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Following the paper of Morris and Thorne on wormholes as a tool for teaching general relativity, we
present the visual appearance of this simple spacetime using an embedding diagram and a raytracing
program. Even if such a wormhole is not physically reasonable, we take the risk and take a short trip
to an unreasonable parallel universe. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

If we wanted to leave our home planet, Earth, today a
set out for new worlds, it would be a long and strenuo
journey. Even a flight to Mars would take at least six mont
But science fiction offers us a totally different possibility. F
example with a ‘‘warp-drive,’’ we could simply overcom
the light barrier by compressing the space between us
our destination and thus shorten the distance. A much m
elegant way would be a shortcut in spacetime itself—
wormhole. In the filmContactwhich is based on Carl Sa
gan’s novel1 of the same name, the protagonist Dr. Elean
Arroway overcomes any distance within a few instants
time by traveling through a wormhole. Indeed, Morris a
Thorne2 found a solution of Einstein’s general relativit
theory that represents a ‘‘tunnel’’ in spacetime and could
principle be traversed by human beings. But, unfortunatel
needs exotic matter for its generation.

We will assume that all exotic matter is transparent a
does not interact with the observer. This Morris–Thor
~MT! wormhole can be described by a very simple met
Eq. ~1!. However, it is not so easy to understand what
observer traveling in the corresponding spacetime would
tually see. Until now, the spacetime of a wormhole has b
illustrated only by its embedding diagram, which can lead
confusion. In this article we try to understand the structure
the MT wormhole spacetime by examining its embedd
diagram together with the real visual appearance for an
server generated by four-dimensional raytracing. Deta
discussions about the physics of wormholes and their dif
ent shapes can be found in Visser.3 We recommend Ref. 2 fo
a short introduction to wormhole geometries and their t
versability.

The physical contents of the MT wormhole is reviewed
Sec. II. A helpful tool for understanding its geometry—
especially for tracing null or timelike geodesics—is an e
bedding diagram as discussed in Sec. III. A qualitative
scription of photon orbits depending on an effective poten
is given in Sec. IV. In Sec. V we will have a look at some
the crucial details of the raytracing systemRayViS, and we
will discuss the visual appearance of a MT wormhole in S
VI.

II. REVIEW OF PHYSICAL DETAILS

Morris and Thorne presented a very simple kind of wor
hole in their 1988 paper.2 The spacetime of this wormhole i
described by the spherically symmetric and static metric

ds252dt21dl21~b0
21 l 2!~dq21sin2 qdw2!, ~1!
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where here and in the following geometric units (G5c
51) are used. The coordinatel P(2`,`) measures the
proper radial distance at fixedt. Both limits of l represent an
asymptotically flat region. The time coordinatet represents
global time.

To fix an event in this spacetime, there is a natural cho
of basis vectors

et5] t , el5] l , eq5]q , ew5]w , ~2!

where the partial derivative operators]m(m5t,r ,q,w) rep-
resent the tangent vectors along the curve with constant
ordinatesn(nÞm) ~see Fig. 1!. A detailed description of this
notation can be found in Ref. 4.

Next, we turn to the local frame of a static observ
(et̂ ,el̂ ,eq̂ ,eŵ) with

et̂5] t , el̂ 5] l , ~3a!

eq̂5
1

Ab0
21 l 2

]q , eŵ5
1

Ab0
21 l 2 sinq

]w . ~3b!

The Riemann curvature tensor in this local frame has o
one independent component

Rl̂ q̂ l̂ q̂5Rl̂ ŵ l̂ ŵ52Rq̂ŵq̂ŵ52
b0

2

~b0
21 l 2!2 . ~4!

The only nonzero component of the Ricci tensor isRl̂ l̂ 5

22b0
2/(b0

21 l 2)2. Thus, the Einstein tensor reads

Gt̂ t̂5Gl̂ l̂ 52Gq̂q̂52Gŵŵ52
b0

2

~b0
21 l 2!2 . ~5!

Because all tensors are expressed with respect to the
frame, the components of the stress energy tensor ded
from the Einstein equations have direct physical interpre
tions: Tt̂ t̂5r( l ) is the total energy density;Tl̂ l̂ 52t( l ) rep-
resents the tension per unit area in the radial direction;
Tq̂q̂5Tŵŵ5p( l ) is the pressure in transverse direction. T
annoying fact that the energy density is negative destr
one’s hope of using this wormhole as a shortcut for sp
travels in the near future. Nevertheless, it is an interes
model for studying the visual appearance of a wormho
because more realistic ones do not essentially differ from
one.

