
Chapter 1

Introduction

General Relativity (GR) is founded on the revolutionary idea that space and time are merely parts of a
greater, unified whole: spacetime. Furthermore, the force we know as gravity results from the bending
and stretching of the geometry of spacetime by its energetic contents. GR is notorious for its math-
ematical complexity and subtlety, meaning that an intuitive understanding of a spacetime is difficult.
One of the best approaches to studying the properties of a given spacetime is to consider its geodesic
structure—that is, to consider the motion of unaccelerated, “free-falling” particles. This report presents
the results of such a study into two important spacetimes—the Kerr solution for a rotating black hole,
and the Robertson-Walker solution for a homogeneous universe.

1.1 Geodesics in General Relativity

We begin with a general intoduction to GR and geodesics1. Note that throughout this report, the speed of
light c has been set to unity unless explicitly reintroduced. Carroll (2004) reduces GR to the following
two statements:

1. Spacetime is a curved pseudo-Riemannian manifold with a metric of signature2 (−+ ++).

2. The relationship between matter and the curvature of spacetime is contained in the equation:

Rab −
1
2
Rgab = 8πGTab (1.1)

where G is Newton’s gravitational constant, which we now set to unity unless explicitly reintro-
duced.

The first statement says that gravity does not move objects via a Newtonian force that causes them to
deviate from straight line motion. Instead, gravity makes straight lines curve! The second statement says
that the geometry of spacetime (encapsulated by the Ricci tensor Rab, Ricci scalar R and metric tensor
gab) is curved by the presence of energy, represented by the stress-energy tensor Tab. Conceptually,
Equation (1.1) states that:

Geometry = Energy (1.2)

The full details of pseudo-Riemannian geometry are not needed here, so we will not elaborate on
the terms in Equation (1.1). However, it will be useful to gain an intuitive understanding of the metric
tensor gab. In a given coordinate system xa = (x0, x1, x2, x3) the invariant spacetime interval between
two nearby events is:

ds2 = gabdxadxb (1.3)

using the Einstein summation convention3. We can begin to understand this quantity by considering
special cases:

1There are a great many introductions to GR available, including D’Inverno (1992), Carroll (2004) and Hobson et al. (2005).
2This work will use the (− + ++) signature, Latin letters for spacetime indices (a, b, . . . = 0, 1, 2, 3) and Greek letters

(α, β . . . = 1, 2, 3) for spatial indices.
3Repeated indices are automatically summed over.
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• If ds2 > 0, then the interval is spacelike. This means that it is possible for an observer (moving
with the correct velocity) to observe that the two events occur at the same time. In this case,

√
ds2

is the proper distance between the two events, and (1.3) is simply a generalisation of pythagorus
theorem.

• If ds2 < 0, then the interval is timelike. This means that it is possible for an observer (moving
with the correct velocity) to observe that the two events occur at the same spatial location. In this
case,

√
−ds2 is the proper time between the two events.

• If ds2 = 0, then the interval is null. This means that light emitted at the first event will be observed
at the second event. Null intervals define the light cone of an event.

A physical observer can only experience two events that are timelike separated. The trajectory of an
observer through spacetime is called its worldline and consists of a one-parameter set of all the events
that the observer experiences: xa = xa(λ). The parameter λ is known as the affine parameter. In the
case of null geodesics (i.e. trajectories comprising entirely of null intervals, which light would follow),
λ has no physical interpretation, while in the case of timelike and spacelike geodesics, it is chosen to
be the spacelike interval s. This means that timelike geodesics are parameterised by the proper time (τ )
shown on a clock following the given trajectory.

The metric tensor determines the geometry of spacetime, and since the trajectories of free-falling
particles are determined by the geometry of spacetime, we expect to find a mathematical relationship
between the metric tensor and the trajectory of an unaccelerated particles. Since unaccelerated particles
follow the geodesics of spacetime, this relationship can be found by extremising the spacetime interval
between two events i.e.

∫
ds =

∫ √
gab

dxa

dλ

dxb

dλ
dλ (1.4)

=
∫ √

gabx′ax′bdλ (1.5)

where x′a = dxa

dλ is the 4-velocity. We now have a problem that can be easily handled by the Euler-
Lagrange equation (see, among others, D’Inverno, 1992, pg. 82). The result is a set of four, second-order
equations for xa = xa(λ), known collectively as the geodesic equation:

d2xa

dλ2
+ Γc

ba
dxa

dλ

dxb

dλ
= 0 (1.6)

where Γc
ba is the Christoffel symbol, which is calculated from the derivatives of the metric tensor:

Γc
ba =

1
2
gad (∂bgdc + ∂cgdb − ∂dgbc) (1.7)

where
∂a =

∂

∂xa
(1.8)

One more equation is needed, which follows from Equation (1.3). If we divide this equation by dλ, we
find that:

gabx
′ax′b = q =






−1 for timelike geodesics
0 for null geodesics
+1 for spacelike geodesics

(1.9)

We will be seeking and interpreting solutions to Equation (1.6) subject to the contraint Equation (1.9).

1.2 The Kerr Metric

1.2.1 Properties of the Kerr Metric

This section follows the discussion and notation of O’Neill (1995). We start with the Schwarzschild
metric. In 1916, Schwarzschild discovered the solution to Einstein’s equations in the case of a spacetime
that is:
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• Empty (i.e. a vacuum solution: Tab = 0)

• Spherically-symmetric

• Stationary (i.e. no explicit time dependence ∂0gab = ∂tgab = 0)

• Static (i.e. time symmetric g0α = 0).

The Schwarzschild metric descibes the spacetime surrounding a spherical, non-rotating mass. It
was the first exact solution of Einstein’s equations. In spherical polar coordinates [(x0, x1, x2, x3) =
(t, r, θ, φ)], its metric tensor is given in matrix form by:

gab =





−1 + 2M
r 0 0 0

0
(
1− 2M

r

)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ



 (1.10)

where M is the mass of the object. Equivalently, we can specify the line element using Equation (1.3):

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) (1.11)

Note that by setting the mass equal to zero we return to the flat Minkowskian spacetime of Special
Relativity.

Large astronomical bodies are likely to be rotating, so a more general solution is needed. To find
it, we need to weaken some of our assumptions: spherical symmetry will be weakened to axisymmetry,
since the object will have a preferred axis of rotation; and the solution will not be static, as reversing the
direction of time will reverse the direction of rotation. The solution conforming to these assumptions
was first discovered by Kerr in 1963, and is appropriately named the Kerr metric:

gab =





−1 + 2Mr
ρ2 0 0 −2Mra sin2 θ

ρ2

0 ρ2

∆ 0 0
0 0 ρ2 0

−2Mra sin2 θ
ρ2 0 0

(
r2 + a2 + 2Mra2 sin2 θ

ρ2

)
sin2 θ




(1.12)

where M is the mass of the rotating object, a is the angular momentum per unit mass, which can be taken
to be positive, and

ρ2 = r2 + a2 cos2 θ (1.13)

∆ = r2 − 2Mr + a2 (1.14)

The metric is written in Boyer-Lindquist coordinates. Again we can consider the line element corre-
sponding to this metric:

ds2 = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2+

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ dφ2 − 4Mra sin2 θ

ρ2
dt dφ (1.15)

The following properties of Kerr spacetime will be useful in what follows (see D’Inverno (1992),
O’Neill (1995) and Hobson et al. (2005) for a more detailed and rigorous discussion.)
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Slow and Fast Kerr: As we vary the parameter a, a profound change occurs at the extreme value
a2 = M2. Following O’Neill (1995), we can fix the following terminology:

• a2 = 0 gives Schwarzschild spacetime, as expected.

• 0 < a2 < M2 gives slowly rotating Kerr spacetime, known in short as slow Kerr.

• a2 = M2 gives extreme Kerr spacetime.

• a2 > M2 gives rapidly rotating Kerr spacetime, or fast Kerr. As discussed in D’Inverno (1992),
the spacetime singularity in fast Kerr spacetime is naked—that is, it is not hidden from the outside
universe by an event horizon. The consequences of such a scenario are so bizarre that Penrose has
proposed the cosmic censorship hypothesis, which would forbid the existence of naked singulari-
ties.

Fast Kerr spacetimes are unlikely to be relevent in astrophysical contexts, so we will not examine them
in this report. When we speak of Kerr spacetime, we mean slow and extreme Kerr spacetime (0 < a2 ≤
M2). To avoid countless exceptions, we will not consider Schwarzschild spacetime to be in the Kerr
family.

Singularities and Horizons: Kerr spacetime contains an intrinsic singularity when ρ = 0. It follows
from Equation (1.13) that r = cos θ = 0. However, unlike Schwarzschild spacetime, the Kerr metric
does not fail at r = 0 and the singularity is not a single point. Instead, the singularity is a ring in the
equatorial plane.

Kerr spacetime also contains a number of coordinate singularities and peculiarities. The most tame
of these is the failure of spherical coordinates on the axis of rotation when sin θ = 0. While the absence
of spherical symmetry means that the axis is physically and geometrically unique, we can extend the
Kerr metric to account for these coordinate problems (see O’Neill, 1995, pg. 64).

Of more interest physically are the stationary limit surfaces and the event horizons of the Kerr metric.
The stationary limit surfaces are defined by:

gtt = 0 ⇒ rS± = M ±
√

M2 − a2 cos2 θ (1.16)

Since we have confined our attention to 0 < a2 ≤M2, we have two stationary limit surfaces surrounding
the central singularity, the inner surface (S−) being completely contained inside the outer surface (S+).
We will not be concerned with the inner structure of the Kerr black hole, so we only need to note that
inside S+ no particle can remain at fixed (r, θ, φ). They must rotate around the black hole.

The Kerr spacetimes we will consider also contain event horizons that mark the “point of no return”.
There are two event horizons (at r = r±) defined by:

grr →∞ ⇒ ∆→ 0 ⇒ r± = M ±
√

M2 − a2 (1.17)

Once again, only the outer horizon will interest us here. It lies inside the outer stationary limit surface,
with the two touching at the poles (θ = 0, π). Boyer-Lindquist coordinates fail at the event horizons,
meaning that they are “bad coordinates” for following the trajectories of particles into the black hole.
The Kerr event horizon works in the same way as a Schwarzschild event horizon—it can only be crossed
in one direction, so that the future light cone lies entirely on the inside of the surface. Particles must
continue falling toward the centre. Note that for an extreme kerr black hole, the two event horizons
coincide at r = M .

The region between S+ and r+ is known as the ergosphere. Within the ergosphere, particles must
rotate with the black hole but need not fall through the event horizon. In other words, the particle can
escape the gravitational effects of the black hole but not its rotational effects.

