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Abstract Quantum geometrodynamics is canonical quantum gravity with the
three-metric as the configuration variable. Its central equation is the Wheeler–DeWitt
equation. Here I give an overview of the status of this approach. The issues discussed
include the problem of time, the relation to the covariant theory, the semiclassical
approximation as well as applications to black holes and cosmology. I conclude that
quantum geometrodynamics is still a viable approach and provides insights into both
the conceptual and technical aspects of quantum gravity.
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These considerations reveal that the concepts of spacetime and time itself are not
primary but secondary ideas in the structure of physical theory. These concepts
are valid in the classical approximation. However, they have neither meaning
nor application under circumstances when quantum-geometrodynamical effects
become important. …There is no spacetime, there is no time, there is no before,
there is no after. The question what happens “next” is without meaning [1].

1 Introduction

The quantization of the gravitational field is still among the most important open prob-
lems in theoretical physics. Despite many attempts, a final theory, which has to be both
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878 C. Kiefer

mathematically consistent and experimentally tested, remains elusive. John Wheeler
once wrote: “No question about quantum gravity is more difficult than the question,
‘What is the question?”’ [2]. One of the questions is, of course, which approach to
quantum gravity one is motivated to pursue.

My contribution here is devoted to one particular approach—quantum geometro-
dynamics. Being one of the oldest, it is still an active field of research. Quantum
geometrodynamics is one version of canonical quantum gravity, to which also loop
quantum gravity belongs. All canonical theories contain as their central equations
constraint equations, that is, quantum versions of classical constraints between the
generalized positions and momenta of the theory. In the case of gravity, these are
the Hamiltonian and diffeomorphism constraints augmented, in the case of the loop
approach, by the Gauss constraints. But the various canonical approaches are distin-
guished by their choice of canonical variables: three-metric and extrinsic curvature
in geometrodynamics, holonomies and fluxes in the loop version. The non-trivial
relationship between the various canonical variables leads to different, most proba-
bly inequivalent, quantum theories with different mathematical structures. Only the
experiment can decide, at the end, which of them is the correct one, if any.

All the canonical theories are approaches which focus on the direct quantization
of Einstein’s theory of general relativity. They thus do not necessarily entail a uni-
fication of gravity with the other interactions. Alternative approaches to a quantum
theory of relativity are the covariant ones to which standard perturbation theory and
path-integral quantization belong. Fundamentally different in spirit is string theory
whose major aim is a unification of all interactions within one quantum framework.
Quantum gravity as such emerges there only in an appropriate limit in which the var-
ious interactions becomes distinguishable. An introduction to all major approaches
can be found in my monograph [3]. The reader can also find there a more complete
list of references.

The purpose of this contribution is to provide a concise and critical review of the
status of quantum geometrodynamics, its successes and shortcomings. I shall start
in Sect. 2 with a brief introduction to the formalism of canonical gravity at both the
classical and quantum level. I discuss in particular the problem of time and the rela-
tion of geometrodynamics to the covariant approaches. A brief historical overview is
also included. Sect. 3 focuses on one of the successes: the relation of quantum geo-
metrodynamics to quantum theory on a fixed background. This concerns in particular
the recovery of the (functional) Schrödinger equation and its quantum gravitational
corrections. Sects. 4 and 5 then give a brief overview of the main applications: quan-
tum black holes and quantum cosmology. I shall end with some conclusions and an
outlook.

2 What is quantum geometrodynamics?

2.1 The 3 + 1-decomposition

The usual starting point for developing the canonical formalism is the foliation of
spacetime into three-dimensional spacelike hypersurfaces. A prerequisite for this is the
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Fig. 1 Two successive spacelike hypersurfaces in the 3+1-decomposition

global hyperbolicity of the spacetime. Figure 1 shows schematically two infinitesimally
neighboured hypersurfaces. The vector Ẋµdt , where

Ẋν ≡ tν = Nnν + N a Xν,a, (1)

denotes the connection between points with the same spatial coordinates xa . This
connection can be decomposed into a normal and a tangential part. The amount of the
normal separation is specified by the lapse function N (with nµ denoting a unit nor-
mal vector); the tangential separation is quantified by the components N a of the shift
vector. The four-dimensional line element between a point with coordinates xa on the
lower hypersurface to a point with coordinates xa + dxa on the upper hypersurface
can then be decomposed as follows:

ds2 = gµνdxµdxν = −N 2dt2 + hab(dxa + N adt)(dxb + N bdt)

= (hab N a N b − N 2)dt2 + 2hab N adxbdt + habdxadxb, (2)

where hab denotes the components of the three-dimensional metric, in brief: the three-
metric. In the canonical formalism, the three-metric will play the role of the configu-
ration variable. To quote again John Wheeler: “The formalism of quantum gravity, in
its best developed form, makes three-geometry a central concept” [2]. Instead of con-
sidering a three-metric on each hypersurface, we can imagine a given three-manifold
Σ and a t-dependent three-metric on it. In fact, the canonical formalism depends on
the chosen manifold Σ ; there is one canonical theory for each Σ .

This leads to a more fundamental viewpoint, cf. [4]. We can assume that in the
beginning only Σ is given, not a spacetime. Only after solving the dynamical equa-
tions are we able to construct spacetime and interpret the time dependence of the
metric hab on Σ as being brought about by ‘wafting’ Σ through a four-manifold via
a one-parameter family of embeddings.

The classical equations are six evolution equations for the hab and their momenta
pab as well as four constraints for them. The momenta pab are linear combinations of
the extrinsic curvature of the three-dimensional space. The six evolution equations and
four constraints are the canonical version of the ten Einstein field equations. Only after
the classical equations have been solved, can one interpret spacetime as a ‘trajectory
of spaces’.
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In the quantum theory, the trajectories will disappear as in ordinary quantum
mechanics. There will thus be no spacetime at the most fundamental level; only the
constraints for the three-dimensional space will remain. But before discussing them
in the quantum theory, we shall have a brief look at their classical version.

2.2 Constraints

As mentioned in the last subsection, Einstein’s equations can be written as a dynam-
ical system of evolution equations together with constraints. The constraints are, at
each space point, the Hamiltonian constraint H ≈ 0 and the three momentum or dif-
feomorphism constraints Da ≈ 0, where a = 1, 2, 3. The sign ≈ denotes here the
weak equality of Dirac, according to which the constraints can be used only after the
evaluation of Poisson brackets. The explicit form of the constraints reads,

H [hab, pcd ] = 2κ Gab cd pab pcd − (2κ)−1
√

h((3)R − 2Λ) + √
hρ ≈ 0, (3)

Da[hab, pcd ] = −2∇b pab + √
h ja ≈ 0, (4)

where h is the determinant of the three-metric, (3)R the three-dimensional Ricci scalar,
Λ the cosmological constant, ρ ( ja) denotes the energy density (current) of the non-
gravitational fields and

κ = 8πG/c4.

