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Abstract. A general linear gauge-invariant equation for dispersive gravitational waves (GWs)
propagating in matter is derived. This equation describes, on the same footing, both the usual
tensor modes and the gravitational modes strongly coupled with matter. It is shown that
the effect of matter on the former is comparable to diffraction and therefore negligible within
the geometrical-optics approximation. However, this approximation is applicable to modes
strongly coupled with matter due to their large refractive index. GWs in ideal gas are studied
using the kinetic average-Lagrangian approach and the gravitational polarizability of matter
that we have introduced earlier. In particular, we show that this formulation subsumes
the kinetic Jeans instability as a collective GW mode with a peculiar polarization, which is
derived from the dispersion matrix rather than assumed a priori. This forms a foundation
for systematically extending GW theory to GW interactions with plasmas, where symmetry
considerations alone are insufficient to predict the wave polarization.
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1 Introduction

The recent observations of gravitational waves (GWs) [1–9] have boosted interest in basic GW
theory. The analytical theory typically focuses, and justifiably so [10–13], on GW propagation
in vacuum [14, 15]. However, interactions of GWs with gases and plasmas can also be
important. For example, in the vicinity of compact GW sources, intense gravitational modes
may be able to transfer their energy-momentum to electromagnetic waves or modes strongly
coupled with matter, much like how mode conversion works in plasmas [16, 17]. Similarly, the
presence of a massive medium in the early Universe could enhance the transfer of the energy-
momentum between GWs and the background radiation in ways different from the known
photon-graviton conversion [18]. The possible presence of primordial magnetic fields [19–21],
which is now being considered as a significant factor in, for example, recombination [22]
and Big Bang nucleosynthesis [23, 24], could also render the collective effects of the plasma
important, which are distinct from the fields simply acting as the source term for GWs.
Coupling of gravitational and electromagnetic oscillations may also affect how the stochastic
GW background influences stimulated emission of electromagnetic radiation in later Universe.
Although still hypothetical, these effects are potentially of significant interest, so GW-matter
coupling warrants a detailed consideration.

Although GW-matter coupling has been studied in the past, the backreation of matter
on metric oscillations is usually ignored (for example, see refs. [25–30]) or described in an
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ad hoc manner. For example, the polarization of gravitational modes interacting with gases
and plasmas is typically assumed either based on symmetry considerations for an isotropic
background [31] or simply adopted to be transverse-traceless in line with the vacuum polar-
izations. But GW-matter coupling within this approximation is weak [32], so even small ad-
ditional effects may be important. For example, those could include other polarizations [33],
thermal effects [34], and fluid viscosity [35]. Furthermore, the distortion of the background
caused by a local distribution of matter is not necessarily ignorable.1 This is a concern par-
ticularly because the dispersion and the polarization of waves in matter can evolve when the
background parameters evolve [16, 37]. For gravitational modes in particular, this means
that the distinction between the tensor modes and other collective oscillations such as Jeans
modes becomes blurred.2 Hence, a more systematic approach to GWs needs to be developed
that would describe all linear gravitational perturbations on the same footing without as-
suming polarization a priori and include the effects of matter both on the waves and on their
background.

Here, we develop such a general formulation using asymptotic methods borrowed from
plasma-wave theory [16, 17]. Specifically, we use the standard average-Lagrangian, or
Whitham’s, approach [38–42], which allows bypassing the problems associated with covariant
self-consistent averaging on curved manifolds [43–55]. (For more details about averaging, see
ref. [56].) In application to GWs, Whitham’s approach has been used before [15, 56–61],
but here we explicitly employ the average Lagrangian and the gravitational polarizability of
matter (specifically, ideal gas, as an example) in oscillating gravitational field, which we in-
troduced earlier in ref. [62]. This approach is convenient in that it shortens the calculations.
One can obtain these results using the brute-force approach from ref. [63], but that would
require introducing additional machinery that is excessive for the purpose of this work.

We start with the action that describes both the gravitational field and matter. As-
suming that the metric perturbations are comprised of small-amplitude quasimonochro-
matic waves, we simplify this action and then derive a linear equation for these waves in
a generic medium. In doing so, we also rederive the second-order component of the Einstein-
Hilbert action and compare the expression with the seemingly different ones found in lit-
erature [15, 57, 58, 60]. We explore the properties of our GW equation imposed by the
requirement of gauge invariance (see also refs. [56, 63, 64]) and study its short-wavelength
limit within the geometrical-optics (GO) approximation.

We show that because matter distorts not only the dispersion of GWs but also the back-
ground metric, a consistent GO approximation is possible only when there is an additional
(to the inverse wavelength) large parameter, such as the refractive index N . The usual GWs
in dilute plasma have N ∼ 1, so the effect of matter on such waves is comparable to diffrac-
tion and thus must be neglected within the GO approximation, contrary to what is done
usually. We also consider the ideal-gas model, in which case modes with N � 1 become pos-
sible. We call these modes gravitostatic by analogy with approximately-electrostatic modes
in electromagnetic-dispersion theory [17]. We show that at N � 1, our general relativistic
GW equation yields the correct dispersion relation and polarization for the kinetic Jeans in-
stability, which is usually derived separately from the tensor modes [65–67]. These results are
intended as a foundation for a future systematic extension of GW theory to GW interactions
with plasmas, where coupling with electromagnetic fields must also be accounted for and

1See ref. [36].
2This is similar to electromagnetic waves in plasmas, where transverse modes can gradually transform into

longitudinal modes when the plasma parameters are inhomogeneous [17], chapter 13.
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the wave polarization generally cannot be assumed a priori or inferred just from symmetry
considerations.

This article is organized as follows. In section 2, we introduce the basic concepts and
notation. In section 3, we formulate our variational approach, the GW dispersion operator,
and the wave equation for dispersive GWs. In section 4, we introduce the short-wavelength
approximation and discuss gauge invariance of the wave equation. In section 5, we show how
our formulation reproduces the well-known GWs in vacuum. In section 6, we introduce the
gravitostatic approximation and derive the Jeans-mode dispersion relation and polarization
from our GW equation. In section 7, we summarize our results. Also, in appendices, we
present an explicit derivation of the second-order Einstein-Hilbert Lagrangian density and of
the corresponding wave equation.

