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In this paper we consider photon-photon scattering due to self-induced gravitational perturbations on a
Minkowski background. We focus on four-wave interaction between plane waves with weakly space and
time dependent amplitudes, since interaction involving a fewer number of waves is excluded by energy-
momentum conservation. The Einstein-Maxwell system is solved perturbatively to third order in the field
amplitudes and the coupling coefficients are found for arbitrary polarizations in the center of mass system.
Comparisons with calculations based on quantum field theoretical methods are made, and the small
discrepancies are explained.
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I. INTRODUCTION

As is well known, photon-photon scattering can occur
due to the exchange of virtual electron-positron pairs, as
described by QED or modifications thereof, see e.g. [1],
and may even lead to collective photon phenomena [2].
Photon interactions via the quantum vacuum, sometimes
involving deviations from the standard model, has recently
been much discussed in the literature due to advances in
experimental technologies (see e.g. [3]) as well as new
theoretical insights [4]. Moreover, photons also interact
gravitationally, although this effect has been much less
studied. Purely general relativistic treatments of electro-
magnetic wave interactions have been made resulting in
exact solutions, see e.g. [5], but these calculations are very
different from the pure scattering processes, and do not
address the interaction at the single photon level. On the
other hand, it is not clear to what extent calculations of the
gravitational cross-section using quantum field theoretical
methods [6,7] (see also [8]) are consistent with classical
general relativity. In order to shed light on this issue, we
will consider the interaction of four electromagnetic (EM)
waves on a Minkowski background, which is the lowest
order scattering process consistent with energy-momentum
conservation. By studying the classical Einstein-Maxwell
system, but ignoring terms that do not correspond to pure
scattering (e.g. frequency shift terms) we will attempt to
make contact between the classical and quantum field
theoretical picture. Calculating the classical coupling co-
efficients between waves of different polarizations, corre-
sponding to the scattering amplitudes in quantum field
theory, we are able to compare the classical cross-section
with that of quantum field theory [6,7]. While the results
are approximately equal for small scattering angles �, we
find that there are significant differences for large �. The
likely source behind this discrepancy is that the quantum
field theoretical calculation [7] used the matrix scattering

amplitude in order to define the interaction potential. As
shown by Ref. [9], such a procedure is not able to fully
reproduce the general relativistic potential.

Finally we note that while gravitational photon-photon
scattering is weaker than the QED scattering in most cases
of physical interest [1,2], it should be noted that in the long
wavelength limit, actually the gravitational cross-section is
larger than that due to QED.

II. THEORY AND RESULTS

We employ units such that the speed of light and
Planck’s constant are c � @ � 1, and use metric signature
��;�;�;��. Tetrad indices a; b; . . . run from 0 to 3 and
�;�; . . . from 1 to 3. Coordinate indices �; �; . . . go from 0
to 3.

Assuming plane waves and denoting the interacting
waves A, B, C and D the total electric field is given by

 E �
X
n

�En�x
��eikn�x

�
� c:c:�; n � A;B;C;D;

where c.c. denotes the complex conjugate. A similar ex-
pression holds for the magnetic field. Moreover we assume
that the amplitudes have a weak dependence on space and
time, i.e. j@�E�x��j � jk�jjE�x��j. The presence of the
EM fields induce a perturbation, h��, of the flat back-
ground metric, ���, enabling energy exchange between
the modes. A generic frame, orthonormal to quadratic
order in the field amplitudes (linear order in the metric
perturbation), is chosen as
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where ea � e�a @�. The matching condition corresponding
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to energy and momentum conservation is given by

 k�A � k
�
B � k�C � k

�
D: (2)

In the center of mass system all frequencies are equal and
the waves are counterpropagating pairwise, i.e. the wave
vectors satisfy kA � �kB, kC � �kD. We make the fol-
lowing ansatz for the metric perturbations

 h�� � �h���x; z; t�e
�2i!t � �h	���x; z; t�e

2i!t

� ~h���t; x; z�e
�i�kA�kC�
x � ~h	���t; x; z�e

i�kA�kC�
x

� ĥ���t; x; z�e�i�kA�kC�
x � ĥ	���t; x; z�e
i�kA�kC�
x:

This is not the most general ansatz, however it is sufficient
to give all terms corresponding to resonant energy ex-
change between the modes. All the components �h��,
�h	��, ~h��, ~h	��, ĥ��, ĥ	��, except 12 of them, are deter-
mined by the field equations, Gab � �Tab, where Gab is
the Einstein tensor and Tab the energy-momentum tensor.
In the present case the only contribution to the energy-
momentum tensor is given by

 Tab � FcaFbc �
1

4
gabF

cdFcd:

The undetermined coefficients in the metric ansatz are set
to zero using the generalized Lorentz condition. Note that
the nonzero coefficients are of quadratic order in the field
amplitudes. Using Maxwell’s equations r�aFbc� � 0 and
raF

ab � jb, where Fab is the electromagnetic field tensor
and jb the four-current density, we can derive the following
wave equations

 

~�E� � �e0j
�
E � �

��	e�jB	 � 
�	e	�E

� ���	Ca�0eaB	 � 
�	Ca�	eaE�; (3)

 

~�B� � �e0j
�
B � �

��	e�jE	 � 
�	e	�B

� ���	Ca�0eaE	 � 
�	Ca�	eaB�: (4)

Here the wave operator ~� � e0 
 e0 �r 
 r, which coin-
cides with the D’Alembertian operator in Euclidian space,
and Ccab are commutation functions for the frame vectors
satisfying �ea; eb� � Ccabec. jE, jB, �E and �B are the
effective currents and charges due to the inclusion of the
gravitational field given by

 j E � �����0� � ���0�E
� � ��0�E

� � ���	��0
�0B	

� �
�	B
��e�; (5)

 j B � �����0� � ���0�B
� � ��0�B

� � ���	��0
�0E	

� �
�	E
��e�; (6)

 �E � �����E
� � ���	�0

��B	; (7)

 �B � �����B
� � ���	�0

��E	; (8)

where �abc are the Ricci rotation coefficients. The effective
currents and charges will be of cubic order in the field
amplitudes. Eliminating the magnetic field from the wave
Eq. (3) by using Faraday’s law to leading order, k�E �
!B, and neglecting terms of order four or higher in the
field amplitudes will result in three categories of terms.

(1) Nonresonant terms that will vanish after averaging
over several wavelengths and time periods.
Interaction due to these terms are not consistent
with energy-momentum conservation. Most terms
belong in this category.

(2) Phase shift terms which are resonant but give rise to
phase shifts rather than scattering. These terms typi-
cally contain a certain amplitude together with its
complex conjugate, i.e. terms of the form EAE	AEB.

(3) Resonant scattering terms containing all three wave
amplitudes according to the energy-momentum con-
servation condition (2).

Based on the classification of terms above we restrict
ourselves to include only the resonant scattering terms and
introduce polarization states perpendicular to the wave
vectors as shown in Fig. 1. Note that the E2 and the E�
directions coincide. We thus have

 EA1 � � cos��=2�EA�; EA3 � sin��=2�EA�;

EB1 � cos��=2�EB�; EB3 � � sin��=2�EB�;

EC1 � � cos��=2�EC�; EC3 � � sin��=2�EC�;

ED1 � cos��=2�ED�; ED3 � sin��=2�ED�;

 

FIG. 1 (color online). Polarization directions and the definition
of the scattering angle �.
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with EA2 � EA�, EB2 � EB�, EC2 � EC�, ED2 � ED�,
and

 kAx � sin��=2�!; kAz � cos��=2�!;

kBx � � sin��=2�!; kBz � � cos��=2�!;

kCx � � sin��=2�!; kCz � cos��=2�!;

kDx � sin��=2�!; kDz � � cos��=2�!:

After some lengthy but straightforward algebra we end
up with the following coupling equations describing the
evolution of the wave amplitudes to leading order

 �EA� � F1E
	
B�EC�ED� � F2E

	
B�EC�ED�

� F3E	B�EC�ED� � F4E	B�EC�ED�; (9)

 �EB� � F1E	A�EC�ED� � F2E	A�EC�ED�

� F3E
	
A�EC�ED� � F4E

	
A�EC�ED�; (10)

 �EC� � F1E	D�EA�EB� � F2E	D�EA�EB�

� F3E
	
D�EA�EB� � F4E

	
D�EA�EB�; (11)

 �ED� � F1E
	
C�EA�EB� � F2E

	
C�EA�EB�

� F3E
	
C�EA�EB� � F4E

	
C�EA�EB�; (12)

where � � @2=@t2 � @2=@x2 � @2=@z2 and

 F1 �
��3� cos2��2

1� cos2�
;

F2 � ���7� cos2��;

F3 �
4��2� cos2�� cos��

1� cos�
;

F4 �
4��2� cos2�� cos��

1� cos�
:

(13)

For symmetry reasons �EA�, �EB�, �EC� and �ED�
can be found from (9)–(12) respectively by interchanging
� and �. The coupling coefficients only depend on the
scattering angle �, and in the limit when �! 0 both F1 and
F4 become infinite while F2 ! �F3. The small angle
divergence in F1 and F4 is a consequence of the infinite
range of the gravitational force. However, the coefficients
F2 and F3 must remain finite for all angles, as those
coefficients not only describe scattering an angle �, but
also correspond to a change in the polarization state.