The coefficients Gab cd denote the “DeWitt metric” and are explicitly given by

Gab cd = 1

2
√

h
(hachbd + had hbc − habhcd). (5)

The configuration space on which the constraints are defined is the space of all
three-metrics and is called Riem Σ . The interpretation of the diffeomorphism con-
straints (4) is straightforward: they generate spatial coordinate transformations onΣ .
What really counts is therefore the space of all three-geometries, which is obtained
from Riem Σ after dividing out the diffeomorphisms. This space of all three-geome-
tries has been baptized superspace by John Wheeler (it has nothing to do with super-
symmetry) and is sometimes considered to be the real configuration space of canonical
gravity. Its mathematical structure is highly non-trivial, see, for example, [4,3] and
the references therein.

If the three-dimensional spaceΣ is compact without boundary, the full Hamiltonian
is a sum of the above constraints. In the asymptotically flat case, it contains in addition
boundary terms coming from the Poincaré charges at infinity, which include the ADM
energy [5].

The Hamiltonian constraint can be mathematically interpreted as the generator
of normal hypersurface deformations, that is, of deformations normal to the space-
like hypersurfaces in the canonical formalism. Together with (4), it obeys the Pois-
son constraint algebra of all hypersurface deformations (normal and tangential) [3].
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Quantum geometrodynamics 881

This symmetry is not equivalent to the four-dimensional symmetry of spacetime
diffeomorphisms; however, the Hamiltonian formalism together with the hypersurface
deformations is equivalent to the Lagrangian formalism with the spacetime diffeo-
morphisms. The constraint algebra closes, that is, the Poisson bracket between two
constraints is proportional to a linear combination of the constraints. It is not a Lie
algebra, though, because the Poisson bracket between two Hamiltonians (3) contains
on the right-hand side explicit functions of the canonical variables.

There exists a subtle and intriguing connection between the constraints and the
dynamical evolution [4,6]. Firstly, the constraints are preserved in time if and only if
the energy–momentum tensor of matter has vanishing covariant divergence. This has
an analogon in electrodynamics: the Gauss constraint is preserved in time if and only if
the electric charge is conserved. Secondly, Einstein’s equations are the unique propa-
gation law consistent with the constraint: if the constraints hold on every hypersurface,
Einstein’s equations hold on spacetime; conversely, if the constraints are valid on a
particular hypersurface and if Einstein’s equations hold on spacetime, the constraints
hold on every hypersurface. This possesses, again, an analogon in electrodynamics:
Maxwell’s equations are the unique propagation law consistent with the Gauss con-
straint. In a sense, the dynamical equations in general relativity follow entirely from
the “laws of the instant”, that is, from the constraints [6].

2.3 Problem of time I

The fact that the laws of the instant suffice gives rise to the classical facet of the prob-
lem of time, cf. [7]. Let us restrict attention, for simplicity, to a compact three-space
Σ . The total Hamiltonian is then a combination of the constraints only: the whole
evolution is generated by the constraints. This shows again that the dynamical laws
follow entirely from the constraints. No external time parameter exists, and all phys-
ical time variables, if needed, must be constructed from within the system, that is, as
a functional of the canonical variables (Such physical time variables may come into
play upon solving the constraints). A priori, there is no preferred choice of such an
intrinsic time parameter. Still, in the classical theory a spacetime can be constructed
after solving the field equations and can thus be described by a classical time func-
tion. This is no longer possible in the quantum theory where the spacetime itself (the
“trajectory of spaces”) vanishes, giving rise to a more fundamental problem of time,
see below.

The problem of time is connected with the problem of observables. The status of
the latter is a subject of debate. The concept of observables was introduced by Peter
Bergmann into the field of constrained dynamics to denote variables which have van-
ishing Poisson brackets with all of the constraints. Since constraints are believed to
generate redundancy (“gauge”) transformations, these variables would be invariant
under such transformations and would thus be candidates for physical variables. In
fact, Bergmann coined the name observables in the hope that after quantization they
would play the role of what is called observables in quantum theory.

This notion of observables may indeed be the appropriate one for gauge theories.
It has, however, been disputed whether it is also the appropriate one for the situation
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encountered here [6,8]. A quantity having (weakly) vanishing1 Poisson brackets with
both the Hamiltonian and the diffeomorphism constraints (i.e. a quantity “commuting”
with them) is a constant of motion because, at least in the spatially compact case, the
full Hamiltonian is the sum of these constraints. This is another aspect of the problem
of time—no time, no motion.

In order to avoid such a far-reaching conclusion, Kuchař has introduced the alter-
native concept of a perennial for a quantity that commutes with all constraints, that
is, with both (3) and (4), and has instead reserved the notion observable for a quantity
that commutes only with the diffeomorphism constraints (4) [6].

This makes sense. As Barbour and Foster have convincingly argued, it is misleading
to think of the Hamiltonian constraint (3) as a generator of pure gauge transformations
[8]. To support this claim they have focused on a particle model with a Hamiltonian
constraint, where this constraint only generates reparametrizations of the curve param-
eter. They show that the presence of this constraint has to do with the fact that the
initial condition for a geodesic in configuration space is a point and a direction at that
point, not the absolute value of a velocity, and that the Hamiltonian does generate
physical change. Extrapolating this insight to the gravitational situation, one would
conclude that physical quantities are only required to commute with the diffeomor-
phism constraints (4), that is, that they do not need to be perennials. The Hamiltonian
constraint yields a transformation from one configuration to a different one.

2.4 Quantization

Within the canonical formalism one can employ two approaches towards quantization.
In the first one, one tries to solve the constraints (3) and (4) at the classical level in
order to arrive at a formulation with unconstrained, “physical”, variables only. This is
called reduced quantization. In practice, this approach is hardly feasible; it is even in
quantum electrodynamics impossible to work with a reduced formulation—only in the
non-interacting case can one identify the free transversal fields as the unconstrained
variables.

One thus usually follows the second path, which is Dirac quantization [9]. In gen-
eral, one would not expect this approach to be equivalent with reduced quantization,
cf. [10]. However, using path-integral methods (cf. Sect. 2.6) one can show that at
least in the one-loop (linear in h̄-) approximation, reduced and Dirac quantization are
equivalent if a particular factor ordering for the operators is chosen [11–13].

Let us focus on Dirac quantization. Poisson brackets of the canonical variables are
translated into commutators, and the classical constraints are translated into restric-
tions on physically allowed wave functions. In Dirac’s words [9, p. 145]:

Weak equations between the classical variables correspond to linear conditions
on the vectors ψ , according to the formula

X (q, p) = 0 corresponds to Xψ = 0.

1 For the notion of a weakly vanishing quantity, see below.
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(The weak equality sign ≈ for the constraints was introduced later [14]). In our case it
is the three-metric and its canonical momentum which in the quantum theory obey the
canonical commutation relation. In the Schrödinger representation, the components
of the momentum are substituted by h̄/i times the functional derivative with respect
to the metric,

p̂ab −→ h̄

i

δ

δhab
. (6)

This is a formal heuristic prescription only, since one cannot expect the momentum to
be represented by a self-adjoint operator, the reason being its non-commutation with
the constraints.

