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Christopher Nolan’s science fiction movie Interstellar offers a variety of opportunities for students

in elementary courses on general relativity theory. This paper describes such opportunities,

including: (i) At the motivational level, the manner in which elementary relativity concepts

underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level,

instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing

embedding diagrams for the three-parameter wormhole that was used by our visual effects team

and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining

the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-

ray-tracing map backward in time from a camera’s local sky to a wormhole’s two celestial spheres;

(iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that

implementation to construct images of what a camera sees when near or inside a wormhole; (v)

With the student’s implementation, exploring how the wormhole’s three parameters influence what

the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the

parameters for Interstellar’s wormhole; (vi) Using the student’s implementation, exploring the

wormhole’s Einstein ring and particularly the peculiar motions of star images near the ring, and

exploring what it looks like to travel through a wormhole. VC 2015 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1119/1.4916949]

I. INTRODUCTION

A. The context and purposes of this paper

In 1988, in connection with Carl Sagan’s novel Contact,1

later made into a movie,2 one of the authors published an ar-
ticle in this journal about wormholes as a tool for teaching
general relativity.3

This article is a follow-up, a quarter century later, in the
context of Christopher Nolan’s movie Interstellar4 and Kip
Thorne’s associated book The Science of Interstellar.5 Like
Contact, Interstellar has real science built into its fabric,
thanks to a strong science commitment by the director,
screenwriters, producers, and visual effects team, and thanks
to Thorne’s role as an executive producer.

Although wormholes were central to the theme of Contact
and to many movies and TV shows since then, including
Star Trek and Stargate, none of these have depicted correctly
a wormhole as it would be seen by a nearby human.
Interstellar is the first to do so. The authors of this paper, to-
gether with Christopher Nolan who made key decisions,
were responsible for that depiction.

This paper has two purposes: (i) To explain how
Interstellar’s wormhole images were constructed and explain
the decisions made on the way to their final form and (ii) to
present this explanation in a way that may be useful to stu-
dents and teachers in elementary courses on general
relativity.

B. The status of wormholes in the real universe

Before embarking on these explanations, we briefly
describe physicists’ current understanding of wormholes
based on much research done since 1988. For a thorough and

readable, but non-technical review, see the recent book Time
Travel and Warp Drives by Allen Everett and Thomas
Roman.6 For reviews that are more technical, see papers by
Friedman and Higuchi7 and by Lobo.8

In brief, physicists’ current understanding is this:

• There is no known mechanism for making wormholes, ei-
ther naturally in our universe or artificially by a highly
advanced civilization, but there are speculations; for
example, that wormholes in hypothetical quantum foam
on the Planck scale,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G�h=c3

p
� 10�35 m, might somehow

be enlarged to macroscopic size.6,9

• Any creation of a wormhole where initially there is none
would require a change in the topology of space, which
would entail, in classical, non-quantum physics, both neg-
ative energy and closed timelike curves (the possibility of
backward time travel)—according to theorems by Frank
Tipler and Robert Geroch.7 It is likely the laws of physics
forbid this. Likely, but not certain.

• A wormhole will pinch off so quickly that nothing can
travel through it, unless it has “exotic matter” at its throat—
matter (or fields) that, at least in some reference frames, has
negative energy density. Although such negative energy
density is permitted by the laws of physics (e.g., in the
Casimir effect, the electromagnetic field between two
highly conducting plates), there are quantum inequalities
that limit the amount of negative energy that can be col-
lected in a small region of space and how long it can be
there; and these appear to place severe limits on the sizes
of traversable wormholes (wormholes through which things
can travel at the speed of light or slower).6 The implications
of these inequalities are not yet fully clear, but it seems
likely that, after some strengthening, they will prevent
macroscopic wormholes like the one in Interstellar from
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staying open long enough for a spaceship to travel through.
Likely, but not certain.

• The research leading to these conclusions has been per-
formed ignoring the possibility that our universe, with its
four spacetime dimensions, resides in a higher dimen-
sional bulk with one or more large extra dimensions,
the kind of bulk envisioned in Interstellar’s “fifth
dimension.” Only a little is known about how such a bulk
might influence the existence of traversable wormholes,
but one intriguing thing is clear: Properties of the bulk
can, at least in principle, hold a wormhole open without
any need for exotic matter in our four dimensional uni-
verse (our “brane”).8 But the words “in principle” just
hide our great ignorance about our universe in higher
dimensions.

In view of this current understanding, it seems very
unlikely to us that traversable wormholes exist naturally in
our universe, and the prospects for highly advanced civiliza-
tions to make them artificially are also pretty dim.

Nevertheless, the distances from our solar system to others
are so huge that there is little hope, using rocket technology,
for humans to travel to other stars in the next century or
two;10 so wormholes, quite naturally, have become a staple
of science fiction.

And, as Thorne envisioned in 1988,3 wormholes have also
become a pedagogical tool in elementary courses on general
relativity—e.g., in the textbook by James Hartle.11

C. The genesis of our research on wormholes

This paper is a collaboration between Caltech physicist
Kip Thorne, and computer graphics artists at Double
Negative Visual Effects in London. We came together in
May 2013, when Christopher Nolan asked us to collaborate
on building, for Interstellar, realistic images of a wormhole,
and also a fast spinning black hole and its accretion disk,
with ultra-high (IMAX) resolution and smoothness. We saw
this not only as an opportunity to bring realistic wormholes
and black holes into the Hollywood arena but also an oppor-
tunity to create images of wormholes and black holes for rel-
ativity and astrophysics research.

Elsewhere12 we describe the simulation code that we
wrote for this project—DNGR for “Double Negative
Gravitational Renderer”—and the black-hole and accretion-
disk images we generated with it, and also some new insights
into gravitational lensing by black holes that it has revealed.
In this paper, we focus on wormholes, which are much easier
to model mathematically than Interstellar’s fast spinning
black hole, and are far more easily incorporated into elemen-
tary courses on general relativity.

In our modelling of Interstellar’s wormhole, we pretended
we were engineers in some arbitrarily advanced civilization,
and that the laws of physics place no constraints on the
wormhole geometries our construction crews can build.
(This is almost certainly false; the quantum inequalities men-
tioned above, or other physical laws, likely place strong con-
straints on wormhole geometries, if wormholes are allowed
at all—but we know so little about those constraints that we
chose to ignore them.) In this spirit, we wrote down the
spacetime metrics for candidate wormholes for the movie,
and then proceeded to visualize them.

