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Why does a ball fall?: A new visualization for Einstein’s model

of gravity
Roy R. Gould

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

(Received 28 July 2015; accepted 23 December 2015)

Many physics teachers seek a simple illustration of Einstein’s model of gravity, suitable for the
introductory physics classroom. In this article, we show that an ordinary wall map of the world can
be used to contrast Newton’s and Einstein’s explanations for why a ball falls when released.
Trajectories on the map are analogous to the trajectories of the ball through spacetime, because the
geometry of the map is remarkably similar to the geometry of spacetime near Earth’s surface. To
aid in the pedagogy, we focus on the concept of scale rather than curvature. We show that,
contrary to popular visualizations of Einstein’s model, it is primarily the warping of time, not
space, that causes a ball to fall, and we address the question of why we do not see the distortion of
spacetime around us. Finally, we recover Newton’s results for the falling ball from our geometrical

treatment. © 2016 American Association of Physics Teachers.
[http://dx.doi.org/10.1119/1.4939927]

I. INTRODUCTION

Einstein’s model of gravity has been called “conceptually
simple” and “the most sublime of all scientific creations,”
yet a century after its inception it is still largely absent from
introductory physics courses. Pioneering efforts to introduce
students to Einstein have tended to focus on the extraordi-
nary predictions of Einstein’s model that can capture stu-
dents’ imagination and kindle a lifelong interest in physics:
the big bang,” the expanding universe, and black holes.”

This article describes a complementary approach, in which
Einstein’s model of gravity is applied to a bread-and-butter
problem with which students are already familiar, and for
which the Newtonian description seems perfectly satisfac-
tory: “Why does a ball fall when you release it?” The falling
ball problem turns out to offer an intriguing route to
Einstein’s model of gravity, suitable even for the high school
physics classroom.

Our approach has three key features. First, we recast
Newton’s interpretation of the falling ball in a simple geo-
metrical form (Sec. II), which enables us to show that
Newton’s and Einstein’s models make mutually incompati-
ble predictions about whether or not a force acts on the ball,
and whether the ball’s trajectory through spacetime is
straight or curved. This dramatic tension puts the student in
the role of detective, and prompts a deeper look at Einstein’s
model.

Second, we introduce the non-Euclidean geometry of
Einstein’s model by using an object familiar to students from
grade school: an ordinary wall map of the world in Mercator
projection. Remarkably, the geometry of the map closely
mimics the geometry of spacetime surrounding a falling ball.
As a consequence, the ball’s trajectories through spacetime
are analogous to simple routes on the map. We use this coin-
cidence to further contrast Einstein’s and Newton’s models
of gravity (Sec. III).

Third, we focus on the physical concept of scale, or the
varying scale of distance and of time in our world, which
allows us to sidestep the mathematical abstraction of curved
spacetime. We are invited to do this, since the curvature of
spacetime can be split into two parts: a stretching of distance
and time (needed for the falling ball problem), and a twist (a
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more difficult concept, needed primarily for relativistic phe-
nomena such as frame-dragging).

We felt it useful to avoid curved spacetime at the introduc-
tory level, mainly because it requires more mathematics but
also because students are often confused by literal illustra-
tions of the concept. An example is the rubber-sheet illustra-
tion of curved spacetime, popularized by Carl Sagan in the
television series Cosmos, and now ubiquitous in the popular
media and introductory textbooks.> A bowling ball is placed
on a rubber sheet, and the resulting depression deflects the
path of a smaller ball (Fig. 1). Unfortunately, the illustration
makes no sense. Students observe that space is not a rubber
sheet, does not curve into an unseen dimension, and does not
push objects into circular orbits. The rubber sheet does not
even reflect the symmetry of the central mass—if you turn
the illustration upside down the explanation fails.

In fact, the distortion of space is irrelevant to the falling
ball problem. As we will show it is primarily warped time—
not space—that causes a ball to fall and satellites to orbit.

