
 

Quantum Break in High Intensity Gravitational Wave Interactions

R. F. Sawyer
Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA

(Received 14 November 2019; revised manuscript received 11 December 2019;
accepted 10 February 2020; published 10 March 2020)

The lowest order amplitudes for [gravitonþ graviton → photon þ photon� lead to cross sections of
orderG2, where G is the gravitational constant. These are too small to be of any interest. However, in dense
clouds of pure gravitons there are collective effects utilizing these same amplitudes that under the right
circumstances can lead to copious production of photons.
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Confirming the quantum nature of the gravitational field
puts us in the bind: (i) The cross sections for individual
gravitons on anything are too small to be observationally
accessible. (ii) Coherent many body systems of gravitons,
as in a wave detectable by LIGO, are essentially classical
fields, at least in current descriptions. And their detectable
interactions are classical interactions.
Here, we shall exhibit processes that escape these

constraints. They combine the advantages of explicit
factors of Ng from coherence, where Ng is the number
of gravitons in a mode, with an essential dependence on the
quantization of gravity; and they depend linearly on
amplitudes, not on cross sections.
The key here will be the fact that there exists a self-acting

mechanism that can transform coherent classical clouds of
gravitons into a similar construct of photons, and that
produces a timescale proportional to G−1, rather than to
G−2 (as from cross sections). Some elements are the
following. (i) When we resolve the initial state into plane
wave quanta that comprise the initial state (e.g., gravitons),
the 3-momenta of the individual particles comprising the
final state (photons and gravitons) are the same as in the
initial state; these are the final configurations that can grow
exponentially in time. (ii) The spatial and angular distri-
butions within the initial graviton system must be such that,
at least in some region, a tiny coherent mixing in amplitude
of electromagnetic quanta with gravitons would grow
exponentially in time, this in a conventional framework
of “mean-field” theory (or “essentially classical” theory).
(iii) In the literature there are a number of examples of other
systems at similar unstable equilibrium states in mean-
field theories, with mechanisms whereby such instabilities

are activated by quantum effects. They include Bose
condensates of atoms in wells [1–3]; polarization exchange
processes in colliding photon beams [4,5]; axion decay into
photons [6]; cosmology [7,8], and the realization of a
“quantum speed limit” by a certain spin lattice with infinite
range “x − y” model couplings [9]. There is also a relation
to “fast neutrino flavor exchange” in the neutrino-sphere
region in the supernova [10–14], where the implicit ℏ
enabling the break is in the neutrino mass term.
The two “quantum break” examples cited above that

involve continua of momentum states (the photon cloud
and the neutrino cloud cases) have a common qualitative
feature that transcends their difference in statistics: they can
be described as a transition in which momenta of a swarm
of particles stay exactly the same, but in which some
discrete quality that we call polarization or flavor gets
exchanged from beam to beam. For high initial occupan-
cies, N, a typical scenario involves an extended gestation
period followed by a very sudden transformation (in our
case gravitons into photons). This behavior underlies the
designation “quantum break,” and the basic calculation is
of a quantum break time TB.
The basic amplitude.—In all of the following, “gr” will

stand for “graviton”. We need the nonvanishing invariant
amplitudes for processes [gr þ γ → gr þ γ] as functions of
the Mandelstam invariant variables S, T , U and the
helicities [15–17]. From Eq. (49) in [16] we have

F2;1;2;1 ¼ F−2;−1;−2;−1 ¼ i8πG
S2

T
;

F2;−1;2;−1 ¼ F−2;1;−2;1 ¼ i8πG
U2

T
: ð1Þ

Here, T is the square of the 4-momentum transfer, initial
to final photon. Roughly speaking the denominators T
come from single gravitonlike exchange, there existing a
triple graviton vertex as well as a graviton-photon vertex.
Crossing in the form of T ↔ S, U → U and the use of the
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helicity crossing relations from Eq. (12) in [16], gives us
corresponding amplitudes for [gr þ gr ↔ γ þ γ],

A−1;1;2;−2 ¼ A1;−1;2;−2 ¼ i8πG
T 2

S
;

A−1;−1;2;2 ¼ A1;1;−2;−2 ¼ i8πG
U2

S
: ð2Þ

For our kinematics pþ q → pþ q we have S ¼
2jpjjqjð1 − cos θp;qÞ.
We shall work out our first example here taking the

initial state as two clashing beams of gravitons each with
helicity wave function ½j2i þ j − 2i�2−1=2. Using the ampli-
tudes (2), we see that this leads to the two photon state