D. Overview of this paper

We begin in Sec. II by presenting the spacetime metrics for
several wormholes and visualizing them with embedding dia-
grams. These metrics include, most importantly, the three-
parameter “Dneg wormhole” metric used in our work on the
movie Interstellar. Then we discuss adding a Newtonian-type
gravitational potential to our Dneg metric, to produce the
gravitational pull that Christopher Nolan wanted, and the
potential’s unimportance for making wormhole images.

In Sec. III, we describe how light rays, traveling backward
in time from a camera to the wormhole’s two celestial
spheres, generate a map that can be used to produce images
of the wormhole and of objects seen through or around it;
and we discuss our implementations of that map to make the
images seen in Interstellar. In the Appendix, we present a
fairly simple computational procedure by which students can
generate their own map and thence their own images.

In Sec. IV, we use our own implementation of the map to
describe the influence of the Dneg wormhole’s three parame-
ters on what the camera sees. Then, in Secs. V and VI, we
discuss Christopher Nolan’s use of these kinds of implemen-
tations to choose the parameter values for Interstellar’s
wormhole; we discuss the resulting wormhole images that
appear in Interstellar, including that wormhole’s Einstein
ring, which can be explored by watching the movie or its
trailers, or in students’ own implementations of the ray-
tracing map; and we discuss images made by a camera trav-
elling through the wormhole, that do not appear in the
movie. Finally in Sec. VII, we present brief conclusions.

Scattered throughout the paper are suggestions of calcula-
tions and projects for students in elementary courses on gen-
eral relativity. And throughout, as is common in relativity,
we use “geometrized units” in which Newton’s gravitational
constant G and the speed of light c are set equal to unity, so
time is measured in length units: 1 s ¼ c� 1 s ¼ 2:998
�108 m; and mass is expressed in length units: 1 kg
¼ ðG=c2Þ � 1 kg ¼ 0:742� 10�27 m; and the mass of the
Sun is 1.476 km.

II. SPACETIME METRICS FOR WORMHOLES

AND EMBEDDING DIAGRAMS

In general relativity, the curvature of spacetime can be
expressed mathematically in terms of a spacetime metric. In
this section, we review a simple example of this: the metric
for an Ellis wormhole; and then we discuss the metric for the
Double Negative (Dneg) wormhole that we designed for
Interstellar.

A. The Ellis wormhole

In 1973 Homer Ellis13 introduced the following metric for
a hypothetical wormhole, which he called a “drainhole”14

ds2 ¼ �dt2 þ d‘2 þ r2ðdh2 þ sin2h d/2Þ; (1)

where r is a function of the coordinate ‘ given by

rð‘Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ‘2

q
; (2)

and q is a constant.
As always in general relativity, one does not need to be

told anything about the coordinate system in order to figure
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out the spacetime geometry described by the metric; the met-
ric by itself tells us everything. Deducing everything is a
good exercise for students. Here is how we do so.

First, in �dt2 the minus sign tells us that t, at fixed ‘, h, /,
increases in a timelike direction; and the absence of any fac-
tor multiplying �dt2 tells us that t is, in fact, proper time
(physical time) measured by somebody at rest in the spatial,
f‘; h;/g, coordinate system.

Second, the expression r2ðdh2 þ sin2h d/2Þ is the familiar
metric for the surface of a sphere with circumference 2pr and
surface area 4pr2, written in spherical polar coordinates
fh;/g, so the Ellis wormhole must be spherically symmetric.
As we would in flat space, we shall use the name “radius” for
the sphere’s circumference divided by 2p, i.e., for r. For the
Ellis wormhole, this radius is r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ‘2

p
.

Third, from the plus sign in front of d‘2 we infer that ‘ is a
spatial coordinate; and since there are no cross terms d‘dh or
d‘ d/, the coordinate lines of constant h and /, with increas-
ing ‘, must be radial lines; and since d‘2 has no multiplying
coefficient, ‘ must be the proper distance (physical distance)
traveled in that radial direction.

Fourth, when ‘ is large and negative, the radii of spheres
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ‘2

p
is large and approximately equal to j‘j. When

‘ increases to zero, r decreases to its minimum value q. And
when ‘ increases onward to a very large (positive) value, r
increases once again, becoming approximately ‘. This tells
us that the metric represents a wormhole with throat radius
q, connecting two asymptotically flat regions of space, ‘ !
�1 and ‘!þ1.

In Hartle’s textbook,11 a number of illustrative calcula-
tions are carried out using Ellis’s wormhole metric as an
example. The most interesting is a computation, in Sec. VII,
of what the two-dimensional equatorial surfaces (surfaces
with constant t and h¼p/2) look like when embedded in a
flat 3-dimensional space, the embedding space. Hartle shows
that equatorial surfaces have the form shown in Fig. 1—a
form familiar from popular accounts of wormholes.

Figure 1 is called an “embedding diagram” for the worm-
hole. We discuss embedding diagrams further in Sec. II B 3,
in the context of our Dneg wormhole.

Thomas M€uller and colleagues15 have visualized an Ellis
wormhole in various environments by methods similar to
those that we lay out below.

B. The double negative three-parameter wormhole

The Ellis wormhole was not an appropriate starting point
for our Interstellar work. Christopher Nolan, the movie’s
director, wanted to see how the wormhole’s visual

appearance depends on its shape, so the shape had to be ad-
justable, which is not the case for the Ellis wormhole.

So for Interstellar we designed a wormhole with three free
shaping parameters and produced images of what a camera
orbiting the wormhole would see for various values of the
parameters. Christopher Nolan and Paul Franklin, the leader
of our Dneg effort, then discussed the images; and based on
them, Nolan chose the parameter values for the movie’s
wormhole.

In this section, we explain our three-parameter Double
Negative (Dneg) wormhole in three steps: First, a variant
with just two parameters (the length and radius of the worm-
hole’s interior) and with sharp transitions from its interior to
its exteriors; then a variant with a third parameter, called the
lensing length, that smooths the transitions; and finally a var-
iant in which we add a gravitational pull.