By contrast, students are already familiar with the concept
of scale from their experience with models and maps. The
varying scale of time has been measured directly, providing
experimental support for Einstein’s model.® Also, the idea
that the scale of distance and time might vary from place to
place has an interesting history that provides a gentle intro-
duction to Einstein. This idea is briefly sketched in Sec. IV,
and developed quantitatively in Sec. V. There we address the

Fig. 1. The rubber-sheet illustration of curved spacetime is often confusing
to students. Contrary to the illustration, the distortion of space has an insig-
nificant effect on the motion of a ball.
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question, “Why don’t we see the distortion of space and time
in the world around us?” Finally, in Sec. VI we use
Einstein’s geometric approach to recover Newton’s results
for the falling ball.

II. NEWTON, EINSTEIN, AND THE FALLING BALL
A. Newton: “Gravity must be a force”

Release a ball from waist height. Why does it fall to the
ground?

According to Newton’s model of gravity, a force pulls the
ball to the ground. Two lines of evidence support the claim
that gravity is a force. First, we can feel a force pulling
downward, when we hold the ball. Second, we can see the
force’s effect when we release the ball: it sets the ball in
motion. (According to Newton’s first law of motion, an
object at rest will remain at rest unless a force acts on it.
Since the ball does not remain at rest, a force must be pres-
ent.) We will assess later whether these two lines of evidence
hold up.

In order to compare Newton’s model of gravity with
Einstein’s, it helps to recast Newton’s first law of motion in
a geometrical form. First, chart the ball’s position as time
passes, as shown in the spacetime diagram in Fig. 2.
According to Newton, the resulting line will be straight if
and only if no net force acts on the ball. Since the ball fol-
lows the graceful parabola B through spacetime, we con-
clude that a force must be acting on the ball.

Newton’s model of gravity goes on to provide a mathe-
matical description of this force, based on the masses of
Earth and the ball and the distance between them.

Although the model seems reasonable at first, on closer
inspection it is troubling. What is the force of gravity? How
can Earth and the ball exert a force on each other when there
is nothing between them to mediate that force? How does the
ball even know of Earth’s existence? Newton himself called
the notion of action-at-a-distance an “absurdity.”

Furthermore, we see that Newton’s conception of force—
and therefore his model of gravity—in part rests on the abil-
ity to distinguish a straight line from a curved line. How do
we know, for example, that path A in Fig. 2 is straight and
path B is curved? It certainly looks that way from the dia-
gram. But is it true? As we will see, looks are deceiving;
intuition is not a reliable guide to nature.

— t (time)

X (distance)

Fig. 2. The spacetime diagram for a ball released at waist height. The ball
falls to ground (path B) rather than hovers in mid-air (path A). Which path is
straight: A or B? Are you sure?.
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B. Einstein: “Gravity cannot be a force”

Einstein’s analysis of the falling ball starts with the same
premise as Newton’s: The ball’s trajectory through space-
time will be straight if and only if no force is present. On
that much they agree.

But Einstein makes a truly astonishing claim. Einstein
claims that Newton’s interpretation of Fig. 2 is backward: In
reality, the ball’s trajectory (path B) is the straight line, while
path A is curved! And since the falling ball’s trajectory
through spacetime is a straight line, then there cannot be a
force acting on the ball. Thus, Einstein’s explanation of the
falling ball is that there is nothing to explain! There is no
force of gravity; the ball merely traverses the straightest line
it can through spacetime. What could be simpler than that?

In fact, Einstein tells us that the trajectory through space-
time of every freely moving object is a straight line. Our
eyes tell us otherwise, but Einstein is insistent.

Clearly, Einstein and Newton cannot both be right. Either
path B is straight or it is not. Either a force acts on the ball or
it does not. Which is it?

C. Objections to Einstein’s claim

Students will object to Einstein’s audacious claim.

Objection 1: “When I hold the ball, I feel its weight. What
is that force if not gravity pulling down on the ball?”

