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Preface to the Second Edition

This revised monograph still aims at a unified geometric foundation of gauge
theories of elementary particle physics and gravity. The underlying geometric
structure is unfolded in a coordinate-free manner via the modern mathematical
notions of fiber bundles, exterior differential forms, and their Clifford-
algebra-valued generalizations. In the first part, Maxwell theory is treated as the
simplest example, with an emphasis on the more recent measurement of the vector
potential 1-form A via electron interference.

By transferring these concepts to local spacetime symmetries, affine general-
izations of Einstein’s theory of gravity arise in a Riemann—Cartan space with
curvature and torsion. In this context, recent accounts on the Einstein—Cartan
theory, teleparallelism, as well Yang’s gauge approach to gravity are treated in
more detail, with emphasis on gravitational instantons. Duality projections of
curvature squared models, with their Einsteinian macroscopic “nucleus,” are ana-
lyzed with respect to the issue of quantization, or at least asymptotic safeness. The
Cartan-type geometric structure of BRST quantization with nonpropagating topo-
logical ghosts is developed in some detail.

In order to obtain more insight into the open issue of quantizing gravity,
Chern—Simons-induced topological three-dimensional gravity, like the Mielke—
Baekler model, is analyzed, in which torsion provides a kind of linearization of the
vacuum field equations. Moreover, the peculiar feature of Dirac fields in curved 3D
space is geometrically related to flexural modes of new materials such as graphene.

Quantized Dirac fields suffer from nonconservation of the axial current, leading
to chiral and trace anomalies also in Riemann—Cartan space.

Since the discovery of the Higgs boson, concepts of spontaneous
symmetry-breaking in gravity have come again into focus: departing from a
topological de Sitter-type gauge theory, some new progress in the constrained BF
model with a primordial SL(5,R) gauge group is presented. After a tiny
symmetry-breaking and the spontaneous generation of the metric, Einstein’s stan-
dard general relativity with cosmological constant again emerges as the classical
background.

vii
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Preface to the First Edition

Since the days of Riemann, scientific work in natural philosophy has concentrated
on answering questions “... concerning the intrinsic (physical) basis for the metrical
relations in space ...”" thus striving for a unified geometric description of funda-
mental physical interactions. The present study reports on recent achievements in
this endeavor.

It will begin with a coordinate-free presentation of the underlying geometric
structure of electromagnetic fields and their nonabelian generalizations by utilizing
rather modern mathematical concepts, such as those of fiber bundles and
Lie-algebra-valued differential forms. Such nonabelian theories of Yang—Mills type
are founded on Weyl’s basic principle of gauge invariance and appear to be the
most appropriate framework in which to describe phenomena so as the weak and
strong interactions in particle physics. In particular, the unification of weak and
electromagnetic forces within the Weinberg—Salam model has gained much
empirical evidence during the last two decades.

As for macroscopic gravity, it is taken for granted that Einstein’s theory of
general relativity is the geometric theory that is empirically the most successful.
However, concerning attempts of quantization, it is flawed by the conceptual dis-
advantage that it cannot be molded completely into the scheme that is put forward
by Maxwell’s theory. Following, however, the suggestions of not only Weyl but
Einstein himself, theories of gravity can be worked out that not only incorporate
general relativity, but are also invariant with respect to local translations and local
Lorentz transformations. Such Poincaré gauge theories are to be located in a
Riemann—Cartan spacetime with curvature and torsion, and consequently can be
coupled not only to the mass but also canonically to the spin of fundamental
particles. The resulting gravitational field equations are of a formal structure that is

I« .. die Frage nach dem inneren Grunde der Massverhiltnisse des Raumes ...” (Bernhard
RiEmaNN, 10 Juni 1854).

ix
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analogous to that of the “spontaneously broken” Yang—Mills—Higgs model. For this
reason, they can be solved by means of appropriate duality Ansdtze as in the case
of the instanton solutions of nonabelian gauge theories. It turns out that the metrical
background, concerning macroscopic length measurements, is represented by
Einstein spaces. Deviations are to be expected only within microscopic regions.
This is especially true for interactions with fundamental spinor fields.

Not considering questions concerning the global topology, it has to be realized
that the contortion of spacetime induces principally a nonlinearity into the Dirac
equation. This self-interaction of the axial vector-type is equivalent to what was
suggested by Heisenberg in his unified field theory of elementary particles. The
soliton solutions, which are occurring in such nonlinear models, are investigated
with respect to their semiclassical and quantum meaning.

The ultimate goal of all these unifications is to build up a theoretical super-
structure, an all-encompassing grand synthesis of all physical interactions. Within
the limits of the present study, theoretical models are dealt with that are of
unequivocal geometric character. These include the Rainich geometrization of the
Einstein—-Maxwell system, the nonabelian generalizations of the five-dimensional
theory of relativity by Kaluza and Klein, and last but not least, the tensor domi-
nance model of Salam et al. It is above all the Kaluza—Klein model being coupled to
Dirac fields that, in contrast to the generally covariant Yang—Mills theory, promises
a far deeper understanding of the parity violations occurring in the decay of certain
metastable mesons.

Most of today’s outstanding theories of fundamental interactions postulate -
following Gell-Mann - the so-called quarks as hypothetical building blocks of
matter. In order to guarantee the permanent confinement of these enigmatic archaic
forms in the observable hadrons, a geometrodynamical mechanism of confinement
common to all geometric models of unification is proposed in a speculative
prospect.

The bulk of the present study is a slightly revised and amended version of the
author’s habilitation thesis, which was submitted to the Faculty of Science of the
Christian-Albrechts-University of Kiel in April 1982.

Apart from Prof. J.A. Wheeler, it is especially Prof. F.W. Hehl to whom I owe
innumerable direct and indirect suggestive ideas that have helped me to shape
structurally important physicomathematical concepts that have entered this work
during the stages of its genesis. I would also like to express my sincere gratitude for
the hospitality and the highly stimulating working atmosphere at the International
Centre for Theoretical Physics, Trieste, which were extremely helpful and for which
I should like to thank Prof. Abdus Salam, the International Atomic Energy Agency,
and UNESCO.

Furthermore, I feel obliged to thank Profs. F.W. Hehl, K. Hiibner, Abdus Salam,
V. Weidemann, and J.A. Wheeler for their assistance and readiness to procure
useful letters of recommendation. For the completion of this present study would
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have been impossible without the subsidies from a habilitation grant of the
Deutsche Forschungsgemeinschaft, Bonn.

Finally it is Mr. H.J. Schneider whom I wish to thank for the painstaking task of
translating the German version into nearly literary English.

Flensburg Eckehard Mielke
December 1985
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Chapter 1
Historical Background

Despite a long history, the gauge-theoretic status of gravitation still remains the
single gap in the quantum gauge picture of fundamental interactions. The corner-
stones of Einstein’s theory of gravitation are the relativity and equivalence princi-
ples. To be more precise, Einstein’s ingenious conception of general relativity (GR)
(EINSTEIN 1915, 1916, 1950) was basically founded on the principle of general
equivalence of all noninertial spacetime frames. This theory of gravity met with a
first empirical verification at rather early stages in time. Thus it was already in 1919
during an eclipse of the sun that the predicted value of the deflection of light by the sun
could be experimentally corroborated! (EDDINGTON 1920). This was highly impor-
tant for the scientific approval of Einstein’s theory, since the empirically established
value, in agreement with GR, is twice as big as what ensues from the conventional
Newtonian theory. Further verifications of the so-called “classical tests” within the
field of GR followed and are discussed in great detail by MISNER et al. (1973).
Today, gauge theory provides the theoretical basis for a unified description of all
particle interactions. In 1967, WEINBERG and ABDUS SALAM (1968) devised a theory
that combined Faraday’ and Maxwell’s theory of electromagnetism (MAXWELL 1881)
and Fermi’s theory of weak interactions, being the cause for the 8-decay of certain
radioactive nuclei into a single scheme. Although the Weinberg—Salam model is for-
mulated within the frame of geometric concepts related to GR, it took much more
time and sophisticated large-scale experimentation to establish it empirically; cf.
SALAM (1980). This theory of combined electroweak interactions has gained further
empirical evidence by the detection of the intermediating W* and Z° bosons as the
result of high-energy experiments that were conducted at CERN (ARNISON 1983).
From a systematic point of view, this increase in positive knowledge is of equal ini-
tiating importance with the breakthrough that was achieved by James Clerk Maxwell

l«Alle Zweifel sind entschwunden, Endlich ist es nun gefunden: Das Licht, das lduft natiirlich
krumm Zu Einsteins allergrofftem Ruhm!” (Postcard sent to Einstein by Debye, Weyl, and others
at October 11,1919).

© Springer International Publishing Switzerland 2017 1
E.W. Mielke, Geometrodynamics of Gauge Fields,
Mathematical Physics Studies, DOI 10.1007/978-3-319-29734-7_1



2 1 Historical Background

(1831-1879) regarding the idea of a unified interpretation of electric and magnetic
phenomena.

The most remarkable characteristic of this theoretical approach within our con-
text? is the firm and fundamental conviction that all hypotheses concerning the real
physical world can be given—before quantization—in purely geometric terms.

Einstein’s convictions are rooted in Descartes’s idea of the res extensa and cer-
tainly in the metaphysics of Spinoza as well. The main theme of the latter philosopher
can be summarized as follows: if the world can be comprehended more geometrico,
then its inherent order has to be geometric in itself. A thorough philosophical analysis
of all programs intending to geometrize physics is to be found in GRAVES (1971)
and KANITSCHEIDER (1971).

And yet Einstein himself was always aware that the foundation of a theory of
general relativity was inherently bound to make use of a priori assumptions. To a
certain extent, such conditions had already been expounded philosophically by Kant
(see also: HUBNER 1983).

Nevertheless, it was Einstein’s first and foremost goal to work out geometric con-
cepts that would make possible the unification of the divergent theoretical descrip-
tions of nature. At his time, however, physics was far from being advanced enough
to achieve such an ultimate goal.

Nowadays, however, one of the most certain assets of science is that the classical
fields of physics, which are involved in the effort to describe electromagnetic and
gravitational interactions, admit an interpretation in terms of differential geometry.
Already for Riemann, who among others provided the mathematical bases for the
theory of general relativity, it was conceivable that not only the concept of fields—
derived from the principle of action at close distances—but also that of a rigid body
would have to be modified in the infinitesimal small:

It is accordingly pretty well conceivable that the metrical relations of space are not in accor-
dance with the premise of the (Euclidean) geometry in the infinitesimal small. And actually
this is exactly what should be assumed in case the phenomena could thus be explained more
easily.3

CLIFFORD (1982) went even further by putting forward the hypothesis that particles
consist of nothing but curved empty space:

I hold in fact

(1) That small portions of space are in fact of a nature analogous to little hills on a surface
which is on the average flat; namely, that the ordinary laws of geometry are not valid
in them.

(2) That this property of being curved or distorted is continually being passed on from one
portion of space to another after the manner of a wave.

2Cf. (MIELKE 1985).

3“Eg ist also sehr wohl denkbar, daB die MaBverhiltnisse des Raumes im Unendlichkleinen den
Voraussetzungen der [Euklidischen] Geometrie nicht gemédf sind, und dies wiirde man in der Tat
annehmen miissen, sobald sich dadurch die Erscheinungen auf einfachere Weise erkldren liefen.”
(RIEMANN, Habilitations-Colloquium vom 10. Juni 1854, p 285).
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(3) That this variation of curvature of space is what really happens in that phenomenon
which we call the motion of matter, whether ponderable or etherial.

(4) That in the physical world nothing else takes place but this variation, subject (possibly)
to the law of continuity.

Expressed in more modern terms, this view holds that particles are operationally
characterized by the (bundle) curvature and the global topology of the underlying
spacelike hypersurface evolving in spacetime. This is exactly what was considered
more closely by Weyl.

Provided that space is multiply connected in the infinitesimal small, one cannot
say any longer, “here is charge, but only that this closed surface, which is located
in the field, encloses charge” (WEYL 1924, p 57).* However, before these vision-
ary ideas could grow into a sound theoretical model of definite physical meaning,
it was for Albert Einstein to lay the foundation for a geometric interpretation of
(macroscopic) gravity by formulating his theory of general relativity (EINSTEIN &
GROSSMANN 1913; EINSTEIN 1915, 1916).

Instead of the absolute space of Newton with its Galileo-invariant inertial frames,
GR requires an infinite number of merely locally defined Lorentz-invariant frames
of reference.