S−1fðT 2 þ U2Þ½j1i þ j − 1i�½j1i þ j − 1i�
þ ðT 2 − U2Þ½j1;−1i þ j − 1; 1i − j1; 1i − j − 1;−1i�g:

ð3Þ

We note that the second line in (3) will vanish under
Bose symmetrization. Thus, with this choice of initial states
we avoid a multichannel calculation in helicity space. (In
Sec. V we discuss multichannel calculations in a general
way.) Next we note that the dynamics of the long term
coherence necessary for the break into γ’s requires either
p;q → p;q or p;q → q;p in the basic two-particle reac-
tion. This requires either (T ¼ 0, U ¼ −S), or (T ¼ −S,
U ¼ 0). From (3) we obtain the value i8πGS for the
amplitude in either case. We now turn this into an effective
Hamiltonian for computation of time development of
multiparticle systems. The lab system that we choose for
this purpose should be dictated by the distribution of
masses in the system that generates the initial gravitational
waves. Here, we think of an extended system, such as a
black hole binary roughly at rest in a particular lab system.
Through its own instabilities it produces gravitational
waves, which in our picture interact with each other to
produce photons. The system itself will be contained in a
periodic box of size much greater than the particle wave-
lengths, volume V, and also little larger than the light travel
distance over the period that we need to follow it to see
transitions. Of course the number of particles contained will
be enormous. The effective Hamiltonian for the graviton
pair transition to a photon pair, with momenta p and q, then
is given by

Hg;γ ¼
2πGS
jpjjqjV ½a†b†cdþ abc†d†�

¼ 2πGS
jpjjqjV ½σþτþ þ σ−τ−�; ð4Þ

in terms of the operators that create and annihilate single
particle momentum states, a and b for the single gravitons
with respective momenta p and q; c and d similarly for the

photons; or, in the second form, in terms of the operators
σþ ¼ a†c, which changes species for the p beam, and
τþ ¼ b†d that refers to q. Note that the frame dependence
of the other factors is entirely in ðjpjjqjVÞ−1S ¼ 2ð1−
cos θp;qÞV−1, peaked in favor of opposing momenta and
vanishing for parallel momenta; and that θp;q is not a
scattering angle, but rather an angle of incidence in the lab
system.
Our most primitive picture will be one in which some-

where in the interior of the turmoil two high occupancy
beams, each with high occupancy N ¼ nV, meet head-on,
cos θp;q ¼ −1. Multiple beam solutions allowing energy
and angular distributions are discussed in Sec. V. The wave
function for the state with N gravitons in each of the p and
q beams now lies in an N þ 1 dimensional space with with
basis vectors that describe states with N − kþ 1 gravitons
and k − 1 photons in each of the two beams, where
k ¼ 1; 2.::N þ 1. The nonvanishing matrix elements that
enter are

hk − 1jσþτþjki ¼ kðN − kþ 1Þ;
hkjσ−τ−jk − 1i ¼ kðN − kþ 1Þ: ð5Þ

We solve for the wave function jΨðtÞi in the N þ 1
dimensional subspace and calculate

ζðtÞ ¼ N−1hΨðtÞjð1=2þ σ3=2ÞjΨðtÞi: ð6Þ

In Fig. 1 the dashed curves plot the evolution of ζðtÞ, the
probability of an initial graviton to remain a graviton, as a
function of scaled time s for values N ¼ 64, 256, 1024,
where,

s ¼ 8πGnt; ð7Þ

and n ¼ N=V the t ¼ 0 number density of gravitons in
either beam.

FIG. 1. Dashed curves: retention probability ζðsÞ in the wave
function solution. Solid curves: the same in the corresponding
MMF solutions, with their N values identifiable by their
coalescence with the corresponding dashed curves for small
scaled time s. The value ζ ¼ 1 indicates 100% gravitons.
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The N’s in this calculation are pathetically small; but the
plotted results are of prime importance in checking the
mean-field methods to come.
Definition of a modified mean-field approximation.—We

return to the bilinears defined earlier, σ⃗ for the p stream and
τ⃗ for the q stream, and define X ¼ σþτþ, Y ¼ σþσ−þ
τþτ−. We rename σ3 ¼ τ3 ¼ Z (their equality being chosen
in an initial condition, and then maintained throughout).
The operators σ⃗ and τ⃗ have the commutation relations of
Pauli matrices, but actually are angular momentum matri-
ces (times 2) of dimension N; we use only their commu-
tators in the following. The Hamiltonian is now