Simple, says Einstein: The force comes from you, pushing
up on the ball. It is the force you apply in order to deflect the
ball from its natural, straight-line motion (path B) and force
it to follow path A. This is no different, in principle, from a
tugboat pushing on an ocean liner to deflect its path.

Note that you only feel this force when you prevent an
object from moving freely through spacetime. Astronauts,
skydivers, and other freely moving explorers report feeling
weightless.’

Objection 2: “The ball was initially at rest but didn’t
remain at rest. Are you saying that Newton’s first law is
wrong?”

A moot point, says Einstein. The proper arena for analyz-
ing motion is spacetime,® and in spacetime the ball is never
at rest, because it is always moving through time. So the
only question is whether the falling ball’s spacetime trajec-
tory is a straight line.

We have now called into question both of Newton’s lines
of evidence that gravity is a force.

Objection 3: “Fine. But you can’t expect me to believe
that path A is straight and path B is curved. And surely ten-
nis balls and baseballs follow curved paths through space,
let alone through spacetime. How can their trajectories be
considered straight lines? This defies the evidence of our
own senses.”

Remarkably, path B is indeed a straight line, as we will
see. The reason, according to Einstein, is that every mass dis-
torts the scale of distance and time around it. Newton’s
assumption that distance and time are measured the same
everywhere is simply not true. A yardstick at waist height is
not the same length as a yardstick on the floor. Neither is a
minute at waist height the same length of time as a minute at
floor level. The scales of length and time vary from place to
place in our world; as we will see, this causes straight lines
in spacetime to appear curved, and vice versa.

The price we pay for the simplicity of Einstein’s descrip-
tion of gravity is the realization that the geometry of our world
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is no longer simple. In Einstein’s model, the absurdity of
Newton’s “action at a distance” is traded for the absurdity that
mass distorts the geometry of the space and time around it.

A final student comment: “Non-Euclidean geometry makes
my head spin! If you want me to put common sense aside,
you will have to answer three questions:

(1) What example can you show me that will convince me
that a line that looks curved is in fact straight, and vice
versa?

(2) If the world is really non-Euclidean, then why doesn’t it
look distorted?

(3) And if the distortion of space and time turns out to be a
very small effect, then how could it cause something as
dramatic as the fall of a ball?”

The remainder of this article addresses these questions.

III. A WORLD MAP AS MODEL FOR THE FALLING
BALL PROBLEM

Remarkably, an ordinary wall map of the world provides a
close analog to the falling ball problem, and is very useful in
helping students to make sense of Einstein’s audacious
claim, for several reasons:

(1) It provides a simple and familiar example of straight
lines that look curved to the eye.

(2) The scale of distance on the map varies with location on
the map, analogous to the varying scale of distance and
time in the world around us. In fact, the map’s geometry
turns out to closely mimic the geometry of the spacetime
diagram for the falling ball, as we shall see.

(3) The map enables us to contrast Newton’s and Einstein’s
models of gravity in a particularly visual and intuitive way.

To see how this works, consider the following parable.

A. A parable of two aviators

Alice and Bob prepare to fly from Boston to Madrid. They
will chart their progress on a map of the world in equi-
rectangular projection, as shown in Fig. 3. However, neither
Alice nor Bob is aware that Earth’s surface is curved, and
they have no experience with a world map. They think that
the scale of distance on their world map is uniform, as it is
on their local maps of Boston and Madrid—and as appears
to be the case in the world around them.

Bob, the navigator, plans their route. They will take off due
east and fly as straight as possible. He reasons that they will
reach Madrid along path A, as shown in Fig. 3. Alice, the pilot,
confirms the flight plan. “To ensure that we fly as straight as
possible,” she says, “I'll keep the wings perfectly level.” At
the moment of takeoff, they are indeed heading directly for
Spain along path A—just as our falling ball, when released,
initially moves “due east” through spacetime in Fig. 2.

But Bob notices that their flight path starts curving to the
south (Fig. 3, path B), heading for Africa and the equator.
“What are you doing?!” Bob cries out. “Why aren’t you fly-
ing straight?”