Each of these frames is valid only in its own spacetime region. Moreover, it is
connected with its adjacent system by a kind of guiding field: the metrical connection
that was introduced by LEVI- CIVITA. Adopting Mach’s principle, for Einstein the
spacetime geometry ceases to be a God-given Euclidean participant standing high
above the “battles” of matter and energy but itself takes part in this struggle. Certainly
it is geometry that rules matter how to move, but it is matter that imposes curvature
upon spacetime according the principle of action and reaction.’ As is well known,
this was already envisioned by Gauss and Riemann.

Up to the present, this theory of Einstein’s passed all empirical verification proce-
dures (WILL 1993). Therefore, it may serve as a prototype of a physical theory that is
not only conceptually satisfying but also empirically “true.” According to an exper-
iment first devised by EOTVOS (1890), the equivalence of inertial and gravitational
mass is measured nowadays with a precision better than 1 x 10~!2; this accuracy
can be considered a match to what is achieved in the verification of the theoretical
value of the electron’s magnetic moment predictable within the framework of quan-
tum electrodynamics (QED, BJORKEN & Drell 1964). For EINSTEIN (1915), “...this
implied a true triumph of the methods of differential geometry founded by Gauss,
Riemann, Christoffel, Ricci, and Levi-Civita.”

Encouraged by this success, there were early attempts to incorporate other clas-
sical fields, such as the electromagnetic fields, into this geometric framework. The
first approaches of WEYL (1918), for instance, and of EINSTEIN & Mayer (1931)
were doomed to fail, however, although they are mathematically ingenious. Weyl’s

4Falls der Raum im Kleinen mehrfach zusammenhéingend ist, kann man nicht mehr “sagen: hier ist
Ladung, sondern nur: diese im Felde verlaufende geschlossene Flédche schlieft Ladung ein.”.

SWHEELER’S formulations have been adopted here for our purposes (1968, p 4).



4 1 Historical Background

theory, for instance, predicts a variation of the spectral lines of neighboring atoms, a
prediction that is certainly not in accordance with empirical evidence.

Thus it was for the important work of RAINICH (1925) to show that gravity and
electromagnetism, within the framework of general relativity, always represent an
“already unified field theory.” Apart from a degenerate case (GEROCH 1966), the
source-free electromagnetic fields imprint such characteristic “footprints” onto the
spacetime geometry that all the necessary information for reconstructing the Maxwell
fields can be gathered by analyzing the curvature.

This insight, which was developed further by MISNER & WHEELER (1957), encour-
aged Wheeler to think of a grand design to extend the visions of Riemann, Clifford,
and Einstein into a geometrodynamics (WHEELER 1962, 1968). In geometrodynam-
ics as such, particles and fields are not considered foreign entities that are immersed
in geometry, but are regarded as manifestations of geometry proper.

The ultimate goal of this bold and visionary enterprise has never been put forward
more convincingly than by EINSTEIN himself (1949, p 81):

If one had the field-equation of the total field, one would be compelled to demand that the
particles themselves would everywhere be describable as singularity-free solutions of the
completed field-equations. Only then would the general theory of relativity be a complete
theory.

In 1955, the year of Einstein’s death, numerical studies of the field equations yielded
the first geometrodynamic model of a localized massive object: the geon. In partial
fulfillment of the requirements of Einstein’s unification program, a singularity-free
static solution of the coupled Einstein—Maxwell system had been found that as far
as physics is concerned, may be regarded as a concentration of electromagnetic or
even purely gravitational radiation kept together for a finite time by its own gravita-
tional attraction. A first example of a gravitational soliton! Nevertheless, it is to be
admitted that from the angle of the Rainich geometrization, this electrogravitational
“ball-lightning” consists only of curved, empty space. Following a furthergoing con-
ception, charge can be regarded as electric flux lines that are free of singularities
and “trapped” within a multiply connected spacelike hypersurface of the spacetime
manifold. This so-called “wormhole” model (WHEELER 1955), which can be traced
back to the speculations of Clifford, Weyl, and EINSTEIN & ROSEN (1935), admits
a purely geometrodynamic interpretation of electric charge. We will return to this
highly interesting point of view in the context of modern gauge theories of strong
interaction.

In order to represent elementary particles, however, a half-integer spin has to be
introduced into the framework of geometrodynamics in a nonartificial way. A consis-
tent description of this “nonclassical two-valuedness” (PAULI) of spin-1/2 fields can
be achieved only—as DIRAC (1928) has shown—rvia bispinor fields that satisfy the
familiar Dirac equation. This seems to be beyond the scope of the geometrodynamic
program.

Nevertheless, it was already in 1928 that Hermann WEYL (1928, p 88) was ready to
point out that it is possible to couple these quantum-mechanical spinor fields naturally
to the electromagnetic fields if the partial derivatives 9; in the Dirac equation are
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replaced by covariant derivatives D; := 9; + i A ;. In the latter concept, a “minimal”
substitution of the electromagnetic vector potential A ; is taken into consideration.

According to this new approach, the Lagrangian density of the total system
remains invariant under the local transformation ¥ — €'’y of the phase of the
wave function v and the simultaneous transformation A; — A; — 9,6 of the four-
dimensional vector potential A;. For the first time, such recalibrations, or “gauge
transformations,” were applied to the metrical relations in spacetime by WEYL
in 1918in order to achieve a unified theory of gravity and electromagnetism. As
mentioned above, this theory was contradictory to empirical observations. It was
Schrodinger, however, who analyzed Bohr’s quantum orbit of the “electron” in 1923
within the theoretical ramifications of this newly laid down principle. The theoret-
ical impact, however, was fully realized only by LONDON (1927a, 1927b) after the
quantum-mechanical wave functions of Schrodinger and de Broglie had been intro-
duced into physics. According to this pioneering concept of gauge invariance, .. .the
electromagnetic field is a necessary accompaniment of the matter-wave field and not
of gravity” (WEYL 1929).

This raises the question whether it would be possible to use this principle of
“generalized relativity” as WEYL had putitin 1929, too, in order to achieve a coupling
of the ¥ to the gravitational field. Concerning this highly relevant issue, it is of use to
remember that CARTAN had devised a generalization of Einstein’s theory of gravity
in the years 1922 to 1925. By generalizing Riemannian geometry, Cartan proceeded
not only from the curvature but also from the torsion as a possible manifestation of
the intrinsic angular momentum of matter in spacetime, even before the spin of the
electron had been experimentally detected by UHLENBECK & GOUDSMIT (1925).

As for a consistent formulation of Dirac’s theory of the electron within the frame
of GR, the resulting theory had to be invariant not only with respect to arbitrary
differential transformations of the coordinates but also with respect to (Lorentz)
rotations of the four-dimensional orthogonal systems of local axes (“tetrads’). These
local frames are necessary anyhow in order to represent spinor fields in a curved
spacetime. As WEYL could show in 1929, this new gauge theory of gravity employs in
general a linear (asymmetric) connection; its antisymmetric part, i.e., the contortion,
turns out to be proportional to the canonical spin tensor of the Dirac field. As WEYL
showed in 1950, this is of great concern for the theory, since it necessitates a nonlinear
term in the Dirac equation. This term results from the induction of spacetime torsion
through the axial vector current of the Dirac field. This was reflected rudimentarily
in 1929 by WEYL.

Through the years, this so-called Einstein—Cartan theory was developed further
by UTIYAMA (1956); KIBBLE (1961); SCIAMA (1962). Later, it was particularly
HEHL (1970); HEHL et al. (1976) who was working on it. As for a supermultiplet
with spin-2 and spin-3/2 particles (gravitons and the hypothetical “gravitinos”), this
theory leads directly to the idea of supergravity (VAN NIEUWENHUIZEN 1981). On
the other hand, the EC theory admits a Rainich geometrization (KUCHAR 1966) of the
spinor fields and is therefore to be considered an extension of GR that is compatible
with the geometrodynamic program.
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As a generalization of the EC theory, Poincaré gauge (PG) theories of gravity
(HEHL 1980, 1981) have been taken into consideration more recently. The guiding
idea is to cope with theoretical problems concerning the issues of quantizing gravity
and subsequently the renormalization of its divergences. Facing these problems, it
is generally considered an advantage to determine the dynamics by a Lagrangian
4-form that contains not only linear, but—in analogy to Maxwell’s theory—also
quadratic expressions with respect to curvature and torsion. Fortunately, in such a the-
ory the metrical background of vacuum solutions with nontrivial torsion (BAEKLER
et al. 1982) is not deformed but is retained within the class of Einstein spaces. This
remains valid in generic PG theories, provided that the (electrovac) solutions obey a
modified duality relation (MIELKE 1984a, 1984b) for the curvature.

So far, it can be ascertained that within the range of these notions, the cou-
pling of spinor fields of the electron to both electromagnetism and gravity can be
rather well understood. As for the representation of protons and neutrons, however,
HEISENBERG’S isospin formalism (1932) requires the introduction of two distinct
Dirac spinors. Accordingly, WEYL’S principle of gauge invariance necessitates gen-
eralized electromagnetic field strengths as a concomitant phenomenon. In the year
1954, YANG & MILLS and roughly at the same time SHAW (1955); see SALAM (1980),
presented the corresponding gauge theory with local isospin invariance. Geometri-
cally speaking, in such theories a space of “internal” particle attributes is attached to
each point in spacetime on which the (local) invariance group—in this case the group
SU(2) of special unitary two-dimensional transformations—can act freely. This can
be understood as a transition to a kind of “relativity theory” in higher-dimensional
(n > 4) spaces and was, to a certain extent, anticipated by the pioneering works of
KALUZA (1921) and KLEIN (1926). However, in the Yang—Mills theories, the bond
between the “internal space” and the spacetime is not as rigid as in the Kaluza—Klein
model. This can easily be shown if both theories are compared with each other in the
light of the mathematical theory of the fiber bundles (KOBAYASHI & NOMIZU 1963);
compare also with the very instructive presentation of BERNSTEIN & PHILLIPS (1981).

The spin-1 fields of the Yang—Mills gauge theories are classically massless, similar
to those in Maxwell’s theory of electromagnetism. However, some of the fields,
which are distinguished by internal degrees of freedom, acquire a nonzero mass
through the Higgs—Kibble mechanism of dynamic symmetry-breaking (HIGGS 1964;
KIBBLE 1967). In the Weinberg—Salam model (see, e.g., TAYLOR 1979 for a review),
this is required in order to obtain a realistic theory of weak interactions that remains
renormalizable according to the criteria of perturbative quantum field theory.

Today’s classification schemes of particles are based on a (broken) flavor symme-
try group containing SU(3). Unfortunately, the lowest-dimensional representation of
SU(3), the triplet representation, cannot be associated with any of the known physical
states. Nevertheless, the hypothesis (GELLMANN & NE’EMAN 1964) that the corre-
sponding particles, e.g., the quarks, constitute the fundamental building blocks of
all hadronic matter led to extremely useful interpretations concerning the structure
of hadrons, and this within the framework of a naive and nonrelativistic approach.
Within this context, the explanation of the anomalous magnetic moment of both the
proton and the neutron is especially worth mentioning (KOKKEDEE 1969).
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Quarks have to be considered structureless fields with spin 1/2, since it would
otherwise be impossible to explain the total spin of baryons and hadronic mesons,
which in turn are interpreted as bound states of three or two quarks, respectively.
This assumption, however, is already, in a nonrelativistic approach to certain excited
baryon states, contradictory to Pauli’s exclusion principle. In order to save the quark
model, it has been suggested to subject these elementary fields to a so-called para-
statistics instead of the Fermi—Dirac statistics. In other words, the quarks have to
be discriminated by means of additional color degrees of freedom (GREENBERG &
NELSON 1977). If the associated exact SU(3) color group is postulated only as a local
symmetry, this again leads to a gauge theory of Yang—Mills type, but this time as a
model for strong interactions. The corresponding spin-1 gauge fields, the so-called
gluons, are supposed to mediate strong interactions as “intermediate bosons.”