2 Preliminaries

2.1 Einstein equations
Let us consider a metric gαβ on a four-dimensional spacetime x with signature (− + ++).
The dynamics of this metric is governed by the least-action principle [68]

δS = 0, S = Sm + SEH. (2.1)

Here, Sm is the action of matter (including electromagnetic fields, if any), SEH is the action
of the gravitational field called the Einstein-Hilbert action,

SEH = 1
2κ

∫
d4x
√
−g R, (2.2)

R is the Ricci scalar, g .= det gαβ, and
.= denotes definitions. By default, we assume units

such that the Einstein constant κ ≡ 8πGN/c
4 and the speed of light c are equal to unity,

c = 8πGN = 1. (2.3)

The equations for gαβ, called the Einstein equations, are obtained from

δS[g]
δgαβ = 0, (2.4)

where gαβ is the inverse metric (gαβgβγ = δαγ ) and [g] denotes that the action is evaluated
on gαβ. Using

δSEH[g]
δgαβ =

√
−g
2 Gαβ, (2.5a)

δSm[g]
δgαβ = −

√
−g
2 Tαβ, (2.5b)

where Gαβ is the Einstein tensor and Tαβ is the local energy-momentum tensor, eq. (2.4) can
be represented as

Gαβ = Tαβ. (2.6)

We will assume, for clarity, that matter is not ultra-relativistic; then ||Tαβ|| ∼ ρ, where ρ is
the mass density.

– 3 –



J
C
A
P
0
8
(
2
0
2
2
)
0
1
7

2.2 GW and average metric

Let us suppose that gαβ can be decomposed as

gαβ = gαβ + hαβ, (2.7)

where gαβ has a characteristic magnitude of order one and a characteristic scale `g, while hαβ
has a magnitude that does not exceed a small constant a� 1 and a characteristic spacetime
scale `h � `g. More precisely, we assume that there is a scale `a that satisfies

`h � `a � `g, (2.8a)
ε
.= `h/`g = (`h/`a)2 = (`a/`g)2 � 1, (2.8b)

and the local average 〈. . .〉 is introduced over a spacetime volume of size `a. (Various averaging
schemes [47, 48, 69] can be used to produce equivalent results [43–46, 49] under the limit of
scale separation (2.8a). For further details about one possible implementation of averaging,
see ref. [56], and a more general approach is presented in ref. [63].) We also assume that
any hαβ of interest is a superposition of quasiperiodic functions, i.e., functions of (εx, θ(x)),
where the dependence on θ is 2π-periodic and has zero average. This entails

〈hαβ〉 = 0. (2.9)

We call such a perturbation a GW. Then, gαβ can be understood as the background metric
for the GW or as the average part of the full metric:

gαβ = 〈gαβ〉. (2.10)

This is different from the common approach to linearized perturbative gravity, where an
idealized geometry is adopted for the background (usually either the Minkowski metric ηαβ or
the Friedmann-Lemaître-Robertson-Walker metric) and hαβ absorbs both high-frequency and
low-frequency perturbations, namely, � (hαβ − ηαβηµνhµν/2) = −2Tαβ in the Lorenz gauge.
The problem with this common approach is that in the presence of matter, hαβ can exhibit
secular growth, thus invalidating the perturbation approach at large x. Our definitions (2.9)
and (2.10) help avoid this problem and are in line with the standard approach to general-wave
problems [38].

For any pair of fields u1 and u2 on the background space, we introduce the following
inner product:

〈u1, u2〉 =
∫

d4x
√
−g u∗1(x)u2(x), (2.11)

where

g
.= det gαβ. (2.12)

We also introduce the inverse background metric gαβ via gαβgβγ = δαγ , which leads to

gαβ = gαβ − hαβ + hαγh
γβ +O(a3). (2.13)

Here and further, the indices of the perturbation metric are manipulated using the back-
ground metric and its inverse, unless specified otherwise. Also, the sign convention is adopted
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as in refs. [70, 71], and Γρµν will denote the Christoffel symbols associated with the background
metric:

Γραβ = gρσ

2 (∂αgβσ + ∂βgασ − ∂σgαβ) . (2.14)

The corresponding Riemann tensor is

Rρασβ = ∂σΓρβα − ∂βΓρσα + ΓρσλΓλβα − ΓρβλΓλσα, (2.15)

and the Ricci tensor of the background metric is Rαβ
.= Rραρβ. We also use the background

metric to define the trace-reverse on any given rank-2 tensor Aαβ:

Āαβ
.= Aαβ −

1
2 gαβA. (2.16)

Here and further, A denotes the trace of Aαβ with respect to the background metric, A .=
gαβAαβ, unless specified otherwise. In particular, R .= gαβRαβ and G .= gαβGαβ, where Gαβ
is the background Einstein tensor:

Gαβ
.= R̄αβ = Rαβ −

1
2 gαβR. (2.17)

Note that Gαβ can also be expressed as

Gαβ = 2√
−g

δSEH[g]
δgαβ

, (2.18)

and the background energy-momentum tensor is

Tαβ
.= − 2√

−g
δSm[g]
δgαβ

. (2.19)

3 Variational approach

3.1 Basic equations
We assume that gαβ and hαβ are the only degrees of freedom that describe GWs, meaning
that all GW-driven perturbations of matter can be expressed through hαβ. Then, S[g] can
be represented as [56]

S[g, h] ≈ S[g] + S(2)
m [g, h] + S

(2)
EH[g, h], (3.1)

where the last two terms represent the leading-order GW-matter coupling action and the
leading-order GW contribution from the Einstein-Hilbert action, respectively. Assuming the
index notation � ∈ {EH,m}, they can be expressed as

S
(2)
� [g, h] = 1

2 〈h
αβ, D̂�αβγδh

γδ〉 . (3.2)

If the matter density satisfies ρ = O(a2`−2
h ), S(2)

m is of the same order of magnitude as the
higher-order neglected terms and thus must be neglected as well, relegating the effect of
matter only to the background curvature through S[g]. However, under the assumption

ρ� a2`−2
h , (3.3)
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which is also adopted hereon, corrections to S[g, h] that scale as higher powers of a can be
neglected without neglecting S(2)

m . The linear operators D̂�αβγδ that enter eq. (3.2) can be
defined via

D̂�αβγδh
γδ .= 1√

−g
δS

(2)
� [g, h]
δhαβ

, (3.4)

and they are understood as the gravitational polarizability of vacuum and of matter, respec-
tively. These matrix functions are constrained to satisfy

(D̂�αβγδ)† = D̂�γδαβ, (3.5a)
D̂�αβγδ = D̂�βαγδ = D̂�αβδγ , (3.5b)

where the dagger denotes Hermitian adjoint with respect to the inner product (2.11). The
constraint (3.5a) reflects the fact that only the adiabatic interactions are captured by the
action (3.1). However, it can be waived if an extended variational formulation is used [72] or
within a more general theory that we do not consider here [63].