“I am!” Alice protests. “I am not banking the plane to the
right or left, so this path must be straight!”” But as they chart
their progress on the map, they continue to veer southward.

Bob (whose last name is Newton) has a theory: “There
must be a force pulling us towards the equator. Otherwise,
our path would have been straight.”

398 Am. J. Phys., Vol. 84, No. 5, May 2016

Fig. 3. Starting off due east and flying as straight as possible, a pilot expects
to traverse path A, yet finds herself veering southward on path B instead.
Why? Which line is straight: A or B?.

But Alice (whose last name is Einstein) feels no force, and
she is convinced her route has been as straight as possible,
even though it looks curved on the map. She has a competing
theory: There is something strange about the scale of her
map, but she is not sure what.

Puzzled, they return to Boston and try a simple experiment
to test their competing theories. They head for Spain again,
but this time they take off to the northeast, again flying as
straight as possible (Fig. 4, path B). Bob predicts that the
mysterious force will pull the plane southwards, bringing
them to Madrid. Their route veers just as predicted, bringing
them to their intended destination.

“So you see,” says Bob triumphantly, “there must be a
force pulling the plane towards the equator—just as the force
of gravity pulls on a ball.” To make the comparison, he
tosses a ball upwards and watches it return to his hand,
noting the similarity of the ball’s path through spacetime
(Fig. 5, path B) with the plane’s flight path on the map.

For the second part of their experiment, they fly back to
Boston, hewing to path A in Fig. 4, the line on their map that
Bob claims is straight. But to accomplish this Alice must
bank the plane continuously to the right.

Bob has brought along a sensitive force detector and he
triumphantly notes that it registers a force, directed south-
wards. What further evidence for his theory could one want?

Alas, his excitement is short-lived, for Alice has gathered
evidence supporting her own theory. She points out that the
force detector has registered a southward force only along
path A, but not along path B, and she can account for that
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Fig. 4. A pilot’s route from Boston to Spain along path B is the straightest,
shortest route between its endpoints. The scale markers show that the scale
of the map varies with latitude.
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Fig. 5. A ball tossed upwards returns to the hand a moment later. The ball’s
route through spacetime (path B) is the shortest, straightest route between its
endpoints, even though it looks longer than path A.

force: The “mysterious” southward force was merely the
centrifugal force generated by banking the plane continu-
ously to the right, to force it to follow path A. (This is analo-
gous to the upward force you apply to a ball to hold it your
hand, deflecting the ball from its natural path B to the curved
path A in Fig. 2).

Furthermore, when Alice checks her flight log, she finds to
her amazement that the number of miles flown along path B
is much less than along path A, even though path B appears
much longer! This is further evidence that path B is indeed
the straight line, not path A.

Who is right: Bob or Alice? Is a force or geometry at
work?

Alice is correct, of course, and here’s why: On the world
map, the horizontal scale of distance varies from place to
place. As shown in Fig. 4, the scale marker for distance is
larger near the poles than near the equator. Therefore, if we
select any two points in the northern hemisphere and seek
the shortest path between them, the result will always be a
line that goes slightly out of its way northward in order to
minimize its length. Equivalently, every straight line on the
map is concave towards the equator.’ Thus, an airplane that
moves “straight ahead” will always veer towards the equator.
Geometry, rather than a force, is at work.

The map enables us to compare two very different explan-
ations of the airplane’s flight path. Ultimately, the force-free
geometric interpretation wins out, and does so only because
the scale of distance varies from place to place in the
“world” of the map.

The same reasoning applies to the falling ball. When
released, the ball follows the straightest path that it can,
through a spacetime in which the scale of distance and the
scale of time vary with location. Einstein’s force-free model of
gravity wins out over Newton’s model, provided that the world
really has the non-Euclidean geometry predicted by Einstein.