Furthermore, a saturation of the “colored” quarks has to be procured in order to
keep the internal color structure of the observable hadrons concealed (almost in the
sense of “hidden” quantum-mechanical parameters). The central problem of guan-
tum chromodynamics (QCD) (MARCIANO & PAGELS 1978), i.e., of the quantized
version of this gauge theory of color symmetry, is the question how to guarantee the
permanent confinement of the quarks and gluons in the observable stable particles.
Up to now, this central problem has not been solved convincingly. Ad hoc construc-
tions, for instance, that resort to stringlike or baglike models (CHODOS et al. 1974)
or to lattice approximations (WILSON 1974) of gauge theories have some phenom-
enological relevance but appear to be too artificial if judged by a more scientifically
oriented standard that demands a more functional solution of this fundamental issue
of the structure of matter.

Moreover, it has to be mentioned in this context that in high-energy experiments,
there occur hadronic mesons of a spin larger than one. In particular, there occurs
an SU(3) nonet that consists of the massive spin-2% mesons f, ', Ay, K*(1420).
This may be interpreted as an indication that strong interactions contain a spin-
2 part, which may even be dominant as in the tensor dominance model. This is in
accordance with the assumption of tensor forces in nonrelativistic phenomenological
models of the nucleus (LANDAU & LIFSHITZ 1965).

For a fundamental theory of particles, however, it is also necessary to begin with
principle-guided reflections and theoretically explained premises in order to deter-
mine the dynamics of an effective spin-2 interaction. It is for this reason that ISHAM
et al. and Wess and Zumino suggested independently to let the f-tensor fields obey
nonlinear differential equations, which, in analogy to gravity, are similar to Einstein’s
field equations.

Einstein’s theory of general relativity is invariant with respect to the (infinite-
dimensional) group cf coordinate transformations that induce, in terms of physics,
a change of the local inertial frames. Moreover, as has already been mentioned,
it may be regarded as a gauge theory of the Lorentz group or its covering group
SL(2, C), respectively. If we apply these findings to strong gravity, then it is obvious
to tie together the internal symmetries, such as the SU(3) one, with the spacetime
symmetries that result from the Lorentz transformations according to the subgroup
chain SL(2, C) ¢ SL(2,C) ® SU(3) C SL(6, C). If these symmetries are regarded
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as local ones, we get an SL(6, C) gauge theory of strong interaction (SALAM 1973)
that provides a geometric rendering for both the internal degrees of freedom of the
quarks and the spin of the fundamental particles. This explanation is based on the
Riemannian curvature and Cartan’s torsion of a generalized space.

As in the Poincaré gauge theory, the torsion induces nonlinear terms into the
Dirac equation, which now, however, account for the “internal” spin, as also for the
isotopic spin, hypercharge, strangeness, etc. Thereby, an additional coupling between
the fundamental spinor fields, which carry different internal quantum numbers, is
achieved.

The resulting nonlinear spinor equation (MIELKE 1977) has much in com-
mon with the equation that was suggested by HEISENBERG and PAULI in 1957
(HEISENBERG 1967). Thereby, besides the modified Planck length

0* = /8ThGy/c3 ~ 8 x 1073 cm, (1.1)

a further length ¢ := €*/,/k is introduced into particle physics that corresponds to
the scaled “Newtonian” coupling constant Gs = Gn/« of strong gravity. SALAM &
STRATHDEE (1977a, 1977b), and at the same time, MIELKE (1977) laid down the
hypothesis that the tensor gluons occurring in the SL(6, C) gauge theory play a
decisive role in an understanding of the problem of quark confinement.

Such models, which are worked out according to the implications of Einstein’s
theory of gravity, provide solutions that assert that the quarks are confined within
baglike configurations (SALAM & STRATHDEE 1978) similar to those in the MIT
bag model. In this idealization, the geometric structures dealt with are supposed to
be spaces of constant curvature (RIEMANN 1854), i.e., de Sitter-like microuniverses,
within which the quarks appear to be banished for a full cycle of the evolution
of the macroscopic universe (MIELKE 1977). In such a “color geometrodynamics”
(MIELKE 1980), solutions of Kerr—Newman—de Sitter type (KERR 1963) are more
realistic, since they also account for the total angular momentum and the charge of
a composed object.

In astrophysics, these configurations are known to play an important role in the
relativistic description of collapsed stars, i.e., black holes (WHEELER 1964a, b, 1974).
These exact solutions imply a fully relativistic relation for the increment of the
total mass as a function of the total angular momentum (spin) and the (generalized)
charge of the composed object. On an astrophysical scale, this relation can hardly be
proved or checked. In the microcosm, however, e.g., after scaling it down to hadronic
dimensions, this relation is surprisingly well covered by part of the baryon spectrum
(MIELKE 1977, 1980, 1981).

At first sight, it may seem rather far-fetched to propose that such geometric and
topological configurations, which are entirely contradictory to our everyday experi-
ence, play such a prominent part in the solution of the problem of quark confinement
and therefore for the theoretical explication of the internal structure of matter itself.
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Fig. 1.1 Wheeler and the

author in front of Lake Plon, \k M / M -ﬁ.' O
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However, on the occasion of the centennial celebrations of Einstein’s birth, it
was ADLER (1980) who emphasized the structural similarities between black holes
and cosmological solutions of GR on the one hand and the magnetic monopole
and instanton configurations within the framework of Yang—Mills theories on the
other hand. These ideas are in agreement with the above suggested suppositions.
Thus it remains for the future to show whether it is possible to work out a unified
geometric interpretation of the fundamental structure of matter by incorporating into a
coherent theory the (different) hypotheses that have been suggested by such renowned
members of the scientific community as Riemann, Clifford, Einstein, Cartan, Weyl,
Kaluza, Yang, Wheeler (Fig. 1.1), Weinberg, and Salam.
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Chapter 2
Geometry of Gauge Fields

The geometrization program of field theories has already established a remarkable
tradition in modern physics. So far, this approach has centered on the gravitational
fields whose intricate structures have found a sound and convincing consolidation in
Einstein’s theory of general relativity. The prevalence of his theoretical explanation
is accounted for by the universality of this interaction (Eotvos—Dicke experiment;
see MTW, p. 1050). Maxwell’s theory of electromagnetism as an almost archetypi-
cal' model of a gauge theory (WEYL 1928) is also in harmony with this geometric
paradigm. Later on, it was shown by YANG & MILLS (1954) that a theory invariant
with respect to local rotations acting on the internal space of isotopic spin may have
arelated geometric interpretation. If one were to search ab initio for a nonlinear gen-
eralization of Maxwell’s theory, three conceptually basic assumptions would have
to be clarified:

(i) The idealization of the spacetime continuum must be expounded as the precon-
dition of any field theory.

(i) The notion of the physical field magnitudes that are attached to a point of the
spacetime manifold, whether are of electromagnetic, gravitational, internal, or
even quantum-mechanical origin, has to be defined globally.

(ii1) The principle of action at close distances requires the existence of a connection
between different fields in order to make possible interaction and, in the wake
of it, to ensure measurable physical processes.

It turned out that the precise mathematical framework for such constructions is to
be found in the theory of fiber bundles. Roughly speaking, these theories deal with
appropriate generalizations of the conventional Cartesian product of the “external”
and “internal” spaces in question. It is not by chance that these were first formulated
by mathematicians (see, e.g., STEENROD 1951) in order to solve global topological
problems. At the latest, it was the study of WU & YANG (1975) that made abundantly

'We are adopting here the striking and useful coinage of WEINBERG (1977).
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clear that it is exactly this property of the bundle theory that accounts for its being
an ideal organ for the analytical description of interacting fields within the gauge-
theoretic concept (YANG 1977).

There exists an extensive literature on fiber bundles. On the one hand, there
are works that lead to a profound theoretical consolidation of differential geome-
try (KOBAYASHI & Nowmizu, Vols. I and II, 1963, 1969; hereinafter referred to as
KN I and KN II respectively). On the other hand, there are studies (LUBKIN 1963;
TRAUTMAN 1970; MAYER & DRECHSLER 1977; DANIEL & VIALLET 1980) that
mainly try to work out a mathematically precise basis for the theory of gauge fields
as presented in those treaties, which are of an outspokenly physically oriented nature
(see, e.g., thereviews of ABERS & LEE 1973; WEINBERG 1974; 1977; TAYLOR 1979;
O’RAIFEARTAIGH 1979; CHENG & LI 1984). Consequently, the present study can
make use of the elegant and concise calculus of differential forms, and thus develop
the geometric aspects of Yang—Mills theories almost exclusively on a deductive basis.
Furthermore, we try to establish a general theoretical framework that allows not only
the incorporation of the theory of gravity into this concept, but subsequently also
that of the extended geometrodynamics. “Gauge invariance ...has the character of
general relativity... and can certainly only be understood with reference to it” (WEYL
1929). It is therefore advisable to present the gauge theories of particle physics from
the beginning in a curved spacetime.

2.1 Differentiable Manifolds

The theory of general relativity as well as gauge theories in their classical, i.e.,
unquantized, form are based on the concept of a continuous spacetime, which, how-
ever, may comprise curvature and possibly a nontrivial topology, too. And this despite
the fact that the hypothesis of continuity can no longer be taken as self-evident, as
it was, due to historical limitations, in classical mechanics, but has to be modified
with respect to the principles of quantum mechanics (compare, e.g., PENROSE 1968;
WILSON 1976; HELLER & STARUSZKIEWICZ 1981; FRIEDBERG & LEE 1984).

At first, the illustrative notion of smooth (curved) surfaces will be generalized
into the more abstract notion of a manifold, agreeing with RIEMANN (1854). The
latter is an entity that is locally similar to the n-dimensional Euclidean space. For the
sake of a more precise explanation, a topological space M is postulated, i.e., a set
with a notion of neighborhood. This space should be equipped with coordinates. To
achieve this, we consider injective (reversible) mappings x : M — R", whose range
extends to an open subset of the usual Euclidean space E". Such a map together with
its domain Uj is called an n-dimensional chart. By the projection m; onto the single
axes of the coordinate system of R", the local coordinates x; = mw;ox,i =1,...,n
(see Fig.2.1), come into existence.

In general, one chart does not suffice to cover a set completely. (As is well known,
at least two charts are necessary for the stereographic projection of the n-dimensional
sphere S™). However, it is possible to construct a collection of charts of identical
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Fig. 2.1 Coordinates of the sphere obtained by stereographic projection

dimensions so that the set-theoretic union of their domains U; C M cover M com-
pletely. In order to achieve this, it is reasonable to demand compatibility, which
means that the change of coordinates (transition function in the theory of the fiber
bundles)
—1
mox;:R—>R (2.1.1)

is a diffeomorphism in the area of the intersection of their domains. Such mappings
form an infinite-dimensional group with respect to composition, i.e., the group Z(M)
of differential coordinate transformations (an analysis of the mathematical complex
structure of the Lie group Z(M) is, for instance, to be found in OMORI (1973).

A collection (Ui, x;) of compatible charts is called a C*-atlas of M. (The common
assumption is that these transformations are r times continuously differentiable, i.e.,
of class C"). This atlas again can be extended unequivocally to a complete one, which
in turn determines a differential structure of dimension n.

Definition A topological (locally connected) Hausdorff space M endowed with a
C*-structure of dimension n is termed a differentiable manifold (or for the sake of

brevity, “manifold”).

It has to be pointed out that the notion of a manifold has been defined here
intrinsically, and thus does not make use of the possible embedding into a Euclidean
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space of a higher-dimensional order. According to a theorem of Janet and Cartan,
locally isometric embeddings of analytic Riemannian manifolds into E"®+1/2 are
possible (cf. KN II, p. 354), but the required embedding spaces would cause problems
for a physical interpretation.

A global isometric embedding theorem for a compact manifold into Euclidean
dimension N = n(3n 4 11)/2 was proven by NASH (1956); for a noncompact one,
the extravagant dimension N = n(n + 1)(3n + 11)/2 results; cf. CHEN (2000) for a
survey. Later, in the smooth case, FROLOV (2006) considered the embedding of the
surface of a rotating Kerr—-Newman black hole into E*.

