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We consider the general relativity field equations in two- and three-dimensional space-times.
We find that in a two-dimensional space-time we can have curvature but not matter. In a
three-dimensional space-time we find that empty space must be flat, that a de Sitter
solution exists, and that finite mass distributions with constant surface density must have
zero “surface tension.” Finally, an expanding dust-filled universe turns out to be like

Milne’s model.

INTRODUCTION

Because of the complexity of general relativity theory,
there are few problems that are both simple enough for a
first course in the subject, and also interesting and in-
structive to-both students and teachers. We have found,
however, that solving the general relativity field equations
in a space-time of reduced dimensionality! is rather simple
but yields some amusing results that are of pedagogical and
scientific interest, and yet are apparently unfamiliar to most
physicists. Although naturally the models are unphysical,
the mathematical techniques and general reasoning are the
same as for the full four-dimensional space-time. Therefore,
the exercise is very instructive while at the same time it
offers some insight into the effect of changing the dimen-
sionality.

We begin by examining the simplest nontrivial case,
namely, the two-dimensional space-time. We investigate
the field equations for the most general Riemannian metric.
Then we proceed to the three-dimensional space-time,
where, after deriving a result which holds for any metric,
we restrict ourselves to metrics possessing central (or
“circular”) symmetry. We consider exterior and interior
solutions to a surface mass distribution, and finally we look
at a cosmological model.

I. TWO-DIMENSIONAL SPACE-TIME

The most general two-dimensional Riemannian metric
is given by the line element

ds? = a(x,0)dt* + b(x,t)dx? + 2c(x,t)dxdt, (1)

where a, b, and ¢ are functions of x and t. We can eliminate
¢ the standard way by defining a new time

dt = r(x,0)[a(x,t)dt + c(x,t)dt] 2
= (dt/ot)dt + (9t/dx)dx,
where 7 is chosen to make the right-hand side of Eq. (2) an
exact differential; thus,

821/0xdr = a% [7(x.t)a(x.1)]

=39
=<, [rxDe(xn)] )

Equation (3) can be solved to yield 7, so that in conjunction
with Eq. (2) line element (1) becomes

ds? = 12 \di2 — (c2a~1 — b)dx2%
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or, letting, for simplicity,
1=t e¥=7"2g71, eA=,2%"1-},
we write
ds? = e2d1? — e?Mdx?, (4)

where v = v(x,1), and A = A(x,?).

The nonvanishing elements of the metric tensor and its
inverse are

gu = e, 8xx = —e?\

gtt = e-—2u, gxx = —8_27\. (5)
Using the formula
i 1 . agmk agmn agkn)
I = _ gim —_ 6
Ten=72 < axt T axk axm)’ ©)

where each of the latin indices runs through (z,x), and Eq.
(5), we obtain the nonvanishing elements of the affine
connection:

=N, T,=T,=» T=j,
f’ = V/e2u—2)\’ I‘;[ = thx = )\’ P;rx = Ae2)\“211. (7)

We have used prime to denote d/dx, and the dot to denote
d/0t. Now, from

arn,  or:
Rix=—= — =% + il — Tilln
k= gk T TAL | (8)

and Eq. (7), we obtain the nonzero components of the Ricci
tensor:

Ri=Ri=["+ v —\N)]e 2>
—[A+ XA =]e=2. (9)

Finally, the field equations in mixed components are
R} ~ho¥R=8xT¥ (10)
where we use G = ¢ = 1 and the scalar curvature
R=R!+ R%. (11)
It is easy to see using Eqgs. (9)-(11) that
Ti=Ti=0. (12)

Since the energy-momentum tensor T* vanishes, we can
have no matter in this space-time. It is also easy to verify
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by direct calculation that the energy-momentum pseudo-
tensor,2

tik = (1/167!’) [(2F7mrﬁp_ P?prfnn
- I‘?”I‘gfp)(gilgkm - gikglm)
+ gilgmn(l"/;prenn + Fi(nnrf)p - Pﬁprﬂn - Ffmrﬁp)
+ gk[gmn(l—‘?prfnn + 1-‘lmnl—‘?p - I”nprym - Fllmrﬁp)
+g'mgmP (LT hp = Tim iy,

vanishes identically so that, as expected, there is no gravi-
tational field either. On the other hand, R need not vanish
since v and A are arbitrary functions of x and ¢. Hence we
can have curvature (the Gaussian curvature K = R/2).

