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Abstract— Visualization of general relativity illustrates aspects of Einstein’s insights into the curved nature of space and time to the
expert as well as the layperson. One of the most interesting models which came up with Einstein’s theory was developed by Kurt
Gödel in 1949. The Gödel universe is a valid solution of Einstein’s field equations, making it a possible physical description of our
universe. It offers remarkable features like the existence of an optical horizon beyond which time travel is possible. Although we know
that our universe is not a Gödel universe, it is interesting to visualize physical aspects of a world model resulting from a theory which
is highly confirmed in scientific history.
Standard techniques to adopt an egocentric point of view in a relativistic world model have shortcomings with respect to the time
needed to render an image as well as difficulties in applying a direct illumination model. In this paper we want to face both issues to
reduce the gap between common visualization standards and relativistic visualization. We will introduce two techniques to speed up
recalculation of images by means of preprocessing and lookup tables and to increase image quality through a special optimization
applicable to the Gödel universe. The first technique allows the physicist to understand the different effects of general relativity faster
and better by generating images from existing datasets interactively. By using the intrinsic symmetries of Gödel’s spacetime which are
expressed by the Killing vector field, we are able to reduce the necessary calculations to simple cases using the second technique.
This even makes it feasible to account for a direct illumination model during the rendering process. Although the presented methods
are applied to Gödel’s universe, they can also be extended to other manifolds, for example light propagation in moving dielectric
media. Therefore, other areas of research can benefit from these generic improvements.

Index Terms—General relativity, Gödel universe, nonlinear ray tracing, time travel.

1 INTRODUCTION

The theory of relativity is difficult to understand intuitively, because
relativistic effects only appear under extreme conditions. Traveling
near concentrated masses like black holes or at velocities close to
the speed of light has severe effects on the evolvement of time or
the structure of space. The mathematical description of general rel-
ativity is provided by Einstein’s field equations. On the one hand the
three spatial dimensions and the time dimension have to be described
as a continuum and not as separate quantities. This spacetime then is
“curved” by gravitation resulting from mass distributions like galaxies.
Although these features can be described mathematically, it is hard to
develop an imagination just by considering these equations. Visual-
ization of general relativity can help to gain a deeper insight into the
theory for an expert as well as the layperson. We visualize what a
physical observer is able to see when he is situated in a general rel-
ativistic environment, focussing on a particularly interesting solution
and introducing two new techniques for the visualization process.

In 1949 Kurt Gödel found a special solution of Einstein’s field equa-
tions with many remarkable features. This Gödel universe represents
a rotating universe which has a crucial impact on the way light propa-
gates. For example, light rays are always restricted to a limited region
which therefore represents an optical horizon. Furthermore, Gödel’s
universe was the first solution of Einstein’s field equations which al-
lowed time traveling. Exactly this optical horizon divides the space-
time into two parts. In the inner part time travel is not possible and
causality is conserved. When traveling beyond the optical horizon it
is possible to travel into the past of a person located in the causal in-
ner region. Although it is proven that our universe is not rotating and
therefore not a Gödel universe, this solution indicates that time travel
is in principle possible, if we only take general relativity into account.
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For visualizing general relativity standard raytracing methods have
to be generalized, because light rays are curved lines and the veloc-
ity of light is not infinite. These light rays are called null geodesics to
stress the geometrical origin of the underlying spacetime. The numeri-
cal calculation of such geodesics is very time-consuming and therefore
this task is usually performed on large CPU-clusters. In our paper we
want to present two new techniques of visualizing general relativity.

First, we will introduce a specific way to store image data to enable
us to fine-tune the scene parameters in a post rendering process. Im-
age data is usually stored as RGB data, which does not contain any
information on e.g. the spectrum of radiation emitted by an object. If
a spectrum is transformed into RGB data, information will be lost, so
shifting a spectrum stored as plain RGB data will lead to false results.
In such a case it is useful to store more than the actual color values of
each pixel. It can also be necessary to visualize just a certain aspect
of general relativity, because the large amount of very different visual
effects can be confusing and misleading. With our flexible approach,
the task of visualizing a specific scene is split into two consecutive
sub-tasks. We only have to render a certain scene once. After that, we
are able to change the look of this scene or the effects displayed for
the currently given arrangement of objects and observer interactively.
Then it is possible to display an interesting scene with an optimized
set of parameters in reasonable time.

Second, we can make use of the specific symmetries of the given
world model to achieve further improvements. Exploiting symmetries
is a fundamental principle to simplify and solve physical and mathe-
matical problems. Therefore it is worth to make use of symmetries
also in visualization. Light rays in curved spacetimes can be very
complicated and it is not always possible to find the proper geodesics.
Shadow rays, for example, have to be constructed between two given
points in spacetime which is hardly feasible to accomplish with stan-
dard numerical techniques. By considering the symmetries, however,
an appropriate transformation can be found to map each geodesic onto
a geodesic with simple initial conditions. We used this approach to
calculate shadow rays and render illuminated objects in the Gödel uni-
verse.