In fact, the rule (6) does not implement one important property of the three-metric:
the positivity property that demands det hab > 0. It has thus been suggested to replace
(6) by a modified prescription, leading to a variant of the canonical approach known
as affine quantization [15]. The question as to which prescription is correct has to do
with the problem of factor ordering.

With these formal rules, the classical Hamiltonian constraint (3) becomes the quan-
tum Hamiltonian constraint, also known as the Wheeler–DeWitt equation [1,16],

ĤΨ ≡
(

−2κ h̄2Gabcd
δ2

δhabδhcd
− (2κ)−1

√
h
(
(3)R − 2Λ

) + √
hρ̂

)
Ψ = 0. (7)

Similarly, the diffeomorphism constraints (4) are translated into their quantum version,

D̂aΨ ≡ −2∇b
h̄

i

δΨ

δhab
+ √

h ĵaΨ = 0. (8)

In these equations, a “naive” factor ordering has been chosen in the sense that all
momenta are written to the right of the metric-dependent terms. The argument of the
quantum geometrodynamical wave functional Ψ is the three-metric hab together with
the non-gravitational degrees of freedom defined onΣ (in the simplest situations taken
to be a scalar field). It is easy to see that (8) guarantees that the wave functional is
independent under a spatial coordinate transformation which is connected with the
identity (It can acquire a phase under a so-called large diffeomorphism). A similar
feature is the quantized Gauss constraint in electrodynamics and Yang–Mills theo-
ries, which guarantees the invariance of the wave functional under infinitesimal gauge
transformations.

As they are written down, the Eqs. (7) and (8) are of a formal nature only, that is,
they require a precise mathematical formulation. Such a formulation is not yet avail-
able, except within a one-loop approximation scheme, cf. Sect. 2.6. Using a different
set of canonical variables, one arrives at alternatives, most likely inequivalent, ver-
sions of canonical quantum gravity. One of them is loop quantum gravity, which has
its own advantages and shortcomings, see [17] as well as other contributions to this
volume.

The mathematical problems of quantum geometrodynamics have to do with fac-
tor ordering, regularization, and Dirac consistency, which are themselves intertwined
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problems. The latter refers to the quantum version of the classical constraint algebra,
for which it is not clear that it closes on the constraints in the way the classical
algebra does; the algebra may contain additional ‘anomalous’ terms. If it does not
close, the Eqs. (7) and (8) will not be consistent because the anomaly would yield a
non-vanishing term. This is what happens, in fact, for the quantum Virasoro algebra
in string theory, where it is of the utmost importance. It is not at all obvious that such
an anomaly is absent for geometrodynamics. This question can, of course, only be
consistently addressed after the constraints have been regularized. It must be empha-
sized that many of these problems are not peculiar to quantum geometrodynamics,
but occur in other approaches as well, in which general relativity is directly being
quantized.

The main purpose of the Eqs. (7) and (8) is then twofold: on the one hand, it can
give intuitive insight by formal manipulations of the equations. On the other hand,
they may be truncated into well-defined equations in the context of particular models,
notably in quantum cosmology. We shall encounter applications of both kinds below.
In most of the formal applications as well as in the concrete models, the subtle features
connected with the choice of factor ordering and possible anomalies is less relevant.
Situations where they are definitely of relevance include discussions of the singularity
avoidance in quantum gravity.

2.5 Problem of time II

In the quantum theory, the problem of time becomes more pressing. Not only the exter-
nal time, but also spacetime as such has disappeared! This conclusion is unavoidable
as long as one sticks to the usual quantum formalism (as we do here). In quantum
mechanics, particle trajectories are absent. In quantum gravity, spacetime is the entity
that is analogous to a particle trajectory; consequently, it is absent at the most funda-
mental level. In the canonical formalism discussed so far, space (in the form of the
three-dimensional manifold) still exists. This is also the case in loop quantum gravity,
although there geometric operators such as the area or volume operator can assume
under certain conditions discrete spectra. It is, however, imaginable that space as such
may vanish in the final theory of quantum gravity.

In spite of the absence of spacetime, the structure of the Wheeler–DeWitt equation
(7) suggests the introduction of a novel concept: intrinsic time, which can be defined
by the local hyperbolic structure of this equation. In contrast to the Schrödinger equa-
tion, its kinetic term has the same form as in a wave equation. The kinetic term thus
distinguishes a time-like variable by the presence of different signs. One can show that
the time-like sign occurs for the local size (as given by the square root of the determi-
nant of the three-metric,

√
h); in cosmological examples, it is usually the volume of

the universe that plays the role of intrinsic time, see below.
This formal structure of the Wheeler–DeWitt equation with its concept of an intrin-

sic time has important consequences for the imposition of boundary data [18]. For a
wave equation one usually specifies the function and its derivative at hypersurfaces of
constant time (here: intrinsic time). We shall encounter some important consequences
of this fact when discussing quantum cosmology below.
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A problem related to the problem of time is the “Hilbert-space problem” [3]. The
standard (“Schrödinger”) inner product in quantum mechanics is conserved in time
t , reflecting the conservation of probability. But do we need such a product in the
absence of an external time? After all, the concepts of probability and measurement
are not obvious ones in a timeless world. Motivated by the wave-equation-like struc-
ture of the Wheeler–DeWitt equation, one might instead consider a “Klein–Gordon
inner product” because such an inner product is conserved with respect to (intrinsic)
time. However, it possesses the usual problem of such an inner product, which is the
occurrence of negative probabilities. This would then perhaps lead to the need of a
“third quantization” in which the wave functional itself would become an operator,
similar to the necessary transition from relativistic quantum mechanics to quantum
field theory. This would open a Pandora’s box of possibilities which with the current
limited status of understanding should be avoided. It must be emphasized, however,
that at least at a formal level (not discussing potential anomalies) and in the one-loop
approximation, the various inner products lead to an equivalent formalism if a certain
factor ordering is chosen [11,12].

Most of the work in quantum geometrodynamics thus leaves the question of the
inner product open and focuses on topics which are thought to be independent of it. This
is different, for example, in loop quantum gravity where a consistent (Schrödinger-
type) inner product exists at least at the kinematical level, that is, before the constraints
are imposed. A necessary requirement is, of course, the recovery of standard quantum
field theory with its standard Hilbert-space structure in an approximate limit. This is
met successfully, see Sect. 3.

2.6 Relation to covariant quantum gravity

Quantum geometrodynamics aims to arrive at a quantum theory of gravity by a direct
quantization of Einstein’s theory of general relativity. There are, however, alterna-
tive methods to achieve this goal. The oldest is perturbation theory around a fixed
(usually flat) background. Another approach, which is intrinsically non-perturbative, is
path-integral quantization. Such approaches are called covariant because they employ
a notion of spacetime covariance as an important ingredient in the formalism (even if at
the end there is no spacetime). In the case of the perturbation theory, “covariant” refers
only to the isometry group of the chosen background, for example, Minkowski space.
On the other hand, path-integral quantization is fully covariant in the sense of the diffe-
omorphism group. The same holds, despite its name, for DeWitt’s “background-field
method” [3].