III. EMBEDDING DIAGRAM REVIEWED

We have no idea what a four-dimensional spacetime
the MT wormhole looks like. One way for visualizing th
1045p © 2004 American Association of Physics Teachers



d
e.
ac
rs
o
th
ee

a
re

io

E
rd

b

t o
si
st

t

b
te
il
m

La-

-

e

ian

e-
e

e
m-

-

c

t

ed.

n

inner geometry of an-dimensional hypersurface is to embe
it into a Euclidean (n11)-dimensional surrounding spac
The aim is to find a surface in the higher dimensional sp
that has the same inner geometry as the spacetime hype
face. The embedding space has no physical meaning, h
ever. So for example we can visualize the curvature of
surface of our home planet by embedding it in the thr
dimensional space.

To understand the geometry of the MT wormhole, we c
take advantage of the spherical symmetry and static natu
the metric and study only the equatorial ‘‘plane’’ atq5p/2
at a fixed instant of time. With the coordinate transformat
r 25b0

21 l 2 the metric on this plane reads

ds2-surface
2 5

1

~12b0
2/r 2!

dr21r 2dw2. ~6!

We can embed this two-surface in a three-dimensional
clidean space, which is represented by cylindrical coo
nates (r ,w,z), by identifying this surface with a surfacez
5z(r ). The metric of the surface in Euclidean space can
written as

dseuclidean
2 5F11S dz

dr D
2Gdr21r 2dw2. ~7!

The comparison of Eq.~6! with Eq. ~7! and integration with
respect tor leads to the shape of the embedding diagram

z~r !56b0 lnF r

b0
1AS r

b0
D 2

21G , ~8!

shown in Fig. 2. It is stressed that only the surface is par
the spacetime. The embedding space itself has no phy
meaning. The impression of a tube as Fig. 2 might sugge
misleading. There is no tube in the spacetime, because
regions with radial coordinater ,b0 are not part of the
spacetime. The throat itself has a spherical topology and
comes important only for geodesics spiralling in, like wa
in a syphon. The qualitative behavior of null geodesics w
be discussed in the following section. Their traces in an e
bedding diagram are shown in Sec. VI.

Fig. 1. Base vectors] l and]w for the two-dimensional case.
1046 Am. J. Phys., Vol. 72, No. 8, August 2004
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IV. PHOTON ORBITS

To analyze the behavior of geodesics, we will use the
grangian formalism~see Ref. 5 for a detailed discussion!. A
geodesic between two given pointsA and B satisfies the
variational principle

05dE ds5dE Ldl, ~9!

with the LagrangianL5Augmnẋmẋnu. A dot means differen-
tiation with respect to an affine parameterl. Instead of solv-
ing the variational problem~9!, we can consider an equiva
lent one, where

05dE Ldl, ~10!

with L5L2, which also is valid for null geodesics. Here th
LagrangianL is defined by

L5gmnẋmẋn. ~11!

The geodesic equations follow from the Euler–Lagrang
equations

d

dl

]L
] ẋm 2

]L
]xm 50. ~12!

As in Sec. III, we can take advantage of spherical symm
try. Thus, it will suffice to consider only null geodesics in th
equatorial plane (q5p/2). It always is possible to rotate th
coordinate system such that a null geodesic will lie co
pletely in the equatorial plane. Withxm5(t,l ,q,w) and Eq.
~11!, we have

Lmt52 ṫ21 l̇ 21~b0
21 l 2!ẇ2. ~13!

If we solve the Euler–Lagrangian Eqs.~12! for m5t and

m5w, we find two constants of motion,k5 ṫ and h5(b0
2

1 l 2)ẇ, whose ratiob5h/k is the apparent impact param
eter. In particular,b50 for radial curves.~Compare Ref. 4
for the Schwarzschild case.! Instead of solving the geodesi
equations directly, we use the fact thatL50 for null geode-
sics. If we use the constants of motion and Eq.~13!, we get
something like anenergy balance

l̇ 21Vp5k2, ~14!

whereVp5h2/(b0
21 l 2) is an effective potential for the ligh

ray ~see Fig. 3!. Null geodesics with a constantk,h/b0(b
.b0) remain in the universe where they have been emitt

Fig. 2. 2-surface (q5p/2, t5constant) of the MT wormhole embedded i
a Euclidean space.
1046Thomas Mu¨ller



Fig. 3. Effective potential of a photon
with angular momentumh in the MT
wormhole spacetime.
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They cannot overcome the angular momentum barrier.
ones withk.h/b0(b,b0) tunnel through the wormhole into
the other universe. In the limiting casek5h/b0(b5b0), the
null geodesic asymptotically approaches the throat.

