Visual appearance of a Morris—Thorne-wormhole
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Following the paper of Morris and Thorne on wormholes as a tool for teaching general relativity, we
present the visual appearance of this simple spacetime using an embedding diagram and a raytracing
program. Even if such a wormhole is not physically reasonable, we take the risk and take a short trip
to an unreasonable parallel universe.2@4 American Association of Physics Teachers.

[DOI: 10.1119/1.1758220

[. INTRODUCTION where here and in the following geometric unit&c

If we wanted to leave our home planet, Earth, today and_ 1) are gseq. The coo_rdmaﬂee(—_oo_,oo) measures the
set out for new worlds, it would be a long and strenuougProper rapllal distance gt fixed Bqth limits ofl represent an
journey. Even a flight to Mars would take at least six months @Symptotically flat region. The time coordinateepresents
But science fiction offers us a totally different possibility. For global time. o _ _ _
the light barrier by compressing the space between us arff basis vectors
our destination and thus shorten the distance. Amuch more g—y =g, ey=d,, 8,=d,, 2
elegant way would be a shortcut in spacetime itself—a ) o
wormhole. In the filmContactwhich is based on Carl Sa- Where the partial derivative operatafg(u=t,r,9,¢) rep-
gan’s novel of the same name, the protagonist Dr. Eleanorrésent the tangent vectors along the curve with constant co-
Arroway overcomes any distance within a few instants ofordinatesv(v# u) (see Fig. 1 A detailed description of this
time by traveling through a wormhole. Indeed, Morris andnotation can be found in Ref. 4.

Thorng found a solution of Einstein's general relativity = Next, we turn to the local frame of a static observer
theory that represents a “tunnel” in spacetime and could in(€; € ,€j,€;) with

principle be traversed by human beings. But, unfortunately, it N —J (33
needs exotic matter for its generation. &=, &=,

We will assume that all exotic matter is transparent and
does not interact with the observer. This Morris—Thorne ! 9 ! J

: ~ &= =% T o5 -
(MT) wormhole can be described by a very simple metric, Vbi+12 ¢ Jbi+1%sing ¢
Eq. (2). Howeyer, It s not so easy to underst'and what aMrhe Riemann curvature tensor in this local frame has only
observer traveling in the corresponding spacetime would ac-

tually see. Until now, the spacetime of a wormhole has been© independent component

(3b)

illustrated only by its embedding diagram, which can lead to o o b(z)
confusion. In this article we try to understand the structure of ~ Risi9=Rizie= ~Ryeoe=— (021122 (4)

the MT wormhole spacetime by examining its embedding

diagram together with the real visual appearance for an obFhe only nonzero component of the Ricci tensorRg=

server generated by four-dimensional raytracing. Detailed- 2b§/(b§+l2)2. Thus, the Einstein tensor reads

discussions about the physics of wormholes and their differ- )

ent shapes can be found in VisdaNe recommend Ref. 2 for G =Gz —Grie - Goe— — bg 5

a short introduction to wormhole geometries and their tra- A L DT e (bp+12)% ®)

Ve—ﬁ-shaebglg}sicm contents of the MT wormhole is reviewed inBecause all tensors are expressed with respect to the local

Sec. II. A helpful tool for understanding its geometry— frame, the components of the stress energy tensor deduced

especially for tracing null or timelike geodesics—is an em_f.rom the Emste_m equations have dlregt physical interpreta-

bedding diagram as discussed in Sec. IIl. A qualitative defions: Tiz=p(l) is the total energy densityfijj=— 7(l) rep-

scription of photon orbits depending on an effective potentiaresents the tension per unit area in the radial direction; and

is given in Sec. IV. In Sec. V we will have a look at some of T3=T;;=p(l) is the pressure in transverse direction. The

the crucial details of the raytracing systeRayViS and we annoying fact that the energy density is negative destroys

will discuss the visual appearance of a MT wormhole in Secone’s hope of using this wormhole as a shortcut for space

VI. travels in the near future. Nevertheless, it is an interesting
model for studying the visual appearance of a wormhole,

Il. REVIEW OF PHYSICAL DETAILS because more realistic ones do not essentially differ from this
one.

Morris and Thorne presented a very simple kind of worm-
hole in their 1988 papérThe spacetime of this wormhole is ||| EMBEDDING DIAGRAM REVIEWED

described by the spherically symmetric and static metric _ _ ) ) )
We have no idea what a four-dimensional spacetime like

ds?= —dt?+dI?+(b§+12)(d9%+sir? 9dg?), (1) the MT wormhole looks like. One way for visualizing the
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Y3 upper universe

')

I O o

I l l Fig. 2. 2-surface § = /2, t=constant) of the MT wormhole embedded in
1 2 3 a Euclidean space.