The question then arises whether there is any connection between the canonical and
covariant approaches [3]. This question also occurs in standard quantum field theory,
but becomes more pressing in quantum gravity because of the absence of spacetime in
the canonical theory. The connection between both approaches is therefore best under-
stood in the light of the path integral in which one integrates over the spacetime metric,
in analogy to the integration over the formal particle paths in quantum mechanics.

The quantum gravitational path integral is formally given by the following
expression,
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Z =
∫

DgDφ eiS[g,φ]/h̄ , (9)

where the integration over Dg includes an integration over the three-metric as well as
lapse function N and shift vector N a , and where a matter field denoted by φ has been
taken into account. The non-trivial (and not yet fully solved) issue is, of course, the
precise definition of the measure. Other contributions to this volume deal with this
question.

At the formal level, one can find from the demand that Z be independent of N and
N a at the three-dimensional boundaries the result that the path integral must satisfy
the constraints (7) and (8) [19]. In this sense one can disclose a connection between
the covariant (path integral) and the canonical approaches. Of course, to put these
formal derivations on a rigorous footing is far from trivial. Most of the work at the
rigorous level has thus focused on the one-loop approximation of the path integral. The
corresponding results have been derived by Andrei Barvinsky in a series of papers,
see [13,20,21] and the references therein. They describe the state of our knowledge
about the connection between the path-integral and the canonical approach.

2.7 A brief history of quantum geometrodynamics

The term quantum geometrodynamics was already used by John Wheeler to denote
quite generally a quantum version of Einstein’s theory, cf. [22]. Here, we shall use
this term exclusively for the canonical version of quantum gravity based on the
three-metric and its canonical momentum. The concept should also not be confused
with the name “quantum geometry” which is used synonymously for loop quantum
gravity [23].

The first traces of the canonical formalism can be found in an early paper by Klein
[24], where he discovered that the first four Einstein equations are “Hamiltonian” and
“momentum density” equations. A general concept for constraints was put forward
by Rosenfeld [25]. He found that the first four Einstein equations are constraints in
this general sense. He also discussed the issue of the consistency conditions in the
quantum theory, that is, that the commutator between the constraints must close on a
constraint. Following the corresponding discussion by Dirac in [9], this requirement
is known as Dirac consistency.

A general formalism for constrained systems was developed by Dirac in his papers
[9] and [14]. In [26] he applied it to the gravitational field and essentially derived,
in fact, the Eqs. (3) and (4). He also discussed the reduced-quantization approach.
Important contributions to canonical gravity came in addition from Peter Bergmann’s
group (see e.g. his short review in [27]) and from Arnowitt et al. (summarized in [5]).
The latter gave, in particular, a rigorous definition of gravitational energy and a repre-
sentation of the local gravitational degrees of freedom by canonical methods. As has
been mentioned above, the notion of an observable in this context is due to Bergmann.
Moreover, in 1966 he noted that the wave functional in canonical quantum gravity
(in fact, in general constrained systems of this kind) is timeless [28]. To quote him:
“To this extent the Heisenberg and Schrödinger pictures are indistinguishable in any
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theory whose Hamiltonian is a constraint.” He did not, however, discuss the explicit
form of the quantum constraints (7) and (8).

This was then achieved in the already mentioned papers by Wheeler and DeWitt
[1,16]. While the general formalism was discussed extensively in [16], conceptual
issues form the main part of [1]. In fact, the Wheeler–DeWitt equation (as it was, of
course, only later called) can be found in [1] only in an appendix and in a shorthand
notation. However, in his pioneering paper [16] DeWitt acknowledges John Wheeler’s
important influence: “The present paper is the direct outcome of conversations with
Wheeler, during which one fundamental question in particular kept recurring: What is
the structure of the domain manifold for the quantum-gravitational state functional?”
(see [16, p. 1115]). In fact, much space in [16] is devoted to the configuration space,
the inner product (for which he suggested to use the Klein–Gordon inner product),
but also to the semiclassical limit and, for the first time, to quantum cosmology. He
suggests a first criterion of singularity avoidance in demanding that the wave function
vanish in the region of a classical singularity. DeWitt also addresses the problem of
the interpretation of quantum theory in the light of cosmology, which motivates him
to adopt the Everett interpretation.

This concludes the early history of quantum geometrodynamics. From 1968 on, the
work in this field concentrates on the general issues and models which are the topic of
my contribution. It is somewhat surprising that Dirac, who contributed so much to the
early development of the field, seems to have lost interest. In a contribution to a con-
ference which took place in Trieste in 1968 he gave a talk entitled “The quantization
of the gravitational field” [29]. In it he mentions only his own work and a paper by
Schwinger and focuses attention to the open problem of the constraint algebra, con-
cluding that “the problem of the quantization of the gravitational field is thus left in a
rather uncertain state” ([29, p. 543]). This is perhaps due to his instrumentalist attitude
towards physics (in addition to his emphasis on mathematical beauty) which forbade
him to continue with a physical investigation before these consistency conditions were
solved. Even in such a small field as geometrodynamics, the tastes of the contributors
are highly diversive. It should, however, be remarked that at least at a formal level
(without addressing the question of regularization), the factor ordering can be fixed
by the requirement that different quantization approaches be equivalent [11,12].

3 The bridge to quantum theory on a fixed background

3.1 Hamilton–Jacobi equation

The fundamental quantum equations (7) and (8) are usually derived from a three-
plus-one-decomposition of the classical spacetime and the imposition of heuristic
quantization rules. One may, however, arrive at those equations from a different
conceptual direction, which is analogous to Schrödinger’s original derivation of his
famous wave equation. Let us quote Schrödinger himself:

…we know today, in fact, that our classical mechanics fails for very small
dimensions of the path and for very great curvatures. Perhaps this failure is
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in strict analogy with the failure of geometrical optics …that becomes evident
as soon as the obstacles or apertures are no longer great compared with the real,
finite, wavelength. …Then it becomes a question of searching for an ‘undulatory
mechanics’—and the most obvious way is by an elaboration of the Hamiltonian
analogy on the lines of undulatory optics.2

The essential idea here is to “guess” a wave equation that yields the Hamilton–
Jacobi equation of classical mechanics in an appropriate limit. We can try the same for
general relativity: “guess” a wave equation that gives in the classical limit Einstein’s
equations in their Hamilton–Jacobi version. But what is the Hamilton–Jacobi version
of these equations? Asher Peres derived it in 1962 [31]: instead of the ten Einstein
field equations, which are partial differential equations, one gets the following four
functional differential equations, which are nothing but the four constraint Eqs. (3)
and (4) in the Hamilton–Jacobi form,

16πG Gabcd
δS

δhab

δS

δhcd
−

√
h

16πG
( (3)R − 2Λ) = 0,

Da
δS

δhab
= 0.

(10)

(Restriction has here been made to the vacuum case). The eikonal S is a functional of
the three-metric, S[hab(x)]. Using the principle of constructive interference, Ulrich
Gerlach has shown in 1969 that the Eq. (10) are indeed fully equivalent to all ten
Einstein field equations [32]; this approach to Einstein’s theory is one of the six routes
to geometrodynamics presented in [33].