1. Wormhole with sharp transitions

Our wormhole with sharp transitions is a simple cylinder
of length 2a, whose cross sections are spheres, all with the
same radius q; this cylinder is joined at its ends onto flat
three-dimensional spaces with balls of radius q removed.
This wormhole’s embedding diagram is shown in Fig. 2. As
always, the embedding diagram has one spatial dimension
removed, so the wormhole’s cross sections appear as circles
rather than spheres.

Using the same kinds of spherical polar coordinates as for
the Ellis wormhole above, the spacetime metric has the gen-
eral wormhole form (1) with

rð‘Þ ¼ q for the wormhole interior; j‘j � a
j‘j � aþ q for the wormhole exterior; j‘j > a:

�
(3)

2. Dneg wormhole without gravity

Our second step is to smooth the transitions between the
wormhole interior j‘j < a (the cylinder) and the two external
universes j‘j > a. As we shall see, the smoothed transitions
give rise to gravitational lensing (distortions) of the star field
behind each wormhole mouth. Such gravitational lensing is a
big deal in astrophysics and cosmology these days (see, e.g.,
the Gravitational Lensing Resource Letter16) and, as we dis-
cuss in Sec. V C, it shows up in a rather weird way in
Interstellar near the edges of the wormhole image.

Fig. 1. Embedding diagram for the Ellis wormhole: The wormhole’s two-

dimensional equatorial plane embedded in three of the bulk’s four spatial

dimensions.

Fig. 2. Embedding diagram for the wormhole with sharp transition, Eqs. (1)

and (3).
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Somewhat arbitrarily, we chose to make the transition
have approximately the same form as that from the throat
(horizon) of a nonspinning black hole to the external uni-
verse in which the hole lives. Such a hole’s metric (the
“Schwarzschild metric”) has a form that is most simply writ-
ten using radius r as the outward coordinate rather than
proper distance ‘:

ds2 ¼ � 1� 2M=rð Þdt2 þ dr2

1� 2M=r

þ r2 dh2 þ sin2h d/2
� �

; (4)

where M is the black hole’s mass. Comparing the spatial
part of this metric (t¼ constant) with our general wormhole

metric (1), we see that d‘ ¼ 6dr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
, which can

easily be integrated to obtain the proper distance traveled as
a function of radius, ‘(r). What we want, however, is r as a
function of ‘, and we want it in an analytic form that is easy
to work with. So for our Dneg wormhole, we choose a fairly
simple analytic function that is roughly the same as the
Schwarzschild r(‘).

Specifically, outside the wormhole’s cylindrical interior,
we chose

r ¼ qþ 2

p

ðj‘j�a

0

arctan
2n

pM

� �
dn

¼ qþM x arctan x� 1

2
ln 1þ x2ð Þ

� 	
; for j‘j > a;

(5a)

where

x � 2 j‘j � að Þ
pM : (5b)

(Students might want to compare this graphically with the

inverse of the Schwarzschild ‘ ¼
Ð

dr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
, plot-

ting, e.g., r � q for our wormhole as a function of j‘j � a;
and r � 2M of Schwarzschild as a function of distance from
the Schwarzschild horizon r¼ 2M.) Within the wormhole’s
cylindrical interior, we chose, of course,

r ¼ q for j‘j < a: (5c)

Equations (5) for r(‘), together with our general wormhole
metric (1), describe the spacetime geometry of the Dneg
wormhole without gravity.

For the Schwarzschild metric, the throat radius q is equal
to twice the black hole’s mass (in geometrized units),
q ¼ 2M. For our Dneg wormhole, we choose the two pa-
rameters q and M to be independent: they represent the
wormhole’s radius and the gentleness of the transition from
the wormhole’s cylindrical interior to its asymptotically flat
exterior.

We shall refer to the ends of the cylindrical interior,
‘¼6a, as the wormhole’s mouths. They are spheres with
circumferences 2pq.

3. Embedding diagrams for the Dneg wormhole

We construct embedding diagrams for the Dneg wormhole
(and any other spherical wormhole) by comparing the spatial

metric of the wormhole’s two-dimensional equatorial surface
ds2 ¼ d‘2 þ r2ð‘Þ d/2 with the spatial metric of the embed-
ding space. Doing so is a good exercise for students. For the
embedding space, we choose cylindrical coordinates with the
symmetry axis along the wormhole’s center line. Then (as in
Figs. 1 and 2), the embedding space and the wormhole share
the same radial coordinate r and angular coordinate /, so
with z the embedding-space height above the wormhole’s
midplane, the embedding-space metric is ds2 ¼ dz2 þ dr2

þr2 d/2. Equating this to the wormhole metric, we see that17

dz2 þ dr2 ¼ d‘2, which gives us an equation for the height z
of the wormhole surface as a function of distance ‘ through
the wormhole:

zð‘Þ ¼
ð‘

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðdr=d‘0Þ2

q
d‘0: (6)

By inserting the Dneg radius function (5) into this expres-
sion and performing the integral numerically, we obtain the
wormhole shapes shown in Fig. 3 (and also Figs. 7 and 9).

The actual shape of this embedding diagram depends on
two dimensionless ratios of the Dneg metric’s three parame-
ters: the wormhole’s length-to-diameter ratio 2a/2q¼ a/q,
and its ratio M=q. For chosen values of these ratios, the
wormhole’s size is then fixed by its interior radius q, which
Christopher Nolan chose to be one kilometer in Interstellar,
so with the technology of the movie’s era the wormhole’s
gravitational lensing of our galaxy’s star field can be seen
from Earth, but barely so.18

In the embedding diagram of Fig. 3, instead of depicting
M we depict the lateral distance W in the embedding space
over which the wormhole’s surface changes from vertical to
45 degrees. ThisW is related toM by19

W ¼ ð1:42953…ÞM (7)

We call thisW the wormhole’s Lensing width, and we often
use it in place ofM as the wormhole’s third parameter.