The action (3.1) leads to the following equation for the perturbation metric [56]:

(D̂m + D̂EH)αβγδhγδ = 0. (3.6)

For the background metric, one obtains

Gαβ = Tαβ +Nαβ, (3.7)

where N = O(a2). In this work, we will assume the linear limit, in which case N is negligible.
(See refs. [56, 63] for a more general treatment.) Then, with or without coupling to matter,
eq. (3.6) can be shown to be invariant with respect to the gauge transformations

hαβ → h′αβ = hαβ −∇αξβ −∇βξα, (3.8)

where ξα = O(a) is any vector field. This gauge invariance of linearized gravity results from
the invariance of the original action (2.1) with respect to the coordinate transformations
xα → x′α = xα + ξα. For details and also for an explanation of the gauge invariance beyond
the linear approximation, see refs. [56, 63].

3.2 Formulas for D̂�αβγδ
The matter polarizability D̂m

αβγδ is generally an integral operator.3 It can be difficult to
calculate without simplifying assumptions, so we postpone discussing it until section 6.1,
where an explicit formula for D̂m

αβγδ will be presented for a neutral gas within the short-
wavelength approximation. In contrast, D̂EH

αβγδ can be readily obtained in general, namely,
as follows.

By direct calculation (appendix A), we find that the second-order Einstein-Hilbert action
can be written as

S
(2)
EH =

∫
d4xL(2)

EH, (3.9)

3A general theory of dispersive waves in linear media can be found in, for example, ref. [72].
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where L(2)
EH = L(2)

vac + L(2)
G , with

L(2)
vac =

√
−g
4

(
− 1

2 ∇
ρhαβ∇ρhαβ + 1

2 ∇
ρh∇ρh−∇αh∇βhαβ +∇ρhαβ∇αhβρ

)
, (3.10a)

L(2)
G =

√
−g
4

(
− 1

2 Gh
αβhαβ −Gαβhαβh+ 1

4 Gh
2 + 2Gαβhαρhρβ

)
. (3.10b)

(Here ∇ is the covariant derivative with respect to the background metric and h .= gαβhαβ is
the trace of the perturbation with respect to the background metric.) This expression is in
agreement with those reported in refs. [15, 57, 58, 60] up to corrections that are important
in the context of our article but not in the contexts of the articles mentioned. In particular,
eq. (3.10a) coincides with the expression in ref. [57], eq. (5.14), where Gαβ = 0 is assumed
and thus L(2)

G = 0. (The difference in our sign convention and theirs does not affect this
result.) Also, the action (3.9) coincides with the one in ref. [58], eq. (2.9), up to a factor of
1/2, which is caused by the difference between our units and theirs leading to their definition
of the Einstein-Hilbert action being different from our eq. (2.2). Finally, the action assumed
in ref. [60], eq. (4), differs from our eq. (3.9) by factor of 1/2 and the last term in the
parenthesis in eq. (3.10b). The factor of 1/2 comes from a different definition of the action
and the energy-momentum tensor. Specifically, the action used in ref. [60] is twice our S(2)

EH,
but this poses no real problem, because a factor of two is also omitted in the definition of
the energy-momentum tensor (2.19). Also note that ref. [60] assumes a different definition
of the background metric [namely, gαβ = ḡαβ + hαβ instead of our eq. (2.7)], which explains
why the last term in the parenthesis in eq. (3.10b) is missing in ref. [60], eq. (6). [This also
explains the disappearance of the second and the third term from our eq. (B.1).] Finally,
ref. [15] also operates in vacuum without a cosmological constant, leading to L(2)

G = 0 in their
context. Thus the expression in ref. [15], eq. (B17), matches with eq. (3.10a) upto a constant
factor of 1/4, which is irrelevant in the context of vacuum and is thus omitted there.

By combining eqs. (3.4) and (3.9), one obtains

D̂EH
αβγδh

γδ = 1
4
(
∇ρ∇ρhαβ − gαβ∇ρ∇ρh+∇α∇βh

+ gαβ∇ρ∇σhρσ −∇ρ∇αhβρ −∇ρ∇βhρα −Ghαβ
−Gαβh− gαβRρσhρσ + 2Gαρhβρ + 2Gρβhρα

)
. (3.11)

To simplify this expression, we henceforth assume normal coordinates, in which the first-order
derivatives of the background metric vanish. The background metric in these coordinates has
the form

gαβ = ηαβ + 1
2 (∂σ∂ρgαβ)xρxσ +O(`−3

g ), (3.12)

with its double derivatives given by [73]

∂σ∂ρgαβ = −1
3 (Rαρβσ +Rασβρ) . (3.13)

Then, D̂EH
αβγδ = (D̂vac + Ĝ)αβγδ, where the operator D̂vac

αβγδ = O(1) is given by

D̂vac
αβγδh

γδ = 1
4
(
∂ρ∂ρhαβ − gαβgρσ∂λ∂λhρσ + gρσ∂α∂βhρσ

+ gαβ∂
ρ∂σhρσ − ∂ρ∂αhβρ − ∂ρ∂βhαρ

)
(3.14)

– 7 –



J
C
A
P
0
8
(
2
0
2
2
)
0
1
7

and Ĝαβγδ is given by

Ĝαβγδhγδ = 1
4
(
−Ghαβ−Gαβh+2Gαρhβρ+2Gρβhρα−2gαβRρσhρσ+2Rρασβhρσ

)
. (3.15)