If one now looks for wave equations for a wave functional Ψ [hab(x)] which lead
to (10) in the semiclassical limit, that is, when Ψ is of the WKB form

Ψ [hab] = C[hab] exp

(
i

h̄
S[hab]

)
, (11)

with a slowly varying amplitude C and a rapidly varying phase S, one arrives at the
quantum constraint Eqs. (7) and (8).

Independent of their status at the most fundamental level, therefore, one can argue
that the Eqs. (7) and (8) should at least be valid approximately for energies below
the Planck scale. This conclusion is based only on two rather conservative assump-
tions: the universality of the quantum framework (that is, the universal validity of
the superposition principle) and the validity of Einstein’s equation in the classical
limit. Both of these assumptions enjoy strong support: general relativity has passed all
experimental and observational tests so far, and the same is true for quantum theory

2 wir wissen doch heute, daß unsere klassische Mechanik bei sehr kleinen Bahndimensionen und sehr
starken Bahnkrümmungen versagt. Vielleicht ist dieses Versagen eine volle Analogie zum Versagen der
geometrischen Optik …, das bekanntlich eintritt, sobald die ‘Hindernisse’ oder ‘Öffnungen’ nicht mehr
groß sind gegen die wirkliche, endliche Wellenlänge. …Dann gilt es, eine ‘undulatorische Mechanik’ zu
suchen—und der nächstliegende Weg dazu ist wohl die wellentheoretische Ausgestaltung des Hamiltons-
chen Bildes [30].
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where interference experiments can be extended far into the mesoscopic regime and
where the emergence of classical behaviour is understood as arising from decoherence
[34,35].

3.2 Semiclassical approximation

The discussion in the last subsection suggests that the semiclassical limit from quan-
tum geometrodynamics is well understood at least at the level of the formal con-
straint Eqs. (7) and (8). This is indeed the case [3]. One can derive the limit of
quantum field theory in an external spacetime through a kind of Born–Oppenheimer
approximation scheme. This idea was first spelled out by Lapchinsky and Rubakov
[36].

Starting point is the following ansatz for a general solution of (7) and (8):

|Ψ [hab]〉 = C[hab]eim2
P S[hab]|ψ[hab]〉, (12)

where the bra-ket notation of the wave functional refers to the standard Hilbert space
of non-gravitational degrees of freedom and where mP is the Planck mass. Inserting
this into (7) and (8) and performing an expansion with respect to the Planck mass, one
finds in the highest-order approximations that S obeys (10) and that ψ[hab]〉 obeys

(
Ĥm⊥ − 〈ψ |Ĥm⊥|ψ〉 − iGabcd

δS

δhab

δ

δhcd

)
|ψ[hab]〉 = 0,

(13)(
Ĥm

a − 〈ψ |Ĥm
a |ψ〉 − 2

i
hab Dc

δ

δhbc

)
|ψ[hab]〉 = 0.

One now evaluates |ψ[hab]〉 along a solution of the classical Einstein equations,
hab(x, t), corresponding to a solution, S[hab], of the Hamilton–Jacobi equations (10);
this solution is obtained from

ḣab = N Gabcd
δS

δhcd
+ 2D(a Nb), (14)

which is the analogue in relativity of the equation q̇ = m−1∂S/∂q in classical mechan-
ics. Defining a time parameter t by

∂

∂t
|ψ(t)〉 =

∫
d3x ḣab(x, t)

δ

δhab(x)
|ψ[hab]〉,

one can derive from (13) the following functional Schrödinger equation for the quan-
tized non-gravitational fields in the chosen external classical gravitational field:

ih̄
∂

∂t
|ψ(t)〉 = Ĥm|ψ(t)〉,

(15)
Ĥm ≡

∫
d3x

{
N (x)Ĥm⊥(x)+ N a(x)Ĥm

a (x)
}
,
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where Ĥm is the Hamiltonian for the non-gravitational fields in the Schrödinger
picture, which depends parametrically on the (generally non-static) metric coefficients
of the curved spacetime background. It this level of approximation, the “WKB time
t” controls the dynamics—time has been regained from timeless quantum gravity in
an appropriate limit.

Together with the parameter t , the imaginary unit i has appeared in (15). This entails
then the use of the complex wave functions in quantum theory, which are so essen-
tial for its formalism. But has this not been introduced by hand through the special
ansatz (12)? In a certain sense, yes. However, one can show that superpositions of such
complex wave functions become dynamically independent from each other through
decoherence [34].

Consider, for example, a superposition of a state of the form (12) with its com-
plex conjugate. Taking into account inhomogeneous degrees of freedom such as
density fluctuations or weak gravitational waves, one can show that the resulting
entangled state exhibits only a tiny interference factor between the exp(iS/h̄)- and the
exp(−iS/h̄)-component of the total quantum state after the inhomogeneous degrees of
freedom have been traced out. This is the effect of decoherence. In one example which
I calculated some time ago, the decoherence factor responsible for this suppression of
interference turned out to read [37]

exp

(
−πm H2

0 a3

128h̄

)
∼ exp

(
−1043

)
,

where a is the scale factor of a Friedmann universe (see below), H0 the Hubble con-
stant, and m the mass of a scalar field used in this model. The numerical value arises
after some standard values for the parameters are inserted. The smallness of this num-
ber means that our present Universe can be treated as behaving classically to a high
degree of accuracy.

One can interpret this result also as follows. The full quantum equations (7) and (8)
are real equations and are therefore invariant under complex conjugation. The state
(12), on the other hand, is complex, violating this symmetry. Since the time parameter
t only follows from such a complex state (which can be interpreted as a decohered
branch of a full real state), one can say that time itself emerges from symmetry break-
ing.

The situation is analogous to molecular physics where the chiral behaviour of mol-
ecules (e.g. sugar molecules) can emerge through a similar symmetry-breaking effect:
while the fundamental equation (the Schrödinger equation with the Hamilton operator
for the molecules) is parity-invariant, the chiral states are not. The dynamical reason
for this symmetry breaking is again the process of decoherence, there caused by the
scattering with light or air molecules.

3.3 Quantum gravitational corrections

If the functional Schrödinger equation can be recovered from full quantum gravity
in an appropriate limit, the question arises whether one can go beyond this limit
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and calculate quantum gravitational correction terms. This can be done at least at a
formal level, that is, at the level where one treats the functional derivatives like partial
derivatives.

The next order in the Born–Oppenheimer approximation then gives corrections to
the Hamiltonian for the non-gravitational fields,

Ĥm → Ĥm + 1

m2
P

(various terms). (16)

The detailed form of these terms can be found in [3,38,39]. Future investigations
should deal with a concrete application of these terms in cosmology, for example, in
the search for quantum gravitational effects in the anisotropy spectrum of the Cosmic
Background Radiation.