4. Dneg wormhole with gravity

Christopher Nolan asked for the movie’s spacecraft
Endurance to travel along a trajectory that gives enough time

Fig. 3. Embedding diagram for the Dneg wormhole with parameters a/q¼ 1

(length 2a of cylindrical section equal to its diameter 2q) and M=q ¼ 0:5,

which corresponds to a lensing widthW=q ¼ 0:715.
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for the audience to view the wormhole up close before
Cooper, the pilot, initiates descent into the wormhole’s
mouth. Our Double Negative team designed such a trajec-
tory, which required that the wormhole have a gravitational
acceleration of order the Earth’s, �10 m/s2, or less. This is
so weak that it can be described accurately by a Newtonian
gravitational potential U of magnitude jUj � c2 ¼ 1 (see
below), that shows up in the time part of the metric. More
specifically, we modify the wormhole’s metric (1) to read

ds2 ¼ �ð1þ 2UÞdt2 þ d‘2 þ r2ðdh2 þ sin2h d/2Þ: (8)

The sign of U is negative (so the wormhole’s gravity will be
attractive), and spherical symmetry dictates that it be a func-
tion only of ‘.

According to the equivalence principle, the gravitational
acceleration experienced by a particle at rest outside or
inside the wormhole (at fixed spatial coordinates f‘; h;/g
¼ constant) is the negative of that particle’s 4-acceleration.
Since the 4-acceleration is orthogonal to the particle’s
4-velocity, which points in the time direction, its gravita-
tional acceleration is purely spatial in the coordinate system
ft; ‘; h;/g. It is a nice exercise for students to compute the
particle’s 4-acceleration and thence its gravitational acceler-
ation. The result, aside from negligible fractional corrections
of order jUj, is

g ¼ �ðdU=d‘Þ e‘̂ ; (9)

where e‘̂ is the unit vector pointing in the radial direction.
Students may have seen an equation analogous to Eq. (8)
when space is nearly flat, and a calculation in that case which
yields Eq. (9) for g (e.g., Sec. VI of Hartle11). Although for
the wormhole metric (8), with r given by Eqs. (5) or (2),
space is far from flat, Eq. (9) is still true—a deep fact that
students would do well to absorb and generalize.

It is reasonable to choose the gravitational acceleration
g ¼ jgj ¼ jdU=d‘j to fall off as �1/(distance)2 as we move
away from the wormhole mouth; or at least faster than
�1/(distance). Integrating g ¼ jdU=d‘j radially and using
this rapid falloff, the student can deduce that the magnitude
of U is of order g times the wormhole’s radius q. With a

gravitational acceleration g ¼ jgj�10 m=s2 and q¼ 1 km,

this gives jUj � jgjq�104 ðm=sÞ2 � 10�12. Here, we have
divided by the speed of light squared to bring this into our
geometrized units.

Such a tiny gravitational potential corresponds to a slow-
ing of time near the wormhole by the same small amount, no
more than a part in 1012 [cf. the time part of the metric (8)].
This is so small as to be utterly unimportant in the movie,
and so small that, when computing the propagation of light
rays through the wormhole, to ultrahigh accuracy we can
ignore U and use the Dneg metric without gravity. We shall
do so.

III. MAPPING A WORMHOLE’S TWO CELESTIAL

SPHERES ONTO A CAMERA’S SKY

A. Foundations for the Map

A camera inside or near a wormhole receives light rays
from light sources and uses them to create images. In this pa-
per we shall assume, for simplicity, that all the light sources
are far from the wormhole, so far that we can idealize them

as lying on “celestial spheres” at ‘ ! �1 (lower celestial
sphere; Saturn side of the wormhole in the movie
Interstellar) and ‘!þ1 (upper celestial sphere; Gargantua
side in Interstellar); see Fig. 4. (Gargantua is a supermassive
black hole in the movie that humans visit.) Some light rays
carry light from the lower celestial sphere to the camera’s
local sky (e.g., Ray 1 in Fig. 4); others carry light from the
upper celestial sphere to the camera’s local sky (e.g., Ray 2).
Each of these rays is a null geodesic through the wormhole’s
spacetime.

On each celestial sphere we set up spherical polar coordi-
nates fh0;/0g, which are the limits of the spherical polar
coordinates fh;/g as ‘! 61. We draw these two celestial
spheres in Fig. 5, a diagram of the three-dimensional space
around each wormhole mouth, with the curvature of space
not shown. Notice that we choose to draw the north polar
axes h¼ 0 pointing away from each other and the south polar
axes h¼ p pointing toward each other. This is rather arbi-
trary, but it feels comfortable to us when we contemplate the
embedding diagram of Fig. 4.

We assume the camera moves at speeds very low com-
pared to light speed (as it does in Interstellar), so relativistic
aberration and doppler shifts are unimportant, Therefore,
when computing images the camera makes, we can treat the
camera as at rest in the f‘; h;/g coordinate system.

We can think of the camera as having a local sky on which
there are spherical polar coordinates fhcs;/csg (“cs” for
camera sky; not to be confused with celestial sphere!); Fig.
5. In more technical language, fhcs;/csg are spherical polar
coordinates for the tangent space at the camera’s location.

A light ray that heads backward in time from the camera
(e.g., Ray 1 or 2 in Fig. 4), traveling in the fhcs;/csg direc-
tion, ultimately winds up at location fh0;/0g on one of the
wormhole’s two celestial spheres. It brings to fhcs;/csg on
the camera’s sky an image of whatever was at fh0;/0g on the
celestial sphere.

This means that the key to making images of what the
camera sees is a ray-induced map from the camera’s sky to
the celestial spheres: fh0;/0; sg as a function of fhcs;/csg,
where the parameter s tells us which celestial sphere the

Fig. 4. Embedding diagram showing light rays 1 and 2 that carry light from

a wormhole’s lower and upper celestial spheres to a camera. The celestial

spheres are incorrectly depicted close to the wormhole; they actually are

very far away, and we idealize them as at ‘¼61.
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backward light ray reaches, the upper one (s¼þ) or the
lower one (s¼�).

In the Appendix, we sketch a rather simple computational
procedure by which students can compute this map and then,
using it, can construct images of wormholes and their sur-
roundings. (We also describe a Mathematica implementation
of this procedure by this paper’s computationally challenged
author Kip Thorne.)

