GEOMETRODYNAMICS IN MULTIDIMENSIONAL
UNIFIED THEORY*)

L. Szabd

Institute for Theoretical Physics, Eotvés Lorand University,
Puskin u. 5—7, H-1088 Budapest VIII, Hungary

The unified theory of gravitation and a Yang-Mills field is formulated as a dynamical theory of
(r + 3)-geometries presumed to be principal bundles with Riemannian metric. Beyond the usual
constraint equations the second fundamental form should satisfy a third constraint equation.
It is shown that they have a wormhole type solution describing a pair of Yang-Mills charges.

1. GEOMETRODYNAMICS

About twenty years ago J. A. Wheeler, C. W. Misner and others tried to formulate
general relativity as a well-defined dynamical theory. The final result of these investi-
gations was that the general relativity is not a dynamical theory of the space-time
geometry, but it is the dynamical theory of the space-like 3-geometries [2]. The de-
scription of space-time is nothing else but the description of the evolution of space-like
hypersurfaces. Let ¢ be a space-like hypersurface in space-time. On this 3-dimensional
manifold the metric g is positive definite. If we want to examine the evolution of
this 3-geometry, the metric ‘g and the speed of its change along the normal vector
field, i.e. the Lie derivative Ly ‘”g = —“B must be given at t = 0, where “’B
denotes the second fundamental form [4, 13].

Now, the following question arises: what conditions should be satisfied by g
and B, so that a space-time metric should exist which at ¢ = 0 reduces to

ds? = —dt* + g

Emg — _@p.
ot

To answer this question we make use [13] of the Codazzi and Gauss equations, well
known in differential geometry, and from the Einstein equations we obtain the
constraint equations:

@V, OB(X,, X;) ~ ©Vy, @B(X,, Y) = 8aT(N, Y), VYeI(T(0)),
3R + 2Tr (©B o @B) — (Tr ’B)?) = $nT(N, N),
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and the evolution equation

Ly“B(X,Y)=“RX,Y)+2“B-“B(X,Y) — (Tr “B) “B(X,Y) —
— 8nT(X,Y) — 8xT(N,N) “g(X, Y), VX, YeI(T(0)).
Since o is assumed to be initially at rest the constraint equations in vacuum reduce to
@R =0.

Misner has shown [15] that this constraint equation does have a solution in the
S! x S? wormhole topology. Around the mouths of the wormhole this solution is
like a Schwarzschild one, therefore we can call it “mass without mass™ [1]. It was
also shown that the Einstein-Maxwell equations have a solution in wormhole topo-
logy. The electric lines of force are trapped in the topology of space, and it physically
means ‘“‘charge without charge”.

In geometrodynamics [1] making use of the fact that the electromagnetic field
leaves a very characteristic trace in spacetime geometry the description of the electro-
magnetic field can be reduced to the description of pure geometry. In the case of
non-abelian gauge theories the implementation of this programme is impossible since
there is no unambiguous relation between field-variables and the space-time geometry
as in the case of electrodynamics. However, we show that the geometrodynamical
concept can be extended to the non-abelian Yang-Mills fields within the framework
of the multidimensional unified theory.

2. MULTIDIMENSIONAL UNIFIED THEORY

The MUT is a generalization of the Kaluza-Klein model [11, 12]. The MUT
is a unified geometrical description of gravitation and a Yang-Mills field in an (r + 4)-
-dimensional space, where r is the dimension of the gauge group G. This (r + 4)-
-dimensional space is assumed to be a principal bundle H(M, G, n{/}). The basis
of this bundle denoted by M with Lorentz metric g is the 4-dimensional space-time
manifold. G is a compact semi-simple Lie group with an invariant metric ¥g,, =
= f5f5, where f5 are the structure constants of the group. In this case the torsion-
-free connection coefficients are

G
¢ )Fll:c = %flfc’

and the group manifold is a Riemannian manifold with a constant positive curvature.
n: H - M is the bundle projection, {y/} is the bundle atlas. Let a connection be given
on the principal bundle H. The connection coefficients defined by the vertical part
of the basis vector e,:

ve, = Age,,

will be identified with the Yang-Mills potentials. The indices 4, B, ... run from 1 to
r+4,a,b,...from Stor + 4,and g, v, ... from 1 to 4. In this model the most im-
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portant object is a pseudo-Riemannian metric defined on the total space H. The free
particles move along the geodesics of this space. But this pseudo-Riemannian metric
g should be compatible with metrics g and (©g on the basis and the structure
group, respectively:

(1) Dglorn = ¥*(Vg),
(2) (")g/h'l‘ll = ”*((M)g) )
(3) (vTH) L (hTH).

If we choose the basis which is the natural one on the basis manifold and which is
the left-invariant one on the fibre, the matrix of the metric ®g is

M G b G
(ll)q — <( )guv + ¢ )gabAZAv ¢ )gahAZ)
JAB 5

G G
( )gabAl\t ¢ )gab

Further the horizontal lift basis seems practical [8]. In this basis the first four vectors
¢, are the horizontal lifts of ¢,. The commutation relations are

[etu eb] = faé;)e(: >
[e,,e,] =[e.e]=0.
The torsion-free Christoffel coefficients in this basis are
(H)F:c = %fbac b (H)[‘;:c =0 5

H H M J (G b
¢ )F;a:( )Ft‘x]u:%( )gv ¢ )gapréa

I

H H) o M) pd
( )I"Zv _%Fa ( )Fuv = ( )F

uy s wy s
and the Ricci tensor is

(H)Rab = (G)Rab + % (G)gac (G)gbd (M)g“ﬁ (M)gy‘5 FSngm >

(H)pr - (H)Rbn =1 (G)gbc (M)gali (M)VmF;ﬁ ,

R, = R, — 3 gy g FLFY,
and the scalar curvature is

R = MR  OR — } O, ODgux (Dgvs pe gb

where Fj, denotes the curvature tensor of the connection describing the gauge field.
The unified action integral is

g = J J(=Ug) UDR d*x &G .