An alternative, quick way to illustrate how the vanishing
of T* does not necessitate the vanishing of the Ricci tensor
(as it does in higher dimensional space-times) is to contract
the field equations (10) on the indices i and %, recalling that
in a two-dimensional space-time the trace 8§ = 2; thus we
obtain

R— (2)R/2=0=8x(T' + 1%).

II. THREE-DIMENSIONAL SPACE-TIME

We begin by considering the field equations (10) for an
arbitrary metric. Contracting the field equations on the
indices / and k (which now run over ¢ and the polar coor-

dinates r,¢), we obtain (recall that in a three-dimensional

space-time the trace 8% = 3)
R=—16xT, (13)

where T = T! + T+ T4 Therefore, the field equations can
also be written in the form

Riy = 8n(Ti — gk T). (14)
Here, for empty space (T = 0), Eq. (14) becomes
Rix =0, (15)

and since the curvature tensor R;jx, for a three-dimensional
space-time is given by3

Rimgjk + Rjm8ik
=~ Rjkgim + (R/2) (8im8&jk — Zik&jm):

we see that Eq. (15) implies Rjjkn = 0. Therefore, empty
space, in a three-dimensional space-time, is flat, and there
can be no gravitational field in it (the energy-momentum
pseudotensor also has to vanish).

Let us now restrict ourselves to centrally (or “circularly”)
symmetric metrics. The most general centrally symmetric
expression for the line element is

ds? = a(r,t)dt? — b(r,t)dr?
+ 2c(r,t)drdt — f(r,t)r2d¢?,

Rijkm = Rixgjm —

(16)

where a, b, ¢, and f are functions of » and ¢. The transfor-
mation 7 = rf1/2 changes the coefficient of d¢? to 72, while
a transformation like the one given by Eq. (2) removes the
cross term drdt. Dropping the bars and introducing new
functions » = v(r,t) and A = A(r,z), we rewrite Eq. (16)
as

ds? = e2d1? — e2Mdr? — r2d¢2.

(17)
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The nonvanishing elements of the metric tensor and its
inverse are

gu=e¥, gy =—e goy=—r?

gtt = E—ZV, grr = —€_2>‘, qudz = _.r-—2'

(18)

Using Eqgs. (6) and (18), we obtain the nonvanishing ele-
ments of the affine connection:

I‘:r= }‘,’ Fg)(b: £r= 1/", I‘it= i},
Pyp= —re™®, Ty =T =, T} =ke?,

= pe=\ T7 =T7 =X

(19)

The primes and dots stand for 4/ dr and d/0dt, respectively.
From Egs. (8) and (19) we obtain the independent nonzero
components of the Ricci tensor:

Ri=["+vV(/ =N+ 1fr)]e"
+ [IA = A= (\)2e~%,
Ri=[v" 4+ v'(V = N) ~ N/rle 2
+ A =X = (M)2e2,
RS = e~/ = N)/r,
R = —e=2\/r. (20)

Finally, using the field equations (10) with R = R! + R’ +
R$ and Eq. (20), we obtain for the energy-momentum
tensor

87T! = e~ DN/,
8T = ~e~2N//r,

87Ts = —e~ A" + »'(v = N)] + e~ 2[A + A(A = 3)],
8aT) = ~e~2\/r. (21)

We now examine some specific solutions that we found
interesting to compare with their well-known four-dimen-
sional counterparts. '

A. Exterior solutions

These have, of course, been obtained at the beginning of
this section, where we showed that empty space must be flat.
It is easy to see that this result (for the centrally symmetric
case) also follows immediately from Eq. (21). Setting T,
= ( implies that A\ must be independent of 7,¢ and that »
must be independent of r. However, T;‘; will vanish even if
v = »(¢); this is no problem since we can transform to a new
time 7= fe’dt.