(An alternative derivation of the above two equations is presented in appendix B.) The
background Riemann tensor Rρασβ can be further expressed through Rαβ and the background
Weyl tensor Cγµδν [74], section 6.7:

Rρασβ = 1
2 (gρσRαβ−gρβRασ−gασRρβ+gαβRρσ)−R6 (gρσgαβ−gρβgασ)+Cρασβ. (3.16)

Substituting this in eq. (3.15) leads to

Ĝαβγδhγδ = 1
4

(
− 1

3Ghαβ−gαβGρσh
ρσ+ 1

3 gαβGh+Gαρhβ
ρ+Gρβh

ρ
α+2Cρασβhρσ

)
. (3.17)

3.3 Wave equation

Using the above notation, the general wave equation (3.6) can be written as follows:

D̂αβγδh
γδ = 0, (3.18)

where we have introduced

D̂αβγδ
.= (D̂vac + Ĝ + D̂m)αβγδ. (3.19)

Then, two distinct regimes are possible depending on the magnitude of Cαβγδ relative to
Rαβ ∼ Gαβ = O(ρ) ∼ D̂m

αβγδ. If Cαβγδ � Rαβ, then Ĝαβγδ is dominated by the Weyl tensor
and Ĝαβγδ � D̂m

αβγδ, so the interaction with matter is insignificant. If Cαβγδ . Rαβ, then
Rαβγδ ∼ Rαβ, so Ĝαβγδ = O(ρ). Because eq. (3.13) implies Rαβγδ = O(`−2

g ), one also has

`−2
g ∼ ρ. (3.20)

It is this, second, regime that will be assumed below.
In the presence of matter, D̂m

αβγδ generally scales like ρ. This is of the same order
as Ĝαβγδ, which is negligible within GO (see below). Hence, one must either give up the
GO approximation or neglect the coupling with matter completely, the latter leading to
exactly the same modes as in vacuum, which are briefly discussed in section 5. (This fact
was also pointed out in ref. [31], but it is usually ignored in literature.) However, the GW-
matter coupling still can be described within the GO approximation if there is an additional
large dimensionless parameter that makes D̂m

αβγδ much larger than Ĝ even though both scale
linearly with ρ.

4 Short-wavelength approximation

To simplify the general wave equation (3.18), let us assume that a GW is quasimonochro-
matic,

hαβ = <(eiθaαβ), (4.1)

– 8 –
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where θ is a rapid phase and aαβ is a slow envelope. The GW local wavevector is defined as

kα
.= ∂αθ = ∇αθ ∼ `−1

h (4.2)

and is assumed to change slowly on the scale comparable to that of aαβ. Then, ε ∼ `h/`g � 1
serves as the GO parameter. Together with the assumptions (3.3) and (3.20), our ordering
is thereby summarized as follows:

a� ε ∼ `h/`g ∼ `h
√
ρ� 1. (4.3)

Then, eq. (3.18) can be written as

D
(0)
αβγδa

γδ + 1
4 Mαβ = 0. (4.4)

Here, we have introduced

D
(0)
αβγδ

.= 1
4
(
− k2gαγgβδ + gαβgγδk

2 − kαkβgγδ − gαβkγkδ + kαkγgβδ + kβkδgαγ
)
, (4.5)

k2 .= kµk
µ, and also the GW-matter coupling term:

Mαβ
.= Rαβρ

ρ − gαβgρσRρσλ
λ + gρσRρσαβ + gαβRρσ

ρσ −Rρβα
ρ −Rραβ

ρ + 2aρσCρασβ
− gαβGρσaρσ + aβ

ρGαρ + aραGρβ − (aαβ − agαβ)G/3 + 4e−iθD̂m
αβγδ(eiθaγδ), (4.6)

where Rαβµν
.= ∂ν∂µaαβ + 2ik(µ∂ν)aαβ + iaαβ∂µkν ; i.e.,

Mαβ = 4Dm
αβγδa

γδ +O(εa), (4.7)

where Dm
αβγδ is the Weyl symbol of D̂m

αβγδ [75]. Under the assumed ordering, the second term
in eq. (4.7) is small compared with D

(0)
αβγδa

γδ. Even when this term is neglected, though,
eq. (4.4) may not be easy to solve, because Dm

αβγδ does not have an obvious structure in the
general case. Much like in plasma-wave theory [17], symmetry considerations are, in general,
not enough to find the wave polarization. Also note that the term O(εa) in eq. (4.7) may
not be small compared with Dm

αβγδa
γδ, so let us retain it for now.

Let us proceed as done for vacuum waves in ref. [58], which in turn follows the method-
ology from ref. [76]. Consider the trace-reverse of eq. (4.4),

kαk
ρaρβ + kβk

ρaρα − kαkβa− k2aαβ + M̄αβ = 0. (4.8)

Using the trace-reversed amplitude āαβ, this can also be represented as

kαk
ρāρβ + kβk

ρāρα − k2āαβ + gαβ
2 k2ā+ M̄αβ = 0, (4.9)

or equivalently,

kαk
ρāρβ + kβk

ρāρα − k2aαβ + M̄αβ = 0, (4.10)

the contraction of which gives

kαkβ āαβ + 1
2 k

2ā = M

2 . (4.11)
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For GWs that interact with matter, k2 is nonzero, so one can introduce the projection tensor

Παβ .= gαβ − kαkβ

k2 . (4.12)

(Vacuum waves can be considered as a limit k2 → 0; cf. ref. [64].) A straightforward calcu-
lation shows that

k2ΠραΠσβ āρσ = −kαkρāρβ − kβkρāρα + k2āαβ + āρσk
ρkσ

kαkβ

k2 . (4.13)

Then, also using eq. (4.11), one can rewrite eq. (4.9) as

− k2ΠραΠσβ āρσ + 1
2 k

2gαβ ā− ā

2 k
αkβ + M

2k2 k
αkβ + M̄αβ = 0, (4.14)

or more succinctly as,

−k2ΠραΠσβ āρσ + 1
2 k

2Παβ ā− 1
2 ΠαβM = −Mαβ. (4.15)

