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The unified theory of gravitation and a Yang-Mills field is formulated as a dynamical theory of 

(r + 3)-geometries presumed to be principal bundles with Riemannian metric. Beyond th~ usual 

constraint equations the second fundamental form should satisfy a third constraint equatiofi. 

It is shown that they have a wormhole type solution describing a pair of Yang-Mills charges. 

1. GEOMETRODYNAMICS 

About twenty years ago J. A. Wheeler, C. W. Misner and others tried to formulate 

general relativity as a well-defined dynamical theory. The final result of these investi- 

gations was that the general relativity is not a dynamical theory of the space-time 

geometry, but it is the dynamical theory of the space-like 3-geometries [2]. The de- 

scription of space-time is nothing else but the description of the evolution of space-like 

hypersurfaces. Let a be a space-like hypersurface in space-time. On this 3-dimensional 

manifold the metric (')g is positive definite. If we want to examine the evolution of 

this 3-geometry, the metric (')g and the speed of its change along the normal vector 

field, i.e. the Lie derivative LN O)g = --(~)B must be given at t = 0, where (~)B 

denotes the second fundamental form [4, 13]. 

Now, the following question arises: what conditions should be satisfied by (')g 

and (~)B, so that a space-time metric should exist which at t = 0 reduces to 

ds 2 = - d t  2 + (~ 

0 (~)g -- (~)B. 

~t 

To answer this question we make use [13] of the Codazzi and Gauss equations, well 

known in differential geometry, and from the Einstein equations we obtain the 

constraint equations: 

( o ) v ~ ( ~ ) B ( x , . x , )  - (~)~ (~)B(x, .  r) = S.T(N, r) vr~  r(T(~)) 
v X t  ~ :~ 

-~((*)g + 2 Tr  ((~ o (~ - (Tr (~ = 8 ~ r ( S ,  N ) ,  
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and the evolution equation 

LN (~)B(X, Y) = (')R(X, I1) + 2 (~')B o (')B(X, Y) - (Tr (r (")B(X, Y) - 

- s , , r ( x ,  r) - s , , r ( N , N ) ' " g ( X ,  Y), Vx, 

Since ~ is assumed to be initially at rest the constraint equations in vacuum reduce to 

(~)R = 0 .  

Misner has shown [15] that this constraint equation does have a solution in the 

S 1 x S 2 wormhole topology. Around the mouths of the wormhole this solution is 

like a Schwarzschild one, therefore we can call it "mass without mass" [1]. it  was 

also shown that the Einstein-Maxwell equations have a solution in wormhole topo- 

logy. The electric lines of force are trapped in the topology of space, and it physically 

means "charge without charge". 

In geometrodynamics [1] making use of the fact that the electromagnetic field 

leaves a very characteristic trace in spacetime geometry the description of the electro- 

magnetic field can be reduced to the description of pure geometry. In the case of 

non-abelian gauge theories the implementation of this programme is impossible since 

there is no unambiguous relation between field-variables and the space-time geometry 

as in the case of electrodynamics. However, we show that the geometrodynamical 

concept can be extended to the non-abelian Yang-Mills fields within the framework 

of the multidimensional unified theory. 

2. M U L T I D I M E N S I O N A L  U N I F I E D  T H E O R Y  

The MUT is a generalization of the Kaluza-Klein model [11, 12]. The M U T  

is a unified geometrical description of gravitation and a Yang-Mills field in an (r + 4)- 

-dimensional space, where r is the dimension of the gauge group G. This (r + 4)- 

-dimensional space is assumed to be a principal bundle H(M, G, n{0}). The basis 

of this bundle denoted by M with Lorentz metric (M)y is the 4-dimensional space-time 

manifold. G is a compact semi-simple Lie group with an invariant metric (~)g,b = 

= f,~df~b, where f,~b are the structure constants of the group. In this case the torsion- 

-free connection coefficients are 

(a)Fg~ = �89 

and the group manifold is a Riemannian manifold with a constant positive curvature. 