Fig. 1. Base vectors, andd,, for the two-dimensional case.

IV. PHOTON ORBITS

. g . . To analyze the behavior of geodesics, we will use the La-
inner geometry of a-dimensional hypersurface is to embed grangian formalisnisee Ref. 5 for a detailed discussjoA

it into a Euclidean i+ 1)-dimensional surrounding space. codesic between two aiven poinds and B satisfies the

The aim is to find a surface in the higher dimensional spacg iational orinciol 9 P

that has the same inner geometry as the spacetime hypersﬁ@”aﬂona principie

face. The embedding space has no physical meaning, how-

ever. So for example we can visualize the curvature of the 0= 5J ds= 5J LdA,

surface of our home planet by embedding it in the three-

dimensional space. P Y 9 with the Lagrangiarn. = \/|gMV5(“5(V|. A dot means differen-
To understand the geometry of the MT wormhole, we cariiation with respect to an affine parameterinstead of solv-

take advantage of the spherical symmetry and static nature #1g the variational problen9), we can consider an equiva-

the metric and study only the equatorial “plane” &t= /2  lent one, where

at a fixed instant of time. With the coordinate transformation

r?=bZ+12 the metric on this plane reads 0= 5J LdN, (10

€)

with £=L2, which also is valid for null geodesics. Here the
(6) Lagrangiant is defined by

L=g, K"K, (12)

We can embed this two-surface in a three-dimensional Eulh€ geodesic equations follow from the Euler—Lagrangian
clidean space, which is represented by cylindrical coordi€duations

dgg-surface:mdrz"' r2d‘PZ-

nates ¢,¢,z), by identifying this surface with a surface d £ L
=2(r). The metric of the surface in Euclidean space can be gy 7x& ~ 7x# ~ - (12)
written as

As in Sec. Ill, we can take advantage of spherical symme-
try. Thus, it will suffice to consider only null geodesics in the
dr2+r2dg2. (7)  equatorial planed= m/2). It always is possible to rotate the
coordinate system such that a null geodesic will lie com-
pletely in the equatorial plane. Witk“=(t,l,J,¢) and Eq.
The comparison of Eq6) with Eq. (7) and integration with ~ (11), we have
respect tar leads to the shape of the embedding diagram

2

2 _
do—euclidean_

1+

dr

L= —t2+12+ (b5 +12) % (13)
r r2 If we solve the Euler—Lagrangian Eq&l2) for u=t and
z(r)==bgIn b_0+ \V (b_o) - } (8)  u=¢, we find two constants of motiork=t and h= (b3

+12) ¢, whose ratiob=h/k is the apparent impact param-
ter. In particularp=0 for radial curves(Compare Ref. 4
qr the Schwarzschild cagdnstead of solving the geodesic
quations directly, we use the fact that+ 0 for null geode-
cs. If we use the constants of motion and ER), we get
something like arenergy balance

shown in Fig. 2. It is stressed that only the surface is part o
the spacetime. The embedding space itself has no physic
meaning. The impression of a tube as Fig. 2 might suggest i
misleading. There is no tube in the spacetime, because t
regions with radial coordinate<<b, are not part of the
spacetime. The throat itself has a spherical topology and be- '|2+Vp: K2, (14)
comes important only for geodesics spiralling in, like water 02 o . ) )

in a syphon. The qualitative behavior of null geodesics willwhereV,=h/(by+17) is an effective potential for the light
be discussed in the following section. Their traces in an emray (see Fig. 3. Null geodesics with a constaki<h/by(b
bedding diagram are shown in Sec. VI. >hy) remain in the universe where they have been emitted.

1046 Am. J. Phys., Vol. 72, No. 8, August 2004 Thomas|Mu 1046



Fig. 3. Effective potential of a photon
with angular momentunm in the MT
wormhole spacetime.

They cannot overcome the angular momentum barrier. The A raytracing program is ideally suited for an object ori-

ones withk>h/by(b<b) tunnel through the wormhole into ented approackRayViSis implemented in G +). Three of

the other universe. In the limiting cage=h/by(b=b,), the its main components are the camera module, the ray-

null geodesic asymptotically approaches the throat. generating module, and the scenegraph. The camera repre-
From the point of view of raytracing, we can separatesents the observer from which light ragmull geodesicsare

these three cases by the angiebetween the incoming/ traced back in time. For every pixel of an image the ray-

outgoing light ray and the radial direction to the wormhole generator calculates a light ray and passes it to the scene-

with respect to a local observésee Fig. 4 We directly see  graph, which determines its intersection with each object of

that the scenery.