For the present, local physics without interaction is applied only to the tangent
space Ty, (M) attached to a point m € M. Contrary to the given illustration (see
Fig.2.2), it is to be accentuated that the construction of this space should depend
only on the structure of the manifold and avoid an embedding of any kind. In order
to achieve this, a curve s(t) on the manifold is chosen that passes through a point
m € M. As an auxiliary device, an arbitrary smooth (i.e., C*°-differentiable) function
f is considered. Its derivative

e YEW) _of ax(s(n)

(2.1.2)

dt |e=vm " axi dt

Fig. 2.2 Tangent vectors concerning holonomic coordinates on the sphere
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along the direction of the curve, considered a mapping of the algebra of the differen-
tiable functions f to the space R of real numbers, defines the tangent vector e(m) or
“velocity vector” at m (see MILNOR & STASHEFF 1974, p. 5). Concerning a given
rigid basis of R", the n-dimensional tangent space Ty, (M) is spanned by the linearly
independent vectors e,(m),« = 1, ..., n. It follows from (2.1.2) that the partial
derivates 9; := 9/0x constitute a local basis for T,,,(M) with respect to a holonomic
coordinate system. By definition, the relation [e;(m), e;(m)] = [9;, 9;] = O is satis-
fied. Accordingly, the tangent basis for the “comoving” anholonomic frame (Cartan’s
“repere mobile”) can be transcribed as follows:

eq(m) =€, (m) d;. (2.1.3)

The occurring nonsingular matrices €/, (m) depend on the point in question and
are consequently called concomitant “n-Beine”? or tetrads (four dimensions). The
latter were introduced by EINSTEIN (1928) in order to formulate a theory of gravity
complying with the hypothesis of teleparallelism. By the union of all of the manifold’s
tangential spaces, the so-called tangent bundle is brought into existence:

TM) = | J T.(M). (2.1.4)

meM

Herein we find a first example of a bundle in terms of a modern mathematical concept,
which has to be specified in the following paragraphs of the present study.

2.2 Tensor Fields and Exterior Forms

In addition to the tangent bundle T(M), a so-called dual bundle T*(M) = J T (M)
meM
consisting of all possible cotangent spaces T}, (M) on the manifold can be constructed.

As is to be shown, these are represented by the canonical differential forms of first
degree.

Letv*, o0 =1, ..., n, be abasis of T} (M). Then the “duality”3 requires that ¢
be orthonormal to a basis of Ty, (M) with respect to the natural interior product

ep| 0 = 8%. (2.2.1)

With respect to the holonomic coordinate system, a natural basis of T} (M) is given
by dx. In terms of the rigid basis of E", the 1-forms

9 = 0Py, € CX(T*M)), (2.2.2)

2Gell-Mann’s German term “Vielbeinfeld” is even more to the point.

3This duality should not be confused with the duality of exterior forms, as introduced later on.
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which are also called Pfaffian forms, can be expressed in general by
9% = Ef (m) dv. (2.2.3)

The latter constitute a so-called anholonomic (dual) basis, in as much as the exterior
derivative d¥*, in contrast to that of dx/, is generally different from zero. Following
2.2.1), E"‘ can be understood as the dual tetrad field “reciprocal” to e’ 5 (cf. (2.1.3)).
These spacetlme dependent matrices are related to each other by

Ef ey =58%. (2.2.4)

By repeated tensorial multiplication of tangent and cotangent spaces with themselves,
tensor bundles of generic, co- and contravariant degrees (p,q) will be obtained:

TIM) = | @ TjM) &7 T,,(M). (2.2.5)

meM

Completely symmetric or antisymmetric products are denoted by ®;_, or, even more
commonly, by the symbols V and A, respectively. Note that a tensor is a geometric
object that is defined independently from the choice of coordinates. Relative to a
basis of the tensor space, a tensor may, however, be locally expanded as follows:

T =TI Hmo" @ @0 ®ep ® - ey, € CXTIM)).  (2.2.6)

The quantities Ta, aq (m) are called its p covariant and q contravariant components,
and Tq (M) may be regarded as a bundle associated with L(M) having the manifold
M as a base, the tensor representation D®® of GL(n, R), i.e., p®%(GL(n, R)) as a
structure group and the (Cartesian) product @*R" ® 9R" as a typical fiber.

The (pseudo-)Riemannian metric on M is one of the most important examples
not only for differential geometry, but also for gauge theories in curved spacetime.
Formally, this metric can be defined as a covariant symmetric tensor field of degree
2, 0):

ds® = gup?® ®, 9P =: gjjdx' ®; d¥'. (2.2.7)

This “metrical groundform” (WEYL 1923) or square of the line element determines
the scale of the manifold. Due to the postulated symmetry of the components g, ,,
it is always possible, by a linear transformation of the main axes, to rearrange the
metric locally as follows:

ds® = gy’ @, dv 2 — Z(ﬂ 2+ Z @), 2.2.8)
Jj=s+1
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If these signatures occur in the same characteristic manner throughout all points of
the manifold, it is generally called a pseudo-Riemannian manifold of signature s; cf.
SAKHAROV (1984).

In the geometric description not only of gauge fields but of gravitational fields as
well, those cases are prevalent in which one makes use only of an irreducible subspace
of Tg (M), i.e., the space of completely antisymmetric covariant tensor fields of degree
(p, 0). Usually, A := ®, is an abbreviation for the antisymmetrized tensor product,
while cross sections of this special tensor bundle are called (alternating) differential
form of degree p:

1
a? = —Ag g9 A AO € CENTHM)). (2.2.9)
p:

The mathematically elegant calculus of exterior (alternating) differential forms,
essentially developed by Poincaré and E. Cartan, is based on this. As far as we
know, this calculus was first applied to physics by MISNER & WHEELER (1957) in
order to achieve both a more concise reformulation of Maxwell’s theory of electro-
magnetism and an incorporation of that theory into an “already unified field theory”
of electromagnetism and gravitation. The standard reference book concerning grav-
itation (MTW 1973) gives an instructive account with respect to this mathematical
tool. Five years later, HOWE & TUCKER (1978) rewrote the SU(2)-gauge theory in
the language of differential forms and especially drew attention to the subtleties of
the real Minkowski space.

2.3 Fiber Bundles as an Enlarged Geometric Arena

Atomic spectra can be described quantum-mechanically by the Schrodinger theory,
which is based on a detailed knowledge of the dynamics of the microscopic system.
Subsequently, a deepened interpretation of the atomic and nuclear phenomena was
achieved by group-theoretic methods (WEYL 1928; WIGNER 1931). In the subnu-
clear domain of particles, we are almost completely dependent on a classification
of particle properties according to such group-theoretic criteria. WIGNER’s analysis
(1939, 1957) of the representations of the transformation group in flat spacetime, i.e.,
the Poincaré group, is an outstanding example that yields the well-known invariant
characterization of particles in terms of mass and spin. Moreover, the overwhelm-
ing number of “excited states” of stable particles that have been discovered recently
has certainly received a thorough and satisfying classification by the assumption of
“internal symmetries.” These have been exemplified by the hypothesis of isotopic-
spin invariance HEISENBERG (1932) or, for instance, by the hypothesis of the unitary
group SU(3) of GELL- MANN & NEEMAN (1964).

Within the framework of quantum field theory (QFT, BJORKEN & DRELL 1964),
the most crucial problem is to find a geometric relation between the spacetime sym-
metries and the postulated internal symmetries that leads to a natural concept of
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interaction. It is to be remembered that in QFT, an elementary particle is represented
by a complex field with several components, or to be more precise, by an array of
rays in a Hilbert space .7, which is to be transformed according to an irreducible
unitary representation of the Poincaré group. From the geometric point of view, it is
assumed that ¢ at a point m is equal to the value ¢(m) in a complex vector space
V. Additionally, it can be postulated that a vector space of this kind is attached
to each point of the spacetime manifold. Similarly to the presentation of a tangent
space, it is required, by a global point of view, to take into consideration a bundle of
such abstract spaces of “particle attributes.” In order to realize internal symmetries,
the vector spaces V have to be generalized in such a way that they can function
as representation spaces for the internal group G. Accordingly, these “internal rota-
tions” are seen as operating pointwise on the spacetime manifold. It is only to be
considered that under these circumstances, at least a transformed description of the
same physical reality is achieved that is represented by matter fields.

Intuitive concepts, rather, like these have their precise counterpart in the theory of
fiber bundles. As has already been mentioned, these are appropriate generalizations
of the familiar Cartesian product of the spaces under consideration. In particular, it
involves the group manifold associated with the internal symmetries and the space-
time continuum. However, this generalization is qualified to take globally nontrivial
topological structures into consideration.

Definition A fiber bundle (F, M, ) consists of two C*-differentiable manifolds F
and M and a smooth surjective mapping

m:F—> M. (2.3.1)

For obvious reasons (see Fig.2.3), F is called the total space, M the base space,

—1
and 7 the projection. The closed submanifold F,,, := 7 (m) will be called a typical
fiber, for in contrast to more general bundles, these are all isomorphic in the case
of fiber bundles. Furthermore, (F, M, 7) is required to be locally trivial, i.e., each

Fig. 2.3 Mobius strip as an
example of a globally
nontrivial fiber bundle

Fry : 78 (m)
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-1
point m € M has a neighborhood U such that 7w (U) ~ U x F,, is isomorphic to the
product bundle (U x Fy,, U, 7). The mapping

o:U—F where mwoo=id 2.3.2)

defines a local cross section through the bundle. In the more physically oriented
literature, this is better known as a choice of a “local gauge.”

The most striking example of a global nontrivial fiber bundle is the M&bius strip.
In this case, the (multiply connected) circle is considered a base space, whereas a
one-dimensional real vector space, e.g., the unit interval [0, 1], represents the typical
fiber. This fiber is subjected to such a twist in the total space that opposite points of
the interval can be identified after a full revolution.

The basic idea of the very concept of gauge invariance, however, is that interacting
fields (e.g., gauge fields) at any given point of the spacetime can be varied by local
“internal rotations” (e.g., by local isospin transformations), but that this results only
in an equivalent description of the same physical reality, as far as matter fields are
concerned. In order to heighten the precision of this notion, the internal symmetry
group G (usually assumed to be continuous) and the spacetime manifold are consid-
ered as a whole and extended into a single enlarged geometric arena, the principal
fiber bundle.

Definition Provided P and G are manifolds and the structure group G is a Lie
group,then the collection P(M, G, 7, §) is called a principal fiber bundle if

(i) (P, M, m) is a fiber bundle with typical fiber G;
(i) (P, G, §) is a G-manifold (whereby G is acting on P from the right);
(iii) P is locally trivial, which means that every point of M has a neighborhood U C

—1
M together with an isomorphism t : U x G — 7 (U) for which the following
property holds:

tim, g182) =t(m,g1) - g, meU,geG. (2.3.3)

A manifoldis called a G-manifold (P, G, §) if G acts on it as a free transformation
group either from the left or from the right:

GxP—P
S w w Wie-po=po€Py. 2.34)
8 * Po=1"P

This fixes the transformations of the total space P if it is subjected to the action
of the symmetry group G. (If the action of G were also a transitive one, i.e., if
there always existed a g that would provide a relation p, = g p; for given p;
and py, then G considered as a manifold would be isomorphic to the base M.)

These highly formalized constructions, however, yield only an “arena” for the rep-
resentation of physical fields.
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2.4 Associated Bundles and Physical Fields

In order to characterize matter fields within the framework of bundle theory, the
notion of vector bundles being associated with P(M, G, T, §) is also required. For
this purpose, the fiber bundles V(M, F; G, P) associated with P(M, G, =, §) are
constructed as follows:

Let the typical fiber F be a manifold on which G acts from the right-hand side,
i.e., on the product space P x F, an action from the right-hand side is defined by

8, ¢):=(pg, g '¢) CPxF, geg. (2.4.1)

The quotient space of P x F with regard to this action of the group G will be denoted

—1
by V =P xg F. The isomorphism 7 (U) &~ U x G concerning the original domain
of a neighborhood U, which results from the very construction of a fiber bundle, will

—1
induce the isomorphism 7,(U) & U x F in the associated bundle. Provided that

?'EIV(U) is an open submanifold of V, then V can be equipped with a differentiable
structure as a whole.

Usually, in the cases of physical relevance it is not the structure group itself that
occurs, but its linear representation p : G — GL(N, C), i.e., the Lie homomorphism
of G into the general linear group of complex N x N matrices. If their representation
space, the N-dimensional vector space CN over the field of complex numbers, is
considered a typical fiber, an associated bundle can be constructed from it,

VP :=VPM,CN, p(G) € GL(N,C), P), (2.4.2)

which will be referred to as a complex vector bundle on M. By taking the product
with the complexified* cotangent bundle T¢ (M), further vector bundles will come
into existence on the spacetime manifold.

Physical fields on M are then to be considered p-forms of (representation) type
p, 1.e., the cross section

dP =9’ @b e CO(NT* (M) Q V?P), be C®(VP). (2.4.3)

If this space is endowed with a Hermitian inner product, then such fields are referred
to as being of “charged type” (compare MACK 1981).