We can also define the innermost stable circular orbit (also known as the minimal stable orbit
rms)—the innermost radius at which a massive particle can maintain a stable orbit around the black hole
in the equatorial plane. It is given by the solution to the following equation (Hobson et al., 2005):

r2
ms − 6Mrms − 3a2 ∓ 8a

√
Mrms = 0 (1.18)
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where the upper sign corresponds to a counter-rotating orbit and the lower sign to a co-rotating orbit. The
above equation can be turned into a quartic polynomial and solved by standard methods, but the results
are messy. The results of solving this equation numerically can be found in (Hobson et al., 2005). The
results can be summarised as follows: for a = 0, we have the Schwarzschild result that rms = 6M . In
the counter-rotating case, rms increases approximately linearly with a up to rms = 9M in the case of
an extreme Kerr black hole (a = M ). In the co-rotating case, rms decreases with a down to rms = M
in the case of an extreme Kerr black hole. Thus, for an extreme Kerr black hole, the innermost stable
circular orbit and the outer event horizon coincide.

The photon sphere is defined analogously to Schwarzschild spacetime (although in Kerr spacetime
it isn’t a perfect sphere). Photons in the equatorial plane can orbit the black hole at a radius of (Hobson
et al., 2005):

rc = 2M

(
1 + cos

[
2
3

cos−1
(
± a

M

)])
(1.19)

where again the upper sign corresponds to a counter-rotating orbit and the lower sign to a co-rotating
orbit. In short, for a = 0, we have the Schwarzschild result that rc = 3M . In the counter-rotating case,
rc increases approximately linearly with a up to rc = 4M in the case of an extreme Kerr black hole
(a = M ). In the co-rotating case, rms decreases with a down to rc = M in the case of an extreme Kerr
black hole. Thus, for an extreme Kerr black hole, the photon sphere, the innermost stable circular orbit
and the outer event horizon coincide.

1.2.2 Geodesics in Kerr Spacetime

For the Kerr metric, we solve the second-order system of equations (1.6) for four functions of the affine
parameter. There are 3 obvious constants of the motion - the constraint equation (1.9) defines the constant
q, and the other two come from the fact that time t and azimuthal angle φ are absent from the Lagrangian,
meaning that their conjugate momenta (energy E and the component of the angular momentum along
the rotation axis L respectively) are conserved. Ordinarily, three constants of the motion is not enough to
reduce this second-order system for four functions down to a first order system. However, Carter (1968)
showed that the Hamilton-Jacobi equation of motion is separable, which generates the fourth constant
of the motion (known as Carter’s constant K). Thus, the equations of motion for geodesics in Kerr
spacetime reduce to the following first-order system of equations:

ρ2t′ =aD +
(r2 + a2)P

∆
(1.20a)

ρ4r′2 =∆(qr2 −K) + P 2 (1.20b)

ρ4θ′2 =K + qa2 cos2 θ − D2

sin2 θ
(1.20c)

ρ2φ′ =
D

sin2 θ
+

aP

∆
(1.20d)

where

P =(r2 + a2)E − La (1.21)

D =L− Ea sin2 θ (1.22)

and the constants E, L and K are related to the initial values of (t′, r′, θ′, φ′) by:

E =− (gttt
′ + gtφφ′) (1.23)

L =gtφt′ + gφφφ′ (1.24)

K =ρ4θ′2 − qa2 cos2 θ +
D2

sin2 θ
(1.25)

We now have the equations to solve. Chapter 2 will describe the scenario in which we will solve
these equations as well as the methods used.
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1.3 The Robertson-Walker Metric

The paradigm of modern cosmology is the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) model (Fried-
mann, 1922; Lemaı̂tre, 1931; Robertson, 1935; Walker, 1936). The Robertson-Walker (RW) metric,
which tells us how to measure distance and time in a homogeneous and isotropic universe, has the line
element:

ds2 = −dt2 + R2(t)
(
dχ2 + S2

k

(
dθ2 + sin2 θdφ2

))
(1.26)

where Sk(χ) = sin χ, χ, sinhχ for k = +1, 0,−1, where k is the curvature constant for closed, flat
and open space respectively. The RW metric relates the spacetime interval ds to the cosmic time t and
the spherical comoving coordinates (χ, θ, φ). More will be said about these coordinates later. The scale
factor R(t) is the key prediction of any cosmological model, encapsulating the beginning, evolution and
fate of the universe4. We can also define the Hubble parameter H , which measures the rate of expansion
of the universe:

H ≡ 1
R

dR

dt
(1.27)

In the curved, expanding spacetime of the RW metric, we must be very careful when defining distance
measures (see Linder (1997) for details and Hogg (1999) for a summary). We will use proper distance
rp, which is defined as being the radial (dθ = dφ = 0) spacetime interval (ds) along a hypersurface
of constant cosmic time (dt = 0)5. The RW metric then gives the proper distance between the origin
(χ = 0) and χ at time t to be:

rp(t) = R(t)χ(t) (1.28)

The field equations of GR allow us to calculate R(t) given the energy content of the universe. The
result is the Friedmann equations, which, following Hobson et al. (2005), equation 15.13, we will write
as:

H2 = H2
0

∑

i

Ωi,0

(
R

R0

)−3(1+wi)

(1.29)

The other two Friedmann equations can be found in Hobson et al. (2005), but will not be needed here.
A subscript zero always refers to a quantity evaluated at the present epoch. The sum is over the energy
components of the universe (labelled i), each with corresponding equation of state wi = pi/ρi, where p
is the pressure and ρ is the energy density. Equation (1.29) assumes that the energy components do not
interact and that each wi is a constant6, as it is for most familiar forms of energy—matter (wm = 0),
radiation (wr = 1/3), vacuum energy (wΛ = −1). The sum includes “curvature energy” (Ωk,0 =
−k/(R0H0)2 = 1−

∑
i#=k Ωi,0) which has wk = −1/3. This can be thought of as convenient shorthand.

A particular solution to the Friedmann equations which will prove useful in Section 4.2 is the case of a
universe with a single component w > −1:

R(t) = R0

(
t

t0

) 2
3(1+w)

(1.30)

where t0 is the age of the universe. For w = −1, we have the solution R(t) = R0 exp
(

t−t0
t0

)
, where t0

is the e-folding time for the expansion. We will not consider phantom energy with w < −1 (see Caldwell
et al., 2003, and references therein for details).

4not to be confused with the Ricci scalar, which will only appear in Equation (1.1) in this report.
5A thought experiment for measuring proper distance is as follows: we imagine being at one end of a giant ruler, pointed

at a distant object. A volunteer is sent along the ruler to read off the distance to the object. Since the universe is expanding,
the volunteer will need to carry a clock that displays cosmic time, and note down the time when the measurement was made.
When light rays have carried the volunteer’s result back to us, we will know the proper distance to the object at the time
the measurement was made. Samuel (2005) criticises proper distance as “violating the principle that instantaneous non-local
measurements cannot be made”. This amounts to criticising a spacelike interval for being a spacelike interval. In any GR
metric, length or distance is defined as the spacetime interval along a surface of constant time, and as such can never be known
instantaneously. This does not mean, however, that proper distance is unphysical. It only means that it must be reconstructed at
a later time from the information in light signals.

6Evolving equations of state and interacting components will only be considered with regards to their asymptotic
behaviour—cf. footnote 1; see Barnes et al. (2005) and references therein for details on such cosmological models.
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The trajectory of a particle in the universe is computed by solving the geodesic equations (1.6). For
the RW metric, we have

gab = diag(−1, R2, R2S2
k(χ), R2S2

k(χ) sin2 θ) (1.31)

which gives:

t′′ + RṘ
(
χ′2 + S2

k(χ)
(
θ′2 + sin2 θφ′2

))
=0 (1.32a)

χ′′ + 2Ht′χ′ − Sk(χ)Ck(χ)
(
θ′2 + sin2 θφ′2

)
=0 (1.32b)

θ′′ + 2Ht′θ′ + 2
Ck(χ)
Sk(χ)

χ′θ′ − sin θ cos θφ′2 =0 (1.32c)

φ′′ + 2Ht′φ′ + 2
Ck(χ)
Sk(χ)

χ′φ′ + 2 cot θφ′θ′ =0 (1.32d)

−t′2 + R2
(
χ′2 + S2

k(χ)
(
θ′2 + sin2 θφ′2

))
=q (1.32e)

where a prime means d/dλ, and an overdot means d/dt. Ck(χ) = dSk(χ)/dχ = cos χ, 1, cosh χ for
k = +1, 0,−1. Equation (1.32e) is the normalisation condition for the four-velocity (1.9). In this report,
we will only consider timelike geodesics (q = −1), for reasons detailed later.

Equations (1.32a)-(1.32d) allow a trivial solution, i.e. χ, θ, φ = constant for all time. Thus, there
exists a family of free-falling particles that maintain their position in comoving coordinates—in fact, this
is what we mean by comoving coordinates. This family of particles defines the Hubble flow.

For motion in one dimension, we can exploit the isotropy and homogeneity of the metric to choose
our coordinates to make the motion purely radial. Gron & Elgaroy (2006) study this case and derive the
following useful equations:

χ̇ =(R2 + CR4)−1/2 (1.33a)

χ =χ0 ±
∫

dt

R
√

1 + CR2
(1.33b)

where
C =

1
χ̇2

0R
4
0

− 1
R2

0

(1.34)

is strictly positive. Note that these are equations for χ as a function of t not λ.
Chapter 3 will describe the scenario in which we will solve these equations as well as the methods

used.
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Chapter 2

Looking at Kerr Black Holes

In Chapter 1, we wrote down the equations (1.20) that describe the motion of freely falling particles
in Kerr spacetime. The question now arises: in what particular situation should we solve these equa-
tions? What paths should we consider (timelike, null or spacelike), and how should we set their initial
conditions?

Rather than trying to solve for every possible particle path, we will focus here on a scenario with
astrophysical applications. The modern astrophysical theory of Active Galactic Nuclei (AGN) states
that these extremely luminous objects associated with galaxies are powered by a central supermassive
(M ∼ 109Msun) black hole and accretion disk. The formation of the black hole and accretion disk out
of collapsing, rotating matter will result in a Kerr black hole and a thin accretion disk located in the
equatorial plane.

An interesting question to ask is: what would the accretion disk look like if we could see it? What
distortions would the black hole create in our view of the accretion disk? It is this specific question that
we will answer in this chapter. The geometry of the situation is illustrated in Figure 2.1. We consider
light particles emitted from a certain position in the disk and travelling away from the black hole toward
a “CCD camera” located a large distance away (so that spacetime can be considered approximately
Minkowskian). Each “pixel” on the image then stores the location of the emitter in the accretion disk,
and can be coloured appropriately.

In fact, we can make our job easier by noting that the paths of the photons are time reversible. Thus
we can “emit” the photons from the CCD and trace their path toward the accretion disk. This saves
us following photons from the accretion disk away from the black hole only to find that they miss our
camera.

The algorithm for creating an image of an accretion disk around a black hole is as follows:

1. Choose the parameters for the black hole M and a. In our chosen units, M merely sets the length
scale so we can normalise it to M = 1, unless we want Minkowski spacetime (M = 0). This

Figure 2.1: The geometry of the accretion disk and CCD. Image taken from Beckwith & Done (2004)
— note that they have used ro and θo for our robs and θobs, and that µe = cos φ. Also labeled is the
infinitesimal solid angle element dΞ.
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means that we measure distances in units of gravitational radii (rg = GM/c2 ) and that 0 ≤ a ≤ 1.
We also set q = 0 for photons following null geodesics.