The above equation can be further rewritten as

ΠραΠσβ
(
k2aρσ + 1

2 Mgρσ

)
= Mαβ, (4.16)

where we used

ΠαρΠρ
β ≡ ΠαρΠσβgρσ = Παβ. (4.17)

Because eq. (4.16) is symmetric with respect to interchanging α↔ β, it represents a total of
ten equations. Also note that, Mαβ can be decomposed as

Mαβ = ΠραΠσβMρσ + 2
k2 kρM

ρ(αkβ) − 1
k4 kρM

ρσkσk
αkβ (4.18)

[as proven by direct substitution of eq. (4.12)], which can be used to write eq. (4.16) as

ΠαρΠβσ
(
k2aρσ − M̄ρσ

)
= 2
k2 kρM

ρ(αkβ) − 1
k4 kρM

ρσkσk
αkβ. (4.19)

Equation (4.19) can be decomposed into a longitudinal part and a transverse part defined
as follows. The longitudinal part can be obtained by multiplying eq. (4.19) with kα. The
left-hand side vanishes then, and the right-hand side yields

kαM
αβ = 0. (4.20)

The transverse part of the wave equation can be obtained by multiplying eq. (4.19) with
Πγ

αΠβ
δ, which eliminates the right-hand side, yielding

ΠγρΠδσ
(
k2aρσ − M̄ρσ

)
= 0, (4.21)

where we used eq. (4.17). The “general solution” to the above equations is

k2aρσ − M̄ρσ[aαβ] = λρkσ + λσkρ, (4.22)
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where we used the symmetry of aρσ and Mρσ, and λρ are constants determined by the
longitudinal equations (4.20). (The bracket [aαβ] has been added as a reminder that Mρσ

depends on aαβ.) It can be easily seen, either from substitution of eq. (4.22) in eq. (4.20) or
by direct comparison of eq. (4.22) with eq. (4.10), that

λσ = kρāρσ, (4.23)

which are the degrees of freedom always afforded by gauge invariance [77], section 8.3. Hence,
eq. (4.21) encodes all the physical information required to determine the solution for the
perturbation, and eq. (4.20) serves as a check to ensure the gauge invariance of the dispersion
operator.

Also notice the following. As discussed in section 3.1, the linear wave equation is in-
variant with respect to gauge transformations (3.8). Within the GO limit, the wave equation
is eq. (4.10), and D(0)

αβγδa
γδ is gauge-invariant by itself, as is well known from vacuum-GW

theory and also easy to check. Thus, so must be M̄αβ. This means that for ξα = <(−iΛαeiθ),
one has

Mρσ[Λαkβ + Λβkα] = 0, (4.24)

where, again, the square brackets denote the argument. This is equivalent to eq. (4.20)
because of eqs. (3.5). Equations (4.20) and (4.24) can be used to gauge the accuracy of
approximate models of GWs, as elaborated in the following sections.

5 Example 1: gravitational waves in vacuum

In a flat Minkowski space in the absence of matter, one has Mαβ = 0, so both eq. (4.20) and
eq. (4.24) are trivially satisfied. Also, eq. (4.4) becomes

kαk
ρaρβ + kβk

ρaρα − kαkβa− k2aαβ = 0. (5.1)

This equation was studied, for example, in ref. [58]; see also refs. [56, 64]. At nonzero k2, the
only possible waves are coordinate waves, i.e., those that can be eliminated by a coordinate
transformation. At k2 = 0, one finds the two usual tensor modes [70], eq. (7.108), with

ω2 = k2, (5.2)

where we assumed the parametrization kα = (−ω, 0, 0, k). These waves can be modified by a
nonzero background Weyl tensor Cαβγδ, which can give rise to nonzero Ĝ (section 3.3). How-
ever, Cαβγδ = O(`−2

g ), so it is of the same order as, for example, the second-order derivatives
of the envelope, which are negligible within GO. Hence, the effect of the background Weyl
tensor on vacuum GWs can be described only beyond GO, i.e., diffraction must be taken into
account.

6 Example 2: gravitational waves in a neutral gas

6.1 Gravitational susceptibility
Now let us consider GWs in a neutral gas. For simplicity, we assume the gas to contain single
species with the distribution function f(p) normalized to the local proper mass density ρ of
this species. (Generalization to multiple species is straightforward.) Specifically, this means∫ dp

p0 f(p) = ρ

m2 , (6.1)
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where m is the particle mass, and eq. (3.7) yields

Gαβ = Tαβ =
∫
Tαβf(p) dp

p0 . (6.2)

Here, the slow dependence on spacetime coordinates x is assumed but not emphasized. Also,
the bold font is used to denote three-dimensional (spatial) vectors, dp/p0 is a Lorentz-
invariant measure [78], eq. (2.40), and p0 is calculated from the spatial momenta using
pαp

α = −m2. Since Dm
αβγδ already scales linearly with ρ ∼ ε2, it can be calculated to

the zeroth order in ε, i.e., as in flat spacetime. Then locally, one can adopt the Minkowski
metric and

p0 ≈
√
m2 + p2. (6.3)

As shown in ref. [62], the corresponding Dm
αβγδ can be expressed as

Dm
αβγδ =

∫ (
k · ∂pf
ω − k · v

TαβTγδ + fJαβγδ

) dp
4(p0)2 (6.4)

(in a multi-species gas, summation over species should be added on the right-hand side),
where Tαβ

.= pαpβ, v = p/p0, the parametrization kα = (−ω, 0, 0, k) is assumed again, and

Jαβγδ
.= ∂(TαβTγδ)

∂p0
− g00

p0 TαβTγδ − 4p0Qαβγδ, (6.5)

where we have introduced

Qαβγδ
.=
g(αδTβ)γ + g(αγTβ)δ

2 . (6.6)

As usual, the expression featuring the resonant denominator ω − k · v holds at =ω > 0, and
the analytic continuation of (6.4) should be used otherwise [17, 72]. This means that the
integration should be done over the Landau contour L, which goes below the pole [17].