For N > 1, these fields form an infinite-dimensional vector space over CN. In
(2.4.3), the bundle coordinates relative to the local basis fieldsb = (by) : U C M —
V? are denoted by

o? ={pPYA=1,...,N}. (2.4.4)

“For reasons of consistency, the cotangent bundle has itself to be complexified, since in physics,
complex vector bundles are dealt with almost exclusively.
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Let the Lie homomorphism p : G — GL(N, C) be explicitly given by the nonsin-
gular complex N x N matrices paB(g(&)), where £1(j = 1, ..., dim G) prescribes a
parametrization of the Lie algebra. Then the infinitesimal operators

B

L= [M |g_e} € T.(p(G)) (2.4.5)
o0&/

are constructed by means of the “derived” homomorphism of G. In the case of an

identical representation, i.e., for p = id, the infinitesimal generators I; form a basis

of the Lie algebra g of G. As a representation of I;, the infinitesimal operators inherit

the commutation relations from the Lie algebra, i.e.,

[L,‘, L]] = C,jkLk. (246)

These algebraic relations are determined by the structure constants ¢;* of the Lie
algebra g. “Gauge fields,” unlike matter fields, are considered as cross sections of a
vector bundle VAY respecting the adjoint representation of G as a structure group.
Thus, they can be represented by the Lie-algebra-valued forms

1 .
pP = Pl ® DA A € € (NTEM) @ VAY) . (247

All rules of the calculus of exterior forms are valid, except that in the nonabelian case,
the wedge product is no longer an alternating operation. In contrast, the commutator

[¢(p)7 Ip(q)] — ¢(p) A w(‘l) _ (_1)qu(q) A ¢(p> — (_1)pq+1 [w(tz)’ ¢(P)] (2.4.8)

of Lie-algebra-valued forms has this useful alternating property. Accordingly, the
commutator of a form of even degree with itself is equal to zero on account of

[¢(2k)’ ¢(2k)] - _ [¢(2k)’ ¢(2k)] —0. (2.4.9)

2.5 Connection and Covariant Derivative

Up to now, these bundle structures are still unconnected in the sense that the internal
spaces that are thought of as being attached to the spacetime M cannot be “compared”
in a differentiable manner along a given curve s(t) C M in the base manifold. In order
to make possible such a parallel displacement of the fibers (LEVI- CIVITA 1926; KN
I, p. 68), a connection is required, i.e., a kind of guiding field.

There are several equivalent definitions concerning the connection in a fiber bundle
(compare, e.g., EGUCHI et al. 1980). Such a connection is imprinted on a principal
fiber bundle P(M, G, , §) in a mathematically rather abstract way: Proceed from the
cotangent bundle T,*(P) at the point p € P (see KN I, Chap. 1). Then decompose it
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Fig. 2.4 Horizontal and pma.-. G
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into the direct sum of horizontal and the vertical subspaces, i.e., T,*(P) = Hy, & V.
Then consider an abstract parallel displacement in the vertical subspace (see the
straight lines in Fig.2.4) prescribed by

V)" = T, (Fu(M)), (2.5.1)

i.e., in the cotangent space of the bundle F,, (M) of typical fibers on M.
This will be achieved by the assertion of a 1-form w(e) € € with values in the
Lie algebra g of the structure group G that is subject to the following conditions:

(i) With respect to a right-transformation of the tangent vectors of P, this 1-form
transforms itself according to the inverse, adjoint representation of G:

w(eg) = g 'w(e)g, eecT(P). (2.5.2)
(ii) For vertical elements e, = pdg € V,, it will be mapped to the left-invariant
element
wpdg)=g~'dg € T.(G)~g (2.5.3)
of the Lie algebra of G.

For the treatment of physical problems, the following equivalent approach to the con-
cept of connections is more appropriate (ATIYAH 1978). In this second approach, a
connection in an associated vector bundle A" T (M) ® V7 is defined via the covari-
ant derivative. This is analogous to the procedure known from classical differential
geometry (see MILNOR & STASHEFF 1974). Consider a linear differential operator

D:C®(V?) — C®(TeM) Q@ V?P) (2.5.4)

in the vector bundle V” and regard it as a mapping of the space of sections of V*
onto those of the product bundle T¢. (M) ® V*. This operator will be defined in such
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a way that it acts similarly to the “absolute differential,” which was introduced by
LEVI- CIVITA (1926), with respect to the bundle basis b.

To be more precise, this means that the result of the action of D on b can be
expressed as a linear transformation of the selfsame basis of V*, i.e.,

Db=w®Db, beC®WV"). (2.5.6)

(The called-for linearity is by no means as self-evident as it might seem. For a system
of paths that generalize geodesics, nonlinear connections can be introduced into dif-
ferential geometry, too (LAUGWITZ 1965, p. 190; cf. GOENNER 1984). Furthermore,
for the cross sections of the vector-valued forms (2.4.3), the differential operator D
is expected to have a natural extension that satisfies the generalized Leibniz rule:

D(pP @ b) = dep” @ b+ (—1)’9"” @ Db. (2.5.7)

(Attention should be drawn to the fact that the symbol D is used throughout our
presentation, although the occurrence of varying representations p of the same group
G is by no means excluded in the formulas.) Concerning the adjoint representation in
the relevant case of a vector bundle VA9, (2.5.7) is converted into the more familiar
relation

D@? @ b) = {d¢” + (—1)’[p?, ]} ® b. (2.5.8)

The image of Db will be referred to as the (G-)covariant exterior derivative of b.
Since D is a local operator, a global connection can be defined unequivocally by its
restriction to a neighborhood U of M. Let by, A = 1, ..., N be a local basis for the
Cross section V{L} restricted to U. With respect to this local system of reference, the
resulting effect of D on b can be expanded as follows:

Dby = wiPbg,A,B=1,...,N. (2.5.9)

This is identical to (2.5.6) if given in the more abstract notation of matrices. The
matrix [wa P] acquires values in T (M) and will consequently be called a connection
1-form, which means that it can be expanded locally as

I=co=rI/L®v, j=1,...,dmgG, (2.5.10)

i.e., by a pullback via the cross section.

The coefficients I'y(m) will turn out to be generalized gauge potentials as they
occur in modern physical field theories. With respect to unitary structure groups U(f),
these potentials will be denoted, as is usually done, by

A (m) := I/ (m)ig=uq) (2.5.11)
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2.6 Curvature

For differential forms in general, the identity dd = 0 holds, which may be regarded as
a counterpart to the homological relation 9 = 0. Figuratively speaking, this means
that the “boundary of a boundary” of a manifold vanishes identically. In general,
such a relation would not hold for the twofold covariant exterior derivative, for the
departure from integrability is accounted for by the curvature of the bundle space, in
analogy to the concepts of differential geometry:

DDb=: 2 ®b. 2.6.1)

It follows from

DDb=D(w®b)=dw®b — wADb

=(do—wN0)®b 26.2)

that the curvature 2-form £2 satisfies the second structure equation of E. CARTAN:

1
.Q:da)—w/\w:da)—z[w,w]. (2.6.3)

As was to be expected, §2 is a 2-form of type Ad G. Most often, its local presentation
* 1 ; N P
o2 = 3 «fLi @V ANV (2.6.4)

is preferred in physical applications. Its components with two spacetime indices and
one group index are called the field strengths of the gauge fields in question.

If we are using (2.5.10) in order to notate (2.6.3), it will become obvious that
these field strengths are in absolute compliance with the familiar relations

Fos! = 8,13 — 05T/ — i/ T\ T, (2.6.5)

which are well known from the Yang—Mills theory. Concerning electromagnetism,
which can be formulated in a fiber bundle with abelian structure group G = U(1),
the structure constants are identically zero. Consequently, in holonomic coordinates,
the well-known relation

Fij = 0;A; — 0;A; (2.6.6)

holds.

The curvature of the bundle is interpreted geometrically, similar to the explanation
that is offered in Riemannian geometry. For illustrative purposes, we consider the
variation

Ab=Db—b(o) = %(db)hor, (2.6.7)
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which in the local basis b of the bundle results from a parallel displacement of b
along an infinitesimal closed curve O= dU C M. The very concept of a connection
guarantees that

(db)hor =Db=w @D (2.6.8)

is valid, since it is only the horizontal part of this displacement that matters. This
relation together with Stokes’s theorem yields

Ab:/w@b:/d(w@b)mr:/D(w@b)

U U U

(2.6.9)
:/Q@b:[)@b
U

as a measure of the nonintegrability of a parallel displacement along the infinitesimal
closed curve dU. Figure 2.2 shows this for a parallel displacement of a pair of tangent
vectors along a path constructed entirely of great circles of the sphere. The so-called
holonomy group H(M, m) of a manifold is generated by linear transformations of
T (M) onto itself. These are generated by displacements of e(m) € T,,(M) along
arbitrary curves that begin and end at m. According to the theorema egregium,

K:lljim0 /.Q@b / /1®b (2.6.10)
U

U

is the Gaussian or local curvature of a 2-dimensional surface (LAUGWITZ 1965; cf.
SULANKE & WINTGEN 1972, p. 242).

Analogously, the nonintegrability of the parallel displacement of the bundle basis
is measured by the integral (2.6.9). This accounts not only for the Riemannian cur-
vature of the base space M, but also for the “internal” curvature derived from the
prescribed connection in the vector bundle that has been dealt with so far. For the
covariant derivative, a relation similar to dd = 0 occurs at a higher degree of differ-
entiation only:

DDDb=0. (2.6.11)

This relation implies the (second) Bianchi identity

(2.6.12)

for the curvature 2-form. The proof is obtained by writing out (2.6.11) explicitly by
inserting the structure equation (2.6.3) repeatedly:
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DDDb =D(2 ®b) = (d2 +[2,w]) ®b
=dR+L2Nw—0N2)RDb (2.6.13)
= (ddw —dwo Nw+ o ANdw

+dornw—wAoAo
+oAwoAw—owAdo)®b=0.

On the other hand, this derivation suggests relating the Bianchi identity to the homo-
logical identity 90 = 0. A very stimulating discussion of these far-reaching theorems
of differential topology are to be found in the standard reference book on gravitation
(MTW, Chap. 15).

2.7 Gauge Transformations

Einstein’s theory of general relativity is founded firmly on the following basic prin-
ciple as far as its axiomatic argument is concerned: “Natural laws are to be expressed
by equations that are covariant under the group of continuous coordinate transfor-
mations” (EINSTEIN 1949, p. 69).

It is not by chance that we have formulated our approach to gauge theories in
terms of differential forms: these transform themselves covariantly with respect to
the group Z(M) of coordinate transformation. Additionally, it has been suggested
by the empirical occurrence of internal symmetries that use should be made of the
principal fiber bundle P(M, G, m, §) as an “enlarged geometric arena.” Thus it is
to be expected that additional transformations of P play a part in gauge theories
similar to that of the group (M) of diffeomorphisms in GR. In particular, those
diffeomorphisms

Gp):P— P, Gp) € %9, (2.7.1)

of a principal fiber bundle P(M, G, r, §) should be taken into consideration, which
are subject to the following conditions (ATIYAH 1978):

(i) G(p) is equivariant, i.e.,
Ggp)=gGWp), g€ G, peP; (2.7.2)
(i1) G(p) preserves each fiber F,, = ;11 (m), i.e., acts trivially on the base space,
ToG =m. (2.7.3)
These diffeomorphisms generate inner automorphisms of P. In terms of com-

position, they constitute an infinite-dimensional group, the group % of local
gauge transformations (which are of the so-called second kind). This group can
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be identified with the group of smooth cross sections of the product bundle of P
and G under the adjoint action of G (BOURGUIGNON & LAWSON 1981):

G, ~ CP(P xp4 G). (2.7.4)

The exponential mapping exp : g — G from the Lie algebra g into the structure
group G of P induces a corresponding mapping within P xq G. As a result,
each element of the group of gauge transformations can be expressed locally in
the following form:

G(p) = expi 0 (m)Ly € 9,. (2.7.5)

Here 6%(m) € C*(M) denote real functions on the base space. Gauge trans-
formations within an associate vector bundle V»(M, CN, GL(N, C), P), i.e.,
elements of %, are represented by the same expression to the extent that L¥
is to be considered an infinitesimal operator with respect to a representation
p:G— GL(WN,C).