Because Gödel’s universe is an outstanding example for the conse-
quences of general relativity and has not been visualized yet, we used
it to demonstrate our techniques to give a first insight into this uni-
verse. The application of those techniques is not limited to a particular
spacetime.
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2 RELATED WORK

Visualization of astronomical data or astrophysical models has gained
importance as well as quality over the last years, in which a variety of
methodical approaches for different target audiences have been devel-
oped and improved.

Magnor et al.[17] introduced an interactive visualization tool for
realistic rendering of arbitrary dust distributions which are also in-
teresting for a general audience in a planetarium show, for example.
Strengert et al.[24] have extended GPU-based ray casting to spectral
volume rendering to demonstrate effects of selective absorption and
dispersion in certain materials. A comparable pre-processing tech-
nique is deferred shading[3], where a large framebuffer is used to store
surface properties of each pixel before calculating the final pixel color.
Open source software like Celestia[1] let the user explore the universe
on a common desktop computer. In this way we can become aware
of the vast empty regions in our universe. Li et al. developed[16]
the scalable world-in-miniature (WIM) map to display the astrophys-
ical universe using a logarithmic scale to simplify way finding and
navigation. It is also able to depict the uncertainty of the underlying
astrophysical data due to observational errors[15].

Weiskopf[26] provided a systematic approach to visualize many
fields of the theory of relativity. His work was in part based on an eas-
ily extendible ray tracing system written by Gröne[7]. Müller[19] later
improved the visualization of special and general relativity regarding
more complex world models. Due to the rapidly increasing comput-
ing power of modern GPUs, there exist several interactive simulations
of special relativistic content like the work of Savage et al.[23]. A
very nice round-up over visualization in special and general relativity
as well as in astrophysics can be found in [27]. Focussing on a gen-
eral audience of laypersons, Kraus et al.[11] provide a large number
of media files for educational purposes.

Leonhardt et al. showed in [13, 14] that there is a link between
the optics in a moving media and relativity. A black hole or other
relativistic effects can be emulated by propagating light in such media.

In 1949 Gödel published a spacetime which represents an exact
solution of Einstein’s field equations[8]. In his paper he also went
into the most important properties of his model. A few years later
Kundt[12] integrated the geodesic equation for Gödel’s spacetime, fol-
lowed by Chandrasekhar[2] and Novello[21]. A more detailed descrip-
tion of the inner structure of the Gödel universe can be found in [9].

3 GÖDEL’S UNIVERSE

3.1 General Relativity

In this section, only a very short introduction to the concepts of general
relativity can be given. A very detailed presentation and the following
equations can be found in [22] for example.

3.1.1 Einstein’s Insights

In 1905, Einstein found the theory of special relativity[4], where the
correct transformation between coordinate systems in relative motion
especially at a high relative velocity is described correctly. Special rel-
ativity has profoundly changed our view of space and time. Lengths,
elapsed times or even the mass of an object become dependent on the
relative speed between observer and object. For example, a clock of a
fast moving observer runs slower than the clock of a resting observer
when both times are measured by the resting observer. But the mov-
ing observer will measure no time dilation effect regarding to his own
watch.

General relativity, a geometric theory of gravitation, was discovered
in 1915[5]. The theory extends special relativity regarding gravitation.
It is shown that even the pure presence of mass has effects on space and
time similar to the effects in special relativity. Like a slower ticking
clock, a person living near a black hole will be aging slower than a
person far away from the black hole. Moreover, the whole spacetime
becomes “curved”, making for example the circumference of a circle
o �= 2πr or the volume of a sphere V �= 4/3πr3, where r is a radial
coordinate.

3.1.2 Manifolds and Metrics

A general relativistic model is mathematically described by a line
element ds which specifies distances on a four-dimensional pseudo-
riemannian manifold, the so-called spacetime. The squared infinitesi-
mal distance ds2 between given points x and x+dx on the manifold is
given by the line element

ds2 =
3

∑
μ,ν=0

gμν (x)dxμ dxν ,

where gμν (x) is an entry of a 4× 4 matrix, the metric tensor at the
point x. dxμ is an infinitesimal distance in the μ-direction of the co-
ordinate system in which the spacetime is represented. Properties like
the curvature of the spacetime or the path of a moving object can be
obtained from this line element. In a flat spacetime without masses
the spacetime in cylindrical coordinates is expressed with the simple
Minkowski line element

ds2 = c2dt2 −dr2 − r2dφ 2 −dz2, (1)

with the speed of light c. Obviously, the “space” part of the line ele-
ment −dr2 − r2dφ 2 −dz2 is Euclidian.