A simple example is the calculation of the quantum gravitational correction to the
trace anomaly in de Sitter space [40]. For a conformally coupled scalar field, the trace
of the energy–momentum tensor, although being zero classically, is non-vanishing in
the quantum theory; this “anomalous trace” is proportional to h̄. It corresponds to the
following expectation value, ε, of the Hamiltonian density,

ε = h̄ H4
dS

1440π2c3 , (17)

where HdS is the constant Hubble parameter of de Sitter space. The first quantum
gravitational correction calculated from the Born–Oppenheimer expansion discussed
above reads

δε ≈ − 2Gh̄2 H6
dS

3(1440)2π3c8 , (18)

so that the ratio is given by

δε

ε
≈ − 1

2160π

(
tP

H−1
dS

)2

, (19)

where tP denotes the Planck time. One might perhaps have guessed for dimensional
reasons that the ratio of the Planck time to the Hubble time enters, but this example
shows that in principle exact results can be obtained from canonical quantum gravity.
Numerically, the ratio (19) is, of course, small. Using values motivated by inflationary
cosmology, one can assume that HdS lies between 1013 and 1015 GeV, leading for the
ratio (19) to values between roughly 10−16 and 10−22. It is at present an open ques-
tion whether there are relevant cases where the correction terms can be big enough to
be observable. I finally note that the quantum geometrodynamical formalism and its
semiclassical approximation can also be performed for supergravity, cf. [41] and the
references therein.
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4 Quantum black holes and quantum cosmology

4.1 Quantum black holes

According to the no-hair theorem of general relativity, stationary black holes are
uniquely characterized by the three parameters mass, angular momentum, and electric
charge. If all parameters are non-vanishing, the solution is given by the Kerr–Newman
metric, which is axially symmetric. Most investigations into the quantum aspects have
focused on the simple situation of vanishing angular momentum, because then the
solutions are spherically symmetric. Still, the difficulties in performing the quantiza-
tion are formidable.

The simplest case is the eternal Schwarzschild black hole without matter degrees
of freedom. Such a black hole is fully characterized by its mass, M . Through a series
of sophisticated transformations, Karel Kuchař was able to reduce the problem to a
purely quantum mechanical one and give an explicit form of the resulting wave func-
tion [42]. If one extends this solution to include an electric charge q, the wave function
reads (see e.g. [3,43])

Ψ (α, τ, λ) = χ(M, q) exp

[
i

h̄

(
A(M, q)α

8πG
− Mτ − qλ

)]
, (20)

where χ(M, q) is an arbitrary function of M and q, A(M, q) is the area of the horizon
as expressed through mass and charge, λ is a parameter conjugated to charge, α a
‘rapidity parameter’ connected with the bifurcation sphere of the black-hole horizons
in the Kruskal diagramme, and τ denotes the Schwarzschild (Killing) time at asymp-
totic infinity. In contrast to the general case discussed above, such a time variable is
available in the asymptotic regime of an asymptotically flat situation, that is, far away
from the black hole. If additional matter is present, such a reduction to finitely many
degrees of freedom is no longer possible and one has to deal with the full functional
equations.

It is possible to discuss a quantum state for the black hole in a one-loop approxi-
mation. Choosing such a state in accordance with the no-boundary state in quantum
cosmology (see below), Barvinsky et al. have calculated the entanglement entropy
arising from this state when all the degrees of freedom outside the horizon are traced
out [44]. They found for the entropy the expression

S = −kBTr(ρ ln ρ) = kB
A

360πl2 , (21)

where ρ is the density matrix resulting from tracing out the exterior degrees of free-
dom, and l is a cutoff parameter denoting the proper distance to the horizon. One
recognizes that this expression is divergent for l → 0. This calculation is therefore not
yet a complete one; on the other hand, it yields the expected proportionality between
black-hole entropy and area.

In the attempt to recover the Bekenstein–Hawking entropy SBH from an entangle-
ment entropy, one has to keep in mind the universality of SBH, that is, its independence
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from the actual field content. What could give such a universality? One universal
feature of a black hole is the spectrum of its quasi-normal modes, which are damped
out when reaching the stationary black-hole state, but which could still play a role
in the quantum theory. They stay entangled with the black hole and tracing them out
could perhaps give SBH [45]. However, any serious calculation is elusive.

Instead of an eternal black hole one can attempt to describe a black hole that
results dynamically from a gravitational collapse. One example is a collapsing spher-
ically symmetric dust shell. Classically, it collapses to form a black hole. In the
quantum theory, interesting features can happen [46]. If the shell is described by a
narrow wave packet, it turns out that this packet will first collapse, enter slightly
inside the classical event horizon and then re-expand to infinity. In a sense, the
quantum theory yields a superposition of a black-hole with a white-hole solution,
resulting in a destructive interference of the total wave packet in the region of the
classical singularity: for r → 0, the wave function obeys Ψ → 0. This is a conse-
quence of constructing a unitary (with respect to asymptotic time) canonical quantum
theory.

Instead of a dust shell, one can consider a spherically symmetric dust cloud—
the Lemaître–Tolman–Bondi (LTB) model. Classically, this is a self-gravitating dust
cloud with energy–momentum tensor Tµν = ε(τ, ρ)uµuν and is given by the line
element

ds2 = −dτ 2 + (∂ρR)2

1 + 2E(ρ)
dρ2 + R2(ρ)(dθ2 + sin2 θdφ2). (22)

The canonical formalism and its quantization were developed by Vaz et al. in [47].
After some manipulations both the Wheeler–DeWitt equation and the diffeomorphism
constraint (in the case of spherical symmetry there is only one such constraint) were
presented in a simplified, but still functional, form.

In a series of paper, the following results were obtained (see [48] and the refer-
ences therein). Firstly, exact quantum states of a particular type were found. This is
possible because the dust shell can be imagined as being composed of infinitely many
decoupled shells. The exact quantum states, which can be found only in a special fac-
tor ordering, can be interpreted as an infinite product of single-shell states. Although
being exact solutions, they are of a WKB form. Secondly, it was possible to retrieve
from these quantum gravitational states the standard expressions for the Hawking
radiation plus explicit corrections due to greybody factors. For the BTZ black hole,
which is a solution in 2 +1 dimensions with negative cosmological constantΛ, it was
possible to derive the Hawking temperature and to give a microscopic derivation of
the black-hole entropy. In fact, it was found in this 2 + 1-dimensional case that there
is a discrete mass spectrum for the shells collapsing to the black hole.

Following early suggestions by Jacob Bekenstein,3 the black-hole entropy is there
defined as the number of possible distributions of N identical shells between these

3 “It is then natural to introduce the concept of black-hole entropy as the measure of the inaccessibility
of information (to an exterior observer) as to which particular internal configuration of the black hole is
actually realized in a given case” [49].
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levels. The result is

Scan ≈ 2πkB

√(
1 − 48l M0

h̄

)
l M

6h̄
, (23)

where l ≡ |Λ|−1/2, M is the mass of the BTZ black hole, and M0 is a free constant of
the model. This entropy is equal to the Bekenstein–Hawking entropy if this constant
is chosen as follows:

M0 = − 1

16G
+ h̄

48l
. (24)

Actually, M0 can be related with the conformal charge of the effective conformal-
field theory usually used to derive the entropy for the BTZ black hole, cf. [50]. All of
these results are, of course, preliminary, but they demonstrate to which extent quantum
geometrodynamics can be applied in the understanding of black holes.