~: H ~ M is the bundle projection, {O} is the bundle atlas, Let a connection be given 

on the principal bundle H. The connection coefficients defined by the vertical part 

of the basis vector eu: 
a 

ve~, = A u e  a , 

will be identified with the Yang-Mills potentials. The indices A, B . . . .  run from 1 to 

r + 4, a, b, ... from 5 to r + 4, and #, v . . . .  from 1 to 4. In this model the most im- 
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portant object is a pseudo-Riemannian metric defined on the total space H. The free 

particles move along the geodesics of this space. But this pseudo-Riemannian metric 

(rag should be compatible with metrics (M)g and (~)g on the basis and the structure 

group, respectively: 

(1) (")g/~,.. = ~ * ( ( % ) ,  

(2) (U)g/hT, t = n*((U)g) , 

(3) (~T.)  • (h'm).  

If we choose the basis which is the natural one on the basis manifold and which is 

the left-invariant one on the fibre, the matrix of the metric (m 9 is 

/(M),.~ L (G)~ A a A  b 
/ ,,~ ~,, - r  ~,,,,,.,~t~ v (G)gaI, A ; ~  

\ ,~,abZ~v (G)gab / 

Further the horizontal lift basis seems practical [8]. In this basis the first four vectors 

~ are the horizontal lifts of e,. The commutation relations are 

[~o, ed  ; ~ '  , Ja b C c 

[~o, G]  = [~.~d = 0 .  

The torsion-free Christoffel coefficients in this basis are 

1 a (H)F~,~ = -zf;~,  (U)F L = O,  

( n ) F ~  a = ( t l ) F v  _ ( ~ 4 ) g v 6  " 4, ~ -- ~z (COg~ F~,a , 

(H)fa  = 1 a (It)F6 (M)F5 
--gv --~F,uv , - - u v  -~- #v , 

and the Ricci tensor is 

(If)R~ b -= (G)Ra b @ �88 (G)gac (6)gbd (M)g~a (M)gr~ F~rFaa~ a , 

(tl)Ru b =. (lt)Rb ~ = �89 (G)gbc (M)g@ (M)V~F~/~ , 

(U)Rttv = (M)R# ~ _ �89 (O)gab (U)g~,~ Fu~F~aO b , 

and the scalar curvature is 

(n)R = (M)R + ((;)R _ �88 (~ (U)g~a (M)g,,/~ F~,~F~aa b , 

~ 

where F.v denotes the curvature tensor of the connection describing the gauge field. 

The unified action integral is 

(mS = J~/(-  (")g) (mR d% d~G. 

From this action we can deduce the Einstein-Yang-Mills equations by variation of 

the metric (M)gu ~ and the Yang-Mills potentials A~, [7]. 
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3. GENERALIZATION OF G E O M E T R O D Y N A M I C S  TO MUT 

Instead of  gencralization of  space-time we consider an (r  + 3)-dimensional gene- 

ralized space-like hypersurface 27. Let  27 be a principal bundle:  Z(r G, zr), where a 

is a 3-dimensional manifold and G is a compact  semi-simple Lie group. On the bundle  

the vertical distribution vT(Z) is automatical ly given. Let us consider a metric (~)g 

on Z, which satisfies the following conditions: 

i. ~Z)g is positive definite 

ii. The restriction of  (Z)g to the vertical distribution is G-invariant: 

(4) Lz((r)g/vT( Z)) = O, 

where Z is an arbi t rary fundamental  field. 

Preposition: In this case 

the or thogonal  complement  to the vertical distribution defines a connect ion on 

Proof:  We show that hT(Z) is a G-invariant horizontal  distribution. It is trivial that  

T(Z) = hT(27) �9 vT(~). For  any fundamental  vector field Z and X ~ F(hT(27)), 

Indeed, for  any V~ F(vT(27)) we have (Z)g(V, X) = 0. Thus 

o = z<%(x, v ) =  '%([z ,x] ,  v) + [z, v]). 

The second term is zero since the commuta to r  of  vertical fields is also a vertical 

vector field, thus we have 

[Z ,X]  ~ F((vT(Z)) l) = F(hT(Z,)). Q.E.D.  