3.1.3 Geodesic Equation

Paths of light rays or massive objects under the influence of grav-
itational forces resemble basically “curved” paths in a given four-
dimensional coordinate system. These paths contain one time com-
ponent and three spatial components and can be obtained by solving
the geodesic equation

d2xσ

dλ 2
+

3

∑
μ,ν=0

(
Γσ

μν
dxμ

dλ

dxν

dλ

)
= 0, (2)

where Γσ
μν are the Christoffel symbols for the corresponding metric

and the index σ ∈{0;1;2;3}. If the spacetime is not highly symmetric,
this equation is almost always impossible to solve analytically in order
to obtain x(λ ), where λ is an affine parameter.

3.2 Gödel’s Metric

3.2.1 Einstein’s Birthday

As a good friend of Albert Einstein, Kurt Gödel published an article
entitled “A remark about the relationship between relativity theory and
idealistic philosophy”[6] in 1949 to pay tribute to Einstein on the occa-
sion of his 70th birthday. One of Gödel’s thoughts, which he discussed
in this article, was the influence of the general relativity on the nature
of time. He discussed the possibility of a reversed time ordering and
as consequence the breakdown of causality. Indeed, in the same year
Gödel published a mathematical model of a universe, which adheres
strictly to Einstein’s equations of general relativity, and allows an ob-
server to go on a mind-boggling journey into his own past. This Gödel
universe was the first model of a spacetime which showed the severe
consequences of Einstein’s theory that clearly.

The Gödel universe is an example of a rotating, not isotropic but ho-
mogeneous universe. In mathematical terms this particular spacetime
is given by its line element[10]

ds2 = c2dt2 − dr2

1+
(

r
2a

)2
− r2

(
1−

( r

2a

)2
)

dφ 2 −dz2 +
2r2c√

2a
dtdφ .

The time is given by t, whereas r, φ and z denote the spatial position
and are given in cylindrical coordinates. It is remarkable that in the
limit a → ∞ the Gödel metric results in a flat spacetime metric, given
in cylindrical coordinates by equation (1). A closer look at the metric
reveals that along the z-coordinate the metric has the structure of flat
space. Beside the time t, it is therefore often sufficient to contemplate
only the subspace which is identified by the r and φ coordinates. We
will call this subspace the r−φ subspace.
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Even though in the following sections all the considerations are
done with respect to the origin, this is not really an constriction. All
statements can be generalized due to the homogeneity of the Gödel
universe. The homogeneity allows us to regard each spacetime point
as the center of the coordinate system.

3.2.2 Time Traveling

In the Gödel metric one decisive parameter appears. It is the Gödel pa-
rameter a, which determines the rotation as well as certain geometric
properties. From that parameter we can define 2a as the critical Gödel
radius, which separates the spacetime into two parts. The inner part
consists of all points with r ≤ 2a. In geometrical terms this means that
the inner part is enclosed by an infinite extended cylinder with 2a as
radius. Hence, all spacetime points beyond the Gödel radius belong to
the outer part.

It is intriguing in Gödel’s universe that the causality breaks down
at the transition between both parts. While two consecutive events at
the origin never change their order for an observer located in the inner
part, an observer in the outer part may perceive a reversed order of both
events. Although the proper time of such an observer evolves as usual,
in respect of the origin it has the opposite direction. This effect can be
used to go on an abstruse journey into one’s own past. For example an
observer who is located at the origin at the beginning travels through
the outer part to move back in time. This enables him to return to the
origin at an earlier time than he had started.

3.2.3 Optical Horizon

Beside the causality breakdown between the inner and the outer part,
we have also a remarkable optical feature. The view of an observer
located at the origin is always limited to the inner part. A look at the
structure of the geodesics reveals this behavior. Although a particle or
a photon moves along the z-direction linearly like in flat space, in the r-
φ subspace they always return to their source. Moreover, the geodesics
are even closed and of elliptical shape. Fig. 1 shows some of such
geodesics in the r-φ subspace. Whatever geodesic is being considered,
as long as it passes the origin the whole geodesic is completely within
the inner part. As a result light emitted at the origin never exceeds the
Gödel radius and thus does not reach the outer part. Because the Gödel
universe is homogeneous we can also argue the other way around. A
photon emitted beyond the Gödel radius never reaches the origin. This
restriction is the reason, why an observer at the origin can never see or
communicate with a time traveling person.

Fig. 1. Geodesics in the r − φ subspace. The light rays evolve clock-
wise into the past and counter-clockwise into the future respectively. An
object at position A could be seen twice by an observer situated at the
origin (see section 6.1).

4 NONLINEAR 4D RAY TRACING

4.1 4D Ray Tracing

Classical 4D ray tracing is an extension to 3D ray tracing, where the
speed of light is regarded as infinite. In four dimensions, the speed of
light is limited to c = 3×108 m/s or c = 1 in geometrical units. If the
so-called Lorentz-transformation between moving coordinate systems
and all resulting influences are implemented, one is able to visualize
effects of special relativity ([11], [26] and [23]) within the Minkowski
metric of flat spacetime. The more challenging task of obtaining cor-
rect visualizations of characteristics in general relativity will be ex-
plained below.

