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In an advanced course on general relativity, some exotic spacetimes like wormholes with a more

complex topology than the standard Schwarzschild spacetime can be studied in detail. In this

regard, it has been pointed out by Morris and Thorne that wormholes could be a valuable tool for

teaching general relativity. In this paper, we claim rotating wormholes might also have a

pedagogical role in general relativity, and present an empirical approach to explore periodic orbits

of such, that could be applied also to other spacetimes. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4943250]

I. INTRODUCTION

The paper by Morris and Thorne in 1988 showed that
wormholes can be a valuable tool for teaching general rela-
tivity.1 Certainly, due to science fiction movies such as
Contact (1997) and Interstellar (2014),4 interest in these
exotic spacetimes (in physics and astronomy courses) has
vastly increased. Hence, in addition to black holes, worm-
holes have become good motivators for teaching geodesics
within general relativity, which is a standard topic aimed
to get a deeper understanding of the structure of a
spacetime.

The simplicity of the Ellis wormhole2 metric, which has
nevertheless an interesting topology, makes it straightfor-
ward to visualize the inner geometry of the spacetime.3 It
does so by embedding a two-dimensional hypersurface into
the Euclidean geometry, in order to study the qualitative
behavior of geodesics by means of the Euler-Lagrangian5

formalism. With this in mind, we generalize this investiga-
tion by adding rotation to the wormhole spacetime because,
as a practical matter, nearly everything in space has rotation.
Also, from the educational point of view, we find that several
new features arise that are not present in the non-rotating
Ellis wormhole. Here, we use the rotating wormhole space-
time by Teo6 and restrict the gravitational potentials to a
minimum so that we can focus on the influence of the spin-
ning of the wormhole onto lightlike and timelike geodesics.

The geodesics in the Ellis wormhole spacetime have a
very simple structure. While they appear quite similar to
those in the Schwarzschild spacetime at first glance, the
main difference is that timelike and lightlike geodesics all
follow the same trajectory as long as they start from the
same point and head in the same direction. Even the initial
velocity of a timelike geodesic has no influence on its trajec-
tory. A detailed discussion of the geodesics in the Ellis
spacetime can be found in Ref. 7. In the rotating wormhole
spacetime, this changes significantly, leading to interesting
geodesics around the wormhole throat.

The main focus of this paper is to show that bound time-
like orbits, and in particular, periodic orbits, exist in the
rotating wormhole spacetime. To find them, we follow a
half-theoretical, half-empirical approach. For this, we first
use the Euler-Lagrangian formalism and the geodesic equa-
tion to discuss the qualitative behavior of geodesics. Then,
by exploiting the orbital equation and the constants of

motion, we empirically study bound timelike geodesics if
they are periodic and what shape they have.

A discussion about periodic orbits and their taxonomy in
Schwarzschild spacetime is given by Levin and Perez-
Giz.8 These authors also present an in-depth investigation
about timelike orbits around spinning black holes.9 An
analytic solution to bound orbits in Kerr spacetime is dis-
cussed by Fujita and Hikida.10 There are also numerous
publications about the special case of circular orbits in dif-
ferent spacetimes.11–14 Details of wormhole physics can be
found in the book by Visser.15 For our discussion here, we
make use of the GeodesicViewer,16,17 which can interac-
tively visualize geodesics in different 2D and 3D represen-
tations. This program is based on the Motion4D library18

and can thus be used to explore geodesics in a multitude of
spacetimes.

The structure of this paper is as follows. In Sec. II, we
introduce the Teo metric and our restrictions to a particular
set of gravitational potentials. We also deduce the reference
frame of a locally non-rotating observer and the embedding
diagram. In Sec. III, we give a qualitative discussion of light-
like and timelike geodesics in the restricted Teo metric by
means of the Euler-Lagrangian formalism. The main focus,
however, is on bound timelike orbits and how periodic orbits
could be found even without an analytic solution to the geo-
desic equation, as we will discuss in Sec. IV.