For simplicity’s sake, let us consider a physical system that is determined by a 0-form,
i.e., a scalar of representation type p:

p=9Rb="9®%% € COWV"). (2.7.6)

An equivalent local description of the same system will be obtained if the physical
system, represented by the so-called bundle coordinates ¢, is subjected to the active
gauge transformation

0> 9=Glo € CM.C).GeY, 2.1.7)
whereas the local basis of the sections suffers from a passive transformation:

b— “b:=Gb e C™(V?P). (2.7.8)

It has to be emphasized that the bundle coordinates @ of the vector bundle constructed
on the conjugate (“Dirac adjoint”) representation p transforms according to

- '5:=0G e C®). (2.7.9)

As has already been indicated in (2.7.6), the total effect of these transformations is
physically unobservable. Thus the bundle theory provides us automatically with a
sensible instruction for a “recalibration” or gauging of the matter fields. This rule is
completely equivalent to the formalism developed by UTIYAMA (1956, 1980).
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2.8 Topological Invariants

Solutions of source-free gauge field equations do not have a merely local meaning.
Some of them may even have a global extension to the whole base space. For a
classification of the configuration spaces of such global solutions, the mathematics
of the fiber bundles is mandatory and not to be considered as only instrumental. The
characterization will be achieved via invariant polynomials of the curvature of the
bundles in question.

Let VM, CN, GL(N, C), P) be a complex vector bundle that is associated with
the “geometric arena” P(M, G, m, §) of the particular Yang—Mills-type model. If we
consider the determinant of the curvature of the former bundle, we obtain

det (1+ﬁ9) =704y 4+ ym) 2.8.1)

as an invariant polynomial. As can be shown, it is decomposable into gauge-invariant
2k-forms yx on P whose inverse images after the projection on the base space M read
as follows:

(=D*

T(n) =

The number of curvature 2-forms §2 in the exterior product is k < n/2. From the
Bianchi identity (2.6.12) and its projection onto a 2k-form on M (KN II, Chap. XII),
it follows that the yy are closed exterior forms, i.e.,

7(dy) = dn(y) = Dr(y)

_ (D" B
= mTr(D.Q AR2AN---ANS2)=0. (2.8.3)

In that case, they are known to determine so-called cohomology classes. The structure
of the latter is not determined by the particular choice of the connection w, but depends
solely on the bundle structure of P(M, G, 7, §) or its associated vector bundle V.
In other words, the 2k-forms correspond to the characteristic classes of V. More
precisely (see: KN II, Theorem 3.1), it can be stated that the abstractly defined k™
Chern class cx (V) of a complex vector bundle V is represented by the closed 2k-form
Yk, as given above.

In order to obtain the characteristic classes of a real vector bundle V' over M with
the typical fiber RN, it will be enlarged to a complex vector bundle V with the typical
fiber CN. The latter arises from the complexification of each fiber of V¥. Then the
so-called k™ Pontryagin class of V¥ is defined by

pr(VE) = (=D ear(V). (2.8.4)
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In the physically important case of a four-dimensional compact “spacetime” of
the Euclidean signature s = 0, we find locally, cf. DANIEL & VIALLET (1980),

Ko = - TR (= 0) (2.8.5)
2mi
* () = —ﬁ (Tr(2 A 2) — Te(2) A THR)) (2.8.6)
1 A
(: 553" Fu'F W\/@d“x)
() =0 for k= 3. (2.8.7)

It is typical for the principal fiber bundles P(S*, SU(f), m, §), which are to be found in
Yang—Mills theories, that they have special Lie groups as structure groups, i.e., those
for which det G = 1 holds. Inasmuch as the trace of the Lie-algebra-valued curvature
2-form §2 vanishes in such instances, the gauge-invariant 4-form Tr(§2 A §2) suffices
for a complete characterization of the configuration space. Any consideration of the
general dynamics of the Yang—Mills gauge fields should therefore incorporate this
form into the Lagrangian formalism.

The integration of the second Chern class 7?()/2) over the base space yields a
characteristic number,” which due to (2.8.1) is termed the Chern index:

* 1
(M) = —/71'()/2) = 32 Tr(2 A £2). (2.8.8)
M M

In the literature of physics, this topological invariant is often called the “Pontryagin
index”; see JACKIW (1977). Concerning bundles with structure group G = SU(f),
however, it is mathematically more precise to call it the Chern index, in order to
preserve the term Pontryagin index for the classification of real associated vector
bundles (MAYER & DRECHSLER 1977). Nevertheless, the denotation of BELAVIN
etal. (1975) is correct, since in their paper, the isospin group SU(2) has been enlarged
to the real structure group §(3(4) ~ SU(2) ® SU(2), due to a special isomorphism
(HELGASON 1962).

The actual calculation of this index is firmly based on the fact that the projection
of the closed form y, onto M is even an exact one. This is a property that it shares
with all exterior forms representing characteristic classes (CHERN & WHITE 1976).
In this particular case, the relation

1
Tr(.Q/\SZ)szr(w/\Q+§w/\a)/\w) (2.8.9)

SExcepting the case of the meron solutions, this will usually be an integer; see DE ALFARO et al.
(1979)
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holds. As for the proof, it has to be remembered first that the exterior derivative d
commutes with the linear operator Tr of forming the trace. Then, the right-hand side
of (2.8.9) yields the following chain of equations:

2
Tr[d(a)/\da)—ga)/\a)/\a))]=Tr{da)/\da)—a)/\ddw

2 2 2
—gdw/\a)/\a)—l—ga)/\da)/\w—gwAw/\dw} (2.8.10)

=Tr{dorndo —doANwAw—oANoAdo}
=Tr{{dwo—wAw) A(do —w A w)} =Tr(2 A 2).

(Since they are under trace, these forms can be treated as ordinary exterior forms,
although otherwise, they are to be considered as Lie-algebra-valued differential
forms.) It is especially the last step that makes use of the identity

Triw A (w Ao Aw)} = =Tr{(w Aw A w) Aw} =0. (2.8.11)

Thus by the application of Stokes’s theorem, the Chern index can be determined by
the following integral over the boundary of M:

1 1
cz(M)zg dTr(a)/\.Q+§a)/\a)/\a))
M

| ) (2.8.12)
=— [ Tr{ordw——-owoAowA®]).
8m2 3
M

For a further evaluation of this latter term, more information concerning the asymp-
totic behavior of the gauge fields is needed. If the dynamics of a Yang—Mills gauge

theory is determined by a Lagrangian 4-form, it can be shown by an analysis of the
action integral

Sym = /LYM (2.8.13)
M

that the field strengths Faﬂj (components of the curvature form) have to vanish faster
than |x| 2 at infinity, since otherwise, the integral (2.8.13) would not exist. In order to
guarantee its finiteness, it is sufficient to postulate that the solutions behave asymp-
totically as “pure” (“fake” according to UTITYAMA 1980) gauge fields:

o0

w:=—-G'dG, (2.8.14)

i.e., that the relation
w~ (2.8.15)
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should hold for |x| — oco. Here @ denotes a Maurer—Cartan connection, i.e., a left-
invariant g-valued 1-form that satisfies the equation

do — o Ao
=—-d(GHYANdG —G'ddG — (G'dG) A (G7'dG) (2.8.16)
=—d(GHYANdG+G'GA(GYAdG =0

(see KN I, p. 41; however, with opposite sign conventions). Consequently, the cur-
vature, derived from a pure gauge field, has to vanish:

@) =0. (2.8.17)

If the boundary oM is chosen in such a way that only a pure gauge connection P
exists there, we get from (2.8.12) the relation

(M) = / Tr(w A © A @), (2.8.18)
oM

2472

in full compliance with (2.8.15); cf. JACKIW (1980). If G = SU(2) serves as a struc-
ture group, the 3-dimensional integral reduces itself to the (invariant) Haar integral
over the 3-dimensional Lie group SU(2), regarded as a manifold. If M is taken to be
S? topologically, then it can be shown that c,(M) determines the “mapping degree”
or the winding number® of the mapping of S* in S3 ~ SU(2). These considerations
explain why in the physics literature, the Chern index is regarded as the “quantum
number” of the fopological charge. It is of considerable importance for the classifi-
cation of the so-called instanton solutions. Before focusing on these configurations,
the works of ATIYAH & JONES (1978), ATIYAH (1979), which deal with further
aspects of such global solutions, should be mentioned for those readers who prefer
a more mathematically oriented approach.
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Chapter 3
Maxwell and Yang—Mills Theory

3.1 The Lagrangian Formalism

The Lagrangian formalism has to be seen as the point of departure for classical field
theories. This approach is also providing the scaffold for (canonical) quantum field
theories. Instead of using a local notation, our representation of the formalism will be
based upon differential forms which are globally defined on a pseudo-Riemannian
manifold of dimension n.
Accordingly, the dynamics of a non-interacting material system is determined by
the Lagrangian n-form
L=L(p,do)n (3.1.1)

which is supposed to depend on the fields ¢ and their first derivatives only. Such for-
malism of the “first order” guarantees that the field equations obtained by Hamilton’s
principle of least action

8/L=0 (3.1.2)

M
being subjected to the subsidiary condition

8¢ =0  atthe boundary oM of M (3.1.3)
are partial differential equations of at most second order.

The operator §¢ of small variations ¢ + §¢ of the fields ¢ is satisfying the Leibniz
rule, similar as a partial derivative, and commutes with the exterior derivative:

8(dg) := d(p + 8¢) — do = dS¢ (3.1.4)
Let
aL
T = A (3.1.5)
9(3a9)
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be the (n — 1)-form of the field momenta which are canonically conjugated to de. It
follows that the variation principle yields

SL=38¢p ALy, +8(dop) Am
=8¢ AL, +d(8p) A (3.1.6)
=08 AN(Ly+dm)+d(S¢p A),

after 6 has been interchanged with the integration. The last term is an exact form.
Taking advantage of Stoke’s theorem, this contribution can be converted into an
integral over the boundary which vanishes due to the subsidiary condition (3.1.3) for
the variation:

/d(&p/\n) :/(S(p/\n. 3.1.7)

M oM
Consequently, this term will not contribute to the equations of motion. From the
principle of variation we then get the Euler—Lagrange equations.

A= (=1°L, + *dw =0, (3.1.9)

where s is the signature of the pseudo-Riemannian manifold.

In local notation, these partial differential equations read:

oL oL

— =y = (3.1.10)
dg 9(3a¢)

In order to complete the field-theoretical description let us turn to the conservation
laws, too. They can be derived explicitly within the limits of our formalism by
considering the so-called Hamiltonian complex:

*H:=L—doArm 3.1.11)

(compare: e.g. RUND & LOVELOCK 1972).
Its exterior derivative reads

d*H =dL+dg A*L, +do Adm —dde A (3.1.12)

where the last term vanishes identically, due to dd = 0. Following the physically
sensible assumption that the Lagrangian n-form is translation invariant and conse-
quently does not depend upon the coordinates x’ explicitly, we get the well-known
conservation law

d*H~0 (3.1.13)
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of the system’s total energy-momentum, provided that the Euler—Lagrange equations
(3.1.9) hold. The transcription of the Hamilton-Jacobi formalism of classical field
theory into the calculus of differential forms is mathematically equivalent to the
introduction of a symplectic structure on the manifold (MTW, p. 125; see also SIMMS
& WOODHOUSE 1976).

The formalism of first order suffices completely, since it is possible to describe
fields with arbitrary spin by introducing the Harish-Chandra equation (see:
WIGHTMAN 1973)

B A* DY = myrn. (3.1.14)

This equation comprises not only the Dirac equation for the description of funda-
mental fermions but as well the field equation, e.g., for a charged scalar field ¢. To
see this, it is only necessary to convert the Klein—-Gordon equation

O +m?g =0 (3.1.15)

via the substitution ¢ — ¥ = (p, @V := dg) into a first order system of the
Petiau—Duffin—-Kemmer-type. Additionally, attention can be drawn to the fact that the
Lagrangian n-form, corresponding to (3.1.14), in the interaction-free case reduces to:

Lt = Lt (U, B - d)n = B A *dyr — mry. (3.1.16)

3.2 G-Equivalence Principle

As has been shown by the preceding considerations, the Lagrangian formalism of
the first order may well serve as a basis for the investigation of the physical impli-
cations of the gauge transformations without impairing the generality. With WEYL
(1929a), p. 331 we postulate that the fundamental laws of physics have to satisfy as
well the principles of “generalized” relativity: The Lagrangian n-form or the partial
differential equations for the fields should not only be invariant or covariant with
respect to the group (M) of general coordinate-transformations of the spacetime
labels, but as well with respect to the “internal covariance group” ¢ of gauge trans-
formations. Since the first postulate corresponds to Einstein’s equivalence principle
(see THORNE et al. 1973 for a detailed discussion), the required gauge invariance has
been termed G-equivalence principle (HENNIG & NITSCH 1981). Both principles
together require a “generalized covariance” of the laws of nature.'