2. Choose the inner rin and outer rout radii of the accretion disk. We will set the inner radius to be
slightly greater than the innermost stable circular orbit (for a co-rotating disk): rin = 1.5rms. We
choose the outer radius so that the distortions close to the black hole are apparent, since these are
the most physically interesting. We chose rout = 5rms.

3. Choose the position of the centre of the CCD (robs, θobs, φobs). The value of φobs is arbitrary
owing to azimuthal symmetry. The value of robs would be chosen to be infinity in an analytic
treatment, but since we will be using numerical integrators it is set to be large enough that space
is approximately flat but not too large that our integration path is unnecessarily long. We choose
robs = 103 (having tested against larger values and found negligible change). The orientation
angle θobs has physical significance, and so we run the code for a range of values.

4. Choose the number of pixels (n) on each side of the CCD, for a total of n2 pixels. This parameter
more than any other determines the time taken to execute the code. We choose n to be even for the
following reason: with the coordinates on the CCD as shown in 2.1, if there were an odd number
of pixels, then photons would be sent on a path that would encounter the coordinate singularity on
the axis of rotation. This is best avoided.

5. Choose the size of the CCD. This sets the initial coordinates of the photons. If it is set too small,
the image will not fit on the CCD; if it is too large then a large fraction of pixels will “miss” the
accretion disk, affecting the efficiency of the code. In general, the CCD will be approximately the
same size as the disk.

6. Having fixed the size of the CCD, we evenly space the n2 photons over the CCD, giving the initial
positions of each of the photons. We begin by specifying (α, β) in the coordinate system of the
CCD. We can then use basic geometry to transform into the black hole coordinates (by assuming
that we are sufficiently removed from the black hole to treat space as Euclidean. The relevant
equations can be found in Book (2004).

7. We now need to set the initial 4-velocity of the photons, or equivalently, set their constants of
motion. All photons begin propagating perpendicular to the CCD. The equations relating (α, β) to
(E,L,K) are derived in Chandrasekhar (1983, pg. 347). In fact, the trajectory of photons does
not depend on their energy E, so we can set E = 1:

L =αE sin θobs (2.1)

K =β2 − a2 cos2 θobs +
L2

tan2 θobs
+ (L− aE)2 (2.2)

8. For each photon, integrate the equations of motion (1.20), sending the photon towards the black
hole. We now need to know when to stop. In short, keep going until: a) it hits the equatorial plane
(between rin and rout); b) it hits the black hole (using the criteria discussed in Section 2.2); or c)
it misses everything and is moving away from the accretion disk again. In each case, record the
result (in particular, r and φ if it hits the disk) and move on to the next photon1.

2.1 The Inside-Out Algorithm

In above algorithm, we spend a lot of time integrating geodesics that miss everthing. In fact, these are the
iterations that take the most time, as we have to integrate until the photon is well clear of the accretion
disk. We could save ourselves some time by changing the size of the CCD so that the edges of the picture

1We consider a geometrically thin but optically thick disk. In particular, we exclude the possibility of photons passing
through the disk.
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are as close to pixels that hit the edge of the accretion disk as possible. This depends on both rout and
θobs, so it is tricky to predict ahead of doing the actual integration.

I had another idea. The photons that miss the disk are usually around the outside of the image. So if,
for a given pixel, all the other pixels between it and the centre of the image are “misses”, then the given
pixel is a “miss” too. However, if we cycle through the pixels row-and-column wise, then we don’t know
whether the pixels inside a given pixel miss or not, since they haven’t been calculated yet.

The idea is simple — we rearrange the order of the pixels so that they are numbered from the inside-
out. Then for each pixel, we know the fate of all the particles inside that pixel (viewing the array as
being comprised of rectangular “shells” of pixels). Before we begin integrating the photon path, we test
to see whether it is outside pixels that we know miss the black hole. If it is, we move on to the next pixel,
saving a significant amount of time.

We can illustrate the details of the procedure as follows. For a 6 by 6 pixel image, the order by which
the pixels would be cycled through row-and-column wise is:

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

(2.3)

Before integrating pixel 6, we would like to know whether or not pixels 9, 10, 11, 17 and 23 miss the
black hole, but they haven’t been calculated yet. Instead, we rearrange the order of the pixels:

17 18 19 20 21 22
36 5 6 7 8 23
35 16 1 2 9 24
34 15 4 3 10 25
33 14 13 12 11 26
32 31 30 29 28 27

(2.4)

Now, before we begin integrating the photon from pixel 22, we can check to see whether pixels 6, 7, 8,
9 and 10 all miss the accretion disk. If they all do, we record that pixel 22 missed the disk and move on
to pixel 23. In this way, we do not waste time on photons that do not contribute to the final image2.

2.2 Individual Photons

The next step in developing a code that implements this algorithm is the last step — write and test a code
that integrates the geodesic equations for a single photon. The code requires a numerical ODE solver —
we use the adaptive Runge-Kutta routine in Press et al. (1992). The implementation of Equations (1.20)
is relatively straightforward, but for the problems encountered by photons that fall into the black hole.

To fully overcome the event horizon singularity, we need to change our coordinates. This would
allow us to follow the path of the photon through the event horizon and toward the ring singularity.
However, here we are not interested in the path of photons once they are inside the black hole. It is
enough to know that a photon will enter the black hole. The photon sphere defines the relevant cut-off
— a photon at rc must have zero radial velocity to maintain an orbit around the black hole. Thus, if a
photon crosses rc from the outside, it has a negative radial velocity (r′ < 0) and will not escape the black
hole. However, as we noted in the introduction, for an extreme kerr black hole rc = r+ i.e. the photon
sphere and the event horizon coincide. As a result we use the policy that the integrator will stop when
the photon is within 1% of the photon sphere.

2A few minor details: the code actually tests 7 pixels, not 5 i.e. for pixel 22, test pixels 5, 6, 7, 8, 9, 10 and 11. Also,
when implementing the tests, we must split the array into 4 quadrants and write different code for each. For pixels near the
boundaries between the quadrants (e.g. 19 or 34 above), we test pixels in a line rather than an ‘L’ shape. For example, for pixel
34, test pixels 5, 16, 15, 14 and 31.
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Figure 2.2: The path of a photon passing close to the black hole but not falling in.

Figure 2.3: The path of a photon falling into the black hole. Note that the path stops short of the black
hole, as we cannot numerically integrate up to the event horizon. Note also that the photon doesn’t fall
‘straight in’ — it is swept in an anti-clockwise direction by the rotational effects of the black hole on the
surrounding spacetime (i.e. frame-dragging).

Figure 2.4: An extreme example of a photon whose path is altered by the black hole. The grey portion
of the path passes behind the black hole.
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Figure 2.5: An image of the disk with no black hole present, viewed at an inclination of θobs = π/3. The
legend to the right of the image shows the colour scheme used to indicate the radial coordinate r of the
point on the disk. The black ring shows the outline of where the black hole would be.

Figures 2.2 - 2.4 show some example paths. In all figures, a = 1 and the axis of rotation of the black
hole is the z-axis The grey circle/sphere shows the outer event horizon. Figure 2.2 shows the trajectory
of a photon whose path is bent as it passes close to the black hole. Figure 2.3 shows a photon falling into
the black hole. This particular path (with θ′ = 0, known as a principal null path) has an analytic solution
D’Inverno (1992, pg. 257) that was used to check the accuracy of the numerical integrator. Figure 2.4
shows an extreme example of a photon whose path is significantly altered by the black hole.

2.3 Accretion Disks

We can now implement the full algorithm and create an image of the accretion disk. The two physical
parameters we need to alter are the angular momentum a and the inclination angle θobs. We begin by
showing an image of the disk in flat spacetime i.e. with no black hole and thus no light bending. Figure
2.5 shows an disk inclined at an angle of θobs = π/3 in Minkowski spacetime (M = 0, a = 0). We
colour the pixels of the image according to their radial coordinate r, as shown in the legend of Figure
2.5.

2.3.1 Changing the Angular Momentum (a)

The effect of changing the angular momentum a is shown in Figure 2.6. We set the angle of inclination
to θobs = π/3 and colour the disk according to radial coordinate as before. Recall that the inner and
outer radii of the disk (rin and rout) depend on rms and thus depend on a.

The distortion of the disk relative to the flat spacetime case (Figure 2.5) is very obvious. Two effects
are very noticeable. The first is the distortion of the far side of the disk. The reason for this is easy to
identify—photons from the CCD which would ordinarily pass over the top of the disk are bent down
onto the disk by the attraction of the black hole. As a result, the back of the disk appears to be bent
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upwards. The second effect is the secondary image of the disk, below the upper primary one. This image
results from photons passing under the front of the disk whose paths then curve upwards to collide with
the underside of the far side of the disk.

Slightly less obvious is the effect of changing a. The case a = 0 is Schwarzschild spacetime and
shows the expected symmetry about the vertical axis. As we increase a, an asymmetry forms as photons
from one side of the disk are swept along by the frame-dragging effects of the rotation of the black hole,
while photons from the other side of the disk are propagating against the flow.

2.3.2 Changing the Angle of Inclination (θobs)

The effect of changing the angle of inclination θobs is shown in Figure 2.7. We set the angular momentum
to a = 1 and, as before, colour the disk according to radial coordinate. The most striking of these images
is for θobs = π/2. With no black hole, this image would be blank as we are looking edge on at a
geometrically thin disk. The presence of the black hole means that photons passing above and below the
front of the disk are bent onto the top and underside of the far side of the disk respectively. Thus this
image, in spite of its similarity with the θobs = 0 image, is in fact two views of the far side of the disk.

2.4 Redshift and Blueshift

We can colour the disk more meaningfully by colouring according to the redshift or blueshift measured
for a photon emitted from the relevant point on the disk. Conceptually, there are two contributions to
this change in frequency: a redshift due to the fact that the photon must climb out of the potential well
of the black hole (the gravitational redshift), and a shift due to the motion of the emitter relative to the
observer (the Doppler shift). Before we can calculate the Doppler shift, we need to know the velocity of
each point on the disk. In a Newtonian model, we would assign circular, Kepler orbits to each particle in
the disk, so that their velocity is related to their radius by:

v =
√

GM

r
(2.5)

However, we are so close to the black hole that a Newtonian model is likely to be inaccurate. We
instead use the equations for a timelike, circular (r′ = 0) geodesic orbit that is co-rotating with the black
hole, as found in Hobson et al. (2005). We can summarise the relevant equations as follows: the energy
of a particle with 4-momentum pµ measured by an observer with 4-velocity uµ is:

E = −uµpµ = −gµνu
µpν (2.6)

The observer, a long way from the black hole, has constant spatial coordinates so their 4-velocity is:
uµ

0 = (1, 0, 0, 0). Thus, the observed energy Eobs is:

Eobs = −p0 (2.7)

Meanwhile, for the emitter in the disk: u2 = θ′ = 0, since the particle is confined to the equatorial plane,
and u1 = r′ = 0, since the particle is in a circular orbit. Thus, the 4-velocity of the emitter is given
by uµ = (t′, 0, 0, φ′). Both t′ and φ′ are calculated in Hobson et al. (2005, Equation 13.40), where the
constants h and k appearing in those equations are calculated for the case of circular orbits in Equation
13.54 and 13.55 of Hobson et al. (2005). The emitted energy Ee is then:

Ee = −(t′p0 + φ′p3) (2.8)

The calculation of p0 and p3 is simplified by two facts: firstly, the absence of t and φ in the metric tensor
means that p0 and p3 are conserved, meaning that we need only calculate them at one end of the photon
trajectory; and secondly, these quantities are calculated when we integrate the geodesic equations along
the particle path, and are thus readily available in the code.