II. TEO METRIC

We start with the axisymmetric, rotating, stationary space-
time metric given by Teo.6 In spherical coordinates,
t 2 ð�1;1Þ; r 2 ½r0;1Þ; # 2 ð0; pÞ; u 2 ½0; 2pÞ, the line
element reads

ds2 ¼� N2c2dt2 þ r

r � b
dr2

þ r2K2 d#2 þ sin2# du� x
c

c dt

� �2
" #

; (1)

where the gravitational potentials N, K, b, and x all depend
on r and #. However, for educational purposes, we restrict
the gravitational potentials such that we can put our focus on
the rotation of the wormhole spacetime.
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A. Specialized metric

For the rest of this article, we restrict the potentials to

b rð Þ ¼ b2
0

r
; K rð Þ ¼ N rð Þ � 1; and x rð Þ ¼ cb2

0

2r3
; (2)

where Appendix A gives a brief motivation for how we
came to this choice. Please note that the parameter b0 defines
the shape of the wormhole throat as well as its rotation. In
the limit b0 ! 0, we end up with the static Minkowski
spacetime in spherical coordinates.

Transforming to the proper radial coordinate l2 ¼ r2 � b2
0,

the general Teo metric (1) simplifies to

ds2 ¼� c2dt2 þ dl2 þ l2 þ b2
0

� �
� d#2 þ sin2# du� b2

0

2 l2 þ b2
0

� �3=2
c dt

" #2
8<
:

9=
;; (3)

with metric g ¼ gl�dxldx� and with coefficients

gtt ¼ �c2 þ b4
0c2 sin2#

4 l2 þ b2
0

� �2
; gll ¼ 1; (4a)

g## ¼ l2 þ b2
0; gtu ¼ gut ¼ �

1

2

b2
0c sin2#ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ b2

0

p ; (4b)

and

guu ¼ ðl2 þ b2
0Þ sin2#: (4c)

The resulting Christoffel symbols read

Cl
tt ¼

b4
0c2l sin2#

2 l2 þ b2
0

� �3
; C#

tt ¼ �
b4

0c2 sin# cos#

4 l2 þ b2
0

� �3
; (5a)

Ct
tl ¼

3b4
0l sin2#

8 l2 þ b2
0

� �3
; Cu

t# ¼ �
b2

0c cot#

2 l2 þ b2
0

� �3=2
; (5b)

Cl
tu ¼ �

b2
0cl sin2#

4 l2 þ b2
0

� �3=2
; Cl

uu ¼ �l sin2#; (5c)

C#
tu ¼

b2
0c sin# cos#

2 l2 þ b2
0

� �3=2
; C#

l# ¼
l

l2 þ b2
0

; (5d)

Ct
lu ¼ �

3b2
0l sin2#

4c l2 þ b2
0

� �3=2
; Cl

## ¼ �l; (5e)

Cu
#u ¼ cot#; C#

uu ¼ �sin# cos#; (5f)

Cu
tl ¼

b2
0cl 3b4

0 sin2#þ 4 l2 þ b2
0

� �2
h i

16 l2 þ b2
0

� �9=2
; (5g)

and

Cu
lu ¼ �

l 3b4
0 sin2#� 8 l2 þ b2

0

� �2
h i

8 l2 þ b2
0

� �3
: (5h)

To find the trajectories of geodesics, we could now integrate
the geodesic equation

d2xl

dk2
þ Cl

�r
dx�

dk
dxr

dk
¼ 0; (6)

where k is an affine parameter. Because Eq. (6) is a second-
order ordinary differential equation, we need not only an ini-
tial position but also an initial direction. The latter shall be
defined with respect to a local reference frame that is given
by a local tetrad.