IV. A PERSPECTIVE ON THE SCALE OF DISTANCE
AND TIME
A. Where did Einstein’s idea come from?

Students know that the varying scale of distance on a map
is merely an artifact, as it arises from trying to represent the
curved surface of Earth on a flat sheet of paper. So why
should we believe Einstein’s claim that the scale of distance

399 Am. J. Phys., Vol. 84, No. 5, May 2016

and the scale of time really do vary from place to place in
our world. Why should that be? Where did the idea come
from?

While the origin of Einstein’s model of gravity is beyond
the scope of this article and most introductory courses, the
idea that space and time are malleable is so strange an idea
that it is worth mentioning some of its less-familiar roots.
Even revolutionary ideas may have a long and innocent
gestation!

As early as 1623, Shakespeare considered whether time
passes swiftly or lazily. As Rosalind observed in As You Like
It, “time travels in divers paces for divers persons;” for a
bride-to-be time seems to pass slowly, while for a con-
demned prisoner time passes all too swiftly.

Shakespeare was referring merely to the psychological
perception of time. Yet by 1715, Isaac Newton and Gottfried
Leibniz were heatedly debating whether the scale of distance
and time really are the same everywhere. The debate was
kindled by Caroline, Princess of Wales, an extraordinary
woman who had been one of Leibniz’s students.'® She real-
ized that Leibniz’s view of space and time was fundamen-
tally different from Newton’s, so she encouraged the two to
exchange letters in order to resolve the issue.'' Newton
thought it obvious that the scale of space and time are every-
where the same, forming a fixed and immutable backdrop to
the universe. But Leibniz realized that the size of an object
only has meaning in comparison to other objects. Without a
comparison, how do we know that a yardstick on the moon
has the same length as a yardstick on Earth, for example?

As Leibniz put it, “these gentlemen [Newton and his
proxy, Clarke] maintain that space is a real, absolute being...
but I held space to be something purely relative, as time is.”
Newton’s view held sway for the next two centuries; rulers
and clocks certainly appear to function the same everywhere.
But Leibniz would turn out to be right.

By the 1860s, Bernhard Riemann had developed the math-
ematics of spaces in which the scale of distance varies from
place to place. He noted that the geometry of the world
around us is not to be decided by philosophy and debate, but
instead is a matter for observation and experiment.'?

These early pioneers showed that, in principle, the scale of
distance and time might not be the same everywhere. But in
the twentieth century, two revolutionary developments led to
the conclusion that the scales of distance and time cannot be
the same everywhere. The world must be non-Euclidean.

The first was the Michelson-Morley experiment and the
inferences that flowed from it. That experiment, repeated
with greater precision over the years, showed that the speed
of light appears the same to all observers, regardless of their
motion relative to the source of light. This paradoxical find-
ing led Lorentz and Einstein to realize that two observers
who are in relative motion do not share the same scale of dis-
tance or time.

Second, Einstein realized that in order to make special rel-
ativity compatible with the conservation of energy, it must
be true that every mass distorts the surrounding geometry of
distance and time. Einstein’s decade-long struggle with this
idea culminated in his model of gravity, one of the great
milestones of scientific discovery.

B. What does “the scale of time” mean?

Many students have difficulty understanding what the
scale of time refers to. The misleading statement that “time
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slows down near a massive object” especially confuses
them.

No matter where you happen to be, time appears to flow
normally. For example, to an observer atop Mt. Everest and
an observer at sea level, time appears to flow normally—but
it does not flow the same at those two places. How can we
visualize that?

Imagine two identical movies of a chef boiling a three-
minute egg, using an ordinary kitchen timer. Play one movie
at double-speed, the other at half-speed. In both movies, the
egg comes out perfectly; in both, exactly three minutes
elapse, as indicated by the timer. Yet the double-time movie
finishes first; its scale of time is shorter than the other mov-
ie’s. The scale of time has meaning only in comparison
between two or more “movies.” Thus, the movie of the uni-
verse doesn’t play at a single speed; it varies depending on
where you are.