(b2+12)d? b2 +12 In detail, null geodesics are implemented as piecewise lin-

Sir? 7= _ (15 ~ ar curves. They are determined by integrating the null geo-
dI?+ (b5+12)d¢?  b3+12+(dl/de)?” desic equation
ivati i dx®
The derivativedl/d¢ can be substituted by KT 8x7=0, |xe="X 18)
diyz (i)? b d\
(@) = (E) =Hz(bg+|2)2—(bc2)+|2), (16)  from the spacetime point of the observer back to the space-

_ time point of emission. This integration is done by a fourth-
which results froml = (dl/d¢)¢ and the Lagrangian equa- order Runge—Kutta method. Stepsize cofttimincorporated

tions. Thus, Eq(15) becomes to take into account that spacetime has different curvature in
) dif_'fgrent regions and for fastgr and more precise calculations.

Sir? 7= b (17) Initial values for the integration of a null geodesic are ob-
bg+12" tained from the camera module whose position is given in

_ . _ 5 the coordinate reference systeml (¥,¢). The orientation
with the critical anglerc=arcsinbo/ybo+17). Observers f the camera—the direction of view, the right-vectorr,

can now distinguish between light rays coming from theirgng the up-vectou—is given with respect to its local frame
own universe > ;) or the other universen<ry) by  [Egs.(38—(3b)]:
measuring the incident angte

Thus, we expect two regions for the visual appearance of a d=di&+dyey+dee;, (193
MT wormhole. The outer one—corresponding to =16+ 5 5+ 8, (19b)
™ 7ei—shows only the universe of the observer and the
inner one is a window to the other universe. U=Ug+Uyeyt+U,e;, (199

with |d|=|r|=|u|=1 anddXu=r (see Fig. 5.
V. VISUALIZING SYSTEM

The visualization of spacetimes can be done by four- Z A
dimensional raytracing. The figures in this article are ren-
dered by the raytracing systeRayViSdeveloped by Gnoe® e
and extended for four-dimensional raytracing by Weiskopf ®
and the authdft. e
I
v R I
~ | 7 Vy
¥ ~_ 1 - L
______ >~/

Wormbhole

Fig. 5. The position of the camera is given by the spherical coordinates
Fig. 4. Angle between the light rayds®=0) and the radial direction to  (I,%,¢), whereas the orientation of the camera is given with respect to its
the wormhole. local frame € ,€5,€;).
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upper universe observer
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lower universe
Fig. 6. Layout of the scenery illustrated in the embedding diagram. Fig. 8. Light rays in the embedding diagram that are responsible for the

mirror images.

An initial directiony of a null geodesic as seen by the

camera is thus light within the wormhole throat nor the possibility of look-
y=Y1d+Yor +yau=Y19,+V299+V3d,, (200  ing into a surrounding space exists. Instead, the wormhole
L . ) throat acts as a strange mirror showing our own and the other
wherey; are the initial valuex'( =0) for solving the null  yniverse in a multiple way. We will check this effect by
geodesic Eq(18). The missing time componeff, of the  means of a simple model. To this end we will first represent
null direction has to be calculated from the null geodesicthe layout of the scenery and will then explain in detail what
conditiong,,,y*y”=0. we see.

The next step is to intersect the null geodesics with the The Sceneryln the universe of the observer there is a
objects of the scenery which are all static. Rendering comregular lattice structure surrounding one side of the worm-
plex sceneries with high resolution needs a lot of computehole throat. Around the lattice there are signs showing the
resources. Because null geodesics do not interact, one céour directions of the compass, also called cardinal points. In
easily split the image into several parts which can be calcuthe “lower” universe there is the same lattice structure also
lated on multiple processor computéPsEach segment of surrounded by four signs showing cardinal points. The cru-
the light ray has to be intersected with all objects of thecial question is, how shall we position these signs? Here we
scenery. A more intelligent strategy is to divide spacetimehave chosen the situation illustrated in Fig. 6.
into small volume elements, called voxels. Because we have Imagine that you start from the south in the “upper” uni-