The invariance of Ly, with respect to (M) is already guaranteed by the use
of differential forms. Therefore, it is sufficient to turn to the question of the gauge
invariance of a Lagrangian n-form: for it is a consequence of the transformation

IMACK (1981) interpreted this postulate physically as a result of a “Naheinformationsprinzip”,
regarding it as a generalization of the principle of action-at-close-distances.
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properties of ¢ and @ with respect to gauge transformations that Ly, may solely
depend upon 9 &¢, where & denotes a gauge-covariant operator

06— 5'0=6"00G. (3.2.1)

For exemplification, let 8 be such an operator. Due to the occurrence of the exterior
derivative, it is then mandatory to supplement the Lagrangian n-form

Ly = L@, 9B - (d + o))y = L(@p, 9B - D'o)n (3.2.2)

by means of a 1-form «' in such a way that the term GdG~' resulting from gauge
transformations can be compensated. This, indeed, is only to be achieved, if the
added 1-form is transforming itself inhomogeneously

W ='W =G 'wG+ WG HG (3.2.3)

concerning the “actively” applied gauge transformation G € %,. For the derivation
of (3.2.3) is cogent, if and only if D’ is as well satisfying the generalized Leibniz
rule as the covariant derivative D.

Here the question arises, whether or not the additional form @’ can really be
identified with a connection in an associated vector bundle V”. To verify this, the
matrix o of the connection relative to a basis “b, which is locally “rotated” by
the action of the group element G € %, is taken into consideration. Henceforth the
definition of of the covariant derivative implies

D b) =0 ® °b. (3.2.4)
On the other hand the application of the Leipniz rule yields

Dh) =dGRb+ Go @b

(3.2.5)
={dGG™' + GoG '} ® “b.

Compared with (3.2.4), it shows that the 1-form of the connection transforms inho-
mogenously with respect to “passive” gauge transformations

o — %0 =GwG ' +dG G". (3.2.6)

If G ist substituted by G~ ! exactly the relation (3.2.3) comes into existence, which
is to be expected, due to the invariance of the Lagrangian n-form with respect to
“active” gauge transformations. Consequently, it can be concluded that the term o’
in the Lagrangian n-form is (gauge-)equivalent to the connection w in V*.



3.2 G-Equivalence Principle 41

Thus it follows naturally that the “compensation field” can be taken to be identical
with the connection 1-form w in the following. Furthermore, it has to be pointed out
that a corresponding transformation formula concerning the transition functions,
which specify a local change of the cross-section, holds as well for the inverse

image or pull-back o, due to the defining properties of a connection (see: KN I,
p. 66; DANIEL & VIALLET 1980). In the present study, however, we prefer a global
formulation of gauge transformations relative to the bundle P, and we are thus in
concordance with ATIYAH et al. (1978).

A further important consequence of these considerations is that the covariant
exterior derivative D transforms “(gauge-)covariantly” with respect to the following
automorphisms of the vector bundle:

D—%'D=G"'DG. (3.2.7)
This is also the case for the curvature 2-form:
Q- %'2=6"926G. (3.2.8)

The transformed connection ¢ @ deviates from the original one solely by a gauge-
covariant 1-form, i.e., more precisely by

2= "w—w=G6"wGl-G'4dG

- (3.2.9)

=-G'DG=- “ D.
For a so-called “copy” @ of a connection w, this expression is to be taken as different
from zero, although - according to the definition - its curvature 2 = G~ 'QG is
gauge-covariantly related to £2 as in (3.2.8) (see: DESER & DRECHSLER 1979). The
transversal or Coulomb condition d *@ =~ 0 does not fix uniquely (large) gauge trans-
formations. In nonabelian gauge theories, Gribov copies are unavoidable (SINGER
1978) and topologically non-trivial. However, a Lorentz-invariant BRST quantiza-
tion may be free (SLAVNOV 2009) of this Gribov ambiguity.

3.3 Maxwell’s Theory in Differential Forms

In the standard framework of a U(1) gauge theory, as well as in the original publica-
tions of Maxwell, the electromagnetic four-potential A = A;dx', a one-form, is the
fundamental variable, whereas Faraday’s field strength F' is a derived concept and
defined by the two-form

.
Fi=dA = SFydd ndo. (3.3.1)
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Fig. 3.1 Vector potential A
outside of a solenoid. The
electron beam for the
interference is indicated by
blue arrows

On the other hand, dd® = 0 for any exterior p-form @, due to the Poincaré lemma.
Thus if dF = 0, there exists locally a one-form A such that F = dA. However, the
potential A is not uniquely determined. The field strength F is invariant under the
local U(1) gauge transformation

A—->A+do(x) = F—>dA+ddd=dA=F. (3.3.2)

Although, A is needed for the standard minimal coupling D — & := D + ieA to
Dirac fields in quantum electrodynamics (QED), there had been a discussion on the
physical relevance of the vector potential A. Already FRANZ (1939) suggested that
the wave function of a Dirac electron could suffer from the non-integrable phase
factor

0= —%/A-dl. (3.3.3)

This so-called Aharonov-Bohm effect, cf. Fig. 3.1 has been conclusively confirmed
via electron interferometry by Tonomura, cf. BATELAAN & TONOMURA (2009).
For a Lagrangian formulation, let us depart from the four-form L which consist of
the gauge field part and Ly, governing the matter field ¥ and its minimal coupling
to A:
L =L(A,dA) + Ly (A, dA, W, dW). (3.34)

When the field equations are at most of second differential order, the Lagrangian can
usually be assumed to be of first order in the fields. Stationarity of the action S = [ L
leads to the gauge field equation

SL oL L

— = — =0, 335
SA 0A * 0dA ( )

where the variational derivative of the one-form A is defined in the usual manner.
The excitation H is the field momentum conjugated to A, i.e.
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oL oL . S Lina
= = and = —

_ 8L _ oL , , 33.6
9dA ~  9F 1= T5A (3.3.6)

whereas the matter current uses the variational derivative.
Then, in the framework of a relativistic U(1) gauge theory, the field equations take
the rather elegant form
dF =0, dH=j. (3.3.7)

The homogeneous Maxwell equation dFF = 0 is a Bianchi type identity as con-
sequence of working with the potential A. Since the Poincaré lemma implies that
ddH = 0, the field equations imposes ‘on shell’ that the electric current j is con-
served:

dj~0. (3.3.8)

Without a spacetime metric, the only gauge-invariant Lagrangian permitted in
four dimensions is the Pontryagin four-form

1 1
Lponr = _EF ANF = —EdC, (3.3.9)

where C := A A F = A A dA is the abelian Chern—Simons term, known to violate
parity P.
Involving the metric via the Hodge dual, there exists the additional four-form

1
Ly = = F A °F. (3.3.10)

i.e., the standard Lagrangian’ of Maxwell’s theory in natural units.
The conversion from the exterior into the vector notation can be obtained by the
identification

F:=EAdt+B
= (Exdx + Eydy + E.dz) A dt
+Bydy N dz + Bydz A dx + B dx A dy. (3.3.11)

For the extensive quantities, the excitation two-form includes two parts according to
1 ; :
H:=-9Hndt+9D = EH,jdx Ady (3.3.12)

whereas the current three form can be decomposed into

’More generally, one could imagine the existence of topological modified Lagrangians

0
L = —(cosOF N *F + sinf F A F)/2, where 6 is the’vacuum’ angle of duality rotations or
higher order functionals of the two quadratic invariants.
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They have to be supplemented by a constitutive law which, in vacuum, reads

can be easily inferred from its tensor version:

3 Maxwell and Yang-Mills Theory

- ANdt+p
—(Jydy Ndz + Jydz A dx + J.dx A dy) A dt
(3.3.13)

+pdx Ndy ANdz.

j=

H="*F. (3.3.14)

The Hodge dual * depends on the metric g and on the orientation of the manifold, as

(3.3.15)

Vgl i lj
Hmn = ) Emnkl gklglJFij .

Then the homogeneous Maxwell equation implies the two vector equations

vxE+ B _o
X B+ o0 = (3.3.16)

dF =0
V-B=0.

Likewise, the inhomogeneous Maxwell equation® incorporates the familiar vector

equations
oE
aH=j {V*B— g5 =nd (3.3.17)
V.-E=p/e.

In components, Maxwell ‘s Lagrangian four-form can be expressed as

1 * 1 2 2
Ly 1= =5 F A"F = - (82 = B, (3.3.18)

where 7 is the standard volume four-form. The Pontryagin four-form can be written

in components as
1
Lpony = _EF ANF=E-By. (3.3.19)
The canonical energy-momentum three-form is given by
Xy = eq]L — (eg]dA) A 3dA)
(3.3.20)

= %[(eajF) ANH —F A (e, |H)]

3The displacement current 3D/dr, where © = ¢E, was anticipated 1839 by James Mac Cullagh, cf.
Darrigol (2010). It later on turned out to be a necessary ingredient for rendering electromagnetism

relativistic-invariant.
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and turns out to be symmetric, i.e., ¥, A X'g; = 0. For non-vanishing charge current
J, a three-form, we obtain from (3.3.7) the differential form version

A, ~ (ea)F) A Jj (3.3.21)

of the Lorentz force, cf. HEHL et al. (1991).

3.3.1 Constrained BF Scheme for Maxwell Fields

A rather new development in topological field theory is the BF (background field)
formalism, which potentially provides interesting relations to higher-dimensional
knots; cf. MIELKE (1977a), CATTANEO & ROsSI (2005).

As an instructive example of such a constraint formalism, let us consider here
the abelian case, where the U(1) connection one-form A = A;dx’ and an auxiliary4
two-form B = §B;dx' A d¥' are varied independently, slightly reminiscent of the
Schwinger formalism (SCHWINGER 1962). In its minimal version, it starts from the
Lagrangian four-form

Lgr = —BAF=—-BAdA. (3.3.22)

Independent variations with respect to A and B lead to dB = 0 and to the constraint of
vanishing field strength F' := dA = 0. This implies, however, that such a primordial
model has no local degrees of freedom.

An additional term quadratic in B leads to

- 1
Lgr := —BAdA + EB/\B
=-BAdA+dC. (3.3.23)

Now, independent variations provide a definition of the field strength F’ together with
the corresponding Bianchi identity

BZ=dA, dB=dF =0, (3.3.24)

respectively, in compliance with the Poincaré lemmadd = 0. Itstill defines a topolog-
ical theory (HOROWITZ 1989), since the “on shell” Lagrangian (3.3.23) differs from
(3.3.22) only by a boundary term dC derived from a Chern—Simons (CS) three-form

1 1
C= EA ANF, dcC = EF ANF, (3.3.25)

“In four dimensions, B resembles the two-form potential for the gauge-invariant field strength or
excitation H = dB, the Kalb—-Ramond axion three-form.



46 3 Maxwell and Yang-Mills Theory

the latter akin to the Pontryagin invariant. As is well known, Bianchi-type identities
can be recovered via the variation of the Pontryagin term, e.g., dC/6A = dF =0
in the abelian case.
Like Maxwell’s original theory, this scheme is invariant under the usual local U(1)
gauge transformations
A— A =A+dox). (3.3.26)

In addition, the field equations (3.3.24) are invariant under the symmetry
A>A=A+v, B—>B=B+dy, (3.3.27)

where ¥ = ;dx’ is a one-form or a covector; cf. LUCCHESI et al. (1993). In a
BRST quantization, due to the zero mode sy = D¢ with s¢p = 0, the “topological”
symmetry (3.3.27) allows for a nilpotent ghost for ghost structure; cf. CATTANEO
et al. (1998) for the Yang—Mills case. Thus, one of the most clear-cut approaches
to topological field theory is the BF formalism which, in the case of gravity, was
anticipated by PLEBAKSKI already in 1977.