From the point of view of raytracing, we can separa
these three cases by the anglet between the incoming
outgoing light ray and the radial direction to the wormho
with respect to a local observer~see Fig. 4!. We directly see
that

sin2 t5
~b0

21 l 2!dw2

dl21~b0
21 l 2!dw2 5

b0
21 l 2

b0
21 l 21~dl/dw!2 . ~15!

The derivativedl/dw can be substituted by

S dl

dw D 2

5S l̇

ẇ
D 2

5
1

b2 ~b0
21 l 2!22~b0

21 l 2!, ~16!

which results froml̇ 5 (dl/dw)ẇ and the Lagrangian equa
tions. Thus, Eq.~15! becomes

sin2 t5
b2

b0
21 l 2 , ~17!

with the critical angletcrit5arcsin(b0 /Ab0
21 l 2). Observers

can now distinguish between light rays coming from th
own universe (t.tcrit) or the other universe (t,tcrit) by
measuring the incident anglet.

Thus, we expect two regions for the visual appearance
MT wormhole. The outer one—corresponding
t.tcrit—shows only the universe of the observer and
inner one is a window to the other universe.

V. VISUALIZING SYSTEM

The visualization of spacetimes can be done by fo
dimensional raytracing. The figures in this article are re
dered by the raytracing systemRayViSdeveloped by Gro¨ne6

and extended for four-dimensional raytracing by Weisko7

and the author.8

Fig. 4. Anglet between the light ray (ds250) and the radial direction to
the wormhole.
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A raytracing program is ideally suited for an object o
ented approach~RayViSis implemented in C11). Three of
its main components are the camera module, the r
generating module, and the scenegraph. The camera re
sents the observer from which light rays~null geodesics! are
traced back in time. For every pixel of an image the ra
generator calculates a light ray and passes it to the sc
graph, which determines its intersection with each objec
the scenery.

In detail, null geodesics are implemented as piecewise
ear curves. They are determined by integrating the null g
desic equation

ẍa1Gbg
a ẋbẋg50, S ẋa5

dxa

dl D ~18!

from the spacetime point of the observer back to the spa
time point of emission. This integration is done by a fourt
order Runge–Kutta method. Stepsize control9 is incorporated
to take into account that spacetime has different curvatur
different regions and for faster and more precise calculatio
Initial values for the integration of a null geodesic are o
tained from the camera module whose position is given
the coordinate reference system (t,l ,q,w). The orientation
of the camera—the direction of viewd, the right-vectorr ,
and the up-vectoru—is given with respect to its local fram
@Eqs.~3a!–~3b!#:

d5dlel̂ 1dqeq̂1dweŵ , ~19a!

r5r lel̂ 1r qeq̂1r weŵ , ~19b!

u5ulel̂ 1uqeq̂1uweŵ , ~19c!

with udu5ur u5uuu51 andd3u5r ~see Fig. 5!.

Fig. 5. The position of the camera is given by the spherical coordina
( l ,q,w), whereas the orientation of the camera is given with respect to
local frame (el̂ ,eq̂ ,eŵ).
1047Thomas Mu¨ller
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An initial direction y of a null geodesic as seen by th
camera is thus

y5y1d1y2r1y3u5 ỹ1] l1 ỹ2]q1 ỹ3]w , ~20!

whereỹi are the initial valuesẋi(l50) for solving the null
geodesic Eq.~18!. The missing time componentỹ0 of the
null direction has to be calculated from the null geode
conditiongmnỹmỹn50.

The next step is to intersect the null geodesics with
objects of the scenery which are all static. Rendering co
plex sceneries with high resolution needs a lot of compu
resources. Because null geodesics do not interact, one
easily split the image into several parts which can be ca
lated on multiple processor computers.10 Each segment o
the light ray has to be intersected with all objects of t
scenery. A more intelligent strategy is to divide spaceti
into small volume elements, called voxels. Because we h
a static scenery, it suffices to construct a three-dimensio
spacelike grid. Every voxel stores all objects that lie co
pletely or at least partially in it. To determine the voxels th
are traversed by a light ray, we have to check the position
all endpoints of the line segments relative to the grid. Hen
we have to intersect the light ray only with the non-emp
voxels on the path of the light ray.

VI. VISUAL APPEARANCE

Contrary to the usual visualization of wormholes in s
ence fiction films or in popular literature, one does not se
tube through which a spacecraft could travel. Neither stra

Fig. 6. Layout of the scenery illustrated in the embedding diagram.