a static scenery, it suffices to construct a three-dimensionalerse and head strictly north. Then you will end up in the
spacelike grid. Every voxel stores all objects that lie com-north of the lower universe. To have the same situation re-
pletely or at least patrtially in it. To determine the voxels thatgardless of where you begin, we have to arrange the signs
are traversed by a light ray, we have to check the positions ahowing the main directions as we did in Fig. 6. Strictly
all endpoints of the line segments relative to the grid. Hencespeaking, if we put a sign, which shows the name of the
we have to intersect the light ray only with the non-emptydirection to which we will walk in front of us in our local

voxels on the path of the light ray. frame, then we must parallel transport our system to the
other universe. After transportation we should be able to read
VI. VISUAL APPEARANCE both signs from left to right.

What we seeAs long as the wormhole throat of radius
Contrary to the usual visualization of wormholes in sci-b,=0, we see only our own univergEig. 9. But if there is
ence fiction films or in popular literature, one does not see a
tube through which a spacecraft could travel. Neither strange

Universe 1
f\

2=

observer " _ “

Fig. 7. Two light rays starting from the same point follow different light Fig. 9. Lattice structure without a wormhole. The observer is locatdd at
paths.(Here only the embedding diagram of the upper universe is djawn. =13,9=m/2,0=w/2. The camera has a field of view of 4836°.
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Fig. 10. MT wormhole with throat radiub,=0.3. The observer has the
same position as in Fig. 9. But the field of view is reduced to 22 58° to
focus on the distortion of the Universe North sign.

PR
b o

a wormhole throat of radiusy=0.3 (Fig. 10, the lattice
starts to distort slightly. Remember that the throat is in the
middle of the lattice structure and thus is directly in front of
us. The “Universe North” sign can be read twice. The ap-
pearance of these two images can be understood by follow-
ing two light rays starting from the same poiifor example,
“U”in Fig. 7 ). One of them will take the direct path to the
observer, which results in the slightly bended outer image,
whereas the other one traverses the longer way around the
throat and produces the mirrored inner image.

To have a better view of the inner environment, we stretch
the throat to radiub,= 2.0 (Fig. 11). The lattice in our own
universe seems a little bit more distorted. But the Universe
North sign is now hardly readable because of the strong
bending of light by the wormhole throat. Adjacent to the
center, we can see the first mirror image of the completéig. 12. Same situation as in Fig. 11. Now the wormhole throat is sur-
lattice in our universe and closer to the center also the firs{lout”ded(ay a cubic room on eaCI*_‘ side, Icompos‘?d ‘;Sfé'f"“ ceiling, and wall

H H H H H H extures er.: upper universe, Lower: lower unive ne mirror images
mirror image of the O.ther universe. LOOkIng stralght into theof both roor:Es car?peasily be seen in the throat of the wormhole. N%te that
wormhole offers a view of the whole lattice of the lower |, can see the complete room of the other universe.
universe. A bit more impressive is Fig. 12, where we have
the same situation except that the wormhole throat is now

surrounded by a textured, cubic room on each side. Here {amera has, for example, a horizontal field of view of 60°,
becomes more obvious that we can see the complete room Qf., 1o\« to scan from= — 30° to 7= 30° Light rays with

the other universe through the wormhole. > 7. [EQ. (17)] Stay in our universe, but as we approach
To understand why we see mirror images within the throat”~ "erit L=9- yin ¢ . ’ PP
the critical angle, they will orbit around the throat. Hence,

we have to follow light rays in the embedding diagram ) ; : .
which pass close to or go through the thréig. 8. If our W€ Not only see a distorted image of what is behind the
o wormhole throat, but also a mirror image of our near envi-

ronment. After crossing the critical angle, the light ray orbits
I—— r‘ the throat before reaching the lattice or the walls of the room.

Thus, we see a mirror image before we see the complete
lattice or room of the other universe.

—
=R s o E
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Bourdon Tube. The only absolute pressure gauge is the manometer, but, because it is liquid filled, it is difficult to transport, and must always be kept
vertical. The Bourdon tube pressure gauge, invented in France in 1849 by Eugene Bourdon, must be calibrated using known pressures. In thisslesign the g
whose pressure is to be measured is introduced into a flattened tube coiled into a full circle. As the pressure increases the tube straighteasrmitpand th
of the free end of the tube is amplified by a mechanical level mechanism. The apparatus is in the Cornell University collection of demonstratisn apparat
and is large enough to be viewed by a class of several hundred stud@misograph and notes by Thomas B. Greenslade, Jr., Kenyon Qollege
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