The result is shown in Figure 2.8. We use the parameters a = 1 and θobs = π/3, and colour the pixels
various shades of red or blue depending on the ratio of the observed frequency to the emitted frequency.
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Figure 2.6: Images of the disk with varying values of a, as shown in each plot. The angle of inclination
is θobs = π/3 and we colour the disk according to radial coordinate as in Figure 2.5.
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Figure 2.7: Images of the disk with varying values of θobs, as shown in each plot. The angular momentum
is a = 1 and we colour the disk according to radial coordinate as in Figure 2.5. The vertical lines in the
interior of the θobs = π/2 plot are from photons that encircle the black hole and encounter the other side
of the disk.
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Figure 2.8: An image of the disk coloured according to the ratio of the observed to the emitted frequency.
We use the parameters a = 1 and θobs = π/3. The legend to the right shows the value of the ratio of the
observed frequency to the emitted frequency.

We can see that, for the side of the disk where the emitter velocity is toward the observer, the Doppler
blueshift is more significant than the gravitational redshift, resulting in a net blueshift. There is a white
band in Figure 2.8 that shows the region where Doppler blueshift and gravitational redshift are exactly
opposed. The rest of the disk has a net redshift, increasing toward the centre where the gravitational well
is deepest.

We have compared our results with similar investigations in the literature. We find good qualitatively
agreement with Bromley et al. (1997); Fanton et al. (1997); Beckwith & Done (2004, 2005): the back
of the disk appears to bent upwards, with a similar pattern of redshift and blueshift from different parts
of the disk. Quantitatively, simulations were run to allow a direct comparison with Figure 1 of Bromley
et al. (1997) using the parameters: a = 1; rin = 1.25; rout = 10; θobs = 75◦. Excellent agreement was
found between the two simulations.

It is worth noting that accretion disks in AGN are too small to be imaged by current telescopes, so
the images shown previously cannot be checked observationally. However, the ray tracing codes can be
used to predict the spectral line profile of line emission from the disk; see Bromley et al. (1997); Fanton
et al. (1997); Beckwith & Done (2004, 2005). The codes I have developed will be used to this end

2.5 Spherical Coronae

Many models of AGN include, along with an accretion disk in the equatorial plane, a hot corona located
above and below the disk. These are often associated with highly ionised iron lines in the spectra of
AGN (see,amongst others Haardt & Maraschi, 1993; Dove et al., 1997). As a toy model to illustrate the
appearance of an object surrounding the black hole, we can consider an image of a sphere at a radius
rsph.
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Figure 2.9: Images of a spherical corona surrounding a black hole. The angle of inclination is θobs = π/2,
the radius of the sphere is rsph = 5M and the value of a is shown in each panel. We have tiled the surface
of the sphere with alternating colours: there are 20 panels along a line of longitude, and 20 panels around
a line of latitude. The light line inside each image shows the great cirlce corresponding to the limit of
what could be seen by an observer infinitely far away in flat spacetime. In other words, anything in the
image that is outside the light line is “around the back” of the sphere.

The changes to the code from previous sections are minimal, as we need only change the stopping
conditions (i.e. the final step of the algorithm given at the start of this chapter). We integrate the path of
the photon until it passes inside rsph, where we record the azimuthal (φ) and polar (θ) angle of impact
before moving onto the next photon. The inside-out algorithm is again useful.

The result is shown in Figure 2.9. We set the angle of inclination to θobs = π/2, and consider the two
cases of a Schwarzschild black hole (a = 0), and an extreme Kerr black hole (a = 1). For both images,
we have set rsph = 5M to allow easier comparison of the two cases. To show the varying values of φ
and θ, we have tiled the surface of the sphere with alternating colours, as explained in the caption.

In both cases, we see that the bending of light allows us to see around the back of the sphere. This
is most obviously seen at the top and bottom of the image, where we can see the north and south pole.
It can also been seen at the sides of the sphere, where we can see more than the 10 panels that would be
visible if the black hole were not present.
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Chapter 3

Motion of Test Particles in
Robertson-Walker Spacetime

In recent years there has been debate over paradoxical features of the FLRW model, and the physical
interpretation of its dynamics. Attention has been drawn in particular to superluminal recession velocities
(Davis & Lineweaver, 2001; Davis et al., 2003; Chodorowski, 2006; Sitnikov, 2006) and to the motion
of test particles in expanding space (Davis et al., 2003; Whiting, 2004; Gron & Elgaroy, 2006; Peacock,
2006). It is to the second of these issues that we turn our attention.

The motion of test particles in the FLRW model is a fascinating illustration of the interaction between
physical concepts and quantitative theories. One of the defining characteristics of physics is the math-
ematical precision of its predictions. Yet there is more to applying physical laws than simply solving
equations. In order to make physical laws more transparent and accessible, we use physical concepts
that develop an intuition or a mental picture of the scenario. A successful physical concept allows us to
shortcut the mathematics, qualitatively understanding a scenario without having to solve the equations.
As an example, consider the north pole of a bar magnet approaching a loop of wire. Looking from
behind the magnet, we know that an anti-clockwise current will be set up in the wire, but we need not
come to this conclusion by solving Maxwell’s equations—Lenz’s law will give us the answer without
the mathematics.

Attached to the equations of the FLRW model is the physical concept that “space is expanding”.
Galaxies, we are taught, are receding not because they are moving through space but because space itself
is being stretched between us and the galaxy. On the face of it, this concept gives us a good intuitive
understanding of many cosmological phenomena—it helps us understand why the velocity-distance law
is linear and why light is redshifted as it moves through the universe. However, it has been attacked
recently, most notably by Whiting (2004) and Peacock (2006), as being inadequate in describing local
dynamics. Whilst Peacock (2006) will allow a global form of the expanding space concept—the total
volume of a closed universe increases with time—he contends that:

there is no local effect on particle dynamics from the global expansion of the universe
. . . ‘Expanding space’ is in general a dangerously flawed way of thinking about an expanding
universe.

Previous attempts at resolving this debate have suffered from a number of shortcomings. The
most common is the overwhelming desire to approximate General Relativity (GR) by something else—
Newtonian gravity, Special Relativity (SR) or a weak field limit of GR. This is probably wrong and cer-
tainly unnecessary—why approximate when you can use the exact geodesic equations? Another problem
is the small range of cosmological models considered—Gron & Elgaroy (2006), for example, do a mar-
vellous job of solving the geodesic equations and then apply the solution to just two models, both of
which are observationally disfavoured. There is also a dangerous reliance on numerical calculations to
determine asymptotic (t → ∞) behaviour. Whiting (2004) makes this point about Davis et al. (2003),
but doesn’t say why analytic solutions to a Newtonian approximation are better than numerical solutions
of the exact GR equations. Most importantly, there are hidden assumptions about what expanding space
does and does not mean. We will address these problems in this and following chapters.
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Following previous work on this topic, we set up the initial conditions of our test particle as follows.
We place ourselves at the origin (χ = 0) and the test particle at χ0. We consider the particle to initially
have constant proper distance ṙp(t0) = 0 i.e.

d (R(t)χ)
dt

∣∣∣
t=t0

= 0 ⇒ Ṙ(t0)χ0 + R(t0)χ̇(t0) = 0 (3.1)

The reason for this particular initial condition is quite simple. A popular way of visualising expanding
space is a balloon or a large rubber sheet. Imagine yourself and a friend at rest on a large rubber sheet.
We cannot directly observe spacetime, so we will do this thought experiment in the dark1. Suppose you
both observe a glowing ball moving away from you. “The rubber sheet is being stretched,” you say. “No
it’s not,” replies your friend, “the sheet is still and the ball is rolling away.” Together, you come up with
an ingenious way of finding out who is right. You take another glowing ball, and drop it onto the sheet a
certain distance away. If the sheet is expanding, then we expect it to carry the ball away; if the sheet is
still then the recession of the first ball was due to a kinematical initial condition. Once this is removed,
so is the recession.

The cosmological expansion is a bit more complicated, as we have expansion that changes with time
due to the self gravitation of the energy contents of the universe. We will therefore need to consider a
range of cosmological models. For reasons that will become clear in the next section, we will consider
models given by Equation (1.30). We will allow χ to be negative when a particle passes through the
origin, rather than have to worry about a change in angular coordinates. We have chosen t0 = 1 and
R0 = 1 for each model. We started each particle off at comoving coordinate χ0 = 1/3, which ensures
that C > 0. Physically, this ensures that we do not place the particle beyond the Hubble sphere, which
would require a velocity relative to the local Hubble flow (peculiar velocity) greater than the speed of
light2.

The results of solving the geodesic equations numerically are shown in Figure 3.1. The dotted line
in the centre panels shows the motion of the particle as calculated by a Newtonian analysis (see Whiting
(2004) and Peacock (2006)). The equation of motion is:

rNewton
p = 2R0χ0

(
t

t0

)1/3

−R0χ0

(
t

t0

)2/3

(3.2)

The Newtonian result is surprisingly accurate, remaining close to the GR solution even up to 100 times
the age of the universe. It is seen to diverge from the exact solution eventually, though, and thus remains
only a useful approximation for small times. This divergence becomes more apparent as we increase
χ0, i.e. as we approach the Hubble sphere. If we consider the w = 0, Einstein de-Sitter universe and
set χ0 = 1, then the solutions diverge much more quickly. Figure 3.2 reproduces Figure 1 of Whiting
(2004), overlaying the relativistic solution. It is easy to see that whilst the qualitative behaviour is similar,
the Newtonian solution is quantitatively different.

Returning to Figure 3.1, a few points are noteworthy. The bottom, leftmost panel (w = −2/3) shows
the particle trajectory moving away from the origin and very quickly becoming indistinguishable from
the nearby Hubble flow. The other panels do not show the same behaviour, but instead the particle moves
toward the origin and away on the opposite side of the sky. Moreover, they don’t seem to be attaching
themselves to any particular particle in the Hubble flow. But, as noted in the introduction, it is dangerous
to try to determine asymptotic behaviour from numerical plots. We must do it analytically.