B. Local tetrad

In a stationary axisymmetric spacetime, two natural local
tetrads could be defined: a tetrad that is static with respect to
the asymptotic background, and a tetrad that is locally
non-rotating; see Misner et al.19 for a detailed discussion
about locally non-rotating frames (LNRF). The ansatz for
the LNRF case reads

e lð Þ ¼ @l; e #ð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ b2
0

p @#;

e tð Þ ¼ A@t þ B@u; and e uð Þ ¼ C@u; (7)

and with the orthonormality condition heðiÞ; eðjÞi ¼ gðiÞðjÞ,
where g¼ ðiÞðjÞ ¼ diagð�1;1;1;1Þ represents the Minkowski
metric, and h ; i the scalar product with respect to the metric
g, we then have

e tð Þ ¼
1

c
@t þ

b2
0

2 l2 þ b2
0

� �3=2
@u; e lð Þ ¼ @l;

e #ð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ b2
0

p @#; and e uð Þ ¼
1

sin#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ b2

0

p @u:

(8)

For b0 ¼ 0, we obtain the static tetrad of the Minkowski
spacetime in spherical coordinates. With respect to this
frame, the stress-energy tensor immediately shows that we
would need exotic matter to maintain this wormhole geome-
try (see Appendix B).

C. Embedding diagram

The inner geometry of a spacetime can be partially visual-
ized by embedding a two-dimensional hypersurface into the
three-dimensional Euclidean space that can be described by
the line element

dr2
eucl ¼ 1þ dz

dr

� �2
" #

dr2 þ r2du2: (9)

Comparing this line element with the hypersurface
ðt ¼ const; # ¼ p=2Þ of the Teo metric in Eq. (3), where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ b2

0

p
2 ½b0;1Þ, we obtain a differential equation

for z with respect to r that can be directly integrated. The
resulting shape function z(r) reads

z rð Þ ¼ 6b0 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2

0

p
þ r

b0

 !
; (10)
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where ðþÞ represents the upper and ð�Þ the lower universe.
Figure 1 shows the embedding diagram for the shape func-
tion, guided by Eq. (10), which is equivalent to the static
Ellis wormhole shape function with the same throat parame-
ter b0. The circles represent points of constant radial coordi-
nate l, whereas the lines perpendicular to the circles are the
coordinate lines for constant u. The rotation of the spacetime
is not shown in this diagram.

III. GEODESICS

In the following, we focus on geodesics in the ð# ¼ p=2Þ
hypersurface and use the Euler-Lagrangian formalism to
study their behavior. Expressing the derivative of a coordi-
nate with respect to the affine parameter k by a dot (as in
_t ¼ dt=dk), the Lagrangian function L reads

L ¼ �c2 _t
2 þ _l

2 þ l2 þ b2
0

� �
_u � b2

0

2 l2 þ b2
0

� �3=2
c _t

" #2

:

(11)

From the Euler-Lagrangian equations

d

dk
@L
@ _xl �

@L
@xl
¼ 0; l ¼ t; l;uf g; (12)

we obtain two constants of motion

c1 ¼ 2c2 _t þ b2
0cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ b2
0

p _u � b2
0

2 l2 þ b2
0

� �3=2
c _t

" #
; (13a)

and

c2 ¼ l2 þ b2
0

� �
_u � b2

0

2 l2 þ b2
0

� �3=2
c _t

" #
: (13b)

These constants can be solved for the coordinate derivatives

_t ¼ c1

2c2
� b2

0c2

2c l2 þ b2
0

� �3=2
; (14a)

and

_u ¼ c2

l2 þ b2
0

þ b2
0c1

4c l2 þ b2
0

� �3=2
� b4

0c2

4 l2 þ b2
0

� �3
: (14b)

The remaining differential equation for the proper radial
coordinate l can be deduced from the Lagrangian (11) to-
gether with the constants of motion

_l
2 ¼ jc2 þ c2 c1

2c2
� b2

0c2

2c l2 þ b2
0

� �3=2

" #2

� c2
2

l2 þ b2
0

; (15)

where j¼ 0 for lightlike and j ¼ �1 for timelike geodesics.

