
and v' =0. That analysis does not require modifi-
cation when a scalar field is present whose current
density vanishes initially. We also treated by
perturbation methods the more general case when

where p is the charge density (per unit proper
three-volume). However, it is easy to see that
this equation is conformally invariant for all
Q&0 if we set

5=4 'p (5.2)

Therefore, the gravitational initial-value equations
have the same form as whenp =0.

The massless Dirac equation treated in Sec. III
can be modified by the addition of the usual mass
term. This removes the helicity constraint. The
only important change in the gravity equations
comes through the appearance of an additional
term in the source energy density. If the Dirac
mass, say m, is to be incorporated in a manner
that is independent of the solution p that sets the
scale, i.e., if m is not scaled, then the additional
term transforms as P' = p.'Q ', and the scale
equation (A13) is modified only to the extent of
having an additional term 16m', 'P ' on the right-
hand side. It is important to note that this extra
term does not affect the theorems on existence
and uniqueness of solutions for @ proved in Ref.
2 '7

There are many other cases that can be treated
using these methods. Some of them are treated in
Ref. 3.
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defined by g;,. = Q'g... Q(x) & 0. This leads to

(A6)

f,'.„=f,'.„+2y '(-6,'s, y+5,'ay -g,„g'"8 Q), (A7)

where

(A1)

APPENDIX

Latin indices run through 1, 2, 3, and Greek
indices denote 0, 1, 2, 3 with x'=t =time. The
signature of the spacetime metric is (- +++). The
Einstein equations have the form
(4R~„- 2(')g p„(')R =8gT pp, with the curvat re tensor
satisfying (D„D, D„D„—)A, = A~~~R~„„and the Ricci
tensor defined by '~R„,: R pp

'The scalar
curvature of a spacelike three-sphere is positive
with these conventions.

The metric of a spacelike three-manifold is de-
noted by g;, . The second fundamental tensor of
this embedded manifold is denoted by K;z. We de-
fine P" =Kg" -Z'~ and decompose this three-tensor
orthogonally with respect to g&, by the prescrip-
tion"

4 8$ 5v2@ v2$ —gllv

The conformal mappings of the parts P'~ are
carried out as follows. We set

(A8)

(A9)

as this mapping uniquely preserves the defining
properties for all $(x)&0. We do not transform
W'. Then (A'f) shows that

(LW)' =P (LW)" . (A10)

The scalar trace is part of the freely specified
data (i.e. , independent of Q), therefore we de-
fine P =P = 2 7, which leads to

lPg"=0 '('Jg")-
(A11)

Combining these results and applying them to the
constraints (1.1) and (1.2) give'

g, ,I,",=g, , (I.w)" = 0,

(Lw)"=v*w'+v'w* '-, g*'v, w-',

(A2)
V&(LW)" +6(LW)"V& in/ '+V'r+8wv'Q ' =0,

(A12)

(A4)

Vj p'r'r ——0 ~vj (LW )"= v, (p" ——', pg" ). (As)

A conformal transformal transformation of g;& is

—8V'Q =-RQ+Mrrg +2M'. g

+ (MI —8 r') Q'+ 16m p, Q ',
where r and the M's are defined in (2.15) and
0 = pQ ', v = & P ", as described in Sec. I.

(A13)
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