B. Our DNGR mapping and image making

To produce the IMAX images needed for Interstellar, at
Double Negative we developed a much more sophisticated
implementation of the map within a computer code that we
call DNGR12 (Double Negative Gravitational Renderer). In
DNGR, we use ray bundles (light beams) to do the mapping
rather than just light rays. We begin with a circular light
beam about one pixel in size at the camera and trace it back-
ward in time to its origin on a celestial sphere using the ray

equations (A7), plus the general relativistic equation of geo-
desic deviation, which evolves the beam’s size and shape. At
the celestial sphere, the beam is an ellipse, often highly
eccentric. We integrate up the image data within that ellipse
to deduce the light traveling into the camera’s circular pixel.
We also do spatial filtering to smooth artifacts and time fil-
tering to mimic the behavior of a movie camera (when the
image is changing rapidly), and we sometimes add lens flare
to mimic the effects of light scattering and diffraction in a
movie camera’s lens.

Elsewhere12 we give some details of these various “bells
and whistles” for a camera orbiting a black hole rather than a
wormhole. They are essentially the same for a wormhole.

However, fairly nice images can be produced without any
of these bells and whistles, using the simple procedure
described in the Appendix and thus are within easy reach of
students in an elementary course on general relativity.

IV. THE INFLUENCE OF THE WORMHOLE’S

PARAMETERS ON WHAT THE CAMERA SEES

For Christopher Nolan’s perusal in choosing Interstellar’s
wormhole parameters, we used our map to make images of
the galaxy in which the black hole Gargantua resides, as
viewed from the Saturn side of the wormhole; see below.
But for this paper, and the book5 that Thorne has written
about the science of Interstellar, we find it more instructive,
pedagogically, to show images of Saturn and its rings as seen
through the wormhole from the Gargantua side. This section
is a more quantitative version of a discussion of this in
Chapter 15 of that book.5

Figure 6 shows the simple Saturn image that we placed on
the lower celestial sphere of Fig. 5, and a star field that we
placed on the upper celestial sphere (the Gargantua side of
the wormhole). Both images are mapped from the celestial
sphere onto a flat rectangle with azimuthal angle / running
horizontally and polar angle h vertically. In computer
graphics, this type of image is known as a longitude-latitude
map.21

A. Influence of the Wormhole’s length

In Fig. 7, we explore the influence of the wormhole’s
length on the camera-sky image produced by these two ce-
lestial spheres. Specifically, we hold the wormhole’s lensing
width fixed at a fairly small value, W ¼ 0:05q, and we vary
the wormhole’s length from 2a¼ 0.01q (top picture), to
2a¼q (middle picture), to 2a¼ 10q (bottom picture).

Because Saturn and its rings are white and the sky around
it is black, while the star field on the Gargantua side of the
wormhole is blue, we can easily identify the edge of the
wormhole mouth as the transition from black-and-white to
blue. (The light’s colors are preserved as the light travels
near and through the wormhole because we have assumed
the wormhole’s gravity is weak, jUj � 1; there are no signif-
icant gravitational frequency shifts.)

Through a short wormhole (top), the camera sees a large
distorted image of Saturn nearly filling the right half of the
wormhole mouth. This is the primary image, carried by light
rays that travel on the shortest possible paths through the
wormhole from Saturn to camera, such as path 1 in Fig. 8.
There is also a very thin, lenticular, secondary image of
Saturn, barely discernable, near the left edge of the worm-
hole mouth. It is brought to the camera by light rays that

Fig. 5. The two sides of the wormhole, with a camera on each side at hc¼
p/2 (equatorial plane), /c ¼ 0, and ‘c> a on the Gargantua side; ‘c<�a on

the Saturn side.
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travel around the left side of the wormhole (e.g., path 2 in
Fig. 8)—a longer route than for the primary image. The len-
ticular structure at the lower right is blue, so it is a secondary
gravitationally lensed image of the blue star field that resides
on the camera’s side of the wormhole.

As the wormhole is lengthened (middle of Fig. 7), the pri-
mary and secondary images move inward and shrink in size.
A lenticular tertiary image emerges from the mouth’s right
edge, carried by rays like 3 in Fig. 8 that wrap around the
wormhole once; and a fourth (faint) lenticular image emerges
from the left side, carried by rays like 4 that wrap around the
wormhole in the opposite direction, one and a half times.

As the wormhole is lengthened more and more (bottom of
Fig. 7), the existing images shrink and move inward toward
the mouth’s center, and new images emerge, one after another,
from the right then left then right… sides of the mouth.

For a short wormhole, all these images were already pres-
ent, very near the wormhole’s edge; but they were so thin as
to be unresolvable. Lengthening the wormhole moved them
inward and made them thick enough to see.

B. Influence of the Wormhole’s lensing width

In Fig. 9, we explore the influence of the wormhole’s lens-
ing width on what the camera sees. We hold its length fixed
and fairly small: equal to its radius, 2a¼q.

For small lensing width W ¼ 0:014q (top), the transition
from the wormhole’s cylindrical interior to its asymptotically

flat exterior is quite sharp; so, not surprisingly, the camera
sees an exterior, blue star field that extends with little distor-
tion right up to the edge of the wormhole mouth.

By contrast, when the lensing width is larger, W ¼ 0:43q
(bottom), the external star field is greatly distorted by gravi-
tational lensing. The dark cloud on the upper left side of the
wormhole is enlarged and pushed out of the cropped picture,
and we see a big secondary image of the cloud on the worm-
hole’s lower right and a tertiary image on its upper left. We
also see lensing of the wormhole mouth itself: it is enlarged;
and lensing of the image that comes through the wormhole
from the Saturn side. The lenticular secondary image of
Saturn near the mouth’s left edge is thickened, while the pri-
mary image is shrunken a bit and moved inward to make
room for a new tertiary image on the right.

Students could check their wormhole imaging code by try-
ing to reproduce one or more images from Figs. 7 and 9,
using the images in Fig. 6 on their celestial spheres. Having
done so, they could further explore the influence of the
wormhole parameters on the images the camera sees.

V. INTERSTELLAR’S WORMHOLE

After reviewing images analogous to Figs. 7 and 9, but
with Saturn replaced by the stars and nebulae of Interstellar’s
distant galaxy (the galaxy on the Gargantua side of the worm-
hole), Christopher Nolan made his choice for the parameters
of Interstellar’s wormhole.