To the extent that the interaction with resonant particles can be ignored, though, the
integral in (6.4) is also convergent as is. Then, one can integrate by parts and obtain (cf.
eq. (120) from ref. [62])

Dm
αβγδh

γδ =− 1
2

∫ dp
p0 f(p)

[
Tβρhρα + Tαρhβρ + k2

2Ω2 TαβTρσh
ρσ − 1

Ω TαβΩρσh
ρσ

− 1
Ω ΩαβTρσhρσ

]
, (6.7)

where we introduced

Ωαβ
.= p(αkβ), Ω .= gαβΩαβ. (6.8)

6.2 Gravitostatic modes
As readily seen from eq. (6.7), the matrix Dm

αβγδ is of order ρN2, where N .= k/ω is the
refractive index. Then, as follows from our earlier argument (section 3.3), coupling with
matter can be described within the GO approximation if

N � 1. (6.9)
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To assess the gauge invariance of this reduced theory, let us consider an alternative repre-
sentation of eq. (6.4) as described in [62], eqs. (117)–(120), the derivation of which can be
found in [62], appendix B:

Dm
αβγδ = 1

4

∫ dp
p0 f(p)

[
kρ

∂

∂pρ

(TαβTγδ
kσpσ

)
− 4Qαβγδ

]
. (6.10)

In the limit (6.9), eq. (4.7) can be written as

Mαβ = 4Dm
αβγδa

γδ + δMαβ (6.11)

and Dm
αβγδ can be approximated as

Dm
αβγδ ≈

1
4

∫ dp
p0 f(p)

[
kρ

∂

∂pρ

(TαβTγδ
kσpσ

)]
, (6.12)

where the subdominant terms from eqs. (4.7) and (6.10) are subsumed under δMαβ = O(N0),
which can be neglected, and the dominant term is 4Dm

αβγδa
γδ = O(N2). It is readily seen

then that

Dm
αβγδk

α = kα

4

∫ dp
p0 f(p)

[
kρ

∂

∂pρ

(TαβTγδ
kσpσ

)]

= 1
4

∫ dp
p0 f(p)

[
kρ
∂ (pβpγpδ)

∂pρ

]

= 1
4 (kβTγδ + kγTβδ + kδTβγ) , (6.13)

which, like δMαβk
α, is O(N0k). Hence, Dm

αβγδk
α can be ignored up to δMαβk

α which is
negligible under the assumption (6.9). Because the approximate Dm

αβγδ (6.10) is symmetric
in its four indices, both eq. (4.20) and eq. (4.24) are satisfied. This makes eq. (6.12) a
satisfactory approximation. By analogy with electrostatic waves in plasmas, GWs that satisfy
this approximation can be called gravitostatic (and the Newtonian limit corresponds to N →
∞). Similarly, Dm

αβγδ can be also approximated as

Dm
αβγδ =

∫
k · ∂pf
ω − k · v

TαβTγδ
dp

4(p0)2 , (6.14)

which is equal to eq. (6.12) up to subdominant terms of O(N0) as can be seen by comparing
eqs. (6.4) and (6.10).

One can expect gravitostatic modes to be the adiabatic modes of the Newtonian Jeans
theory in the absence of the Hubble expansion [79], section 6.2.1. These modes are derived
from our general formulation as follows. Under the Newtonian limit, the background energy
tensor can be considered to be nonrelativistic:

TαβTγδ
(p0)2 ≈ m

2δ0
αδ

0
βδ

0
γδ

0
δ . (6.15)

Let us also change the normalization of the distribution function as f(p)dp→ρ(x)m−1f(v)dv.
Then, eqs. (6.14) and (6.11) become

Dm
αβγδ ≈ X δ0

αδ
0
βδ

0
γδ

0
δ , Mαβ = 4X δ0

αδ
0
βa

00, (6.16)
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where we have introduced

X .= ρ

4

∫
L

k · ∂vf(v)
ω − k · v

dv. (6.17)

Because eqs. (4.24) and (4.20) are satisfied, one can adopt any gauge. We choose λβ = 0
in eq. (4.23), which corresponds to the Lorenz gauge:

kαāαβ = 0. (6.18)

From eq. (6.16), one finds that

M̄αβ = 2X
(
2δ0
αδ

0
β + ηαβ

)
a00 = 2X Iαβa00, (6.19)

where Iαβ is the identity matrix. Using this and eq. (6.18), one obtains from eq. (4.10) that

k2aαβ = 2X Iαβa00. (6.20)

This means that gravitostatic waves have a longitudinal polarization, namely,

aαβ = diag {1, 1, 1, 1} × const. (6.21)

Also, substituting α = β = 0 into eq. (6.20), one finds that

2X = k2 ≈ k2, (6.22)

where the approximate equality is due to eq. (6.9). Finally, using eq. (6.17), one obtains the
following dispersion relation:

1− ρ

2k2

∫
L

dv k · ∂vf(v)
ω − k · v

≈ 0, (6.23)

One can recognize eq. (6.23) as the dispersion relation of the kinetic Jeans mode [65–67].
Equation (6.23) is identical to the dispersion relation of Langmuir oscillations in nonrel-

ativistic collisionless plasma with plasma frequency ωp up to replacing ω2
p with −ω2

J , where

ωJ
.=
√
ρ

2 (6.24)

(or ωJ =
√

4πGNρ, in units when the gravitational constant GN is not equal to one) is the
Jeans frequency. Hence, the limiting cases of eq. (6.23) are readily obtained in the same
way [17]. In cold gas, where the typical velocities satisfy v � ω/k, one can use∫

L
dv k · ∂vf(v)

ω − k · v
≈
∫

dv
(

1 + k · v
ω

)
k

ω
· ∂vf(v)

= 1
ω2

∫
dv (k · v)k · ∂vf(v)

= − k2

ω2

∫
dv f(v)

= − k2

ω2 , (6.25)
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Figure 1. Solid red — a numerical solution of eq. (6.31) for the Jeans-instability growth rate =ω
in units ωJ vs. kvT /ωJ . Dashed blue — a solution of eq. (6.27), which is the correct asymptotic
approximation of the exact solution at small kvT /ω.

so eq. (6.23) leads to the well-known formula [80]

ω2 ≈ −ω2
J . (6.26)