4.2 Quantum cosmology

Quantum cosmology is one of the main applications of quantum geometrodynamics.
Its purpose is twofold: On the one hand, it can serve as a toy model for full quantum
gravity in which the mathematical difficulties disappear. On the other hand, it can be
employed as a description for the real Universe, with the final goal to be tested by
observation.

In this subsection, I shall focus on some recent work into which I was myself
involved. More detailed overviews of quantum cosmology can be found, for example,
in [3,51–54].

The simplest model of quantum cosmology is the quantization of a Friedmann–
Lemaître universe. The classical line element is taken to be of the form

ds2 = −N 2(t)dt2 + a2(t)dΩ2
3 , (25)

where N is the lapse function, a the scale factor, and we have chosen the three-
dimensional space to be closed. In addition, we shall implement a homogeneous matter
field φ as a representative for matter. We are thus left with a two-dimensional config-
uration space (consisting of a and φ); because of the huge truncation of the infinite-
dimensional superspace, such a space is called minisuperspace.

The diffeomorphism constraints are identically satisfied by this ansatz, and the
Wheeler–DeWitt equation reads (with units 2G/3π = 1 and c = 1)

1

2

(
h̄2

a2

∂

∂a

(
a
∂

∂a

)
− h̄2

a3

∂2

∂φ2 − a + Λa3

3
+ m2a3φ2

)
ψ(a, φ) = 0. (26)

The factor ordering has been chosen to be of the Laplace–Beltrami form, which has
the advantage that it guarantees covariance in minisuperspace.
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Fig. 2 The classical and the quantum theory of gravity exhibit drastically different notions of
determinism [3]

It is evident that equations such as (26) do not possess the mathematical problems of
the full functional equation (7). One can thus focus attention on physical applications.
One important application is the imposition of boundary conditions. Popular proposals
are the no-boundary condition [19] and the tunneling condition [55]. The no-boundary
proposal makes essential use of the connection between covariant and canonical quan-
tum gravity discussed in Sect. 2.6: it is defined conceptually by a Euclidean path inte-
gral, but also relies on solving a minisuperspace Wheeler–DeWitt equation such as
(26). Other important applications include the discussion of wave packets, the validity
of the semiclassical approximation, the origin of classical behaviour and the arrow of
time, and the possible quantum avoidance of classical singularities [3,18].

Before picking out one particular model, I want to emphasize one important con-
ceptual point which is relevant for the problem of time discussed above, see Fig. 2.

Consider a two-dimensional minisuperspace model with the variables a and φ as
above. The figure on the left shows the classical trajectory in configuration space for a
universe which is expanding and recollapsing. Classically, one can give initial condi-
tions, for example, on the left end of the trajectory for small a and then determine the
whole trajectory. In this sense, the recollapsing part of the trajectory is the determinis-
tic successor of the expanding part. One could, of course, also start from the right end
of the trajectory because there is no distinguished direction; but the important point
is that a trajectory exists. Not so in the quantum theory where both the trajectory and
the time parameter t are absent! If one wants to find a solution of the Wheeler–DeWitt
equation which describes a wave packet following the classical trajectory, one has
to specify two packets at the would-be ends of the classical trajectory, see the right
figure. The reason is that (26) is a hyperbolic equation with respect to intrinsic time
a, and the natural formulation of boundary conditions is to impose the wave function
(and its derivative) at constant a. If one imposed only one of the two wave packets, the
full solution would be a smeared-out wave function which does not resemble anything
like a wave packet following the classical trajectory. In this sense, the “recollapsing”
wave packet must be present “initially”.

Quantum geometrodynamics thus provides us with crucial insights into the nature
of time in quantum gravity. And the consequences of this new concept of time are
independent of any particular scale, that is, independent of possible modifications of
the theory at the Planck scale.
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Fig. 3 Classical trajectory in configuration space [56]

Let us now turn to a specific example [56]: a cosmological model with a “big brake”.
Classically, the model is characterized by an equation of state of the form p = A/ρ,
where A > 0 (“anti-Chaplygin gas”). This can be realized by a scalar field φ with the
following potential (with κ2 = 8πG):

V (φ) = V0

⎛
⎝sinh

(√
3κ2|φ|

)
− 1

sinh
(√

3κ2|φ|
)
⎞
⎠ ; V0 = √

A/4. (27)

This model universe develops a pressure singularity at the end of its evolution where
it comes to an abrupt halt: ȧ remains finite there but ä(t) tends to minus infinity; this
is why it is called a “big brake”. Since this model does not describe an accelerating
universe, it is as such in conflict with present observations. However, it can easily
be generalized in order to accommodate such an acceleration, without modifying the
following discussion. The total lifetime of this universe is

t0 ≈ 7 × 102 1√
V0

[
g

cm3

] s,

which is much bigger than the current age of our Universe for

V0 
 2.6 × 10−30 g

cm3 .

The classical trajectory in configuration space is shown in Fig. 3. The big-brake singu-
larity is at φ = 0. In addition, there are the usual big-bang and big-crunch singularities
at a = 0 and φ → ±∞.
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In the quantum theory, one encounters the following Wheeler–DeWitt equation:

h̄2

2

(
κ2

6

∂2

∂α2 − ∂2

∂φ2

)
Ψ (α, φ)

+V0e6α

⎛
⎝sinh

(√
3κ2|φ|

)
− 1

sinh
(√

3κ2|φ|
)
⎞
⎠Ψ (α, φ) = 0, (28)

where α = ln a, and a Laplace–Beltrami factor ordering has again been employed. In
order to study the behaviour near the region of the classical singularity, it is sufficient
to study the limit of small φ. One can then use the approximate equation

h̄2

2

(
κ2

6

∂2

∂α2 − ∂2

∂φ2

)
Ψ (α, φ)− Ṽ0

|φ|e6αΨ (α, φ) = 0, (29)

where Ṽ0 = V0/3κ2. A crucial input is now the choice of boundary conditions. Firstly,
we have to impose the condition that the wave function go to zero for large a; this is
because the classical evolution stops at finite a. Secondly, we demand normalizability
with respect to φ. The resulting solutions are then of the form

Ψ (α, φ) =
∞∑

k=1

A(k)k−3/2 K0

(
1√
6

Vα
h̄2kκ

)(
2

Vα
k

|φ|
)

e− Vα
k|φ| L1

k−1

(
2

Vα
k

|φ|
)
, (30)

where K0 is a Bessel function, L1
k−1 denotes the Laguerre polynoms, and Vα ≡ Ṽ0e6α .

Inspection of this solution shows that it vanishes at φ = 0, that is, at the classical
big-brake singularity. Therefore, this singularity is avoided in the quantum theory. In
fact, the normalization condition with respect to φ also guarantees that the big-bang
singularity is absent. One is thus left with a singularity-free quantum universe.

A wave-packet solution following the classical solution of Fig. 3 and approaching
zero when φ → 0 (that is, when approaching the region of the classical big-brake
singularity), is shown in Fig. 4.