Fig. 6. (Top) The image of Saturn placed on the lower celestial sphere of Fig. 5 [from a composition of Cassini data by Mattias Malmer (Ref. 20)]. (Bottom)

The star-field image placed on the upper celestial sphere (created by our Double Negative artistic team). These images are available in high resolution, for use

by students, at <http://www.dneg.com/dneg_vfx/wormhole>.
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He chose a very short wormhole: length 2a¼ 0.01q as in

the top panel of Fig. 7; for greater lengths, the multiple

images would be confusing to a mass audience. And he chose

a modest lensing width: W ¼ 0:05q also as in the top panel

of Fig. 7 and in between the two lensing widths of Fig. 9.

This gives enough gravitational lensing to be interesting (see

below), but far less lensing than for a black hole, thereby

enhancing the visual distinction between Interstellar’s worm-

hole and its black hole Gargantua.

A. Interstellar’s distant galaxy

For Interstellar, a team under the leadership of authors
Paul Franklin and Eug�enie von Tunzelmann constructed
images of the distant galaxy through a multistep process.

Fig. 7. Images of Saturn on the camera sky as seen through the wormhole, for small lensing widthW ¼ 0:05q and various wormhole lengths (from top to bot-

tom) 2a/q¼ 0.01, 1, 10. The camera is at ‘¼ 6.25q þ a; i.e., at a distance 6.25q from the wormhole’s mouth—the edge of its cylindrical interior. [Adapted

from Fig. 15.2 of The Science of Interstellar (Ref. 5), and used by permission of W. W. Norton & Company, Inc. TM & Copyright 2015 Warner Bros.

Entertainment Inc. (s15), and Kip Thorne. Interstellar and all related characters and elements are trademarks of and Copyright Warner Bros. Entertainment

Inc. (s15). The images on the right may be used under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)

license. Any further distribution of these images must maintain attribution to the author(s) and the title of the work, journal citation and DOI. You may not use

the images for commercial purposes and if you remix, transform or build upon the images, you may not distribute the modified images.]
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The distant end of the wormhole was imagined to be in
the distant galaxy and closer to its center than we are to the
center of our Milky Way. Consequently, the view of the

surrounding galaxy must be recognisably different from the
view we have from Earth: larger and brighter nebulae, more
dense dust, with brighter and more numerous visible stars.
This view was created as an artistic task.

Nebulae were painted (by texture artist Zoe Lord), using a
combination of space photography and imagination, cover-
ing a range of color palettes. These were combined with
layers of painted bright space dust and dark, silhouetted dust
channels, to create a view of the galaxy with as much visual
depth and complexity as possible.

Star layout was achieved by taking real star data as seen
from Earth and performing various actions to make the view
different: the brightest stars were removed from the data set
(to avoid recognisable constellations) and the brightnesses of
all the other stars were increased and shuffled. The result
was a believably natural-looking star layout which was
unrecognisable compared to our familiar view of the night
sky from Earth.

Figure 10 is one of our distant-galaxy images, showing
nebulae, space dust, and stars.

B. View through Interstellar’s Wormhole

When we place this distant-galaxy image on the upper ce-
lestial sphere of Fig. 5 and place a simple star field on the
lower celestial sphere, within which the camera resides, then

Fig. 8. Light rays that travel from Saturn, though the Dneg wormhole, to the

camera, producing the images in Fig. 7. [Adapted from Fig. 15.3 of The
Science of Interstellar (Ref. 5).]

Fig. 9. Images of Saturn on the camera sky, as seen through a wormhole with fixed length equal to the wormhole radius, 2a¼q, and for two lensing widths:

W ¼ 0:014q (top) and W ¼ 0:43 (bottom). [Adapted from Fig. 15.4 of The Science of Interstellar (Ref. 5), and used by permission of W. W. Norton &

Company, Inc. TM & Copyright Warner Bros. Entertainment Inc. (s15), and Kip Thorne. The images on the right may be used under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) license. Any further distribution of these images must maintain attribution to the

author(s) and the title of the work, journal citation and DOI. You may not use the images for commercial purposes and if you remix, transform or build upon

the images, you may not distribute the modified images.]
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the moving camera sees the wormhole images shown in
Interstellar and its trailers; for example, Fig. 11.

Students can create similar images, using their implemen-
tation of the map described in the Appendix, and putting Fig.
10 on the upper celestial sphere. They could be invited to
explore how their images change as the camera moves far-
ther from the wormhole, closer, and through it, and as the
wormhole parameters are changed.

C. The Einstein ring

Students could be encouraged to examine closely the
changing image of the wormhole in Interstellar or one of its
trailers, on a computer screen where the student can move

the image back and forth in slow motion. Just outside the
wormhole’s edge, at the location marked by a dotted circle
in Fig. 11, the star motions (induced by camera movement)
are quite peculiar. On one side of the dotted circle, stars
move rightward; on the other, leftward. The closer a star is
to the circle, the faster it moves; see Fig. 12.

The circle is called the wormhole’s Einstein ring. This
ring is actually the ring image, on the camera’s local sky, of
a tiny light source that is precisely behind the wormhole and
on the same end of the wormhole as the camera. That

Fig. 10. An image of stars and nebulae in Interstellar’s distant galaxy (the galaxy on the Gargantua side of the wormhole), created by our Double Negative

artistic team. This image is available in high resolution, for use by students, at <http://www.dneg.com/dneg_vfx/wormhole>.

Fig. 11. An image of the distant galaxy seen through Interstellar’s worm-

hole. The dotted pink circle is the wormhole’s Einstein ring. [From a trailer

for Interstellar. Created by our Double Negative team. TM & Copyright

Warner Bros. Entertainment Inc. (s15). This image may be used under the

terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0

(CC BY-NC-ND 3.0) license. Any further distribution of these images must

maintain attribution to the author(s) and the title of the work, journal citation

and DOI. You may not use the images for commercial purposes and if you

remix, transform or build upon the images, you may not distribute the modi-

fied images.]

Fig. 12. A close-up of Interstellar’s wormhole. The long, streaked stars

alongside the Einstein ring are a result of motion blur: the virtual camera’s

shutter is open for a fraction of a second (in this case, approximately 0.02 s)

during which the stars’ lensed images appear to orbit the wormhole, causing

the curved paths seen here. [From Interstellar, but cropped. Created by our

Double Negative team. TM & Copyright Warner Bros. Entertainment Inc.

(s15). This image may be used under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) license.