It is interesting at this point to recall Birkhoff’s theorem,
namely, that any spherically symmetric solution of Ein-
stein’s empty-space equations is equivalent to the
Schwarzschild solution. (Note that staticness and asymp-
totic flatness follow in this case from spherical symmetry.)
In Newtonian gravitation, the analog of Birkhoff’s theorem
follows from the spherically symmetric part of Laplace’s

equation, namely,

d dd

4 (287 2

dr <r dr) 0.
which has a solution & = A/r + B, with 4 and B arbitrary
constants. Letting B = 0 and 4 = —M, we obtain the

Newtonian gravitation potential outside a spherical mass
M. We see that in our three-dimensional space-time we
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have something stronger than Birkhoff’s theorem, in that
any solution—no symmetry required—of the empty-space
equations is a flat space-time solution. We remark also that
in our case this result does not agree with the corresponding
Newtonian result. Consider, for example, the radial part
of the two-dimensional Laplace’s equation

d dd
5(’7) =0,

which has as a solution & = A4 log » + B.

B. Interior solutions

We shall be concerned only with perfect fluids, that is,
matter distributions whose energy-momentum tensor is
given by

Tik = (¢ + s)uiuk — sgik, (22)

where u! is the velocity four-vector ¢ is the proper energy
(surface) density, and s is the (negative) surface tension;
o and s correspond to the density p and pressure p, respec-
tively, of four-dimensional space-time perfect fluids. We
also have from uiu; = 1 and Eq. (18), the relation

e2u(ut)2 — eZA(ur)Z — r2(u¢)2 =1. (23)

Making s = —o is unphysical because this kind of surface
tension will act in the same direction as gravity. Suppose,
however, that we allow a surface tension s = —o; then from
Eq. (22) we obtain the nonzero components of the energy-
momentum tensor

T'=T,=T}=o0.
Substituting this result in Eq. (21), we have that A = 0 and

8wo = e N\/r, (24)
8wa = —e N /r, 25
8xa = —e~ A + /(v — N)]. (26)
Equations (24) and (25) imply that
V==X, 27)

while Eq. (27) along with Eq. (26) yield
v+ 202 = [r=0.

The substitution ¥ = y converts the above differential
equation into Bernoulli’s equation*:

Y —ylr=-2%%
or, dividing by y2,
Y~y — y~Vdrjr = =2dr. (28)

Finally, the substitution z = y~! converts Eq. (28) into a
linear equation in standard form, in fact an exact equa-
tion:

rdz + zdr = 2rdr,
or,
d(rz) = d(r?).
Therefore,
v=(1/2)log [b([r? + a)],
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and from Eq. (27)

A =—(1/2)log [be(r? + a)],

where a, b, and ¢ are constants of integration. From Eq.
(18) we see that

gn=b(r*+a), g,=—[bc(r’+a)]"".

Now if our mass distribution is a circle of radius r, we must
require that

>0 forr<ry

gtt(r()) =1, & (ro) = —1, .
6=0 forr>rg

(29)
It is easy to verify using, say, Eq. (25) that the last of con-
ditions (29) cannot be satisfied. We get

o= —bc/8~.

If be = 0, then there is no mass; if, on the other hand, bc
0, then the entire space is filled (a cosmology!). In fact the
choice b < 0, ba = 1, ¢ = 1, gives us a de Sitter space-
time.

Next we seek an “interior Schwarzschild” solution. We
let u” = u¢ = 0 and obtain from Eq. (23).

ut=e"v. (30)
Substituting Eq. (30) in Eq. (22), we obtain
Ti=0, T;=T,=-s, T;=0. ©(31)
Equations (31) and (21) give
8wo = e~ 2AN'/r, (32)
8ws = e~ 2N'/r, (33)
rs = e~ A" + v (¥ = N)], T (34)

where we have discarded the terms containing time deriv-
atives since the problem is static. We can now use the van-
ishing of the covariant derivative

Tk = (3T¥dxk) + Tk, TP = T3TE =0, (35)

expressing energy and momentum conservation, with i =
r the radial coordinate, to obtain the useful equation

(ds/dr) + (o + s)(dv/dr) = 0. (36)

This equation can also be obtained by differentiating Eq.
(33), equating Eq. (33) to Eq. (34), and combining all of
these and Eq. (32) to eliminate »”, A\, and \".