A. Lightlike geodesics

As the geodesic equation (6) is a second-order ordinary dif-
ferential equation, we need not only an initial position but also
an initial direction. The initial position is given by the observ-
er’s location ðt ¼ tobs; l ¼ lobs; # ¼ p=2;u ¼ 0Þ, while the
initial direction is defined with respect to its local reference
frame, given in Eq. (8). As we consider only geodesics in the
ð# ¼ p=2Þ hypersurface, we only need the initial angle n.
Hence,

y ¼ 6eðtÞ þ cos n eðlÞ þ sin n eðuÞ; (16)

where ðþÞ represents a future-directed and ð�Þ a past-directed
light ray. Replacing the tetrad vectors by their coordinate rep-
resentations eðiÞ ¼ el

ðiÞ@l, we immediately obtain the compo-
nents yl ¼ ð _t; _l; 0; _uÞk¼0 ¼ ð _tobs; _lobs; 0; _uobsÞ of the initial
direction y ¼ yl@l ¼ _tobs@t þ _lobs@l þ _uobs@u; thus,

_tobs ¼ 6
1

c
; _lobs ¼ cos n (17a)

and

_uobs ¼ 6
b2

0

2 l2
obs þ b2

0

� �3=2
þ sin nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
obs þ b2

0

p : (17b)

Substituting Eq. (17) into Eq. (13) yields

c1 ¼ 2cþ b2
0c sin n

l2
obs þ b2

0

; and c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
obs þ b2

0

q
sin n (18)

for the constants of motion.

1. Lightlike circular orbits

A particular solution of the geodesic equation, which we
already know from the Ellis spacetime, is the circular orbit
(see Ref. 7). For that, the initial angle has to be n ¼ 6p=2,
and the derivative of the proper radial coordinate has to van-
ish identically ( _l � 0). From Eq. (15) with j¼ 0, we see that
for n ¼ 6p=2 a light ray always starts with vanishing _l, but
we cannot conclude that it will vanish identically.
Otherwise, there would be an infinite number of lightlike cir-
cular orbits.

Hence, we need the geodesic equation (6), which yields

d2l

dk2
þCl

tt

dt

dk

� �2

þ 2Cl
tu

dt

dk
du
dk
þCl

uu
du
dk

� �2

¼ 0: (19)

Note that Eq. (19) is also valid for timelike geodesics.
Inserting Eqs. (14a) and (14b) into Eq. (19), using the

Fig. 1. Embedding diagram of the ðt ¼ const; # ¼ p=2Þ hypersurface for

b0 ¼ 1 and rmax ¼ 8. The bottleneck represents the wormhole throat. Note,

only the surface is part of the spacetime.
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constants of motion [see Eq. (18)] for prograde motion
ðn ¼ þp=2Þ, and letting lobs ¼ l yields

d2l

dk2
� l 2l2 þ 5b2

0

� �
2 l2 þ b2

0

� �2
¼ 0: (20)

Hence, in the prograde case there exists a lightlike circular
orbit only for lco ¼ 0. In the retrograde case, where
n ¼ �p=2, we obtain

d2l

dk2
� l 2l2 � b2

0

� �
2 l2 þ b2

0

� �2
¼ 0: (21)

Thus, we have three retrograde lightlike circular orbits at
lco ¼ 0 and lrco6 ¼ 6b0=

ffiffiffi
2
p

.

2. The apparent size of the wormhole

The apparent size of the Ellis wormhole is defined by all
initial directions where the corresponding light rays
approach the wormhole throat only asymptotically while still
staying at the same side. In the case of the Schwarzschild
black hole, the apparent size equals the shadow of the black
hole, which is defined by the geodesics approaching the pho-
ton orbit asymptotically.

For our simplified Teo wormhole spacetime, we define its
apparent size by the initial direction np, which approaches the
wormhole throat asymptotically in a prograde sense, and by the
initial direction nr, which approaches the circular orbit lrcoþ
asymptotically in a retrograde sense (see Fig. 2). Thereby, we
restrict the apparent size to the equatorial plane because all the
other directions are much more difficult to find.

Here, we also have to take into account that we have to
trace light rays back in time, which means we must use the
minus sign in Eq. (17). If we insert the constants of motion
into Eq. (15) and let _l ¼ 0 and l¼ 0 for the prograde orbit,
we obtain the observation angle

np ¼ p� arcsin
�2 x2

obs þ 1
� �

3 x2
obs þ 1

� �3=2 þ 1
; (22)

where we have used the scaled coordinate xobs ¼ lobs=b0.