4.2 Ray Tracing in Curved Spacetimes

4.2.1 Defining a scene

Objects in a general relativistic scene can be implemented in two dif-
ferent ways. Properties like size or center of a coordinate object are
described in pseudo-cartesian coordinates on the manifold of the cor-
responding spacetime. Large objects can be put in a scene, when co-
ordinate objects are used. This kind of object-definition does not take
the curvature of the spacetime into account, so we are restricted to rel-
atively flat regions of the spacetime when using these objects. This is
used to define, for example, a background texture to the surroundings
of a black hole. When objects in a highly curved area of spacetime
are needed, we can use local objects. In general relativity it is shown
that there exists a locally flat spacetime in the surrounding area of any
point on a manifold, where local objects are characterized with re-
spect to Euclidian coordinates ([20], implemented in [19]). Points and
directions on the manifold resemble positions and velocities of local
objects. Hereby it is possible to visualize the correct appearance of
a geodesically moving small object regarding for example the finite-
ness of light. The camera is also specified with respect to a locally flat
spacetime.

4.2.2 Solving the Geodesic Equation

The geodesic equation (2) consists of four second order ordinary dif-
ferential equations. To solve them numerically we have to define ini-
tial conditions concerning position and direction. The initial position
has to be a valid point on the manifold; the initial direction is subject
to a normalization condition which assures that the object has a valid
velocity. Photons travel on lightlike rays at the speed of light c and
massive particles on timelike curves with a velocity less than c.

4.2.3 Calculating intersections

The numerical integration yields a curved ray, represented by usually
about 1000 straight segments in a four-dimensional spacetime. Each
segment then has to be tested for intersections with the objects of the
scene. If the object is moving, the corresponding timelike curve con-
tains the information about the object reaching a certain point at a
certain time. An intersection is found, when a light ray intersects the
object regarding both space and time.

5 EXTENSIONS AND IMPROVEMENTS

In this section, we will illustrate our new approaches in visualizing
general relativity exemplified with the Gödel universe. The discus-
sion on new physical insights as well as the advantages of these new
methods can be found in section 6.

Visualization is a powerful tool to make complicated relations ac-
cessible to human beings. To understand a relativistic world model
like the Gödel universe intuitively, auxiliary visualization might be
decisive. For example if one is interested in the optical distortion of
an object he might try to find an appropriate texture to display this
effect. Also, the Doppler effect or the time order of visible objects
could be in the focus of interest. It is desirable to be able to generate
visualizations interactively. Unfortunately, it is hardly possible to ac-
complish this task in general. For example, the geodesics in Gödel’s
universe are too complicated to utilize them for interactive visualiza-
tions. Either we choose an approach which is directly applicable for
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many spacetimes or we try to find an analytic solution of the geodesic
equation for a specific spacetime.

Sections 5.1 and 5.2 address the first approach. To be able to inter-
actively visualize a given scene it is necessary to preprocess the infor-
mation non-interactively. After having calculated the necessary data, it
is possible to visualize the scene interactively in a postrendering step.
In this step lookup tables will be generated from the preprocessed data.
Section 5.3 offers a solution to the second approach. Here, the intrin-
sic symmetries will be used to visualize the Gödel universe faster. To
achieve more realism the visualization is also done in consideration of
direct illumination.

5.1 Preprocessing

In a first step, the desired images are precalculated using a custom file
format. Two files per image are being generated, one containing the
RGB data of the calculated image (RGB-file) for the currently used
scene, the other file holding detailed information about each intersec-
tion of each ray with the scene (data-file). This data is used to generate
several lookup tables for this image concerning a pixel mask to stencil
empty pixels, frequency-shift as well as time-shift data, details regard-
ing the intersection of the curved ray with an object and properties of
the ray itself to be able to calculate polarization effects in the future.

The calculation of this data is the most expensive part of image gen-
eration for two reasons: First, the numerical integration of the geodesic
equation is very time-consuming. To approximate the curved ray with
line segments usually 1000 to 5000 integration steps have to be car-
ried out. Each step takes about 10 μs to finish. Second, to intersect a
curved ray with the scene each segment has to be intersected with the
complete scene in the worst case, which takes about 1 μs per object.
These calculations carried out on a CPU can be accelerated very sim-
ply by parallelization on a cluster, because all pixels are independent
from each other ([19], [26]).

5.2 Post Rendering and Interactivity

In the post rendering process, the data-file is being processed to gene-
rate lookup tables which are then used as textures in the corresponding
fragment shader as shown in Fig. 2. With these shaders and the user
input concerning the parameters of the desired effect it is possible to
visualize the precalculated data in various ways interactively. Once
the user has found interesting parameters for certain effects it is pos-
sible to script the application in order to generate several new image
sequences very quickly.

Fig. 2. Post rendering process.

Three shaders will be explained in this work, starting with the re-
texturing of an image.