Hg;γ ¼
8πG
V

½X þ X†�: ð8Þ
Using commutators to obtain the Heisenberg equations of
motion we obtain

i _X ¼ 8πG
V

ðZY − Z2Þ;

i _Y ¼ 16πG
V

ZðX† − XÞ;

i _Z ¼ 16πG
V

ðX − X†Þ: ð9Þ

The Z2 term in the first equation comes from a second
commutation to get operators into the correct order;
implicitly it carries an additional power of ℏ and is the
source of the quantum break to come. Our modified mean-
field method (MMF) is to replace each of the operators X,
Y, Z in (9) by its expectation value in the medium, thus
implicitly assuming that, e.g., hZYi ¼ hZihYi.
Next, we do a rescaling in which each one of the single

particle operators a; b; c; d; a†;… is redefined by extracting
a factor of N1=2, so that x ¼ X=N2, y ¼ Y=N2, z ¼ ZN and
at the same time defining n ¼ N=V, the number density,
and the scaled time variable s according to (7).
The rescaled equations are

i
dx
ds

¼ zy − z2=N;

i
dy
ds

¼ 2zðx† − xÞ;

i
dz
ds

¼ 2ðx − x†Þ: ð10Þ

Solutions are shown as solid lines in Fig. 1. The zero-
parameter fit of the complete solutions to the MMF
solutions over the time required for 20% of the gravitons
to transform to photons gives us some degree of confidence
in our later use of MMF for astronomically greater numbers
of particles, at least at early times. In Fig. 2 we show
solutions to (10) for geometrically spaced higher values of
N. The equal spacings indicate the behavior of the turnover
time TB ∼ ð8πGnÞ−1 logN. The comparative suddenness of
the transition earns it the designation quantum break.

Instability condition.—In mean-field language, the turn-
over in time proportional to G−1, rather than G−2 as would
have been expected from cross sections, is an instability of
the classical equilibrium state with clashing gravitational
waves. In the quasistable initial state with z ¼ 1, x ¼ 0,
y ¼ 0, the term z2=N in the x equation, with its implicit ℏ
factor, is what drives the instability. Dropping this term,
taking z ¼ 1 elsewhere in the equations, and looking at now
linearized equations forΔ½xðsÞ�;Δ½x†ðsÞ�;Δ½yðsÞ�we find a
3 × 3 response matrix with eigenvalues (in units of inverse
scaled time) just given by 0, �2. This gives us exponential
behavior that fits the plotted plunges shown in Fig. 2,
although, by itself, no hint of the timing of the plunge.
In trading a graviton for a photon we implicitly assumed

that when the trade was finished the system energy was
unchanged. But if the photon’s energy shift from its
interactions in the medium is too different from the
graviton’s (speaking loosely) it would introduce an inco-
herence that could doom the instability. In our formalism
we now need to study the effects of the gr þ γ → gr þ γ on
the evolution of our variables X, Y, Z. Here, the singular
factor T −1 in the scattering amplitudes (1) is a warning,
screaming “long range” when “local” is our operational
basis for everything. We also require the graviton-graviton
scattering amplitude, given in Eq. (40) in [16]. The photon-
photon amplitude does not enter as long as we are
concentrating on the early time instability, when there
are next to no photons. We also need to be aware that the
parameter c in the amplitudes given in [16] changes its
definition from i=4 to −i=4 in going from the [γ þ gr] case
to the [gr þ gr] case.
We have studied these corrections in depth only

for the case of our simplest and most potent configuration
of two beams colliding head-on. The new terms in the
Hamiltonian in our notation are now proportional to
ða†ad†dþ b†bc†cÞ, for the [γ þ gr] part and to ða†ab†bþ
c†cd†dÞ for the [gr þ gr] part. The resulting changes to the
evolution equations (9) miraculously cancel between the
pieces generated by these two new terms. Thus, we do not
need to revisit the instability condition after all, at least for
our simplest configuration.
We remark that an ordinary mean-field theory based on

the field variables a, b, c, d, rather than on the quartics that

FIG. 2. The same as Fig. 1, except only the MMF solutions, for
a series of higher values of N.