On the other hand, the retrograde case, where _l ¼ 0 and
l ¼ b0=

ffiffiffi
2
p

, the observation angle is given by

nr ¼ p� arcsin
2 x2

obs þ 1
� �

2 2=3ð Þ3=2 x2
obs þ 1

� �3=2 þ 1
: (23)

Both angles are valid for lobs � b0=
ffiffiffi
2
p

.
For comparison only, the limiting angle n for an Ellis

wormhole is given by n ¼ p� arcsinð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

obs þ 1
p

Þ. It is im-
mediately clear from Fig. 2 that the rotating wormhole shows
an asymmetry regarding its apparent size.

B. Timelike geodesics

The initial position for a timelike geodesic is also given by
the observer’s location ðt ¼ tobs; l ¼ lobs; # ¼ p=2;u ¼ 0Þ.
However, the initial direction follows from the four-velocity:

u ¼ ccðeðtÞ þ b cos n eðlÞ þ b sin n eðuÞÞ; (24)

which itself is defined by the three-velocity v with respect to
the observer’s local reference frame. Furthermore, we have

u2¼�c2; n2 ½0;2p�; 0� b¼ v=c< 1, and c¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

p
.

Here, we concentrate only on future-directed geodesics.
Then, the constants of motion [see Eq. (13)] can be
expressed in the following way:

c1 ¼ c2c 2þ b2
0b sin n

l2
obs þ b2

0

 !
; (25a)

and

c2 ¼ ccb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
obs þ b2

0

q
sin n: (25b)

In the special case where the initial velocity vanishes
(b¼ 0), the constants of motion reduce to c1 ¼ 2c2 and
c2 ¼ 0, and we obtain

_t0 ¼ 1; _u0 ¼
b2

0c

2 l2
obs þ b2

0

� �3=2
; and _l

2

0 ¼ 0: (26)

Inserting all these into the geodesic equation for the coordi-
nate l, using Eq. (19), yields d2l=ds2 � 0, where we have
replaced the affine parameter k by the proper time s. Thus,
any massive particle with zero initial velocity follows a cir-
cular orbit around the simplified Teo wormhole. Because of
the relation _t ¼ dt=ds ¼ 1, coordinate time and proper time
are the same on these orbits. The orbital period s2p ¼ 2p=x
with the angular velocity x ¼ _u is given by

s2p ¼
4p l2 þ b2

0

� �3=2

b2
0c

; (27)

with a minimum at l¼ 0.

IV. BOUND TIMELIKE ORBITS

If we tinker a little bit with Eq. (15) for timelike geode-
sics, we see that there exist bound orbits around the worm-
hole throat. Without loss of generality, we assume that the
starting position l ¼ lobs, is a turning point of the bound orbit.
Thus

Fig. 2. The apparent angular size Dn ¼ jnp � nr j of the rotating Teo worm-

hole in the equatorial plane is defined by the critical angles np and nr. The

observer located at l ¼ lobs looks towards the wormhole (n¼ 0) and the

throat parameter reads b0 ¼ 1. The dashed lines represent the apparent size

of an Ellis wormhole.
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_l
2jl¼lobs

¼ c2c2b2 cos2n ¼ 0; (28)

meaning that either b¼ 0 or n ¼ 6p=2. The special case
b¼ 0 was already discussed in Sec. III B. Here, we fix
n ¼ p=2, which places b in the range ð�1; 1Þ.

To be a turning point for a bound orbit, where l < lobs in a
small neighborhood, the second derivative d2l=ds2 at the
position l ¼ lobs has to be negative. From Eq. (19) for
the proper radial coordinate l, the coordinate derivatives of
Eq. (14), and the constants of motion in Eq. (25), the second
derivative of l with respect to proper time s evaluated at
l ¼ lobs becomes

d2l

ds2

����
l¼lobs

¼ c2bc2lobs 2b l2
obs þ b2

0

� �
þ 3b2

0

� 	
2 l2obs þ b2

0

� �2
: (29)

As long as lobs > 0, it must be true that

b½2bðl2obs þ b2
0Þ þ 3b2

0� < 0; (30)

as shown in Fig. 3. Hence, b cannot be positive. If
d2l=ds2 ¼ 0, we obtain circular orbits, where

b ¼ � 3

2

b2
0

l2
obs þ b2

0

: (31)

Because b is bounded by �1 from below, retrograde circular
orbits with b 6¼ 0 exist only for l2

obs > b2
0=2. If Eq. (30) is not

fulfilled, i.e., d2l=ds2 > 0, we still have _ljl¼lobs
¼ 0, and thus

the geodesic passes its point of closest approach to the
wormhole throat.