5.2.1 Re-texturing

It is often helpful to replace just the texture of an object in order to un-
derstand its appearance better. A checkerboard texture can be useful
to understand the visual distortions on a certain region of an object. A

real image will help to see if an object appears rotated or not, because
it is possible to distinguish front and back sides of it. If one is only
interested in the visual size of this object, a bright single color will be
sufficient.
To be able to switch between textures two things are necessary: First,
an object lookup table is used to decide which pixel belongs to which
object. After that, the uv lookup table is queried to determine the tex-
ture coordinate of this pixel. Rendering can be further sped up by using
the pixel mask for stenciling empty regions of an image. This is used
for all other shaders as well. Now the user can select new textures for
all visible objects and can also alter uv-coordinates by means of offsets
and scaling factors. With this method it is for example possible to let
a sphere rotate only by appropriately changing the texture coordinates
and without having to precalculate the image again. Fig. 6 illustrates
the re-textured reference image in Fig. 5.

5.2.2 Frequency-shift

A frequency-shift occurs when electromagnetic radiation that is emit-
ted from an object is shifted to lower frequencies (“red-shift”) or to
higher frequencies (“blue-shift”) of the electromagnetic spectrum. In
classical physics as well as special relativity, frequency-shifting hap-
pens when light source and observer move with a nonzero relative ve-
locity. This is the so-called (relativistic) Doppler effect. In general rel-
ativity there is an additional gravitational frequency-shift effect. Sim-
ply speaking, when a photon moves away from a strong gravitational
source it loses energy. Therefore, its wavelength is shifted towards
the lower energetic red end of the spectrum. Vice versa, a photon is
blue-shifted when moving towards a gravitational source.

Mathematically speaking, the photon is parallel-transported from
the emission event to the observer along the geodesic and the frequen-
cies ν of the corresponding photon and the total frequency-shift are
then connected via

ztotal =
νobserver

νemission
.

Light is red-shifted, if ztotal ∈ (0;1). For ztotal being larger than 1, the
photon is blue-shifted.

The temperature of an object is associated to a certain spectrum.
This spectrum is then shifted according to the equation above. After
transforming the shifted spectrum to chromaticity coordinates XY Z
through folding the spectrum with the CIE color matching functions,
the RGB values for this temperature can be calculated in a given color
system. We have developed a shader implementation of [25]. If we
assume black body radiation, the spectrum of the emitted radiation is
a Planck spectrum. Shifting such a spectrum is easy, because a shifted
Planck spectrum is again a Planck spectrum. So a one-dimensional
lookup texture, associating a spectrum to the visible color, could be
used to obtain the shifted colors. We have chosen the general and ex-
tensible approach of [25], although we consider black body radiation
at the moment.

The frequency-shift data is stored in a lookup table for the
frequency-shift shader. The user can alter the temperature of an ob-
ject and see the change of this operation immediately. It could be
interesting to visualize an object with a surface temperature of the sun
in order to see how it would appear in the Gödel universe. In Fig. 7 we
see the reference data visualized with a surface temperature of 5000K,
1000K less than the surface temperature of the sun.

5.2.3 Time-shift

A very elementary property even in classical physics is the finiteness
of the speed of light. If we ask for the visual impression an observer
has, we need all photons which the observer receives at the same time.
In general, these photons will not be emitted at the same time. From
astronomy one learns that observing a galaxy far away is like looking
into the past of this galaxy. The visual appearance of the Large Mag-
ellanic Cloud now and here results from light emitted over 150,000
years ago, the appearance of the Andromeda Galaxy now and here
consists of light which was emitted over 2,500,000 years ago. By stor-
ing the time a light ray needs from object to observer we are able to
visualize such time-distance effects.
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In a first approach each object is multitextured with two textures
such as earth by day and a checkerboard pattern. By defining an off-
set t0 and a time difference Δt we are able to depict which photons
in the current picture have been emitted in a time span t ∈ [t0; t0 +Δt]
as illustrated in Fig. 8. The time-order of visible images of an object
can thus be determined. Next, we are able to simulate time-dependent
textures. Imagine the sphere on which simultaneously1 blinking flash-
lights are placed. These blinking spheres will not seem simultaneous
to the observer due to the time the photons need to travel.

5.3 Isometries and Direct Light

Each point P of a Riemannian manifold is accompanied by its own
vector space called the tangent vector space TP. In order to connect the
tangent spaces of two adjacent points the affine connection Γσ

μν which
are also designated as Christoffel symbols are needed as they appear in
the geodesic equation (2). For ordinary flat space all Γσ

μν vanish since
each point has the identic vector space as its tangent space. There-
fore the geodesic equation gets cut down into its simplest version with
straight lines as solution.