From this action we can deduce the Einstein-Yang-Mills ¢quations by variation of
the metric (*Vg,, and the Yang-Mills potentials A% [7].
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3. GENERALIZATION OF GEOMETRODYNAMICS TO MUT

Instead of gencralization of space-time we consider an (r + 3)-dimensional gene-
ralized space-like hypersurface X. Let X be a principal bundle: 2(s, G, n), where o
is a 3-dimensional manifold and G is a compact semi-simple Lie group. On the bundle
the vertical distribution vT(X) is automatically given. Let us consider a metric *g
on X, which satisfies the following conditions:

i. Pg is positive definite

ii. The restriction of Py to the vertical distribution is G-invariant:

(4) L ®g[vT(2)) = 0,

where Z is an arbitrary fundamental field.

Proposition: In this case .
hT(Z) = (vT(Z))",

the orthogonal complement to the vertical distribution defines a connection on
(o, G, m).

Proof: We show that hT(Z) is a G-invariant horizontal distribution. It is trivial that
T(X) = hT(Z) ® vT(Z). For any fundamental vector field Z and X e I'(hT(Z)),

[Z, X]e(hT(Z)).
Indeed, for any Ve I'(vT(Z)) we have Pg(V, X) = 0. Thus
0=2Z%X,V)=%([Z,X],V)+P9(X,[Z V].

The second term is zero since the commutator of vertical fields is also a vertical
vector field, thus we have

[z, X] e I((+T(2))*) = [(hT(Z)). Q.E.D.

Furthermore, the metric Pg induces a metric (”’g on the basis ¢ = M as follows:
@g(X, Y):= Pg(X, ¥), where X and ¥ denote the horizontal lifts of the vector
fields X and Y. Vg is also positive definite. Let a second fundamental form B
be given on X. There exists a metric g on the principal bundle H(M, G, n) which
at ¢ = 0 reduces to '

(H)g = —dt? + (E)g

9 By _ g
Ot
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and which satisfies the Einstein equations on H, if and only if the usual constraint
equations are satisfied by ®g and ®B:

O VOB, X) - %, OB, Y) =0, Vrer(T(s),
(6) R + 2 Tr ((E)B o (E)B) __ (TI‘ (‘v')B)2 =0.

What further condition must be satisfied by ®)B so that equation (4) should be valid?

This question is related to the problem in MUT that the 6 “g4® cannot be arbitrary
in the variation equation

((H)RAB —1Wg g (H)R) 6 Wgt? =0,

but they should satisfy the compatibility conditions [7].

Proposition: Condition (4) yields a third constraint equation:
(7) L PBlur) = 0,
or any fundamental field Z.
Proof: Making use of the relation
LyLy = Lizyy + LyLy,

for any fundamental field Z we have

LL\(®g/ury) = Lizn(P)orisy) + LaLa(P9]or ) -

(Here and in the next formulas the fields Z and N are regarded as extended fields
to an open neighbourhood of £ = H). Since L(Pg/,r¢) = 0,

Ly B = Ly n(P9)re) -
But [Z, N] = 0. Indeed, “Pg(N, .) = 0 since for any X e I'(T(2))
Mg(N, ) (X) = @g(N,X) = 0.
From here we have
L; ®g(N, X) = Z(*g(N, X)) ~
- (H)g([Z, N}, X) - ®g(N,[2,X]) = 0.

But Z(‘“g(N, X)) = 0 and ®g(N,[Z, X]) = 0 since N is normal to the hyper-
surface 2. Thus we have found that [Z, N] is parallel with N. Further we have

g([Z, N],N) = Dg(DV,N — By, 7 N) =
= g(Y,N, N) — Ig(y, 7 N).
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Taking into account that Pg(N, N) = —1 and ®g(Z, N) = 0 we find [Z, N] = 0.
Q.E.D.

Finally the evolution equation is
LyPBX,Y) = PR(X,Y) +2®BPB(X, Y)— (Tr PB) ®B(X, Y).

Let us now consider a very interesting special case when the topology of X is
X(S' x S,, G, m) which is the MUT-generalization of the simplest wormhole topology
[14]. Since X is assumed to be initially at rest, the constraint equations reduce to

@R =0.

(®R > 0, and F? is the energy of the Yang-Mills field. Let F be assumed to be such
a field configuration that

(8) @R — }F* =0,

For the metric of ¢ we have
(@WR =0,

which does have a solution in wormhole topology. This solution physically means
that the Yang-Mills field is trapped by a wormhole. Examining the motion of test
particles along the geodesics the mouth of the wormhole seems to be a Yang-Mills
charged particle, that is we found “Yang-Mills charge without Yang-Mills charge”.

At first sight it may happen that the metric of the basis ¢ = S' x S? is non-com-
patible with the connection determined by equation (8). However, the metric g
prescribes only the scalar product of horizontal vectors. This has nothing to do with
the connection giving the horizontal part of a tangent vector.

The evolution of much more complicated hypersurfaces may be examined by ap-
proximations [4]. It is also a very important question, with respect to the quantized
theory, how to change the topology in the course of the evolution of an (r + 3)-
-hypersurface [2, 14, 16, 17].

Received 27. 10. 1981.
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