A. Periodic orbits

So far, we know whether a timelike trajectory is a bound
orbit or not. But, we also would like to know if the bound
orbit is periodic. As we do not have an analytic solution to
the geodesic equation, we have to find periodic orbits in a
more empirical way. For that, we derive a subset of the or-
bital equation l ¼ lðuÞ from Eqs. (15) and (14b). With
dl=du ¼ _l= _u, we obtain

dl

du
¼

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ c2

c1

2c2
� b2

0c2

2c l2 þ b2
0

� �3=2

 !2

� c2
2

l2 þ b2
0

vuut
c2

l2 þ b2
0

þ b2
0c1

4c l2 þ b2
0

� �3=2
� b4

0c2

4 l2 þ b2
0

� �3

� q b0; lobs; lð Þ; (32)

with separation of variables yieldingðu

u0¼0

du0 ¼
ðL

l¼lobs

dl

q b0; lobs; lð Þ : (33)

While the left-hand side can be evaluated immediately, the
upper bound of the right-hand integral is not yet clear. To be
a periodic orbit, L should be lobs, but this does not make any
sense.

A closer look on Eq. (15) shows that _l
2

is symmetric with
respect to l with maximum at l¼ 0. A little more effort is

needed to show that _l
2

is also strongly monotonic. Thus, any
bound orbit is symmetric in l and must traverse the worm-
hole throat. Hence, L¼ 0 and we have

u ¼
ð0

lobs

dl

q b0; lobs; lð Þ : (34)

But, of course, Eq. (34) covers only a portion of the trajec-
tory. Figure 4 shows the �u–b plot of Eq. (34) for b0 ¼ 1 and
lobs ¼ 1, where �u ¼ u=2p. Now, if �u is a rational number—
i.e., �u ¼ n=m, with n, m being integers—then we have a per-
iodic orbit.

The resolution of Fig. 4 is too low to read the values from
the printed graph. Thus, the data values should be read into a
plotting tool20 (or any drawing tool where zooming is possi-
ble), so for a given rational �u, the corresponding approxi-
mate value b can be determined.

B. The azimuth angle u

Some more information about the shape of the bounded
orbits can be extracted from the differential equation for the
azimuth angle u. Here, we show that u is not a monotonic
function, which means that _u changes sign.

With the substitution z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=b2

0 þ 1
p

, Eq. (14b) can be
written as

_u ¼ 1

b6
0z6

c2b4
0z4 þ b5

0c1

4c
z3 � b4

0c2

4

� �
: (35)

The condition _u ¼ 0 together with the constants of motion
delivers the quartic equation

Fig. 3. Depending on the initial position lobs and the initial velocity b, the time-

like geodesic is either a bound orbit, d2l=ds2 < 0, a circular orbit, d2l=ds2 ¼ 0

(solid line), or a geodesic that passes its point of closest approach.

Fig. 4. Equation (34) is plotted as a function of b for b0 ¼ 1 and lobs ¼ 1

(�u ¼ u=2p). To be a bound orbit, the velocity b has to be in the domain

½�0:75; 0Þ.
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q zð Þ ¼ z4 þ az3 � 1

4
¼ 0; with a ¼ 2z2

obs þ b

4bz3
obs

; (36)

which is of interest only in the domain z 2 ½1; zobs�. In princi-
ple, this quartic equation could be solved analytically. But
here, we will first discuss its qualitative behavior and will
then solve it numerically.