For an arbitrary space time, however, such a solution is difficult to
obtain. Usually the geodesic needs to be approximated numerically.
Unfortunately, the lack of the whole analytical solution results in re-
strictions of the visualization process. Standard numerical algorithms
like Runge-Kutta for example only solve an initial value problem.
Therefore the initial point and the initial direction have to be deter-
mined first, in order to compute the geodesic. For ray casting, where
the light rays are just traced back from the camera into the scenery, a
proper set of initial conditions can be obtained easily. But for direct
illumination also shadow rays, i.e. geodesics between the intersection
point and the light source have to be taken into account. However, the
necessary initial conditions of such geodesics are unknown and thus
shadow normally cannot be considered during the rendering process
in a curved space time. Nevertheless, we found a method to construct
such geodesics in a simple way. In physics it is a common way to
exploit symmetries to reduce the complexity of a problem. A similar
approach we use here.

As symmetry we want to designate a continuous transformation
x
′ = x

′(x,η) determined by a parameter η which has no influence
on the physical behavior. In terms of the geodesics such a transfor-
mation means that a solution of the geodesic equation is mapped on
another solution. The Gödel universe includes five such symmetries.
Three of them are trivial and can be revealed by having a look at the
metric. It turns out that the metric remains unchanged by adding an
arbitrary constant to the t, φ or z-coordinate. Therefore a geodesic can
be shifted in time, rotated or moved along the z-axis without being
changed. In order to obtain the remaining two symmetries we need
to apply the concept of the Killing vectors. A Killing vector ξ (x) is
defined at each point in space time and thus constitutes a field. They
designate the direction at each particular point in which an infinitesi-
mal displacement given by the transformation

x′α = xα + εξ α (xβ ) (3)

with small ε > 0 leaves the metric unchanged. The requirement of
a non changing metric after such an infinitesimal transformation can
also be constituted by the expression

g′μν (x′α ) = gμν (x′α ).

The necessary equation, such a Killing vector has to fulfill to meet the
above requirements, is the so-called Killing equation given as

ξα;β +ξβ ;α = 0. (4)

1In general relativity the concept of simultaneity is rather difficult. Whether

an observer measures or perceives two events as simultaneous or not depends

on his motion. This is not only an optical effect but also a deeply physical

effect. Moreover, clocks or blinking spheres quickly become desynchronized

only due to their position within a gravitational field. At the moment, we are

regarding the coordinate time, where the latter effect plays no role. For more

information about time measurement in the theory of relativity, see [22].

The subscripts α and β indicate the four different coordinates t, r, φ
and z, ξμ = gμν ξ ν are the covariant components of the Killing vec-
tor ξ and the semicolon denotes the covariant derivative. For details
concerning the Killing equation see [18].

To extend the infinitesimal transformation of equation (3) to a con-
tinuous transformation x

′(x,η) with parameter η we have to conduct
the displacement given by the Killing vectors successively. Therefore
the transformation we are looking for is the solution of the differential
equation

dx′μ (η)

dη
= ξ μ (x′ν ) (5)

in which the Killing vector field can be interpreted as flux through
which a trajectory of a particle has to be found. The construction of
the transformation by making use of the Killing vector field ensures
that the metric and thus the geometry remains unchanged while apply-
ing the transformation. Hence in mathematical terms these transfor-
mations are isometric and for this reason we call this kind of transfor-
mations isometries. The isometric property also is responsible for the
fact that a the solution of the geodesic equation x(λ ) can be mapped
onto another solution x

′(x(λ ),η).
It turns out that five different Killing vector fields are inherent to

Gödel’s spacetime. Three of them are related to the symmetries al-
ready mentioned and due to eq. (5) they are of a very simple structure.
The remaining two Killing vector fields, however, are more complex.
The exact solution of the Killing equation (4) can be found in [10]. In

Fig. 3. Geodesic in the r−φ subspace under isometric transformation.
The arrows depict the particular Killing vector field whereby the geodesic
is moved along this vector field.

Fig. 3 one of those more complex Killing vector fields of the Gödel
spacetime is shown. The elliptical curves are geodesics which emerge
from the same isometric transformation but each for a different param-
eter η . The isometric transformation itself is induced by the presented
Killing vector field by equation (5). Contrary to the trivial transforma-
tion of t, φ and z as presented above, the isometry given in Fig. 3 also
has influence on the radial coordinate r. Thus a proper concatenation
of the available isometries delivers a transformation with which two
arbitrary spacetime points can be mapped onto each other.

In this way a geodesic starting at an arbitrary point in spacetime
can be obtained very easily. All what has to be done is to apply
such a transformation to an already existing geodesic, for example a
geodesic through the origin O that means r = 0 and z = 0 as initial
point. Fortunately, for this sort of geodesics the exact solution of the
geodesic equation (2) is available and thus speeds up the computa-
tion process tremendously. Furthermore, with the exact solution it is
also possible to determine a geodesic originating from a given point
P and passing O. Such a geodesic does not necessarily exist, because
the geodesics are enclosed in an limited area determined by the Gödel
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horizon around P. Only when O is close enough to P it is possible
that such a geodesic exists which can be regarded as shadow ray. If
the shadow ray is not intersected by another object light from a light
source located at the origin O can reach the considered point P and
thus this point is illuminated by the light source.