We begin by integrating Eq. (32), which yields

e=D0) = 24 — 167 j; " ordr, (37)

where A is the integration constant. Let the radius of the
mass distribution be rq; then since the exterior metric is
Minkowski, we must require that

e~ 2Mr0) = 24 — 167 J;’O ordr = 1. (38)

For given ¢ and ro Eq. (38) determines A. In particular if
we choose o to be constant, we have from Eq. (38)

A=Y%+ 4rnro,
so that together with Eq. (37) we obtain
e~A =1+ 8x0(r§ — r?). (39)
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Next we eliminate the e=2* and the »* from Eq. (33),
using Eqs. (39) and (36), respectively; thus, we obtain

_ 1 +8xa(r} = r)]ds
r(o+s) dr’
which can be integrated to give s = s(r). We have
_ Bo[l + 8ma(rd — r2)j12
T (1 + 870r3) 2 = B[1 + 870(r — r)]/7

We require, as usual, that s(r¢) = 0. This, however, implies
that s = 0 for all r, and hence from Eq. (33) we find that »
must be a constant. To satisfy the boundary condition at rq,
we let v = 0. Therefore, we see that we cannot have constant
o and s # 0. This result one may have suspected, since in
the absence of gravitational attraction between the particles,
a nonvanishing surface tension would make the mass dis-
tribution unstable.

8ws =

(40)

C. Cosmology

As a final example, we consider a dust-filled universe;
that ts, we let s = 0, so that

Tik = guiuk (41

We shall use comoving coordinates® and assume again
-central symmetry (isotropy). Thus we can write the line
element in the form

ds?=dt2 ~ A(r,t)dr? — B(r,t)d¢?, (42)
so that
gu=1 gn=—A, g4 = _5'
gi=1 gr= ~1/A, g¢¢ = —]/B (43)

Since the matter is at rest in the coordinates we are
using,

u’=u¢=0’ ut = i, (44)
and therefore Eq. (41) gives simply
Ti=o, (45)

as the only nonvanishing component. Proceeding as usual,
we obtain the nonvanishing elements of the affine connec-
tion,

I, = A/24, T, =A4/2, T¢ =T% =B/2B,
e = —B'/2A, T4, =B/2, T¥ =T% =B/28,
I, =T} = 4)24, (46)

and hence the independent nonvanishing elements of the
Ricci tensor are

A_B 2 B

Ry=————— -,
24 2B 442 4B?
Roo B B A® A A, 4B
" 2B 4B? 44B 2 44 4B’
R = _B  AB B2 B AB B2
P T T 5 1 5 AT T T T e
24 442 4AB 2 44 4B
B B'B, AP’
,=——t—= ) 7
R: 2B 4B 44B (47)

Substituting Eqs. (41) and (45) in Eq. (14), we have

Ry = 8wo(uiur — gix),
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from which we find, using Eqgs. (43) and (44),
R,=0, R,=87wcA, Ryy;=8ndB, R,=0. (48)

Combining Eqgs. (47) and (48), we obtain the four field
equations:

e
(-5 +55+55) 5
+<}i—;;j+§g-)—2—lz=8wa, (49)
PR
+<1§—§£+§§)£E=8wa, (50)
.y
—%; f§;+%=o. (52)

We now assume that ¢ is a function of time only and let

A= a’(Da(r), B = b2(t)B(r). (53)
Substituting Eq. (53) in Eq. (52), we get

dfa = b/b;

therefore we can choose « and 8 so that a = b. We also
transform to another radial coordinate by 7 = /2. Finally,
dropping the bars, we can rewrite Eq. (53) as