Fur thermore ,  the metric (r)g induces a metric (r on the basis a c M as follows: 

(~)g(X, Y) :=  (~)g()~, Y), where )~ and Y denote the horizontal  lifts of  the vector 

fields X and 14. (~)g is also positive definite. Let  a second fundamental  form (Z)B 

be given on 27. There exists a metric (n)g on the principal bundle H(M, G, n) which 

at t = 0 reduces to 

(n)g = - d t  2 + (~)g 

(Z)g -- (Z)B , 
Ot 
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and which satisfies the Einstein equations on H, if and only if the usual constraint 

equations are satisfied by (~)g and (r)B: 

(5) ' ~ ) v , ( ~ ) B ( x , , x , ) - ( ~ ) v x , ( ~ ) B ( x , , r )  = 0 ,  v r ~ r ( ~ ( s ) ) ,  

(6) (X)R + 2 Tr ((Z)B o (Z)B) -- (Tr (Z)B)2 = O. 

What further condition must be satisfied by (Z)B so that equation (4) should be valid? 

This question is related to the problem in MUT  that the ~ r cannot be arbitrary 

in the variation equation 

((ft)RAB -- �89 (H) gAB (H)R) a (,)gAB = O, 

but they should satisfy the compatibility conditions [7]. 

Proposition: Condition (4) yields a third constraint equation: 

(7) Lz((~)B/vT,~)) = O, 

or any fundamental field Z. 

Proof: Making use of the relation 

LzL r = LEz,y I + LyLz,  

for any fundamental field Z we have 

(Here and in the next formulas the fields Z and N are regarded as extended fields 

to an open neighbourhood of S ~ H). Since Lz((Z)g/~T(Z) ) = O, 

L z (~)B = L ((z)~l [Z,N]\ ~ [ v T ( , ~ ) ]  �9 

But [ Z , N ]  = 0. Indeed, (n)g(N, .) = 0 since for any X ~ F (T (Z ) )  

( % ( N ,  . ) ( x )  = ( % ( N , x )  = o. 

From here we have 

Cz(%(N,x)  = z((%(N, x ) ) -  

- ( " ) g ( [ z , N ] , x )  - (")g(N, [z, x])  = 0. 

But Z ( ( m g ( N , X ) ) =  0 and (rag(N, [ Z , X ] ) =  0 since N is normal to the hyper- 

surface S. Thus we have found that [Z, N] is parallel with N. Further we have 

(%([z, N], N) = ( % ( ( ' ) V z N  - (')v~z, N) = 

= ( % ( ( ' ) V z N ,  N) - (%((')v~z, N). 
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Taking into account that (n)g(N, N) = - 1 and (U)g(Z, N) = 0 we find [Z, N] = O. 

Q.E.D. 

Finally the evolution equation is 

L s (~)B(X, Y) = (Z)R(X, Y) + 2 (Z)Bo (Z)B(X, Y) - (Tr (r)B) (Z)B(X, Y) .  

Let us now consider a very interesting special case when the topology of X is 

X(S 1 • $2, G, n) which is the MUT-generalization of the simplest wormhole topology 

[14]. Since X is assumed to be initially at rest, the constraint equations reduce to 

(Z)R = O. 

(a)R > 0, and F 2 is the energy of the Yang-Mills field. Let F be assumed to be such 

a field configuration that 

(8) (a)R - -  1 F 2  = 0. 

For the metric of a we have 

(~)R = 0 ,  

which does have a solution in wormhole topology. This solution physically means 

that the Yang-Mills field is trapped by a wormhole. Examining the motion of test 

particles along the geodesics the mouth of the wormhole seems to be a Yang-Mills 

charged particle, that is we found "Yang-Mills charge without Yang-Mills charge". 

At first sight it may happen that the metric of the basis a = S 1 x S 2 is non-com- 

patible with the connection determined by equation (8). However, the metric (')g 

prescribes only the scalar product of horizontal vectors. This has nothing to do with 

the connection giving the horizontal part of a tangent vector. 

The evolution of much more complicated hypersurfaces may be examined by ap- 

proximations [4]. It is also a very important question, with respect to the quantized 

theory, how to change the topology in the course of the evolution of an (r + 3)- 

-hypersurface [2, 14, 16, 17]. 

Received 27. 10. 1981. 
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