PHYSICAL REVIEW LETTERS 124, 101301 (2020)

101301-3



we have employed, also leads to growing modes in a
linearized instability analysis. But in this approach nothing
happens (to order G) when we start with a pure graviton
state. The system is in unstable equilibrium at this
classical level.
Multiple beams.—We replace our two beams (σ⃗ and τ⃗) by

Nb beams σ⃗j, for j ¼ 1;…; Nb, at different angles and with
the effective interaction

Heff ¼
4πG
V

XNb

j;k

½σjþσkþ þ σj−σ
k
−�λj;k; ð11Þ

where λj;k ¼ ð1 − cos θj cos θkÞ and cos θj’s are uniformly
distributed in the interval f−1; 1g, the best to simulate an
isotropy in the whole distribution, if each of theNb rays has
N=Nb occupancy. We define the quartic variables

Xl;m ¼ σlþσmþ; Yl;m ¼ σlþσm− : ð12Þ

The Heisenberg equations of motion for the system are,
after rescaling,

i
d
ds

Xr;m ¼ g1

�
Zm

XNb

k

λr;kYm;k þ Zr

XNa

k

λm;kYk;m

− λr;mN−1ZmZr

�
; ð13Þ

i
d
ds

Yr;m¼2g1

�
−Zm

XNb

k

λk;mXr;kþZr

XNb

k

λk;rX�
m;k

�
; ð14Þ

i
d
ds

Zr ¼ 2g1
XNb

k

λr;kðXr;k − X�
r;kÞ: ð15Þ

The time has been scaled here in much the same way as
in our original two-beam ðσ; τÞ model. The total number
density n is the same in the two calculations. In the
rescaling of the operators X, Y, Z, however, we have used
factors of N=Nb where we used N previously. In conse-
quence, the scaled coupling constant became g1 ¼ Nb=N in
(15) instead of unity as before. In Fig. 3 we plot the results
for the usual (graviton) retention variable ζ now for fixed
N ¼ 107 as a function of the number of beams in the
division, taking the three values Nb ¼ 3, 9, 27 (the last of
which is the highest that Mathematica will take us).
With a finer and finer subdivision (larger Nb) it appears

that we would reach a limiting value for the time of the
dive, and that it that is in the neighborhood of 1.5× the time
shown in the N ¼ 107 plot of Fig. 2 for the “two beams
head-on” case.
Another use we can make of (13)–(15) is to take the

initial state to consist of half of the initial gravitons moving
in the þẑ direction and the other half moving in the −ẑ

direction, so that λj;k ¼ 2 or zero for all j, k. Suppose that
the quanta in the sub-beams are distinguished by momen-
tum magnitudes pj (or qj). Looking then at the solutions to
(15) where the total initial graviton number N is subdivided
into groups with occupancyN=Nb, we might expect that for
large values of Nb we would lose big

ffiffiffiffi
N

p
factors that are

characteristic of the matrix elements of a single annihilation
operator in a classical coherent state. Note that in (15) N
enters explicitly in the quantum term in the _X equation, and
implicitly in the factor g1, whereas Nb enters in g1 and in
the sums. We compute examples with fixed N ¼ 3 × 106

and Nb ranging from 2 to 30. Their break curves are
absolutely identical over that range. Thus, we can have the
same coherent phenomena in flows that are completely
fragmented in absolute momentum; with whatever phase
relations are obtained among the components. And our
claim in the introduction that neutrino clouds can show
similar behavior (with the translation ½γ; gr� →“flavor”)
should seem less bizarre.
Discussion.—It may be surprising that, in principle,

collisions of high intensity gravitational waves can produce
photons on a timescale many orders of magnitude less than
that estimated from graviton-graviton cross-section times
number density. An unusual feature of the mechanics is
how much it likes low frequencies, as first became apparent
in the effective Hamiltonian (4), which is completely
independent of frequency. Thus, for a given energy density
we would get the most action when the wavelengths are
longest.
A black hole merger process is thought to be responsible

for at least some of the LIGO events, and our first estimate
of real-world possibilities takes its numbers from the
analysis of Ref. [18], based on the best of the early events.
The upshot is that the produced gravitons in a region
substantially larger than the horizon size would have time
to interact for a time of 10−2 s or so, while the mechanisms
of this Letter produced photons. During this time we took
the average power production in gravitational waves within
the region to be 3 × 1056 ergs=s and assumed a wavelength
centered at 107 cm. Our estimate for a transformation time,
given the implied graviton density in the region is then
about 10−1log10N s. We miss relevance to this event by a
factor of 10 even if the logarithm is ignored. In the above

FIG. 3. The same as Fig. 2, but based on (15) with Nb ¼ 3, 9,
27, N ¼ 107.
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scenario the direct estimate of the logarithm is about a
factor of 30, but the factor will be diminished by the effects
noted at the end of Sec. V.
In any case, we do not know if the black hole merger will

turn out to be the best venue for our effects. There are many
other species of ultraenergetic events out there, it now
appears. Probably there are better methods than those we
have used here for exploring these problems. If not, much
could be done by a group with better access to computa-
tional power. In addition, as in any application of our
results, there would be a tension between being close
enough to strong fields for the production of the high
densities of gravitational waves, and far enough away to do
estimates based on keeping only the interactions treated in
this Letter.