A= aX(t)a(r), B=a?(t)r’ (54)

Equations (49) and (50) become identical when we sub-
stitute the 4 and B of Eq. (54), and so we obtain

4

2ra’

The first term of Eq. (55) must be a constant, so we de-
fine

+ da+ a2 = 8woal

(55)

k=a'f2ra?, (56)
which gives us
a=(h—kr?)-},
h being an integration constant.
We can now rewrite the line element (42), using Eqgs. (54)
and (57), as

(57)

ds? =dt? — a(1) [(7%2—)+ r2d¢2]. (58)
Now substituting Eq. (54) in Eq. (51), we obtain
i=0, (59)
and using Egs. (55), (56), and (59), we have
k + 4?2 = 8woal (60)

The conservation law of Eq. (35), with / = ¢ the time coor-
dinate, gives us

d(ea?) dt = 0,
which is satisfied by
(61)

o= aoag/az,
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where oo and ag are constants. Finally, substituting Eq. (61)
in Eq. (60) yields

a = +(8ropas — k)12, (62)
Integrating Eq. (62) subject to the condition
a(0) =0, (63)
we get
a= +(8wagad — k)'/2t. (64)

We note that only one kind of expanding universe is
possible, namely open, and it always satisfies Hubble’s law,
that is, there is no deceleration. This last fact was to be-ex-
pected since the point masses cannot affect each other
gravitationally in this space-time. This cosmological model
is essentially the same as Milne’s model.

It is easy to calculate the scalar curvature R using Egs.
(43) and (48). We find

= —1670,

(65)

so that if we use Eq. (61) for ¢ and Eq. (64) for @ in Eq.
(65), we have

R = —16wagad/(8mooal ~ k)12, (66)
We see that Eq. (66) is singular for ¢ = 0.

CONCLUSIONS

We have investigated general relativity in two- and
three-dimensional space-times. We found that in a two-
dimensional space-time—for a general metric—there is
a “decoupling” of the energy-momentum tensor and the
Ricci tensor; and although the energy-momentum tensor
vanishes, the Ricci tensor remains arbitrary. Therefore, this
space—time is empty, but with arbitrary curvature.

In a three-dimensional space-time we began by showing
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that empty space must be flat and therefore masses cannot
interact with each other gravitationally. Then we restricted
ourselves to metrics with central symmetry. We saw that
the correspondence between general relativity and New-
tonian gravitation does not hold in these space-times.

We sought interior solutions to circular mass distribu-
tions and found for nonvanishing surface tension a de Sitter
space-time solution; we also found that a static mass dis-
tribution must have zero surface tension, as expected, since
otherwise it would be unstable.

Finally, we examined a dust-filled universe cosmology.
It turned out that the expansion function a(t) is linear in
the time ¢, and the cosmology has the essential features of
Milne’s model®; that is, we have an expanding universe
without gravity and hence without deceleration.

ACKNOWLEDGMENTS

The author wishes to thank Professors J. K. Lawrence
and R. J. Romagnoli for helpful discussions. He also wishes
to thank Professor G. Clement for his valuable comments
and careful reading of the manuscript.”

I'The excellent papers by R. W. Brehme, Am. J. Phys. 33, 383 (1965); 33,
713 (1965); and by R. W. Brehme and W. E. Moore, Am. J. Phys. 37,
683 (1969), although dealing with two-dimensional space-times, do
not examine the topics of this paper.

2See, for example, L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields, 3rd ed. (Pergamon, Oxford, 1971), p. 306.

3See Ref. 2, prob. 1, p. 263.

4We wish to thank Dr. T. Azzarelii for pointing this out to us.

5See Ref. 2, p. 336.

SE. A. Milne, Nature 130, 9 (1932); W. Rindler, Essential Relativity (Van
Nostrand Reinhold, New York, 1969), pp. 227-232.

See, G. Clement, Nucl. Phys. B 114, 437 (1976), in particular the Ap-
pendix for some additional properties of three-dimensional space-
times.

Peter Collas 837