V. METRICS FOR THE FALLING BALL AND WALL
MAP

Students will have a second objection to the wall map
analogy. On a world map, the varying scale of distance is
obvious. For example, Brazil appears smaller than
Greenland, though in reality it is four times larger. In con-
trast, we don’t notice any distortion of space or time in our
surroundings. A yardstick or clock at waist-level, certainly
appear the same as they do at floor level. If it exists at all,
this distortion must be extremely small. But in that case, how
could it so dramatically influence the path of the ball? To an-
swer this question, we need a quantitative measure of the ge-
ometry of both the map and the ball’s spacetime diagram.

A. The metric for the wall map

The map’s geometry is encapsulated in a mathematical
expression known as the metric, which gives the distance
between any two points on the map.

For the map used in Fig. 4, we take the x-coordinate to run
from 0° (north pole) to 180° (south pole), while the y-coordi-
nate runs from 0° to 360°. For this particular map projection,
the vertical scale of distance is constant, and the horizontal
scale of distance varies as sinx. As a result, the distance ds
between two nearby points on the map is not the familiar
result from Euclidean geometry

ds* :dx2+dy2, (D
but rather
ds® = dx* + (sin’x) dy’ 2)

in the limit of nearby points.

Equation (2) is the metric for the world map. It can be
used to determine any straight line on the map, given the
line’s starting point and initial direction. These straight lines
are called geodesics, a useful term because it avoids confu-
sion with lines that merely look straight but that are not the
shortest distance between any two of their points. Examples
of geodesics are path B in Figs. 3-5. A geodesic is the gener-
alization of a straight line to a world governed by non-
Euclidean geometry.

The procedure for starting with the metric and construct-
ing a geodesic has been known for several hundred years.
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However, as Lagrange lamented in 1760, actually solving
geodesic equations is “not as easy as one might hope,” in-
tractable in fact, except for special cases. Fortunately, it is
straightforward to solve geodesic equations numerically. The
reader can construct the geodesic starting due east at Boston,
using computer programs available online.” The result of
such an exercise is the sinusoidal curve shown as path B in
Fig. 3—Alice’s path really is a geodesic. We now turn now
to the metric for the falling ball.

B. Metric for the falling ball
1. First turn gravity off

In the absence of gravity, the separation between two
nearby points (events) in spacetime is given by

ds® = dx* — c2ar, 3)

where dx is the vertical distance between the points, df is the
time interval between them, and c is the speed of light.® This
is the result from Einstein’s special theory of relativity.'?

In this gravity-free world, freely moving objects follow
geodesics that look like straight lines, just as they do in a
Newtonian treatment. An example is path A in Fig. 2.

2. Turn on gravity

In Einstein’s model of gravity, the mass of Earth distorts
the surrounding spacetime. By how much? The answer was
first worked out by the German physicist Karl Schwarzschild
in 1916. Remarkably, Schwarzschild was able to master
Einstein’s theory of gravity while serving on the Russian
front in World War 1. He used the theory to calculate the
metric for spacetime surrounding a non-spinning, spherical
mass, and he was able to report his results before, sadly, he
perished a few months later.'*

In the Appendix, we apply Schwarzschild’s metric to the
falling ball problem. The result is the approximation

2MG 2MG
2 2
ds™ =~ (1 + 22 x) dx (1 202

x) car, @

where x is the distance the ball falls below waist height, M is
the mass of Earth, R is the distance from the center of Earth
to waist height, G is the gravitational constant, and c is the
speed of light. (We ignore the spin of Earth, which would
introduce additional terms in the metric that are negligible in
this problem.)

Notice from the coefficients in the metric that the distor-
tion of both distance and time depends on location x. As
expected, the distortion grows larger with increasing mass
and smaller with increasing distance from Earth.

The metric embodies the following physics: as you move
from waist-level to ground level, the vertical scale of dis-
tance shrinks; and as you move from waist-level to ground
level, the scale of time expands (i.e., the “video of the world”
plays more slowly).