1We will not speculate on how you two came to be standing on a rubber sheet in the dark.
2Gron & Elgaroy (2006), equation (22) gives this condition incorrectly. The correct formula, which follows directly from

their equation (21), is χ0 < 3(1 + w)/2. They then claim to start at particle off at χ0 = 1 in a Milne (w = −1/3) universe,
which contradicts the previous condition on χ0. Therefore, their Figure 1b) appears to plot a null geodesic.
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Figure 3.2: A reproduction of Figure 1 in Whiting (2004), plotting proper distance against time for a test
particle released from χ0 = 1 in an Einstein de-Sitter universe (i.e. flat, matter only). The dot-dashed
line is the Newtonian solution, whilst the solid line is the relativistic solution. The dashed lines represent
particles in the Hubble flow. The discrepancy between the solutions is obvious.
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Chapter 4

Joining the Hubble Flow

There is disagreement in the literature as to the fate of free particles in an eternally expanding universe,
i.e. where R(t) → ∞ as t → ∞. Davis et al. (2003) and Gron & Elgaroy (2006) claim that they will
asymptotically rejoin the Hubble flow, whilst Whiting (2004) states that “it cannot be asserted that . . . free
particles [are] swept into the Hubble flow, even asymptotically.” This is an important issue because it is
often claimed that the expansion of space will dampen out all motion through space, so that a particle
initially removed from the Hubble flow will asymptotically rejoin it.

On closer inspection, this disagreement stems from different definitions of what it means to “asymp-
totically rejoin the Hubble flow.” In this section we will propose a number of precise definitions of
this phrase, and then see which ones are equivalent and which ones hold in an eternally expanding but
otherwise arbitrary universe. We will not consider universes in which the current expansion becomes a
contraction at some point in the future. This would be an unnecessary and distracting complication when
considering the expansion of space. We do not claim that this list is exhaustive.

4.1 Seven Definitions

Definition 1 (χ̇→ 0): A particle with coordinate trajectory χ(t) asymptotically rejoins the Hubble
flow if χ̇(t)→ 0 as t→∞.

The particle is deemed to asymptotically rejoin the Hubble flow if its velocity through coordinate space
approaches the velocity through coordinate space of the Hubble flow, namely zero.

Definition 2 (χ→ χ∞): A particle with coordinate trajectory χ(t) asymptotically rejoins the Hub-
ble flow if χ → χ∞ as t → ∞, where χ∞ is a constant that depends on the cosmology and initial
conditions.

The Hubble flow is defined by having constant coordinates. Thus, we consider a particle to approach the
Hubble flow if its radial coordinate approaches a constant. The asymptotic value of the radial coordinate
(χ∞) can be thought of as the “rightful place” of the particle in the Hubble flow.

Definition 3 (vpec → 0): A particle with coordinate trajectory χ(t) asymptotically rejoins the Hub-
ble flow if vpec(t) ≡ R(t)χ̇(t)→ 0 as t→∞.

We can divide the proper velocity (ṙp) of a test particle into a recession component and a peculiar com-
ponent as follows:

ṙp = Ṙ(t)χ(t) + R(t)χ̇(t) = vrec(t) + vpec(t) (4.1)

If we move our coordinate origin so that χ(t) = 0 at time t, then we see that the proper velocity of the
test particle is solely its peculiar velocity. Thus peculiar velocity is simply proper velocity relative to the
local Hubble flow. The requirement that vpec(t) → 0 as t → ∞ is equivalent to the velocity relative to
the local Hubble flow going to zero.
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Definition 4 (ṙp → vrec): A particle with coordinate trajectory χ(t) asymptotically rejoins the
Hubble flow if ṙp → vrec(t) as t→∞.

We require that the proper velocity of the test particle approaches its recession velocity. This is subtly
different from definition 3, as will be explained below. To avoid ambiguity, this definition uses a con-
tinuous version of asymptotic equivalence: we say that f(x) approaches g(x) as x → ∞ if their ratio
approaches unity, i.e.

f(x)→ g(x) as x→∞ ⇔ f(x)
g(x)

→ 1 as x→∞ (4.2)

Definition 5 (∆rp → 0): A particle with coordinate trajectory χ(t), where χ(t) → χ∞ as t → ∞,
asymptotically rejoins the Hubble flow if ∆rp ≡ |R(t)χ∞ −R(t)χ(t)| → 0 as t→∞.

Suppose that our test particle is approaching a particular coordinate (χ = χ∞, cf. definition 2) and that
we place a reference particle in the Hubble flow at this coordinate. We require that the proper distance
between the test particle and the reference particle approach zero. In other words, the test particle sees its
rightful place in the Hubble flow get closer (in terms of proper distance) asymptotically. Note that if we
had chosen instead to require that R(t)χ(t) → R(t)χ∞ then this definition would have been equivalent
to Definition 2 by Equation (4.2).

Definition 6 (zobs → zcosm): A particle with observed redshift zobs(tr) at time of reception tr asymp-
totically rejoins the Hubble flow if zobs(tr) → zcosm as tr → ∞, where te is the time of emission of
a photon that reaches the observer at tr.

Light emitted from a particle in the Hubble flow is observed to be redshifted according to the cosmolog-
ical redshift formula: zcosm ≡ R(tr)/R(te) − 1. For a particle with coordinate trajectory χ(t), there is
an additional Doppler redshift resulting from its velocity relative to the Hubble flow:

1 + zobs(tr) = (1 + zcosm)(1 + zDop) (4.3)

=
(

R(tr)
R(te)

) (
1 + vpec(te)
1− vpec(te)

) 1
2

(4.4)

where vpec is considered positive when the particle’s velocity through the local Hubble flow points away
from us. The Doppler term is the familiar redshift of light formula from SR, but the formula is derived
purely from the RW metric.

This definition assumes that we are comoving observers that measure light signals sent from the test
particle. Suppose at each time we place a reference particle in the Hubble flow at the same coordinate
as the test particle. The redshift of the reference particle, which represents the local Hubble flow, will be
purely cosmological. This definition requires that the redshift of the test particle approach the redshift of
the reference particle.

Definition 7 (CMB dipole → 0): A particle moving through a universe containing a cosmic mi-
crowave background (CMB) asymptotically rejoins the Hubble flow if the dipole anisotropy in the
CMB goes to zero as t→∞.

In a universe filled with black-body radiation at a certain temperature T , an observer moving through the
Hubble flow will see the CMB to be hotter in one direction and colder in the opposite direction. Indeed,
this is exactly what we see from Earth—it is known as the “great cosine in the sky” and disrupts the
isotropy of the CMB at a level of∼ 10−3 (Bennett et al., 2003, among others). The maximum difference
between the temperature as measured by an observer in the Hubble flow (T0) and our test particle with
peculiar velocity vpec << c is given by (Peebles & Wilkinson, 1968; Melchiorri et al., 2002):

∆T

T0
∼

vpec

c
. (4.5)
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Finally, note that it is too much to ask that the test particle exactly join the Hubble flow after some
time, i.e. χ(t) = χf, a constant, for all t ≥ tf. Only pathological functions that do not equal their own
Taylor series can do this, and it is unlikely that such functions will appear as a solution to the geodesic
equations (1.32).

4.2 Comparing the Definitions

The previous section may appear to be an exercise in pedantic cosmology, and one hopes that all the
definitions will turn out to be equivalent. However, it turns out that only three of the above definitions
hold in eternally expanding but otherwise arbitrary universes, and one of them fails in all non-accelerating
universes.

We will need two key results in order to analyse these definitions. The first is that all eternally
expanding cosmological models approach the single component model of Equation (1.30) as t → ∞.
We can show this directly from Equation (1.29). Consider the universe to contain a number of energy
components (labelled i), each with constant1 equation of state wi. Now consider the right hand side of
Equation (1.29). As t→∞, we know that R(t)→∞ since we are only considering eternally expanding
universes. Since the dependence on R(t) is R−3(1+wi), we see that, for large t, the component with the
most negative equation of state will dominate the dynamics of the universe. Precisely, let the component
with the most negative equation of state be called the dominant component (i = d), with equation of
state wd. Then, for large t

H2 ≈ H2
0 Ωd,0

(
R

R0

)−3(1+wd)

(4.6)

⇒ R(t) ≈ R0

(
t

t0

) 2
3(1+wd)

(4.7)

which is Equation (1.30) with w = wd. For example, in a universe with matter density less than critical,
we consider “curvature energy” to be the dominant component with wd = −1/3. The exact solution for
this cosmology (given in Hobson et al. (2005), pg. 402) indeed shows that R(t) ∝ t for large t. Thus,
Equation (4.7) is a general form for R(t) when considering the asymptotic behaviour of the universe2.
We can also calculate the deceleration parameter, q:

q ≡ −R̈

R

1
H2

=
1
2
(3wd + 1) (4.8)

Thus, if wd > −1/3 then the expansion of universe will decelerate; if wd < −1/3, then the universe will
eventually accelerate; if wd = −1/3 then the universe will approach a coasting universe.

The second key result is the asymptotic behaviour of the integral for χ in Equation (1.33b) when R(t)
given by Equation (4.7). Whilst the exact indefinite integral unfortunately involves the hypergeometric
function, we can approximate this function in the limit of large t as by noting that

√
1 + CR2 ≈

√
CR

in this limit. The integral then becomes trivial. We now analyse the seven definitions, in order from the
weakest to the strongest conditions.

Definition 1 (χ̇ → 0): From Equation (1.33b) we can see that as t → ∞ (and R(t) → ∞),
χ̇ ∝ R−2. Thus Definition 1 holds in all eternally expanding universes, so that the velocity of a particle
through coordinate space will always decay to zero. Gron & Elgaroy (2006) use this definition when
they claim that test particles will rejoin the Hubble flow.

1For a component with an evolving equation of state, consider the asymptotic value of the equation of state, i.e. wi(t) →
wi,∞ as t → ∞. A unbounded equation of state is most likely unphysical. An oscillating equation of state will not be
considered.

2There is a subtlety here—a universe that contains only “curvature energy” (i.e. an empty universe) is not identical to a
universe containing a critical density fluid with equation of state w = −1/3. Although the dependence of the scale factor on
time is the same in both universes (R(t) ∝ t), the empty universe has k = −1, whilst the w = −1/3 fluid universe has k = 0.
However, Equations (1.32) show that if we consider radial geodesics (θ′ = φ′ = 0), then there is no dependence on k. Thus,
the distinction between these two universes can be ignored for now.
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Definition 3 (vpec → 0): Since vpec(t) = R(t)χ̇(t), Definition 3 is stronger than Definition 1.
However, it still holds in all eternally expanding universes, since Equation (1.33b) shows that as t→∞,
vpec(t) ∝ R−1. This is closely related to the well known result that the momentum of any particle in the
universe decays as R−1. It is this definition that is most widely used to justify the claim that test particles
rejoin the Hubble flow asymptotically.

Definition 7 (CMB dipole→ 0): Equation (4.5) shows that this definition is equivalent to Definition
3 and thus holds in all eternally expanding universes. In particular, this shows that the dipole in the CMB
will decay faster than the CMB temperature itself.