The presented method enables us to render images which account
for shadows. However, the illumination is limited to a light source in
O. In order to overcome this restriction we merely need to deploy a
proper isometric transformation to move the given light source situ-
ated at Q into the origin O. The considered intersection points and all
objects existing in the scene have to be transformed as well. In the
transformed system the shadow rays can be computed as already de-
scribed. An example for a directly illuminated sphere is given in Fig.
4.

Fig. 4. Both pictures show a sphere at rest in the Gödel universe. In the
upper picture the observer, the sphere and the light source is aligned,
whereby the light source is located beyond the optical horizon. In the
lower picture the sphere is illuminated laterally. In both cases the ob-
server is located at the origin.

6 DISCUSSION

At first, we want to discuss the new physical content of our work be-
fore evaluating the advantages of our approach. The physical effects
will be shown in more detail in the accompanying video.

In Fig. 5 we can see an earth sphere, which passes the observer’s
position at 70% of the speed of light and is moving in the r−φ plane.
It is freely falling, meaning the only force on the sphere results from
the rotating matter which defines the Gödel universe. The picture it-
self was calculated using a panorama camera with a field of view of
220◦×25◦. It is used as a reference image for the following images.

6.1 New Insights

In Fig. 4 we can see the sphere appear exactly twice. This can be
expected when taking a look at Fig. 1, where the geodesics in the
r−φ subspace are depicted. A small static object at position “A” can
be seen twice, because light reaches the observer at the origin along
the two paths. The observer can see the front side of the object along
the red path and the back side along the green path. Equally, an ob-
ject at position “B” can be seen twice as well. But this is only valid
for a static object. The geodesic on which the object is moving on is
of the same shape as a null geodesic but returns at a smaller radius
r < 2a. Furthermore the object emits light all the time and at every po-
sition. A fraction of this light always returns to the observer, because
the geodesics are closed in the r − φ subspace. So the image of the
sphere at an arbitrary position can be seen at a certain time from the
observer’s position. If we assume that the sphere has been moving on
this geodesic all the time, the observer can see many images of this
sphere at every observation time.

In our images, we restricted the time the photon was traced back
into the past so that the number of visible earth images is restricted to
three. The accompanying video reveals that over 20 representations
appear if this tracing back is increased by one order of magnitude.
Although possible with our framework, we did not use complex ob-
jects like meshes or CSG-objects. This made it possible to extract the
essential physical features while conserving clarity of all images.

If we take a look at Fig. 6, we can clearly tell that the middle
and right representation of the sphere show the same side. Using a
checkerboard texture with an additional color gradient it is obvious
that the right representation is mirrored when compared to the central
sphere. This is hardly visible in the original image.

The image resulting from the frequency-shift shader shows another
interesting effect. It can be shown that the relativistic Doppler effect
due to the movement of an object is the only contribution to the over-
all frequency-shift. Therefore blue-shifted objects move towards the
observer and red-shifted objects fly away. Clearly, the left representa-
tion of the sphere in Fig. 7 appears to be at rest, because the visible
color equals the unshifted reference color for an object at rest in a flat
spacetime. The other two representations are moving away from the
observer at a high velocity.

Fig. 8 displays effects of the speed of light. We can find the time
order of all visible objects when using the multitextured sphere and
the time-shift shader. The upper subpicture shows a checkerboard ring
corresponding to photons which were emitted a short time ago. If we
adjust this time-span we find that this representation of the sphere is
the closest image concerning time. In the lower subpicture we can see
the right representation appear with the checkerboard texture. These
photons have been emitted a longer time ago. Consequently the left
representation is an image of the sphere from even longer ago.

From this discussion we obtain a variety of information concerning
the distance of objects, their orientation and relative speed just by in-
vestigating a single picture. The effects visualized in Fig. 6, 7 and 8
can also be seen in the first half of the accompanying video.

It is quite astonishing that in Gödel’s universe an object at rest can
be simultaneously observed from two different sides as long as it emits
light by itself. Fig. 4, however, shows the incident light on a sphere
emitted by a light source. In the upper picture of Fig. 4 the sphere
and the light source are aligned with the observer who is located in
the origin. Albeit in the presented scenario the light source is beyond
the optical horizon and therefore not discernible directly, its light is
scattered on the surface of the sphere and thus reaches the observer.
Moreover, the part of the sphere which is averted from the light source
is also partially illuminated. This we can ascribe to the peculiar shape
of the geodesics in Gödel’s spacetime. The attached movie shows a
freely moving sphere, illuminated laterally. The light source itself is
depicted as a small yellow sphere in the movie. No time shift effects of
the propagating light are taken into account. We therefore can observe
each object only twice.