The extrema of the quartic in Eq. (36) are given by z0 ¼ 0
and z1 ¼ �3a=4. The second derivative of q shows that z0 is
an indefinite point and z1 is a minimum. Furthermore,
qðz0Þ < 0; qðz1Þ ¼ �27a4=256� 1=4 < 0, and limz!1qðzÞ
! 1. Thus, there is always a root in the domain ½z1;1Þ that
can be found numerically. Figure 5 shows the roots z of Eq.
(36) for b0 ¼ 1 and lobs ¼ 1 depending on the velocity b. As
z is limited by ½1; zobs ¼

ffiffiffi
2
p
�; _u changes sign only for veloc-

ities b in the domain ð�0:422;�0:25Þ. (See Figs. 8 and 9 for
two examples showing a change in direction regarding u.)

C. Examples

With the currently discussed method at hand, we can
now search for periodic orbits within the simplified Teo
wormhole spacetime. For the following figures, the spherical

Fig. 5. The roots z of the quartic in Eq. (36) depending on the velocity b for

b0 ¼ 1 and lobs ¼ 1 (zobs ¼
ffiffiffi
2
p

).

Fig. 6. (a) xy-plot and (b) embedding diagram for �u ¼ �3=4 and

b ¼ �0:747802.

Fig. 7. (a) xy-plot and (b) embedding diagram for �u ¼ �1=4 and

b ¼ �0:636774.
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coordinates ðl;uÞ are mapped to Cartesian coordinates by
means of

x ¼ l cos u and y ¼ l sin u: (37)

Because l can also be negative, the corresponding trajecto-
ries shown in an embedding diagram can deviate from the
shapes shown in the xy-plot.

Figure 6 shows the periodic orbit for �u ¼ �3=4, where
b ¼ �0:747802. As u ¼ 2p�u gives only the way from lobs

to l¼ 0, we see that after u ¼ �3p=2 we have only finished
one-fourth of the orbit. Hence, a full revolution is achieved
for u ¼ �6p. This becomes even more clear when showing
the trajectory in the embedding diagram where it becomes
clear that the trajectory has to orbit the wormhole throat
three times to close. Figure 7 shows the periodic orbit for
�u ¼ �1=4, where b ¼ �0:636774. Here, we need u ¼ �2p
to complete the orbit. Figure 8 shows the extreme case where
�u ¼ 0. This is the exclusive periodic orbit that does not
travel around the wormhole throat. Hence, u ¼ 0 again
when the orbit is finished. However, this becomes obvious
only in the embedding diagram representation. With
b ¼ �0:316205, we can also read from Fig. 5 that the orbit

is in the range where _u changes sign. This happens at
l ¼ 60:6289.

Figure 9 shows the periodic orbit for �u ¼ 1=28, where
b ¼ �0:266165. The orbit is closed after u ¼ 2p and _u
changes sign multiple times at l ¼ 60:8966.

Figure 4 shows an example that even though the initial ve-
locity points in the opposite direction of the wormhole rota-
tion, the timelike trajectories can either corotate or
contrarotate the wormhole throat.

V. CONCLUSION AND OUTLOOK

In this paper, we discussed lightlike and timelike geode-
sics within the simplified Teo wormhole spacetime. We have
also shown how to empirically study and detect periodic
orbits. To keep the analysis simple, we concentrated on
equatorial orbits, but the reader is encouraged to study geo-
desics that are not restricted to the ð# ¼ p=2Þ hypersurface.
Such an exploration could be an interesting exercise for an
advanced course in general relativity.

So far, we have investigated only the motion of neutral
test particles. Hence, the next step would be to study charged

Fig. 9. (a) xy-plot and (b) embedding diagram for �u ¼ 1=28 and

b ¼ �0:266165.

Fig. 8. (a) xy-plot and (b) embedding diagram for �u ¼ 0 and

b ¼ �0:316205.
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particles that might also have some spin and how they move
in wormhole spacetimes.