Any further distribution of these images must maintain attribution to the

author(s) and the title of the work, journal citation and DOI. You may not

use the images for commercial purposes and if you remix, transform or build

upon the images, you may not distribute the modified images.]
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location, on the celestial sphere and precisely opposite the
camera, is actually a caustic (a singular, focal point) of the
camera’s past light cone. As the camera orbits the wormhole,
causing this caustic to sweep very close to a star, the camera
sees two images of the star, one just inside the Einstein ring
and the other just outside it, move rapidly around the ring in
opposite directions. This is the same behavior as occurs with
the Einstein ring of a black hole (see, e.g., Fig. 2 of our paper
on black-hole lensing12) and any other spherical gravitational
lens, and it is also responsible for long, lenticular images of
distant galaxies gravitationally lensed by a more nearby
galaxy.22

Students, having explored the wormhole’s Einstein ring in
a DVD or trailer of the movie, could be encouraged to go
learn about Einstein rings and/or figure out for themselves
how these peculiar star motions are produced. They could
then use their own implementation of our map to explore
whether their explanation is correct.

VI. TRIP THROUGH THE WORMHOLE

Students who have implemented the map (described in the
Appendix) from the camera’s local sky to the celestial
spheres could be encouraged to explore, with their imple-
mentation, what it looks like to travel through the Dneg
wormhole for various parameter values.

We ourselves did so, together with Christopher Nolan, as
a foundation for Interstellar’s wormhole trip. Because the
wormhole Nolan chose to visualize from the outside (upper
left of Fig. 7; images in Figs. 10 and 12) is so short and its

lensing width so modest, the trip was quick and not terribly
interesting, visually—not at all what Nolan wanted for his
movie. So we generated additional through-the-wormhole
clips for him, with the wormhole parameters changed. For a
long wormhole, the trip was like traveling through a long
tunnel, too much like things seen in previous movies. None
of the clips, for any choice of parameters, had the compelling
freshness that Nolan sought.

Moreover, none had the right feel. Figure 13 illustrates
this problem. This figure shows stills from a trip through a
moderately short wormhole with a/q¼ 0.5 (stills that stu-
dents could replicate with their implementation). Although
these images are interesting, the resulting animated sequence
is hard for an audience to interpret. The view of the worm-
hole appears to scale up from its center, growing in size until
it fills the frame, and until none of the starting galaxy is visi-
ble; at this point only the new galaxy can be seen, because
we now are actually inside that new galaxy. This is hard to
interpret visually. Because there is no parallax or other rela-
tive motion in the frame, to the audience it looks like the
camera is zooming into the center of the wormhole using the
camera’s zoom lens. In the visual grammar of filmmaking,
this tells the audience that we are zooming in for a closer
look but we are still a distance from the wormhole; in reality
we are travelling through it, but this is not how it feels.

It was important for the audience to understand that the
wormhole allows the Endurance (the movie’s space ship) to
take a shortcut through the higher dimensional bulk. To fos-
ter that understanding, Nolan asked the visual effects team to
convey a sense of travel through an exotic environment, one

Fig. 13. Still frames of a voyage through a short wormhole (a/q¼ 0.5) with weak lensing (W=q ¼ 0:05), as computed with our DNGR code.
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that was thematically linked to the exterior appearance of the
wormhole but also incorporated elements of passing land-
scapes and the sense of a rapidly approaching destination.
The visual effects artists at Double Negative combined exist-
ing DNGR visualisations of the wormhole’s interior with
layers of interpretive effects animation derived from aerial
photography of dramatic landscapes, adding lens-based pho-
tographic effects to tie everything in with the rest of the
sequence. The end result was a sequence of shots that told a
story comprehensible by a general audience while resem-
bling the wormhole’s interior, as simulated with DNGR.

VII. CONCLUSION

As we wrote this paper, we became more and more enthu-
siastic about the educational opportunities provided by our
Interstellar experience. The tools we used in building, scop-
ing out, and exploring Interstellar’s wormhole—at least
those discussed in this paper—should be easily accessible to
fourth year undergraduates studying relativity, as well as to
graduate students. And the movie itself, and our own route to
the final wormhole images in the movie, may be a strong
motivator for students.
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APPENDIX: THE RAY-INDUCED MAP FROM THE

CAMERA’S LOCAL SKY TO THE TWO CELESTIAL

SPHERES

In this Appendix, we describe our fairly simple procedure
for generating the map from points fhcs;/csg on the cam-
era’s local sky to points fh0;/0; sg on the wormhole’s celes-
tial sphere, with s¼þ for the upper celestial sphere and
s¼� for the lower.

1. The ray equations

As we discussed in Sec. III A, the map is generated by
light rays that travel backward in time from the camera to
the celestial spheres. In the language of general relativity,
these light rays are null (light-like) geodesics and so are solu-
tions of the geodesic equation

d2xa

df2
þ Ca

l�
dxl

df
dx�

df
¼ 0: (A1)

Here, the Ca
l� are Christoffel symbols (also called connec-

tion coefficients) that are constructable from first derivatives

of the metric coefficients, and f is the so-called affine param-
eter, which varies along the geodesic.

This form of the geodesic equation is fine for analytical
work, but for numerical work, it is best rewritten in the lan-
guage of Hamiltonian mechanics. Elsewhere23 one of us will
discuss, pedagogically, the advantages and the underpinnings
of this Hamiltonian rewrite.

There are several different Hamiltonian formulations of
the geodesic equation. The one we advocate is sometimes
called the “super-Hamiltonian” because of its beauty and
power, but we will stick to the usual word “Hamiltonian.”
The general formula for this Hamiltonian is23,24

H xa; pb
� �

¼ 1

2
gl� xað Þplp�: (A2)

Here, gl� are the contravariant components of the metric, xa

is the coordinate of a photon traveling along the ray, and pa

is the generalized momentum that is canonically conjugate
to xa, which turns out to be the same as the covariant compo-
nent of the photon’s 4-momentum. Hamilton’s equations,
with the affine parameter f playing the role of time, take the
standard form

dxa

df
¼ @H

@pa
¼ ga�p�; (A3a)

dpa

df
¼ � @H

@xa
¼ � 1

2

@gl�

@xa
plp�: (A3b)

In the first of Eqs. (A3), the metric raises the index on the
covariant momentum, so it becomes pa ¼ dxa=df, an expres-
sion that may be familiar to students. The second expression
may not be so familiar, but it can be given as an exercise for
students to show that the second equation, together with
pa ¼ dxa=df, is equivalent to the usual form (A1) of the geo-
desic equation.