6.2 Evaluation

Nearly all images in this work have been created using only one pre-
calculated dataset. In the last section we discussed this dataset con-
cerning several different physical effects. Clearly, it is very helpful to
be able to create these images and the first part of our additional video
from one existing dataset. The checkerboard texture clearly shows the
orientation of the visible spheres. The frequency-shift image helps
to understand in which direction the spheres move without having to
look at the corresponding movie. Therefore, it is not necessary to ren-
der a complete sequence in order to gain a first insight into the relative
motion of the spheres. It is, however, necessary to apply an adequate
temperature to the object in order to see the direction in which the
object is moving. Assuming a too high temperature would let all the
three visible spheres appear blue and the differences in the frequency-
shifts would hardly be visible. In such a case the direction of flight
could not be identified from one single image. Without the possibility
of applying the post-rendering technique, the complete dataset would
have to be calculated again and again until an adequate temperature
had been found.
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The path of the freely moving earth sphere was restricted to the
causal region of the Gödel universe. Even here, we can see at least
three representations of this sphere at every moment, if the object is
freely moving and the propagation of light is fully taken into account.
Further representations originate from light which was emitted even
longer ago. It is very helpful to be able to find the time-ordering of
these representations to conserve clarity and to understand what is vis-
ible in a certain image region. Again, all this data could be generated
without our techniques with very time-consuming operations which do
not guarantee that the best output is generated in the first pass. Exam-
ination of the data is adjourned with long idle times, when the data is
generated. With the introduced post rendering technique this amount
of time can be reduced immensely. The image sequence introduced in
the first part of the accompanying video consists of 250 different im-
ages, which took about five days to render on a 50 node dual core CPU
cluster. After the preprocessed data of an image is read, the parameters
like temperature or texture coordinates can be changed interactively.

We have rendered a reference Schwarzschild scenario (512x512
pixels, black hole surrounded by 16 objects) on an ordinary AMD
64X2 4600+ desktop PC with a GeForce 8800 GTS. Directly render-
ing the image without the application of our techniques took about
one hour. The generation of the precalculated data file takes about 10
minutes longer due to the numerous file operations. These could be
optimized when rendering small resolution data sets but are indispens-
able when rendering high resolution images. The uncompressed data
file is 79 MB large while the directly generated image usually takes
less than one MB disc space.

The postrendering speed critically depends on the applied shader.
The retexturing and timeshift algorithms reach framerates of about
2450, the frequency shift only yields 8.4 fps. The latter framerate
could be increased immensely if we restricted the algorithm to utilize
a Planck spectrum (see section 5.2.2), but a general approach results in
such low framerates. Precalculation speed depends approximately in a
linear manner on the image resolution and the number of objects visu-
alized. The postrendering framerate linearly depends on the effective
resolution, i.e. the number of non-black pixels.

In the second part of the paper isometric transformations were em-
ployed to demonstrate how direct illumination can be taken into ac-
count for the rendering process. But this is not the only achievement
of the presented method. It is also worth mentioning how an often used
technique in standard ray tracing gets accessible to a curved spacetime
like the Gödel universe. In standard ray tracing it is common to use
different coordinate systems during the rendering process. Since flat
space is subject to standard ray tracing, a switch between different co-
ordinate systems can be done with ease whereas in curved space this
task comes along with difficulties. In the Gödel universe this problem
was solved by using the intrinsic symmetries. Proper isometric trans-
formations were applied to transform particular points into the origin.
The other way around one could argue that not the particular spacetime
point itself is transformed but a new coordinate system whose origin is
located at that specific point describes the new situation. Thus, an ef-
fective method to switch between different frames of reference is also
available for the Gödel universe.

7 CONCLUSION AND FUTURE WORK

All methods concerning preprocessing (5.1) and postrendering (5.2)
are not restricted to the Gödel universe. The procedure to create a
precalculated dataset can be applied to any spacetime. The intro-
duced post rendering technique can be used as long as there is an
algebraic expression for the metric. Furthermore, it can be used for
non-relativistic ray tracing as well.

Finding the time order of visible objects is crucial when visualizing
the Gödel universe. Even the restriction to the causal region leads to
multiple images. In a next step, the sphere will be pushed across the
Gödel horizon where time travel is possible. This will lead to even
more representations of the object, because it can reappear before it
even disappeared behind this optical and causal horizon. Despite the
philosophical problems of this effect, it will become very hard to find
visualizations that can be understood. With the possibility to find the

time order of these representations for a given dataset interactively we
are expecting to overcome these visualization problems.

For taking direct illumination in (5.3) into account we needed to
consider shadow rays which were only computable as long as the ori-
gin was involved. With isometric transformations, however, the scope
on which this technique can be applied was extended to the whole
spacetime. Beside direct illumination we also want to consider the
attenuation of propagating light to obtain more realistic pictures. In
combination with isometric transformations it is therefore sufficient
to find an applicable description of the attenuation of light which is
emitted at the origin.

Although the presented method was adapted only to Gödel’s space-
time, isometries can be exploited in other spacetimes as well depend-
ing on the given problem. Fortunately, many problems are accompa-
nied by symmetries, which is a decisive principle in nature.
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