[Also note that N2 = 2k2/ρ, so eq. (6.9) is always satisfied provided that k2 is nonzero and
ρ is small enough.] By keeping terms O[(kvT /ωJ)3] in the above expansion, one can also
obtain a more general result (cf. ref. [81]):

ω2 ≈ −ω2
J + 3k2v2

T , v2
T
.=
∫

dv v2
zf(v). (6.27)

Let us also consider the case of an isotropic Maxwellian distribution

f(v) = 1
(2πvT )3/2 exp

(
− v2

2v2
T

)
. (6.28)

Using the aforementioned analogy between the Jeans mode and Langmuir oscillations, one
can readily express eq. (6.23) through the plasma dispersion function [17]

Z0(ζ) .= i sgn(k)
√
π e−ζ2 − 2S(ζ), (6.29)

S(ζ) .= e−ζ2
∫ ζ

0
dz ez2

, (6.30)

where S is known as the Dawson function. Specifically, eq. (6.23) becomes

1 + ω2
J

2k2v2
T

dZ0(ζ)
dζ ≈ 0, ζ

.= ω

kvT
√

2
. (6.31)

A numerical solution of this equation is shown in figure 1 (cf. the qualitative figure in ref. [66]).
Unlike within the fluid approximation (6.27), =ω is nonzero at all |k| 6= ωJ/vT , and waves
damp (=ω < 0) at |k| > ωJ/vT .

The agreement of the Newtonian gauge derived as usual [70] and the polarization ob-
tained here (6.21) warrants a comment. Usually, the background is fixed to be Minkowski
and the curvature produced by matter is ascribed to the perturbation, leading to the po-
larization of diag {1, 1, 1, 1} in the Newtonian limit. (Also, see the related discussion in
section 2.2.) Hence, that polarization is due to a specific kind of source of the GWs. In our
analysis, though, the slow modification of the metric produced by matter is ascribed to the
background metric gαβ, while the aforementioned polarization (6.21) is the property of the
perturbation.

– 15 –



J
C
A
P
0
8
(
2
0
2
2
)
0
1
7

7 Conclusions

In summary, we study the dispersion of linear GWs propagating through matter. Our model
accounts both for metric oscillations and the backreaction of matter on these oscillations,
so the usual tensor modes and the gravitational modes strongly coupled with matter are
treated on the same footing. Using the averaged-Lagrangian approach, the GW equa-
tion (3.18) [see also eqs. (3.4), (3.14) and (3.17)] is derived, which also accounts for the effect
of the background-metric inhomogeneity, including the Weyl curvature. A test [eqs. (4.20)
and (4.24)] is proposed for accessing the gauge invariance of models of the matter polarizabil-
ity. Next, the wave equation is studied within the short-wavelength limit (4.4). We show that
the effect of matter on the tensor modes is comparable to diffraction and therefore negligible
within the GO approximation. However, this approximation is applicable to modes strongly
coupled with matter due to their large refractive index N . (By analogy with electrostatic
waves in plasmas, GWs in this limit can be called gravitostatic, with the Newtonian limit cor-
responding to N →∞.) GWs in ideal gas are studied using the corresponding gravitational
polarizability (6.4), which we derived earlier in ref. [62]. This formulation subsumes the Jeans
instability (section 6.2) as a collective GW mode with a peculiar polarization (6.21), which
is derived from the dispersion matrix rather than assumed a priori. This forms a foundation
for systematically extending GW theory to GW interactions with plasmas, where symmetry
considerations alone are insufficient to predict the wave polarization [17].

This material is based upon the work supported by National Science Foundation under
the grant No. PHY 1903130.

A Second-order Einstein-Hilbert action

The existing derivations of the second-order Einstein-Hilbert action S(2)
EH (3.9) are typically

restricted to vacuum settings, omit significant details, or do not pay enough attention to the
numerical coefficients that are important for studying the GW-matter coupling, as elaborated
in section 3.2. A more comprehensive derivation is needed for our purposes and is presented
below. Let us begin by considering the Lagrangian density

LEH =
√
−g
2 R (A.1)

that determines the full Einstein-Hilbert action (2.2). The total Ricci scalar R that enters
eq. (A.1) can be calculated as R = gαβRραρβ, where Rρασβ is the Riemann tensor associated
with the full metric. This tensor can be expressed through the corresponding Christoffel
symbols Γραβ as

Rρασβ = ∂σΓρβα − ∂βΓρσα + ΓρσλΓλβα − ΓρβλΓλσα. (A.2)

Let us decompose Γραβ as follows:

Γραβ = Γραβ + Γ̃ραβ, (A.3)

where Γραβ are the Christoffel symbols associated with the background metric [eq. (2.14)] and
Γ̃ραβ is the remaining perturbation, which is a proper tensor because it equals the difference
of two connections. Using eq. (A.3), one can rewrite eq. (A.2) as

Rρασβ = Rρασβ + 2
(
∂[σΓ̃ρβ]α + Γρ[σλΓ̃λβ]α + Γ̃ρ[σλΓλβ]α + Γ̃ρ[σλΓ̃λβ]α

)
, (A.4)
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where Rρσαβ is given by eq. (2.15) and represents the Riemann tensor associated with the
background metric. Equation (A.4) can also be written as

Rρασβ = Rρασβ + 2
(
∇[σΓ̃ρβ]α + Γ̃λ[σαΓ̃ρβ]λ

)
, (A.5)

where∇ denotes the covariant derivative associated with Γραβ and we used that Γραβ is torsion-
free. Then, eq. (A.1) can be written as

LEH =
√
−g
2 gαβRαβ +

√
−g gαβΓ̃λ[ραΓ̃ρβ]λ +

√
−g
2 ∇ρ

(
Γ̃ρβαgαβ

)
−
√
−g
2 ∇β

(
Γ̃ρραgαβ

)
, (A.6)

where Rαβ
.= Rραρβ. The last two terms contribute only boundary terms to the action (2.2),

so they can be ignored. Hence, one obtains LEH = LG + Lvac, where

LG
.=
√
−g
2 gαβRαβ, (A.7a)

Lvac
.=
√
−g gαβΓ̃λ[ραΓ̃ρβ]λ. (A.7b)