Fig. 7. Two light rays starting from the same point follow different lig
paths.~Here only the embedding diagram of the upper universe is draw!
1048 Am. J. Phys., Vol. 72, No. 8, August 2004
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light within the wormhole throat nor the possibility of look
ing into a surrounding space exists. Instead, the wormh
throat acts as a strange mirror showing our own and the o
universe in a multiple way. We will check this effect b
means of a simple model. To this end we will first repres
the layout of the scenery and will then explain in detail wh
we see.

The Scenery. In the universe of the observer there is
regular lattice structure surrounding one side of the wor
hole throat. Around the lattice there are signs showing
four directions of the compass, also called cardinal points
the ‘‘lower’’ universe there is the same lattice structure a
surrounded by four signs showing cardinal points. The c
cial question is, how shall we position these signs? Here
have chosen the situation illustrated in Fig. 6.

Imagine that you start from the south in the ‘‘upper’’ un
verse and head strictly north. Then you will end up in t
north of the lower universe. To have the same situation
gardless of where you begin, we have to arrange the s
showing the main directions as we did in Fig. 6. Stric
speaking, if we put a sign, which shows the name of
direction to which we will walk in front of us in our loca
frame, then we must parallel transport our system to
other universe. After transportation we should be able to r
both signs from left to right.

What we see. As long as the wormhole throat of radiu
b050, we see only our own universe~Fig. 9!. But if there is

Fig. 8. Light rays in the embedding diagram that are responsible for
mirror images.

Fig. 9. Lattice structure without a wormhole. The observer is locatedl
513,q5p/2,w5p/2. The camera has a field of view of 45°336°.
1048Thomas Mu¨ller
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a wormhole throat of radiusb050.3 ~Fig. 10!, the lattice
starts to distort slightly. Remember that the throat is in
middle of the lattice structure and thus is directly in front
us. The ‘‘Universe North’’ sign can be read twice. The a
pearance of these two images can be understood by fol
ing two light rays starting from the same point~for example,
‘‘U’’ in Fig. 7 !. One of them will take the direct path to th
observer, which results in the slightly bended outer ima
whereas the other one traverses the longer way around
throat and produces the mirrored inner image.

To have a better view of the inner environment, we stre
the throat to radiusb052.0 ~Fig. 11!. The lattice in our own
universe seems a little bit more distorted. But the Unive
North sign is now hardly readable because of the str
bending of light by the wormhole throat. Adjacent to th
center, we can see the first mirror image of the comp
lattice in our universe and closer to the center also the
mirror image of the other universe. Looking straight into t
wormhole offers a view of the whole lattice of the low
universe. A bit more impressive is Fig. 12, where we ha
the same situation except that the wormhole throat is n
surrounded by a textured, cubic room on each side. He
becomes more obvious that we can see the complete roo
the other universe through the wormhole.

To understand why we see mirror images within the thro
we have to follow light rays in the embedding diagra
which pass close to or go through the throat~Fig. 8!. If our

Fig. 10. MT wormhole with throat radiusb050.3. The observer has th
same position as in Fig. 9. But the field of view is reduced to 22.5°318° to
focus on the distortion of the Universe North sign.

Fig. 11. MT wormhole with throat radiusb052.0. Note that the wormhole
mouth is in the middle of the lattice structure in both universes. The crit
angle mentioned in Sec. IV istcrit'8.7°.
1049 Am. J. Phys., Vol. 72, No. 8, August 2004
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camera has, for example, a horizontal field of view of 60
we have to scan fromt5230° to t530°. Light rays with
t.tcrit @Eq. ~17!# stay in our universe, but as we approa
the critical angle, they will orbit around the throat. Henc
we not only see a distorted image of what is behind
wormhole throat, but also a mirror image of our near en
ronment. After crossing the critical angle, the light ray orb
the throat before reaching the lattice or the walls of the roo
Thus, we see a mirror image before we see the comp
lattice or room of the other universe.
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Bourdon Tube. The only absolute pressure gauge is the manometer, but, because it is liquid filled, it is difficult to transport, and must alway
vertical. The Bourdon tube pressure gauge, invented in France in 1849 by Eugene Bourdon, must be calibrated using known pressures. In this deas
whose pressure is to be measured is introduced into a flattened tube coiled into a full circle. As the pressure increases the tube straightens out, ane motion
of the free end of the tube is amplified by a mechanical level mechanism. The apparatus is in the Cornell University collection of demonstrationus,
and is large enough to be viewed by a class of several hundred students.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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