APPENDIX A: RESTRICTIONS OF THE

GRAVITATIONAL POTENTIALS

For educational purposes, we restrict the gravitational
potentials in the following way. Please note that this is only
a brief outline, a more elucidated discussion can be found in
the thesis by Fechtig.21

In the limit r !1, the Teo metric should tend to the
Minkowski metric. Hence,

lim
r!1

b rð Þ
r
! 0; lim

r!1
N r; #ð Þ ! 1; (A1a)

and

lim
r!1

xðr; #Þ ! 0; lim
r!1

Kðr; #Þ ! 1: (A1b)

The flare-out condition (FOC), which is responsible for the
wormhole throat to be continuous, smooth, and a minimal
surface, yields the constraint equation

2rðr � bÞð2K0 þ rK00Þ � ðK þ rK0Þðrb0 � bÞ > 0; (A2)

where a prime denotes the derivative with respect to r.
Motivated by the Kerr spacetime, we make use of the

Hamilton-Jacobi formalism and search for a Carter-like con-
stant, which also implies that the equations of motion should
be separable. This finally leads to the conditions

lim
r!1

K r; #ð Þ ¼ lim
r!1

R rð Þ
H #ð Þ

¼ 1

H #ð Þ
lim
r!1

R rð Þ ! 1; (A3a)

or

lim
r!1

RðrÞ ! Hð#Þ: (A3b)

Thus, Hð#Þ ¼ const, and neither of the potentials can
depend on #. Then, a first ansatz could be

b rð Þ ¼ b0

b0

r

� �m

; (A4a)

and

K rð Þ ¼ 1þ b rð Þ
r

� �
 �
; m; nð Þ 2 R (A4b)

which turns the FOC into the algebraic equation

ðmþ 1Þ½2� nðmþ 1Þ� > 0; for r ¼ b0: (A5)

Because of the asymptotic flatness requirement, the parame-
ter m > �1 and Eq. (A5) reduces to nðmþ 1Þ < 2. For the
angular velocity, we make the ansatz

x rð Þ ¼ c

2b0

b0

r

� �k

; k 2 R: (A6)

The absence of an ergosphere requires k � 1. Like Teo, we
set NðrÞ ¼ KðrÞ. Hence, our final choice m¼ 1, n¼ 0, k¼ 3
yields the potentials given in Eq. (2).

APPENDIX B: STRESS-ENERGY TENSOR

The drawback of any wormhole geometry is the necessity
of exotic matter in a non-negligible amount, which prevents
even future civilizations from travelling through these short-
cuts in spacetime. In order to show that this circumstance is
also true for the Teo wormhole spacetime with the chosen
potentials, we determine the stress-energy tensor TðiÞðjÞ with
respect to the locally non-rotating frame [see Eq. (8)]. By
means of Einstein’s field equations GðiÞðjÞ ¼ jTðiÞðjÞ with
j ¼ 8pG=c4, the stress-energy tensor is directly related to
the Einstein-Tensor GðiÞðjÞ ¼ Gl�hðiÞl hðjÞ� . Here, Gl� is the
usual coordinate representation of the Einstein tensor, which
could be calculated with symbolic math software like Maple
(GRTensorII)22 or Mathematica, and hðiÞl are the dual tetrad

vector components following from the relation hhðiÞ; eðjÞi ¼
dðiÞðjÞ with the Kronecker-d. As we immediately see from the

Einstein tensor

G tð Þ tð Þ ¼ �
b4

0 16 l2 þ b2
0

� �2 þ 9b2
0l2 sin2#

h i
16 l2 þ b2

0

� �4
; (B1a)

G tð Þ uð Þ ¼ 3b4
0 sin#

4 l2 þ b2
0

� �3
; (B1b)

G lð Þ lð Þ ¼ �
b4

0 16 l2 þ b2
0

� �2 � 9b2
0l2 sin2#

h i
16 l2 þ b2

0

� �4
; (B1c)

G #ð Þ #ð Þ ¼
b4

0 16 l2 þ b2
0

� �2 � 9b2
0l2 sin2#

h i
16 l2 þ b2

0

� �4
; (B1d)

and

G uð Þ uð Þ ¼
b4

0 16 l2 þ b2
0

� �2 � 27b2
0l2 sin2#

h i
16 l2 þ b2

0

� �4
; (B1e)

where the ðtÞðtÞ- and ðlÞðlÞ-components are always negative,
resulting in both a negative energy density and a negative
pressure term.
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