A somewhat related model with a quantum avoidance is phantom cosmology [57].
Classically, one has there a universe with scale factor a(t) containing a scalar field
with negative kinetic term (“phantom”), which develops a “big-rip singularity”: ρ
and p diverge as a goes to infinity at a finite time. An investigation of the Wheeler–
DeWitt equation demonstrates that wave-packet solutions disperse in the region of the
classical big-rip singularity. Therefore, time and the classical evolution come to an
end before the singularity would be reached. Only a stationary quantum state is left.
This, again, presents an example where quantum gravitational effects are important for
large scale factor—much bigger than the Planck length. Quantum geometrodynamics
is able to cope with this situation.

Quantum cosmology extends well beyond the minisuperspace limit of homogeneity
[3]. In order to understand structure formation, it is crucial to implement inhomoge-
neous perturbations [58]. The tensor part of these perturbations then describes weak
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Fig. 4 The wave packet for the big-brake model. The packet follows the classical trajectory but becomes
zero at the classical singularity [56]

quantized gravitational waves. It is also of interest to investigate a quantum analogue
of the Belinski–Khalatnikov–Lifshitz analysis of approaching a spacelike singular-
ity. It has been argued that this leads, in addition to the disappearance of time, to an
effective de-emergence of space [59]. The classical singularity would then be fully
dissolved in quantum gravity.

All models of quantum cosmology discussed so far are based on the assumption that
the total quantum state (the “wave function of the universe”) is a pure state. Recently
the idea arose to start instead with a fundamental density matrix of a microcanonical
ensemble [60,61]. If defined by a Euclidean path integral, it was found that such a
state is dynamically preferred compared to the “no-boundary state” of [19]. An inter-
esting result of this investigation is that the cosmological constant would be limited
to a bounded range.

Quantum geometrodynamics can also be successfully applied to lower-dimensional
gravity. In 2 + 1 dimensions, the gravitational theory is of a purely topological nature
and one thus only has to deal with finitely many degrees of freedom, similar to quan-
tum cosmology [62]. One thereby gets important insights in both the role of boundary
conditions and the structure of the Wheeler–DeWitt equation.

5 Conclusions and outlook

“There is no experimental evidence for the quantization of the gravitational field, but
we believe quantization should apply to all the fields of physics. They all interact with
each other, and it is difficult to see how some could be quantized and others not.”
This is, in Dirac’s words ([29, p. 539]), the main motivation for dealing with quan-
tum gravity. Because there is no experimental evidence so far, it is not surprising that
several different approaches are being seriously discussed. In my contribution, I have
addressed one of them, quantum geometrodynamics, which is a direct quantization of
Einstein’s theory by canonical means and choosing the three-metric as its canonical
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configuration variable. As I have tried to argue, quantum geometrodynamics is still
a viable field because it gives intuitive insights into many conceptual and technical
questions and because it is able to address quantum aspects of black holes and cos-
mology. And independent of its status as a fundamental theory (which it is probably
not) it should be valid at least approximately for length scales bigger than the Planck
length—just because it can be constructed from the condition that it give the correct
semiclassical limit.

The final decision about quantum gravity will, of course, be made by experiment.
Before that state will be reached, it is important to be open minded and to investigate as
many approaches as possible and to study both mathematical and conceptual aspects.
I would like to close with a remark by Einstein, who emphasized the non-trivial nature
of the relation between theory and experience in clear words:

The concepts and sentences only get “sense” and “content” through their rela-
tion with the sensual experiences. The connection of the latter with the former is
purely intuitive, not itself of logical nature. The degree of certainty, with which
this relation resp. intuitive connection can be undertaken, and nothing else, dis-
tinguishes the queer illusion from the scientific “truth”.4
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46. Hájíček, P.: Quantum theory of gravitational collapse (lecture notes on quantum conchology).

In: Giulini, D., Kiefer, C., Lämmerzahl, C. (eds.) Quantum Gravity: From Theory to Experimental
Search. Springer, Berlin (2003)

47. Vaz, C., Witten, L., Singh, T.P.: Phys. Rev. D 63, article number 104020 (2001)
48. Vaz, C., Gutti, S., Kiefer, C., Singh, T.P., Wijewardhana, L.C.R.: Phys. Rev. D 77, article number

064021 (2008)
49. Bekenstein, J.: Phys. Rev. D 7, 2333–2346 (1973)
50. Carlip, S.: Gen. Relativ. Gravit. 39, 1519–1523 (2007)
51. Halliwell, J.J.: Introductory lectures on quantum cosmology. In: Coleman, S., Hartle, J.B., Piran, T.,

Weinberg, S. (eds.) Quantum Cosmology and Baby Universes. World Scientific, Singapore (1991)
52. Wiltshire, D.L.: An introduction to quantum cosmology. In: Robson, B., Visvanathon, N., Woolcock,

W.S. (eds.) Cosmology: The Physics of the Universe. World Scientific, Singapore (1996)
53. Coule, D.H.: Class. Quantum Gravit. 22, R125–R166 (2005)
54. Kiefer, C., Sandhöfer, B.: arXiv:0804.0672v2 [gr-qc] (2008)
55. Vilenkin, A.: Phys. Lett. B 117, 25–28 (1982)
56. Kamenshchik, A.Y., Kiefer, C., Sandhöfer, B.: Phys. Rev. D 76, article number 064032 (2007)
57. Da̧browski, M.P., Kiefer, C., Sandhöfer, B.: Phys. Rev. D 74, article number 044022 (2006)
58. Halliwell, J.J., Hawking, S.W.: Phys. Rev. D 31, 1777–1791 (1985)
59. Damour, T., Nicolai, H.: Int. J. Mod. Phys. D 17, 525–531 (2008)
60. Barvinsky, A.O., Kamenshchik, A.Y.: J. Cosmol. Astropart. Phys. 09, 014 (2006)

123



Quantum geometrodynamics 901

61. Barvinsky, A.O.: Phys. Rev. Lett. 99, 071301 (2007)
62. Carlip, S.: Quantum gravity in 2+1 dimensions. Cambridge University Press, Cambridge (1998)
63. Einstein, A.: Autobiographisches. In: Schilpp, P.A. (ed.) Albert Einstein als Philosoph und Naturfor-

scher. Vieweg, Braunschweig (1983)

123


	Quantum geometrodynamics: whence, whither?
	Abstract
	1 Introduction
	2 What is quantum geometrodynamics?
	2.1 The 3+1-decomposition
	2.2 Constraints
	2.3 Problem of time I
	2.4 Quantization
	2.5 Problem of time II
	2.6 Relation to covariant quantum gravity
	2.7 A brief history of quantum geometrodynamics

	3 The bridge to quantum theory on a fixed background
	3.1 Hamilton--Jacobi equation
	3.2 Semiclassical approximation
	3.3 Quantum gravitational corrections

	4 Quantum black holes and quantum cosmology
	4.1 Quantum black holes
	4.2 Quantum cosmology

	5 Conclusions and outlook
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