The determinant of the full metric can be represented as [68], eq. (105.4)

g = g

(
1 + h+ h2

2 −
1
2 h

αβhαβ

)
+O(a3), (A.8)

and the inverse full metric can be expanded using eq. (2.13). Substituting these into eq. (A.7a)
leads to

LG = L(0)
G + L(1)

G + L(2)
G +O(a3). (A.9)

Here, L(0)
G =

√
−gR/2 is the zeroth-order term. The next, first-order, term

L(1)
G =

√
−g
2

(1
2 Rh− h

αβRαβ

)
(A.10)

does not contribute to the action integral due to eq. (2.9), so it can be ignored. The term
O(a3) is ignorable within the accuracy of our model as well. The remaining term L(2)

G = O(a2)
is given by

L(2)
G =

√
−g
4

(
− 1

2 Rh
αβhαβ −Rαβhαβh+ 1

4 Rh
2 + 2Rαβhαρhρβ

)
. (A.11)

Rewriting it through Gαβ, which is given by eq. (2.17), leads to eq. (3.10b).
Now let us consider Lvac given by eq. (A.7b). Because this term is quadratic in Γ̃ραβ, the

leading-order approximation for the latter is sufficient and the full metric can be replaced
with the background metric, so

Lvac ≈ L(2)
vac

.=
√
−ggαβΓ̃λ[ραΓ̃ρβ]λ. (A.12)

The leading-order term of Γ̃ραβ can be calculated to yield [cf. eq. (2.14)]

Γ̃ραβ ≈ −
hρσ

2 (∂αgβσ + ∂βgασ − ∂σgαβ) + gρσ

2 (∂αhβσ + ∂βhασ − ∂σhαβ) , (A.13)
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or equivalently,

Γ̃ραβ = gρσ

2 (∂αhβσ + ∂βhασ − ∂σhαβ)− hρσgλσΓλαβ.

Using again that the background connection is torsion-free, this can also be written as

Γ̃ραβ ≈
gρσ

2 (∇αhβσ +∇βhασ −∇σhαβ) , (A.14)

where ∇ denotes the covariant derivative with respect to the background connection. Then,
a straightforward calculation shows that eq. (A.12) leads to eq. (3.10a).

Combined together, the above results yield that SEH ≈ S
(0)
EH + S

(2)
EH, where S(0)

EH =∫
d4xL(0)

G is independent of hαβ and S(2)
EH is given by eq. (3.9), with L(2)

vac given by eq. (3.10a)
and L(2)

G given by eq. (3.10b).

B Alternative derivation of eqs. (3.14) and (3.15)

Here, we present an alternative derivation of the wave equation in normal coordinates, char-
acterized by eqs. (3.14) and (3.15). This also serves as an independent (from appendix A)
proof of eqs. (3.14) and (3.15). We begin by using eq. (2.13) to write eq. (2.5a) as

δLEH
δhµν

=
√
−g
2 Gαβ

(
−δαµδβν + hν

βδαµ + hαµδ
β
ν

)
+O(a2), (B.1)

where g is given by eq. (A.8). Note that Gαβ can be expanded as

Gαβ = Gαβ + R̃αβ −
gαβ
2 R̃− hαβ

2 R+ gαβ
2 Rγδh

γδ +O(a2), (B.2)

where R̃αβ
.= Rραρβ −Rραρβ, R̃

.= gαβR̃αβ, and Rρασβ is the Riemann tensor associated with
the full metric. Using this along with eq. (A.8), eq. (B.1) can be written as

δLEH
δhµν

=
√
−g
2

(
−Gµν−R̃µν + gµν

2 R̃+ hµν
2 R− gµν2 hγδRγδ−

h

2 Gµν +Gµλhν
λ+Gλνh

λ
µ

)
+O(a2). (B.3)

Substituting eqs. (A.5) and (A.14) in eq. (B.3) and retaining only the first-order terms readily
leads to eq. (3.11).

One can also use normal coordinates, in which Γραβ = 0. Then, one obtains [cf. eq. (2.15)]

R̃αβ = ∂ρΓ̃ρβα − ∂βΓ̃ρρα. (B.4)

With eq. (A.13) for Γ̃ραβ, this leads to

R̃αβ = gγδ

2
(
∂γ∂αhβδ − ∂γ∂δhβα − ∂β∂αhγδ + ∂β∂δhγα

)
− hγδ

2
(
∂γ∂αgβδ − ∂γ∂δgβα − ∂β∂αgγδ + ∂β∂δgγα

)
,
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where the terms of the second and higher orders are neglected. Using eq. (3.13), one also
obtains

∂γ∂αgβδ − ∂γ∂δgβα − ∂β∂αgγδ + ∂β∂δgγα

= −1
3
(
Rβαδγ +Rβγδα −Rβγαδ −Rβδαγ −Rγαδβ −Rγβδα +Rγδαβ +Rγβαδ

)
. (B.5)

Note that the above expression can be simplified considerably using the antisymmetry prop-
erties of the Riemann tensor described in, for example, [70], eqs. (3.129)–(3.132). Then, a
straightforward calculation using the same antisymmetry properties of the Riemann tensor
yields

R̃αβ = gγδ

2
(
∂γ∂αhβδ − ∂γ∂δhβα − ∂β∂αhγδ + ∂β∂δhγα

)
− hγδRγβδα. (B.6)

With this, eq. (B.3) can be readily expressed in the form

δLEH
δhµν

=
√
−g
2

[
−Gµν−

1
2
(
∂λ∂µhνλ−∂λ∂λhνµ−gλρ∂ν∂µhλρ+∂ν∂

λhλµ
)

+gµν
2
(
∂λ∂ρhλρ−gλρ∂σ∂σhρλ

)
+hµν

2 R−gµνhγδRγδ

− h2Gµν+Gµλhνλ+Gλνhλµ+hγδRγνδµ
]
.

The oscillatory part of this expression is

˜(δLEH
δhµν

)
=
(
D̂vac
µνγδ + Ĝµνγδ

)
hγδ, (B.7)

where the right-hand side is given by eqs. (3.14) and (3.15). Hence, one arrives at the results
described in section 3.2.
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