Definition 2 (χ → χ∞): At first sight, Definition 2 may appear to be a direct consequence of
Definition 1—surely if the derivative of a function approaches zero then the function itself will approach
a constant. However, it is easy to think of counterexamples: f(x) = log(x). Thus, we need to consider
Equation (1.33b), integrating between t0 = 1 and t and using the two approximations discussed at the
start of this section. This gives:

χ(t) =χ0 ±
∫ t

1

dt

R
√

1 + CR2
(4.9)

≈K1 ±
1√
CR2

0

∫ t dt

t2n
(4.10)

where n = 2
3(1+wd) and K1 is a constant that includes χ0 and the primitive of the exact integral evaluated

at t0. Thus, for the integral to be bounded as t→∞, we require that:

2n > 1 ⇒ wd < 1/3 (4.11)

Thus if we use Definition 2 to define what it means to asymptotically rejoin the Hubble flow, then test
particles in universes where the dominant energy component has equation of state wd ≥ 1/3 do not
rejoin the Hubble flow. In particular, in a universe where the dominant energy component is radiation,
the comoving coordinate of a test particle removed from the Hubble flow increases (or decreases) without
bound. The particle has no rightful place in the Hubble flow3.

Definition 4 (ṙp → vrec): Definition 4 appears to be identical to Definition 3; surely if ṙp(t) =
vrec(t) + vpec(t) and vpec(t) → 0 in all eternally expanding universes then Definition 4 holds trivially.
However, it is possible that vrec(t) also goes to zero, and if it does so as fast or faster than vpec(t) then we
are not justified in saying that the proper velocity of the test particle approaches its recession velocity.
We can see this from Equation (4.2):

ṙp(t)→ vrec(t) ⇒
ṙp(t)
vrec(t)

→ 1 (4.12)

⇒
vrec(t) + vpec(t)

vrec(t)
→ 1 (4.13)

⇒
vpec(t)
vrec(t)

→ 0 (4.14)

which is stronger than the condition in Definition 3. Whiting (2004, p. 11) hinted at Definition 4: “Pecu-
liar velocities do vanish eventually in expanding universes; but so do all velocities [emphasis original]”,
but mistakenly implied that it would rule out rejoining the Hubble flow in matter dominated universes
(wd = 0). Davis et al. (2003) use Definition 4 (see their equation (11) and following) but mistakenly
believe that it follows automatically from the success of Definition 3.

As we noted previously, as t→∞, vpec(t) ∝ R−1. Thus:

vpec(t) ∝ R−1 ∝ t−n (4.15)

3Hartle (2003) sets the derivation of Equation (1.33b) as a practice problem for undergraduates. The solutions give a very
instructive derivation using Killing vectors, but then state that the particle comes to rest at coordinate xf ≡ χ∞, given by
integrating from zero to infinity. He fails to note that the integral may diverge, so that the particle may not come to rest at all.

25



We now consider vrec(t) = Ṙ(t)χ(t). Using Equation (4.10) we approximate χ by:

χ(t) ≈ K1 ±
1√
CR2

0

{
t1−2n

1−2n if n .= 1/2
log t if n = 1/2

(4.16)

⇒ vrec(t) ∝ K2t
n−1 + K3

{
t−n if n .= 1/2
t−1/2 log t if n = 1/2

(4.17)

where the Ki will be used keep track of constants. Now, we need to consider three cases:

• If n > 1/2, then n− 1 > −n . Thus the dominant term in Equation (4.17) is the first term so that
vrec(t) ∝ tn−1 for large t. Then, as t→∞:

vpec(t)
vrec(t)

∝ t−n

tn−1
→ 0 (4.18)

Thus when n > 1/2, vpec(t) goes to zero faster than vrec(t), meaning that Definition 4 holds.

• If n = 1/2, then vrec(t) ∝ t−1/2 log t. Then, as t→∞:

vpec(t)
vrec(t)

∝ t−1/2

t−1/2 log t
→ 0 (4.19)

Thus Definition 4 holds when n = 1/2.

• If n < 1/2, then n− 1 < −n so that vrec(t) ∝ t−n. Then, as t→∞:

vpec(t)
vrec(t)

∝ t−n

t−n
→ 1 (4.20)

Thus when n < 1/2, vrec(t) and vpec(t) approach zero at the same rate. It is not true that ṙp(t)→
vrec(t) as t→∞ and Definition 4 fails in this case.

If we use Definition 4 to define what it means to asymptotically rejoin the Hubble flow, then test
particles in universes where the dominant energy component has equation of state wd > 1/3 do not
rejoin the Hubble flow. Note that Definition 4 holds in a universe where the dominant energy component
is radiation, unlike Definition 2, which fails.

Definition 6 (zobs → zcosm): Once again we are tempted to assume that the success of Definition 3
will ensure that this definition will hold in all universes. The argument proceeds as before: if

1 + zDop =
(

1 + vpec(te)
1− vpec(te)

) 1
2

(4.21)

and vpec(t) → 0 in all eternally expanding universes then Definition 6 holds trivially. And our caveat is
the same—we must be careful of the case where zcosm also goes to zero.

To do this, we need to express zobs in terms of reception time tr and then consider the limit tr →∞.
In fact it is much easier to express everything in terms of the emission time te and then consider te →∞;
te < tr guarantees that both cases will have identical limiting behaviour.

In the limit of small vpec, we have that zDop ∼ vpec ∝ t−n, using Equation (4.15). Also, 1 + zcosm =
R(tr)
R(te)

= tnr
tne

, so that the task at hand is to express tr in terms of te. Consider a light ray travelling along a
null (ds = 0), ingoing (dχ < 0), radial (dθ = dφ = 0) geodesic. From the RW metric:

dt =−R(t)dχ (4.22)

⇒ χ(te)− χ(tr) =
∫ tr

te

dt

R(t)
(4.23)

where we now place the receiver at the origin: χ(tr) = 0. For the case of a test particle removed from
the Hubble flow, χ(te) is given by Equation (1.33b), approximated by Equation (4.16). An immediate
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Figure 4.1: Redshift as a function of time for cosmological models with w = 0 (left) and w = 1 (right)
(examples of fluids with w = 1 are free massless scalar fields and shear energy, such as superhorizon
gravitational waves; see Linder (1997)). The red dashed line is the cosmological redshift (zcosm), the
blue solid line is the Doppler redshift (zDop) and the solid black line is the observed redshift (zobs =
−1+(1+zcosm)(1+zDop)). The left panel shows the asymptotic dominance of the cosmological redshift
for w ≤ 1/3, whilst the right panel shows the identical asymptotic behaviour of the cosmological and
Doppler redshift at large t for w > 1/3.

consequence of combining these equations is that Definition 6 must work in accelerating and coasting
universes (wd ≤ −1/3), since in these universes zcosm does not go to zero. Thus we need only consider
0 < n < 1. We will leave the n = 1/2 case to the reader: it involves log t as with Definition 4.

With this in mind, we can derive an expression for tr:

tr =
(
t1−n
e + K4t

1−2n
e + K5

) 1
1−n (4.24)

which leads to the following expression for 1 + zcosm:

1 + zcosm =
(
1 + K4t

−n
e + K5t

−(1−n)
e

) n
1−n (4.25)

≈1 + K6t
−n
e + K7t

−(1−n)
e (4.26)

where the last expression is calculated using the binomial theorem for non-integer exponents4. This leads
to the following three cases:

• If n > 1/2, then n− 1 > −n so that zcosm ∝ tn−1. Then, as t→∞:

zDop

zcosm
∝ t−n

tn−1
→ 0 (4.27)

Thus when n > 1/2, zDop goes to zero faster than zcosm, meaning that Definition 6 holds.

• If n = 1/2, it turns out that zcosm ∝ t−1/2 log t. Then, as t→∞:

zDop

zcosm
∝ t−1/2

t−1/2 log t
→ 0 (4.28)

Thus Definition 4 holds when n = 1/2.

• If n < 1/2, then n− 1 < −n so that zcosm ∝ t−n. Then, as t→∞:

zDop

zcosm
∝ t−n

t−n
→ 1 (4.29)

Thus when n < 1/2, zcosm and zDop approach zero at the same rate. It is not true that zobs → zcosm
and Definition 6 fails in this case.

4See Weisstein (2006) for a reminder.
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Table 4.1: Seven definitions and the conditions for their fulfilment.
Hold in all If no, conditions

Definition expanding on wd for
universes? definition to hold

1 χ̇→ 0 yes
2 χ→ χ∞ no wd < 1/3
3 vpec → 0 yes
4 ṙp → vrec no wd ≤ 1/3
5 ∆rp → 0 no wd < −1/3
6 zobs → zcosm no wd ≤ 1/3
7 CMB dipole→ 0 yes

If we use Definition 6 to define what it means to asymptotically rejoin the Hubble flow, then test
particles in universes where the dominant energy component has equation of state wd > 1/3 do not
rejoin the Hubble flow. The situation is illustrated in Figure 4.1. When w = 0 the Doppler redshift
decays away much faster than the cosmological redshift, so that Definition 6 holds. However, when
w = 1 the Doppler and the cosmological redshift decay at the same rate; which one is greater depends
on the cosmological model and the initial conditions (hidden in the constants Ki). Thus, Definition 6
fails in this universe.

Definition 5 (∆rp → 0): We know already that this definition fails in some cases since it relies on
Definition 2. Thus we begin with the assumption that wd < 1/3, i.e. n > 1/2. Now, we have that:

∆rp =|R(t)χ∞ −R(t)χ(t)| (4.30)

=R(t)
∣∣∣∣
∫ ∞

t0

dt

R
√

1 + CR2
−

∫ t

t0

dt

R
√

1 + CR2

∣∣∣∣ (4.31)

=R(t)
∣∣∣∣
∫ ∞

t

dt

R
√

1 + CR2

∣∣∣∣ (4.32)

∝ tn
∣∣∣∣
∫ ∞

t

dt

t2n

∣∣∣∣ (4.33)

∝ tn t1−2n = t1−n (4.34)

Hence the requirement that ∆rp → 0 as t → ∞ is only met for n > 1, i.e. wd < −1/3 or q < 0.
In particular, for a universe where the dominant component has wd = −1/3, ∆rp approaches a constant.
For example, Whiting (2004, p. 10) reaches this conclusion for an underdense, matter only universe. If
we use Definition 5 to define what it means to asymptotically rejoin the Hubble flow, then test particles
in universes where the dominant energy component has equation of state wd ≥ −1/3 do not rejoin
the Hubble flow. This means that particles asymptotically rejoin the Hubble flow only in universes that
eventually accelerate. Definition 5 is the strongest of the definitions, and is the one used by Whiting
(2004, p. 10) to justify the claim that particles in a matter dominated universe (wd = 0) do not join the
Hubble flow.