In order to check the consistency of our results, we
assume long pulses, i.e. � 
 �2i!@t, such that the time
derivative of the total energy density, "tot �

P
n�jEn�j

2 �
jEn�j

2� (where the sum is over A, B, C, D), can be easily
calculated. Carrying out the sum, it is found that all the
scattering terms cancel, and thus we deduce that the evo-
lution Eqs. (9)–(12) are energy conserving.

Next we rewrite (9)–(12) in terms of the vector poten-
tials, which rescales the coupling coefficients (13) by a
factor !2. Noting that the rescaled coupling coefficients
corresponds to the scattering amplitudes, and following
Ref. [10], we find that the unpolarized differential cross-
section can be calculated as

 

@�
@�
�

jMj2

128!2�2
�2
; (14)

where the square of the scattering matrix amplitude aver-
aged over all polarization states is given by
 

jMj2 �
!4�2

sin4�
�cos8�� 28cos6�� 70cos4�

� 28cos2�� 129�: (15)

This result should be compared with the same quantity
calculated by quantum field theoretical methods, i.e.
Eq. (15) in Ref. [7]. It turns out that the differential
cross-sections agree in the limit �� 
=2, but as seen
from Fig. 2, where the classical and quantum field theo-
retical expressions are shown, the two expressions differ
slightly in general. In order to resolve the difference more
accurately, the ratio of the cross-sections are shown in
Fig. 3, where one should note the agreement for small
angles. However, for general angles the expressions clearly
disagree, and it is natural to ask what causes this discrep-
ancy. To answer this question we note that Ref. [7] has used
the matrix scattering amplitude to determine the interac-
tion potential. As demonstrated by Ref. [9], however, such
a procedure is not sufficient to fully reproduce the general
relativistic potential. As the general relativistic deviation
from Newtonian behavior becomes more pronounced for
large scattering angles, this explains the deviation for
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FIG. 2. The classical (solid line) and quantum field theoretical
(dashed line) cross-sections in arbitrary units as a function of
scattering angle.
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general angles, but also the agreement in the small angle
limit.

III. SUMMARY AND DISCUSSION

Comparing the calculated cross-section for gravitational
photon-photon scattering Eq. (14) with that from QED
photon-photon scattering (due to exchange of virtual
electron-positron pairs), we find that they have different
frequency dependence. The former is proportional to !2

while the latter is proportional to !6 [10]. Noting from
Eq. (14) that @�=@� 
 16�2
�2L4

p=�2 (letting sin��
cos�� 1=

���
2
p

), where Lp is the Planck length and � the
wavelength, and comparing with the QED expression for
the cross-section (e.g. Ref. [10]), we find that the QED and
gravitational cross-sections are comparable for frequencies

 !� 103c�L2
p=r0�

3
c�

1=2; (16)

where r0 is the classical electron radius, �c is the Compton
wavelength, and we have reinstated the speed of light c.
Thus the gravitational effects become the dominant con-
tribution to the cross-section for frequencies !� 30 rad=s
and lower. Still, the cross-section is very small, and we
need extremely large photon densities for gravitational
photon-photon scattering to influence the dynamics.
Situations that could be of interest to study in more detail
involve the dense photon gas surrounding pulsars [11], as
well as the photon gas in the early universe [12].
Furthermore, we note that if the energy densities are suffi-
ciently high [13], the timescales for nonlinear evolution
will not be determined by the cross-section, even if the
spectrum is strongly incoherent. Instead the characteristic
time-scale must be found from weak turbulence theories
[14]. Using the so called random phase approximation, the
phase dependence can be integrated out, and evolution
equations for the spectral energy densities are derived [14].

Graviton mediated photon-photon scattering share many
parameter similarities with photon-graviton pair conver-
sion [15]. While it is possible that gravitational photon-
photon scattering may have applications to astrophysics
and/or cosmology, the effect can typically be neglected
compared to other effects, such as QED photon-photon
scattering or, in the presence of matter, interaction with
charged particles. Thus our main aim here has been to
make an explicit comparison with the quantum field theo-
retical result (see Fig. 2), which show a slight deviation
from our general relativistic cross-section. As seen in
Fig. 3, the deviation vanishes in the limit of small scatter-
ing angles. We trace the difference between the quantum
field theoretical and the classical result to the difficulty in
determining the general relativistic interaction potential
from the matrix scattering amplitude, as done by
Ref. [7]. An interesting problem, which is a project for
further research, is to investigate whether a quantum field
theoretical calculation can be improved to incorporate a
fully general relativistic interaction potential.
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