Although the scale of distance and time behave in opposite
directions, they also have opposite signs in the metric, so
they both have the same effect on the metric. Thus for the
falling ball diagram in Fig. 2, the distance between grid lines
increases as you move closer to the floor. This is analogous
to the world map, where distances increase nearer the equa-
tor. We will return to the analogy in a moment.
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C. Why doesn’t the world look distorted?

Our senses are oblivious to the distortion of distance and
time because the magnitude of the distortion is extremely
small. For example, for the falling ball in Fig. 2, the scale of
distance (scale,) is given by the coefficient of dx in the met-
ric, Eq. (4), as

(&)

wmG \'?
R2c2 ) '

scale; = (1 +——x

Evaluating this expression at waist height (x =0 meters)
and ground level (x = 1 meter), we find that the scale of ver-
tical distance changes by a factor of about 1+ 10~'®. Thus, a
cat sprawled on the floor is shorter than her twin at waist
height by less than the width of a proton! No wonder the
world looks perfectly Euclidean to us. The distortion of
space predicted by Einstein’s model of gravity is far too
small to see.

But this also means that the distortion of space is so very
small that it has an insignificant effect on the ball’s path. For
example, we could never hope to represent such a small dis-
tortion graphically. Contrary to the rubber-sheet illustration
of gravity, the distortion of space is not responsible for the
fall of a ball.

Since the distortion of space is so small, we can safely
ignore it, further simplifying the metric to

2MG
—mﬁaﬁﬁ. (6)

ds® ~ dx> — (1

D. Warped time causes the ball to fall

At first glance, the distortion of time seems just as insig-
nificant as the distortion of distance. The scale of time (sca-
le,) varies by the factor

mcy”

scale; = (1 — Wx @)

between waist-height and floor level, again a change of only
1 part in 10'°. This tiny variation with height is much too
small for our senses to detect, although it has been measured
using atomic clocks,® providing direct proof of Einstein’s
claim that the scale of time varies with location.

Why does this minuscule warping of time influence the
ball’s trajectory so dramatically? The reason is that even a
small interval of time corresponds to a large distance, when
time is measured in meters. Imagine redrawing Fig. 2 with
the time axis in meters rather than seconds. The half-second
it takes the ball to fall corresponds to about 150 x 10°m, so
if both axes were drawn at the same scale, the spacetime dia-
gram would stretch halfway to the Moon! Then we would
see that the ball’s trajectory in spacetime is very nearly a
straight line. The distortion of time is indeed tiny. Yes, the
ball falls 1m to the floor, but it has to travel through
150 x 10°m of time to get there!

We conclude that the distortion of time—not space—
causes a ball to fall. In essence, an object is deflected
towards the region in which time flows more slowly. In this
way, the invisible dimension of time makes its presence pal-
pable in our three-dimensional world.
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E. Comparing the metrics for the map and the ball

To see why the world map is such a good analog for the
falling ball problem, compare the metrics for the map and the
ball. Rearrange the spacetime metric in Eq. (6) to the form

ds* ~ dx* — c*di + 2axdr?, ®)

where the constant a = MG/R?. The first two terms are the
metric for empty spacetime, while the third term shows how
the scale of time varies with the ball’s height above the
ground. This third term plays the same role as the sin’x term
in the metric for the world map, Eq. (2). In both cases, the
scale changes as we move downward, and as we have seen
in Sec. III, this change of scale curves geodesics southward.

F. Geodesic for the falling ball

We can now verify Einstein’s claim that the falling ball fol-
lows the straightest path it can through spacetime. To find the
geodesic, we start with the metric for the falling ball from Eq.
(8), along with the initial conditions that the ball starts at waist
height (x =0) and heads “due east,” since the ball is initially
at rest (dx/dt = 0). The intrepid reader can set up the geo-
desic equations using instructions found online,” and solve the
equations numerically using Mathematica or a similar pro-
gram. The output of the calculation is the geodesic plotted in
Fig. 6. On inspection, we see that the curve is just the parabola
x = Lar?, where the constant a = MG /R>.