The failure of this definition can be illustrated by looking again at Figure 3.1. The first column
(w = −2/3) clearly shows a particle that satisfies Definition 5. However, in the second and third
columns (w = −1/3, 0), in the bottom panels, the lowest dashed line is the trajectory of the particle
in the Hubble flow whose comoving coordinate is equal to χ∞, i.e. the rightful place of the particle in
the Hubble flow. In the centre column, the test particle trajectory and the rightful place trajectory move
apart, whilst in the second column they are separated by a constant. Thus, the particle never joins the
Hubble flow in the sense of its trajectory being indistinguishable from the trajectory of a particle in the
Hubble flow.

A summary of the different definitions and the conditions for their fulfilment is given in Table 4.1.
In Chapter 5, we will look closely at the implications of these results and others for the physical concept
of expanding space.
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Chapter 5

In Defence of Expanding Space

The attack on the physical concept of expanding space has centred on the motion of test particles in the
universe, as discussed in Section 3. Whiting (2004), Peacock (2006) and others claim that the failure of
expanding space to adequately explain the motion of test particles means that it should be abandoned.
While it is undoubtedly true that one can formulate misleading versions of the expanding space concept,
we contend that there is a formulation that avoids many of the misconceptions about RW spacetime.

5.1 The Concept of Expanding Space

The cosmological fluid provides a reference frame that all observers can agree on. That is, all observers
can perform an experiment to discover their velocity relative to the cosmological fluid (e.g. anisotropy
in the CMB). The global inertial frame provided by the cosmological fluid is the context in which all
motion can be analysed. Motion with respect to the cosmological fluid requires a multitude of specific,
astrophysical causes (e.g. the motion of the Milky Way due to the Great Attractor). By contrast, the
global expansion of the cosmological fluid needs only a single cause, which we look for in the initial
conditions of the universe (i.e. the expansion problem cf. Peacock (1999, p. 324)). Thus we can view
the cosmological fluid as the backdrop for all other motion in the universe — the reference frame of the
universe. Because the cosmological fluid is expanding, and the cosmological fluid defines the reference
frame of the universe, we can say (as a slogan): by expanding space we mean that the reference frame of
the universe is expanding.

Central to this formulation is the idea that objects in the Hubble flow do not remain in the Hubble
flow because they are dragged along by space; they remain in the Hubble flow because they are at rest in
an inertial frame. Expanding space can be thought of as a manipulation of inertial frames — everyone
thinks they’re stationary and yet everyone is moving away from everyone else. The universe expands
whilst keeping its contents in rest frames. Objects in the Hubble flow are free-falling. There is no
frictional or viscous force associated with the expansion of space.

A key feature of the Hubble flow is that velocity is directly proportional to distance. This is a
necessary consequence of a homogeneous and isotropic expansion (see Harrison, 2000, p. 279) and is
well illustrated by an expanding balloon. We represent galaxies in the Hubble flow by buttons glued
onto the balloon. This is a good analogy for the way galaxies maintain their spatial coordinates as the
universe expands (i.e. they are comoving) and also the fact that galaxies themselves do not expand with
the universe. However, thinking of expanding space in terms of the rest frame of the universe exposes the
flaw in the balloon analogy: the glue. Buttons glued onto a balloon have no choice but to expand with
the rubber of the balloon. But galaxies in the universe have a tendency to separate because their initial
conditions placed them in an expanding rest frame. This reinforces the point made by Harrison (2000,
p. 333) and Peacock (1999, p. 88): the universe is not expanding because spacetime is endowed with
mysterious power. Objects separate now only because they have done so in the past.

The balloon analogy, like any analogy, is useful so long as we are aware of what it successfully illus-
trates and what constitutes pushing the analogy too far. The balloon analogy shows how a homogeneous
expansion inevitably results in velocity being proportional to distance, and also gives an intuition for how
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the expansion of the universe looks the same from every point in the universe. It illustrates that the uni-
verse does not expand in space; it consists of expanding space. But using the balloon analogy to visualise
a mechanism like a frictional or viscous force is taking the analogy too far. It correctly demonstrates the
effects of the expansion of the universe, but not the mechanism. That the analogy fails at some level is
hardly surprising: we’re representing 4-dimensional pseudo-Riemannian manifolds with party supplies.
We can’t manipulate frames like gravity can.

We are also in a good position to understand why the expansion can be thought of locally in kinemat-
ical, even Newtonian terms. We can imagine attaching a Minkowski frame to each point in the Hubble
flow. The local cosmological fluid is stationary with respect to this frame. Whilst only perfectly accurate
in an infinitesimally small region, the Minkowski frame can be used as an approximation for regions
much smaller than the Hubble radius. The Hubble flow is then viewed as a purely kinematical phe-
nomenon — objects recede because they have been initially given a velocity proportional to distance.
This does not argue against expanding space: the equivalence principle guarantees that any free-falling
observer in any GR spacetime can use SR locally. The kinematical view is often useful, but remains
only a local approximation. The exception is the Milne model: in an empty universe we can make a
coordinate transformation that exchanges the RW metric for the Minkowski metric (see Harrison, 2000,
p. 88), effectively extending our local Minkowski frame to all spacetime. This is only possible because
there is no cosmological fluid to define the rest frame of the universe. Hence the Milne model cannot be
used to make general comments on the nature of the cosmological expansion (cf. Chodorowski, 2006).

We now have three tasks before us: firstly, how does this formulation of expanding space explain
the basic facts of RW cosmologies? Secondly, can the results of Section 3 be understood using this
formulation of expanding space, and, if not, does this force us to discard the concept completely? Finally,
can we understand the failure of so many of the criteria for joining the Hubble flow in Section 4?

5.2 The Basic Facts of Expanding Space

This section will detail a number of cosmological phenomena: paragraphs 1. to 6. derive them purely
from the equations, whilst the bullet points explain how they are understood in the context of expanding
space.

1. Consider two objects in the Hubble flow (at the origin and χ = constant). The proper velocity of
the object at χ as measured by the observer at the origin is ṙp(t) = Ṙ(t)χ = H(t)rp(t). Thus,
the proper velocity of an object in the Hubble flow is proportional to its proper distance, with
the constant of proportionality depending on the rate of increase of the scale factor. This is the
velocity-distance law (not Hubble’s law, see Harrison, 2000).

• As mentioned previously, this is a result of the homogeneous nature of the expansion, and, as
an effect of the expansion, it is illustrated by the balloon analogy. If a button on the balloon
is moved away by the expansion of the balloon a certain distance in a certain time, then a
button twice a far away will move twice as far. Twice the distance in the same amount of
time means twice the velocity, so that velocity is proportional to distance.

2. If we consider two objects in the Hubble flow (at the origin and χ = constant), then the proper
distance between them at time t1 is rp(t1) = R(t1)χ. The proper distance at a later time t2 is
rp(t2) = R(t2)χ. It follows that

rp(t2)
rp(t1)

=
R(t2)
R(t1)

(5.1)

so that the proper distance between objects in the Hubble flow increases in proportion with the
scale factor.

• This result is related to the previous one. If the balloon itself doubles in linear size, the
distance between any two buttons will also double. Thus, if space expands by a certain
factor, proper distances between all objects in the Hubble flow stretch by the same factor.
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3. Consider a test particle moving radially with coordinate velocity χ(t). The proper velocity of the
object as measured by an observer at the origin is:

ṙp = Ṙ(t)χ(t) + R(t)χ̇(t) (5.2)

The first term is the same as for a particle in the Hubble flow at the same comoving coordinate and
depends on the rate of increase of the scale factor. It is zero for an object at the origin or in a static
universe. Now, consider the second term: the time measured on a clock (τ ) attached to the particle
is given by the RW line element (Equation (1.26)) as

c2dτ2 = c2dt2 −R2(t)dχ2 (5.3)

⇒
(

dτ

dt

)2

= 1−
(

R(t)χ̇(t)
c

)2

(5.4)

Since τ is observable it must be real (zero for a photon): (dτ)2 ≥ 0 implies that |R(t)χ̇(t)| ≤ c.
Thus, the velocity of the particle due its motion relative to the Hubble flow must be less than the
speed of light; its velocity due to the increase of the scale factor is not restricted in this way.

• We interpret Ṙ(t)χ(t) as the velocity of the object due to the expansion of the space between
the observer and test particle (recession velocity), and R(t)χ̇(t) as the velocity of the object
due to its motion through the local rest frame (peculiar velocity). As previously mentioned,
we can consider attaching a Minkowski frame to each point in the Hubble flow. Then the
speed of light limits the speed of an object through space. But since there is no global
Minkowski inertial frame (except for in an empty universe), the relative motion of different
regions of the Hubble flow sees no speed limit. Note that the kinematical view sees no
difference between recession and peculiar velocities, and thus cannot explain this result.
As an illustration, for light moving radially away from the origin: vpec = c, so that ṙp =
c + H(t)rp > c. An observer who insists on extending his Minkowski frame into expanding
space will encounter light travelling faster than light!

4. Suppose that light is emitted from an object moving radially with coordinate velocity χ̇(t). Then,
an observer at the origin measures the light to have been redshifted according to Equation (4.3).
The first term is the redshift of light emitted by an object in the Hubble flow at the same comoving
coordinate, and the second term is identical to the redshift of light in SR due to the relative motion
of inertial frames.

• The explanation of this result is quite simple, so long as we picture light as being a classical
electromagnetic wave1. Consider redshift from an object in the Hubble flow: if two crests
of the EM wave are a distance λe apart at emission, then the expansion of the space will
mean that the wavelength of the wave at reception λr has been stretched in proportion with
the increase of the scale factor so that: 1 + z = λr/λe = R(tr)/R(te). If the object is
moving through space, then we include an SR redshift dependent on vpec. We can also use the
kinetic view of the expansion to understand why z = v/c locally, and thus why Hubble’s law
holds (zc = H0rp). The closer an observed object is to the observer, the more accurate the
observer’s extended Minkowski frame is. Thus, for small redshifts, we expect SR formulas
to hold within experimental errors.

5. Consider a normal object consisting of many particles, held together by internal forces. Suppose
that the centre of the object travels along a radial geodesic χc(t) in RW spacetime (i.e. χc(t) is a

1We have a few reservations about this. The case of a quantum mechanical photon is more difficult to explain—how does a
point-like object stretch? Allowing its wavefunction to stretch isn’t much help; expanding space adds to the uncertainty in the
position of the photon? In this case, it may be better to consider the effect of expanding space, not on the photon itself, but on
the observers who measure the energy of the photon. The light must pass through a succession of Minkowski frames on its way
through the universe, each receding from the previous one. Thus, in the expanding rest frame of the universe, we can consider
the cosmological redshift to be an accumulation of infinitesimal Doppler shifts (see Peacock, 1999, pg. 87)
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solution to Equations (1.32)). Suppose further that the front of the object travels along a trajectory
χf (t) that keeps it at a constant proper distance (L) from the centre, i.e.