It is a pleasure to thank Mark Srednicki and Arkady
Vainshtein for illuminating conversations.

Note added.—Recently, our attention was drawn to the
work reported in Refs. [19,20]. The approaches are totally
different, and the domains of applicability appear to us to
be different, but the central questions are closely related.

[1] A. Vardi and J. R. Anglin, Phys. Rev. Lett. 86, 568 (2001).
[2] F. Cametti and C. Presilla, Phys. Rev. Lett. 89, 040403

(2002).

[3] J. Keeling, Phys. Rev. A 79, 053825 (2009).
[4] R. F. Sawyer, Phys. Rev. Lett. 93, 133601 (2004).
[5] R. F. Sawyer, Phys. Rev. A 89, 052321 (2014).
[6] R. F. Sawyer, arXiv:1908.04298.
[7] G. Dvali and S. Zell, J. Cosmol. Astropart. Phys. 07 (2018)

064.
[8] G. Dvali, C. Gomez, and S. Zell, J. Cosmol. Astropart. Phys.

06 (2017) 028.
[9] R. F. Sawyer, Phys. Rev. A 70, 022308 (2004).

[10] R. F. Sawyer, Phys. Rev. D 79, 105003 (2009); 72, 045003
(2005).

[11] R. F. Sawyer, Phys. Rev. Lett. 116, 081101 (2016).
[12] S. Chakraborty, R. S. Hansen, I. Izaguirre, and G. Raffelt,

Nucl. Phys. B908, 366 (2016); J. Cosmol. Astropart. Phys.
03 (2016) 042.

[13] I. Izaguirre, G. Raffelt, and I. Tamborra, Phys. Rev. Lett.
118, 021101 (2017).

[14] B. Dasgupta, A. Mirizzi, and M. Sen, J. Cosmol. Astropart.
Phys. 02 (2017) 019.

[15] V. V. Skobelev, Sov. Phys. J. 18, 62 (1975).
[16] M. T. Grisaru, P. Van Nieuwenhuizen, and C. C. Wu, Phys.

Rev. D 12, 397 (1975).
[17] N. E. J. Bjerrum-Bohr, B. R. Holstein, L. Plante, and P.

Vanhove, Phys. Rev. D 91, 064008 (2015).
[18] LIGO Scientific and Virgo Collaborations, Ann. Phys.

(Amsterdam) 529, 1600209 (2017).
[19] P. Jones and D. Singleton, Int. J. Mod. Phys. D 28, 1930010

(2019); 24, 1544017 (2015).
[20] P. Jones, P. McDougall, and D. Singleton, Phys. Rev. D 95,

065010 (2017).

PHYSICAL REVIEW LETTERS 124, 101301 (2020)

101301-5

https://doi.org/10.1103/PhysRevLett.86.568
https://doi.org/10.1103/PhysRevLett.89.040403
https://doi.org/10.1103/PhysRevLett.89.040403
https://doi.org/10.1103/PhysRevA.79.053825
https://doi.org/10.1103/PhysRevLett.93.133601
https://doi.org/10.1103/PhysRevA.89.052321
https://arXiv.org/abs/1908.04298
https://doi.org/10.1088/1475-7516/2018/07/064
https://doi.org/10.1088/1475-7516/2018/07/064
https://doi.org/10.1088/1475-7516/2017/06/028
https://doi.org/10.1088/1475-7516/2017/06/028
https://doi.org/10.1103/PhysRevA.70.022308
https://doi.org/10.1103/PhysRevD.79.105003
https://doi.org/10.1103/PhysRevD.72.045003
https://doi.org/10.1103/PhysRevD.72.045003
https://doi.org/10.1103/PhysRevLett.116.081101
https://doi.org/10.1016/j.nuclphysb.2016.02.012
https://doi.org/10.1088/1475-7516/2016/03/042
https://doi.org/10.1088/1475-7516/2016/03/042
https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1007/BF00889810
https://doi.org/10.1103/PhysRevD.12.397
https://doi.org/10.1103/PhysRevD.12.397
https://doi.org/10.1103/PhysRevD.91.064008
https://doi.org/10.1002/andp.201600209
https://doi.org/10.1002/andp.201600209
https://doi.org/10.1142/S0218271819300106
https://doi.org/10.1142/S0218271819300106
https://doi.org/10.1142/S0218271815440174
https://doi.org/10.1103/PhysRevD.95.065010
https://doi.org/10.1103/PhysRevD.95.065010