G. Recovering Newtonian physics

The geodesic in Fig. 6 was arrived at purely geometrically,
and any two-dimensional region whose geometry is summar-
ized by the metric in Eq. (8) will have geodesics that are
parabolas. In finding the geodesic, we considered x and ¢ to
be dimensionless variables. But if we identify x with distance
and ¢ with time, then the coefficient @ = MG /R?* has units of
acceleration and its value is 9.8 m/sz, which is the free-fall
value of acceleration at the surface of Earth.

Thus the geometric approach yields the same spacetime
trajectory for the falling ball as is predicted by Newtonian
mechanics. But here, the path of the ball is determined, not
by the supposed force of gravity, but purely by the geometry
of the non-Euclidean world we inhabit. The geometry is
encoded in the metric. Thus, in order to calculate the trajec-
tory of an object subject only to gravity, we do not need to
know anything about force laws. All we need to know is
how to draw a straight line in our non-Euclidean world.

VI. CONCLUSION

In short, the unremarkable fall of a ball reflects some truly re-
markable features of nature: that nature’s drama unfolds in the
unity of spacetime rather than in space alone; that objects mov-
ing freely through space and time manage to follow the straight-
est possible path, even if that path looks curved to the eye; that
the scale of distance and the scale of time vary from place to
place; and that geometry, not force, rules the world of gravity.

It is also remarkable that Newton’s and Einstein’s radi-
cally different theories can both describe the same phenom-
enon. Einstein’s theory stands alone, however, as a bridge to
the future of science. The theory already has predicted three
phenomena that would have been inconceivable a century
ago: the big bang, black holes, and the dark energy thought
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Fig. 6. The geodesic for a falling ball in a world whose metric is given by
Eq. (8). It is also the plot of the distance x the ball falls in time 7, as predicted
by Newtonian physics.

to pervade our universe. Each of these mysteries has firm ex-
perimental support, yet none can be understood fully on the
basis of current physics. In this way, Einstein’s theory of
gravity contains the seeds of its own demise and its rebirth in
another, more complete theory.

We also saw that the motions of a ball through spacetime
can be modeled by geodesics on a wall map of the world,
providing a useful teaching tool for comparing Einstein’s
and Newton’s models of gravity.

Our approach avoided mention of the curvature of space-
time, focusing instead on the physical concept of the scale of
distance and of time, a route to Einstein that is more in line
with students’ prior experiences with scale models. But this
approach is suitable only for simple examples like the falling
ball, as there are important aspects of gravity that cannot be
treated using the idea of scale. One example is gravitational
waves.'> Another is the spacetime around a spinning sphere,
described not by the Schwarzschild metric but by the more
complicated Kerr metric, which contains “cross-terms” that
do not correspond to the scale of space or time. (Such cross-
terms correspond to the physical phenomenon of “frame-
dragging,” in which orbiting objects are carried along with
the spin of the sphere.*)

Despite these limitations, the concept of scale allows for a
simple entrée to Einstein’s model of gravity. It is comforting
that a theory as profound as Einstein’s can be introduced, at
least in part, by a prop as simple and familiar to us as the
wall map that was our constant companion in grade school.
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APPENDIX: SPACETIME METRIC FOR THE
FALLING BALL PROBLEM

The metric for space and time surrounding a non-rotating,
spherical mass M is'*

-1
2MG 2MG
ds2 = (1 — rcz ) di’z - <1 - 7) Czdtz, (Al)

where we have included only the radial direction of space r,
and where the constants are as described in the text. Take x
to be the distance that the ball falls below the tabletop, and R
to be the distance from the tabletop to Earth’s center.
Replace the variable » by R — x, and simplify the resulting
metric by noting that 2MG/Rc* < 1 and using the approxi-
mation (1 — az)_l ~ 1+ a, for a < 1. The result is the met-
ric in Eq. (4).
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