R(t)χf (t)−R(t)χc(t) = L (a constant) (5.5)

⇒ χf (t) = χc(t) +
L

R(t)
(5.6)

The back of the object will move along an analogous path. Then the coordinate trajectory χf (t) is
not a geodesic of RW spacetime. The foremost particle will experience a four-force, which can be
calculated by substituting Equation (5.6) into the equation of motion of a particle experiencing a
four-force fa:

d2xa

dλ2
+ Γa

bc
dxb

dλ

dxc

dλ
=

fa

m
(5.7)

which reduces to Equation (1.6) for fa = 0. The observed force in the radial direction is given
by projecting f1 onto an orthonormal basis; the final result is equation (1) of Harrison (1995) with
U(t) = −H(t)L for all time. In the case of L small (compared to c/H , the Hubble radius), we
have that the radial force F is:

F = −mL
R̈

R
(5.8)

• This result tells us how not to understand expanding space. Thinking of expanding space in
terms of the provision of an expanding rest frame avoids the misconception that expanding
space will mercilessly stretch everything in the universe. Expanding space does not stretch
rigid rulers — how could it? It’s just a trick with inertial frames. The internal, interatomic
forces in rigid objects are able to maintain the object’s dimensions; Dicke & Peebles (1964)
(see also Carrera & Giulini, 2006) argue that EM forces do just this. Objects are held together
by forces that pull their extremities through a succession of rest frames.
The case of objects that are held together by gravitational forces is more complicated, as these
would perturb the RW metric, rather than add a four force (i.e. change the left hand side of
Equation (5.7) rather than the right hand side2). Recall that the energy in a RW universe
is described as a perfect, homogeneous fluid. This can only hold on scales big enough to
make galaxies look like mere particles in a fluid. Thus the applicability of the RW metric
on small scales is dubious: the true metric of spacetime would be a fantastic chimera of
the RW, Schwarzschild and other metrics. However, it appears that in many circumstances,
we can treat these perturbations as a Newtonian gravitational force that can maintain the
dimensions of a gravitationally bound system in an expanding universe. We will not pursue
this further; see Cooperstock et al. (1998); Carrera & Giulini (2006) and references therein
for more details.

6. Consider an object of many particles with no internal forces. It is shot away from the origin (χ = 0)
with speed v0, the first particle leaving at time t0 and the last at t0 + ∆t0. The length of the object
is l0 = v0∆t0. The object travels to an observer in the Hubble flow at χ, who measures its speed
relative to him (vf ) and the time of arrival of the first (tf ) and last particle (tf + ∆tf ) in order to
measure its length (lf = vf∆tf ). Then, from Equation (1.33b):

χ =
∫ tf

t0

dt

R
√

1 + C0R2
=

∫ tf+∆tf

t0+∆t0

dt

R
√

1 + CfR2
(5.9)

where C0 and Cf are calculated from the initial conditions for each particle from Equation (1.33a).
If we assume that ∆t0 and ∆tf are small, then it follows that we can assume C0 = Cf ≡ C and

2“Wouldn’t the energy in the non-gravitational forces fields holding the object together also perturb the RW metric?” Yes,
they will. Although I haven’t looked into this question in detail, I believe that this perturbation would be negligible. The reason
is that the rest energy of the atoms in ordinary objects dominates the energy stored in their chemical bonds. Chemical bond
energies are ∼ 105 J/mol ∼ 10−19J/atom, while the rest energy of a proton is mpc2 ∼ 10−10J. Thus, the stress energy tensor
will be dominated by the contribution from the rest mass energy.
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then rearrange the limits of the integral to give3

∫ t0+∆t0

t0

dt

R
√

1 + CR2
=

∫ tf+∆tf

tf

dt

R
√

1 + CR2
(5.10)

⇒ ∆t0

R(t0)
√

1 + CR2(t0)
=

∆tf

R(tf )
√

1 + CR2(tf )
(5.11)

Then, using Equation (1.33a) to calculate vf = χ̇(tf )R(tf ) and substituting for C we have that

lf
l0

=
vf∆tf
v0∆t0

=
R(tf )
R(t0)

(5.12)

Hence, the length of the object has increased in proportion with the scale factor4.

• This result answers the question: what if an object had no internal forces, leaving it at the
mercy of expanding space? This is a rather strange object — it would very quickly be dis-
rupted by the forces of everyday life. Nevertheless, it is a useful thought experiment. The
above result shows that the object, being subject only to expanding space, has been stretched
in proportion with the scale factor. These are essentially cosmological tidal forces.
Paragraphs 5 and 6 give clear, unambiguous conditions that determine whether an object will
be stretched by the expansion of space. Objects will not expand with the universe when there
are sufficient internal forces to maintain the dimensions of the object5. For example, EM
radiation is not held together by EM forces. Hence there is no contradiction in saying that
objects held together by EM forces do not expand whilst EM radiation does. The expansion
of space is subtle but not arbitrary.

5.3 The Challenge of Particle Motion

We now turn to the issue of test particle motion. What are the central qualitative features of particle
motion that expanding space needs to explain? The most surprising feature is that, in most of the models,
a particle held at constant proper distance approaches the origin when released. We can calculate the
conditions for approach as follows. Since we are setting the initial proper velocity to zero, whether the
particle approaches or recedes depends on the initial proper acceleration (r̈p,0). From Equation (1.28) it
follows that

r̈p = R̈χ + 2Ṙχ̇ + Rχ̈ (5.13)

⇒ r̈p = −qRH2χ + H
v3

pec

c2
(5.14)

where the second equation uses Equation (4.8) and equation (11) of Gron & Elgaroy (2006). Putting in
the initial conditions (Equation (3.1)), it follows that

r̈p,0 = −R0H
2
0χ0

(
q0 +

v2
pec,0

c2

)
(5.15)

⇒ r̈p,0 < 0 if q0 > −
v2

pec,0

c2
(5.16)

3This part of the derivation is similar to the derivation of the cosmological redshift directly from the RW metric; see, among
many others, Hobson et al. (2005, p. 368).

4We haven’t seen this derivation or result anywhere in the literature, but doubt that it is original.
5The initial conditions are a complicating factor. For example, if we had initially placed the particles of the “no-internal-

forces” object in the Hubble flow, then the object would have expanded by the result in paragraph 2. But this is trivial — there
is no justification for claiming that the particles constitute a single object. On the other hand, if we considered an object whose
internal forces maintain its length and then turned off all the forces, we would have recreated the scenario in Section 3. Whilst
the object would eventually expand, the action of the internal forces has biased the result by initially nullifying the expansion
of the universe (see Section 5.3 below). By having all particles in the object depart from the same place in the Hubble flow with
the same speed, we overcome these problems.
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Thus, a particle in a decelerating universe will always approach the origin.
Can this result be understood in the context of expanding space? We contend that the answer is yes.

The key is to reinterpret the initial conditions of the particle. Whiting (2004) and Peacock (2006) have in
mind that Equation (3.1) describes a particle dropped innocently into the universe, like the glowing ball
in Section 3. It has no proper velocity and thus no prejudice—it is free to go wherever expanding space
wishes to take it. This is certainly true from a kinematic, Newtonian perspective: the particle is at rest
in our chosen inertial frame and approaches the origin due to the gravitational attraction of the matter
between the particle and the origin. This is locally valid and even useful, but it is not how to understand
the scenario from an expanding space perspective. The motion of the particle must be analysed with
respect to its local rest frame provided by the Hubble flow. In this frame, we see the original observer
moving at vrec,0 and the particle shot out of the local Hubble frame at vpec,0, so that the scenario resembles
a race. Since their velocities are initially equal, the winner of the race is decided by how these velocities
change with time. In a decelerating universe, the recession velocity of the original observer decreases,
potentially handing victory to the test particle, which catches up with the observer6.

The difference between the kinematic and expanding space interpretation is well illustrated by Figure
1 of Davis et al. (2003). Figure 1a shows the kinematic perspective — the observer and the tethered
particle are at rest with respect to each other, and the gravitational attraction of the matter between them
will bring them together. Figure 1b shows the scenario as seen from the local rest frame of the tethered
particle, i.e. a race between the original observer and the test particle. The original observer should view
the initial conditions of the test particle, not as neutral, but as a battle between motion through space and
the expansion of space. The expansion of space has been momentarily nullified by the initial conditions,
so we must ask how the expansion of space changes with time.

We contend that this explanation successfully incorporates test particle motion into the concept of
expanding space. In particular, it shows why it is wrong to expect, on the basis of the balloon analogy,
that expanding space would carry the particle away. We need to stress that expanding space is a good
way of thinking about the Hubble flow but that motion through space is more subtle. The alternative is
either to give up on a physical concept entirely, so that the only rationale for the cosmological facts 1. to
6. above is that “that’s what the maths tells us”, or to formulate a new framework into which these facts
and more can be accommodated. They first option is unsavoury; the second unlikely, unless one wants
to discard GR entirely and formulate cosmology using only Newtonian ideas (see Tipler, 1996).

5.4 The Challenge of the Hubble Flow

Finally, how are we to understand the failure of so many of the definitions of joining the Hubble flow
in Section (4)? The first question to ask is: what does expanding space tell us about how to rejoin the
Hubble flow? Given that we can picture RW spacetime as a collection of Minkowski metrics attached to
every point in the expanding Hubble flow, then (Peacock, 2006)

particle momentum in general declines . . . through the accumulated Lorentz transforms re-
quired to overtake successively more distant particles that are moving with the Hubble flow.

In other words, expanding space predicts that the peculiar velocity of a test particle will approach zero
as the particle tries to catch up with the receding rest frame of the universe. Thus we expect Definition
3 (along with Definitions 1 and 7, which are weaker or equivalent conditions) to hold in all eternally
expanding universes. However, expanding space does not lead us to expect that Definitions 2, 4, 5 and 6
will hold. We contend that the problem is not that expanding space has mislead us, but that describing
the decay of vpec as joining the Hubble flow is a misnomer. The correspondence between this particular
characteristic of the trajectory of the test particle and the trajectory of particles in the Hubble flow leads
us to expect that all of the features of the trajectory (χ, χ̇, rp, ṙp, vpec) will approach those of the Hubble
flow trajectories (respectively, χ = χ∞, χ̇ = 0, rp = R(t)χ∞, ṙp = vrec, vpec = 0). But this is too much
to ask from the expansion of the universe. As we have seen, many of these conditions depend on the
acceleration and deceleration of the universe, rather than just its expansion.

6Note that a particle in an empty, unaccelerated universe will approach the origin, as can be seen in Figure 3.1, but that this
is a purely relativistic effect, being proportional to v2

pec,0/c2 (see Equation (5.16)). We will not consider this further.
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We contend that the correct definition of asymptotically rejoining the Hubble flow is that all the
features of the test particle trajectory approach the corresponding features of the Hubble flow trajectories.
Selecting one feature of the trajectory on which to base our definition is arbitrary and leads to a multitude
of conflicting claims. All seven definitions have equal claim to the title of the definition of joining the
Hubble flow. We therefore require that all definitions hold, which is equivalent to just requiring Definition
5 to hold, as it is the strongest definition. It follows that it is not a general feature of expanding universes
that test particles asymptotically rejoin the Hubble flow.
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