For the general wormhole metric (1), the (super)
Hamiltonian (A2) has the simple form

H ¼ 1

2
�p2

t þ p2
‘ þ

p2
h

r ‘ð Þ2
þ

p2
/

r ‘ð Þ2 sin2h

" #
: (A4)

Because this (super) Hamiltonian is independent of the
time coordinate t and of the azimuthal coordinate /, pt and p/
are conserved along a ray [cf. Eq. (A3b)]. Since pt ¼ dt=df
¼ �pt, changing the numerical value of pt merely renormal-
izes the affine parameter f; so without loss of generality, we
set pt¼�1, which implies that f is equal to time t [Eq. (A6)].
Since photons travel at the speed of light, f is also distance
travelled (in our geometrized units where the speed of light is
one).

We use the notation b for the conserved quantity p/:

b ¼ p/: (A5a)

Students should easily be able to show that, because we set
pt¼�1, this b is the ray’s impact parameter relative to the
(arbitrarily chosen25) polar axis. Because the wormhole is
spherical, there is a third conserved quantity for the rays, its
total angular momentum, which (with pt¼�1) is the same
as its impact parameter B relative to the hole’s center

B2 ¼ p2
h þ

p2
/

sin2h
: (A5b)
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By evaluating Hamilton’s equations for the wormhole
Hamiltonian (A4) and inserting the conserved quantities on
the right-hand side, we obtain the following ray equations:

dt

df
¼ �pt ¼ 1; (A6)

which reaffirms that f¼ t (up to an additive constant); and,
replacing f by t:

d‘

dt
¼ p‘; (A7a)

dh
dt
¼ ph

r2
; (A7b)

d/
dt
¼ b

r2 sin2h
; (A7c)

dp‘
dt
¼ B2 dr=d‘

r3
; (A7d)

dph

dt
¼ b2

r2

cos h

sin3h
: (A7e)

These are five equations for the five quantities f‘; h;/; p‘;
phg as functions of t along the geodesic (ray). It is not at all
obvious from these equations, but they guarantee (in view of
spherical symmetry) that the lateral (nonradial) part of each
ray’s motion is along a great circle.

These equations may seem like an overly complicated
way to describe a ray. Complicated, maybe, but near ideal
for simple numerical integrations. They are stable and in all
respects well behaved everywhere except the poles h¼ 0 and
h¼p, and they are easily implemented in student-friendly
software such as Mathematica, Maple, and Matlab.

2. Procedure for generating the map

It is an instructive exercise for students to verify the fol-
lowing procedure for constructing the map from the cam-
era’s local sky to the two celestial spheres:

(1) Choose a camera location ð‘c; hc;/cÞ. It might best be on
the equatorial plane, hc¼ p/2, so the coordinate singular-
ities at h¼ 0 and h¼p are as far from the camera as
possible.

(2) Set up local Cartesian coordinates centered on the cam-
era, with x along the direction of increasing ‘ (toward the
wormhole on the Saturn side; away from the wormhole
on the Gargantua side), y along the direction of increas-
ing /, and z along the direction of decreasing h,

ex ¼ e‘̂ ; ey ¼ e/̂ ; ez ¼ �eĥ : (A8)

Here e‘̂ ; eĥ , and e/̂ are unit vectors that point in the ‘, h,
and / directions (the hats tell us their lengths are one).
Figure 5 shows these camera basis vectors for the special
case where the camera is in the equatorial plane. The
minus sign in our choice ez ¼ �eĥ makes the camera’s
ez parallel to the wormhole’s polar axis on the Gargantua
side of the wormhole, where ‘ is positive.

(3) Set up a local spherical polar coordinate system for the
camera’s local sky in the usual way, based on the cam-
era’s local Cartesian coordinates; cf. Eq. (A9a).

(4) Choose a direction ðhcs; /csÞ on the camera’s local sky.
The unit vector N pointing in that direction has Cartesian
components

Nx ¼ sin hcs cos /cs; Ny ¼ sin hcs sin /cs;

Nz ¼ cos hcs: (A9a)

Because of the relationship (A8) between bases, the
direction n of propagation of the incoming ray that
arrives from direction �N has components in the global
spherical polar basis

n‘̂ ¼ �Nx; n/̂ ¼ �Ny; nĥ ¼ þNz: (A9b)

(5) Compute the incoming light ray’s canonical momenta
from

p‘ ¼ n‘̂ ; ph ¼ rnĥ ; p/ ¼ r sin hn/̂ (A9c)

(it’s a nice exercise for students to deduce these equa-
tions from the relationship between the covariant compo-
nents of the photon 4-momentum and the components on
the unit basis vectors). Then compute the ray’s constants
of motion from

b ¼ p/ ¼ r sin hn/̂ ;

B2 ¼ p2
h þ

p2
/

sin2h
¼ r2 n2

ĥ
þ n2

/̂


 �
: (A9d)

(6) Take as initial conditions for ray integration that at t¼ 0
the ray begins at the camera’s location ð‘; h;/Þ ¼
ð‘c; hc;/cÞ with canonical momenta (A9c) and constants
of motion (A9d). Numerically integrate the ray equations
(A7), subject to these initial conditions, from t¼ 0 back-
ward along the ray to time ti¼�1 (or some extremely
negative, finite initial time ti). If ‘(ti) is negative, then
the ray comes from location fh0;/0g ¼ fhðtiÞ;/ðtiÞg on
the Saturn side of the wormhole, s¼�. If ‘(ti) is posi-
tive, then the ray comes from location fh0;/0g
¼ fhðtiÞ;/ðtiÞg on the Gargantua side of the wormhole,
s¼þ.

3. Implementing the map

Evaluating this map numerically should be a moderately
easy task for students. Kip Thorne, the author among us who
is least adept at numerical work, did it using Mathematica,
and then used that map—a numerical table of fh0;/0; sg as a
function of fhcs;/csg—to make camera-sky images of what-
ever was placed on the two celestial spheres. For image proc-
essing, Thorne first built an interpolation of the map using
the Mathematica command ListInterpolation; and he then
used this interpolated map, together with Mathematica’s
command ImageTransformation, to produce the camera-sky
image from the images on the two celestial spheres.
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