Since Bianchi identities do not allow for nontrivial couplings to matter, in realistic
physical models such as Maxwell’s theory and QCD, the constraint formalism has
to depart from

1
LMax == —B AN dA + EB A >kB + Lmatterv (3.3.28)

where the Lagrangian necessarily involves the Hodge dual * depending, however, on
the determinant of the metric. Then independent variations of (3.3.28) again provide
the definition of the field strength (3.3.24), but as a bonus, from the relation F = *B
arises a nontrivial physical field equation

—dB=d*F =}, (3.3.29)

where j := 8 Later/6A is the matter current.

However, it should not be overlooked that in a coupling to matter, such a BF
scheme would leave the minimal coupling prescription, since it generates the current
three-form

P ‘SLmatter aLmatter 8Lmatter

: = d
J 5A oA oA
— lp /\ 8Lmatter + DaLmatter , (33.30)
DY 9B

which “on shell,” is conserved classically, i.e., dj = 0. In general, this includes
Pauli-type terms generated by the variation of the Lagrangian with respect to dA; cf.
(5.2.18) of HEHL et al. (1995). Due to (3.3.24), this additional term is equivalent to
that generated by the variation with respect to B, as indicated in (3.3.30).
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The quadratic term in (3.3.28) can be generalized to a four-form potential V (B).
Then the field equation dB + j = 0 together with the relation F = 9V /dB for
the Faraday field strength emerges. In order to invert the latter with respect to B, a
nondegenerate Hessian is mandatory. In three dimensions, though, nonabelian BF
systems with a cubic term —B A F +B A B A B/3 are directly related to Chern—Simons
theories departing from the noninvariant three-form C := AAF —AANA ANA/3; cf.
BRODA (2005), BOROWIEC & FRANCAVIGLIA (2005). The resulting field equations
F = —B A B together with the Bianchi identity DB = DF = 0 correspond, in 3D
gravity (MIELKE & MAGGIOLO 2007), to those with an induced cosmological term.

3.4 Yang-Mills Fields

The “Generalized covariance” of the Lagrangian n-form of the matter system necessi-
tates the introduction of a connection 1-form w (GELL- MANN’s principle of “minimal
coupling” 1956). With WEYL (1929b), it thus can be ascertained that gauge fields
are a necessary accompaniment to the matter-wave field.

Speaking a priori, the connection w and the corresponding gauge potentials I,/ (m)
in its local expansion, respectively, are completely arbitrary. In order to establish
a coupling to the matter-wave fields and to make physical interactions possible,
it is necessary for w to acquire a dynamical status. Consequently, an additional
Lagrangian n-form is to be considered that is dependent on the connection and again
only of its first derivative dw. The only gauge-covariant object of this kind that meets
the given postulates is exactly the 2-form £2 of the curvature, according to (3.2.8).

As far as physics is concerned, the restriction to the four-dimensional spacetime
manifold as a base space is a sensible one. From the exterior calculus, we know that
the only scalars that are invariant with reference to 2(M) and %, which can be
constructed from the curvature 2-form, are

)
|

L It {*(2 A*2)} = L Fof F°° (3.4.1)
= T = w ; 4.
Qg 4o, 4 !

and
1 1 4
*F o= —Tr{" (2 A2)) = —F, *F .. 342
g r{ ( )} 4ag B J ( )

An additional Hodge star operator is implemented in order to convert the obtained
4-forms into O-forms, i.e., scalar functions. In quantized gauge theories, .% and *.%
are known to be even and odd with respect CP transformations (JACKIW 1980). This
result is unique in four dimensions and has given rise to speculations concerning
the dimensionality of the real world (WEYL 1918, 1924; EDDINGTON 1924). As a
substitute for the gauge-coupling constant g (= e in the case of electromagnetism),
the dimensionless “fine-structure constant”



48 3 Maxwell and Yang-Mills Theory
a, = g*/he (3.4.3)

was introduced in (3.4.1) and (3.4.2) for the sake of convenience. Then the Lagrangian
4-form for the gauge potentials yields the general structure

L, = L(Z,*F)n. (3.44)
The 2-form IT* of the field momenta being canonically conjugated to $2 are formally
constructed via

8L, =: 82 A ITY. (3.4.5)

Using (3.4.4), the more explicit form

ne = 2 (2L 2+ oL 2 (3.4.6)
_ag 0.7 o*F o

can be derived.

In order to obtain the corresponding Euler—Lagrange equations, itis to be observed
that the variation of the curvature with respect to @ commutes with the covariant
derivative:

82 =8(dwo—wAw)=8dw—3wAw—wAdw
(3.4.7)
=déw — [w, dw] = Déw.
Consequently, the variation of the Lagrangian 4-form with respect to the gauge fields
leads to the interim result

8L, = 822 AN IT¥ = D(Sw) A IT¥

= —8w ADIT® + d(Sw A IT¥). (3.4.8)
Note that the last term is an exact form that need not be accounted for any further in
the variational procedure.

A physical system that is to be considered complete has to comprise not only the
matter fields ¢(m) but also the interacting gauge potentials I, (m). If the dynamics
of such a system are given by the addition of the separate Lagrangian 4-forms

L= Ly + Lo, (3.49)
it follows that the gauge potentials have to be determined self-consistently by the
(n — 1)-form t of the matter current as a source. The latter is canonically conjugate

to w and therefore to be defined by

SLinat =: 8w A T. (3.4.10)
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Then the dynamics of the gauge fields are determined by the (generalized) Yang—Mills
equations (YANG & MILLS 1954).

DIT® =1 |. (3.4.11)

Due to (3.4.8) and (3.4.10), these can be obtained as Euler-Lagrange equations from
the variation 6L/dw of the total system. They are complemented by the Bianchi
identity, i.e., by

D2 =0. (3.4.12)

The gauge invariance of the Yang—Mills theory is closely related to the concept of
charge, which is of central importance in physics (see SALAM 1980). As is well
known, this concept is an integral one essentially constructed from a locally con-
served current.

It is a consequence of the gauge-theoretic formulation of the dynamical system
that the matter current t is covariantly conserved with respect to the gauge group ¢.
This can be verified by differentiating (3.4.11) and then inserting (3.4.6):

Dt =DDII? =[2, T7]
=2l v cve o122 | <o G419
o, ’ 0.7 B I

The last step of this proof profits from the fact that an arbitrary Lie-algebra-valued
2-form commutes not only with itself but also with its dual 2-form. More generally,
it has been shown by HORNDESKI (1978, 1980) that a field theory of Yang—Mills
type is gauge-invariant if and only if its source current 7 is covariantly conserved.
However, (3.4.13) cannot be extended to a global conservation law in the nonabelian
case.

On the other hand, the conservation law

dive:= (D" "a* 1 =0 (3.4.14)
for the locally, non-gauge-covariant, “internal” current
=1 4 (=D Hw, IT9] (3.4.15)
(cf. BERNSTEIN 1974) follows from the expanded Yang—Mills equation
A% +[o,0°%]=1. (3.4.16)

This conservation law guarantees that the internal Yang—Mills charges (i.e., isospin
I and hypercharge Y in the case of SU(2) as a structure group), which are defined by
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szm:/lz e, (3.4.17)
oH?3

H3

are independent of both timelike translations and (global) Lorentz transformations.
The occurring integrations have to be carried out over a three-dimensional spacelike
hypersurface H® or its boundary dH?, respectively. Note that ¢ involves not only
the matter current t but also a gauge current arising from the nonlinear coupling of
the gauge fields. The electric charge is determined by the GELL- MANN-NISHIJIMA
relation (GELL- MANN & NEEMAN 1964).

1
®=§Y+h. (3.4.18)

Originally, the YANG-MILLS theory (1954) was intended to describe a gauge model
of interactions (initially of strong interactions) with a local isospin symmetry, i.e.,
it is based on SU(2) as a structure group. As for the specification of the dynamics,
the simplest Lagrangian 4-form was chosen that is compatible with the principle of
gauge invariance:

1
U

This is, according to (3.4.4), the linear functional
L(ZF,*"F)=—-F. (3.4.20)

This choice harmonizes with the theory of electromagnetism as first formulated by
Faraday and Maxwell in 1861 (see MAXWELL 1892). It is obvious that then the field
momenta, being canonically conjugate, are proportional to the curvature 2-form, i.e.,

2 _i*
I = 2. (3.4.21)
Qg

In more generalized versions, these theories make use of SU(N) as a structure group,
and are then applied not only to the description of weak and electromagnetic inter-
actions (TAYLOR 1976), but also to the formalization of strong interactions in the
so-called color gauge theories, as well to “grand unified theories” (GUT); see MAR-
CIANO & PAGELS (1978), CHENG & LI (1984).

Relevant aspects of the physical consequences and problems that arise from the
introduction of this hypothesis will be discussed later on. In order to justify our more
general formalism, it is only to be mentioned here that in contrast to the Maxwell—
Lorentz expression (3.4.19), Lagrangian 4-forms have been discussed that lead to
an essentially nonlinear type of dynamics. For instance, it was suggested by MILLS
(1979) to substitute (3.4.20) by the functional
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1 -1
Lyvins(F,*F) = F |:1 - (1 + ﬁg‘\z) :| (3.4.22)

in order to achieve a confinement of the color gauge fields (i.e., “gluons,” which
are thought to saturate the postulated quarks) already within the framework of the
unquantized theory. This issue is remotely related to the self-energy problem of point
charges. In order to solve the latter problem, BORN & INFELD developed in 1934 a
modified theory of electromagnetism based on the related nonlinear Lagrangian

Le((F,*F) =1 —2F — (*7)2 — 1. (3.4.23)

Within the gauge-theoretic framework, the choice of an appropriate functional
L(%,*.7) is of course a mere empirical one and can be answered only by means of
a comparison with the physical phenomena. This comparison is, admittedly, itself
biased by other theoretical concepts and assumptions.

3.5 Instantons

In Yang-Mills theories, the gauge fields may be regarded only as phenomena of
accompaniment of matter. Nevertheless, vacuum solutions of the Yang—Mills equa-
tions have positively a meaning of their own. Within the classical theory, they can
be regarded as junction solutions, which instead of the self-consistently generated
gauge field, are valid outside of the localization of the matter-wave field. A special
role is played by those solutions that satisfy the (generalized) duality ansatz

ne =¢s. (3.5.1)

We are referring to that special occurrence of general duality rotations; see RAINICH
(1925), which transforms the field equations (3.4.11) exactly into the Bianchi identity
(3.4.12). This point of departure reduces the field equations (3.4.11), which are of
second order with respect to the connection w, to differential equations of first order.

In order to obtain explicit solutions for the Yang—Mills theory proper, BELAVIN
et al. (1975) proceeded as follows. They enlarged the structure group G = SU(2)
with the infinitesimal generators I' = io, thus obtaining the group SU(2) x SU(2) ~
SO(4) by proceeding from the array of matrices

o

O [ ol = L&y
- 0 _ (N1 i
0" =(-)50

LLkZsz] (3.5.2)

as generators. (The minus sign in parentheses would hold for the conjugate repre-
sentation.) These operators satisfy the commutation relations of the Lie algebra of
SO(4). Consequently, they constitute a representation of its infinitesimal generators.
Concerning this tensor representation,
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* 1 v a B
o2 = ZFaﬁ,wa“ R VY AV (3.5.3)

serves as a local presentation of the curvature 2-form. Since these generators are
themselves self-dual or anti-self-dual, i.e.,

R T (3.5.4)

in the Yang-Mills theory proper, the relation (3.5.1) leads more correctly to the
double dual ansatz .
“Fogun = (Z)Fapu (3.5.5)

for the components of the field strength; see BELAVIN et al. (1975).
In order to solve this equation, one may tentatively proceed from the Lie-algebra-

valued gauge potentials .
A, =i0,0' Inh. (3.5.6)

The duality ansatz yields the relation
Oh — h™'9;hd'h = b’ (3.5.7)

(see WITTEN 1977) for the remaining scalar function, which depends solely on |x],
i.e.,h = h(]x|) in the spherically symmetric case. A similar nonlinear equation occurs
in the determination of conformal changes of metrics in Riemannian geometry; cf.
MIELKE (1977b), GU (1978). The most general solution that has been explicitly

constructed reads
k+1 2

h=>" SO — (3.5.8)

— (x —x@)?’

cf. JACKIW et al. (1977). In a flat space M* with Euclidean signature s = 0, this is a
globally nonsingular solution with Pontryagin index (“winding number”) given by

pI(M) = k. (3.5.9)

Itis commonly referred to as the kth instanton solution, since its field strength centers
around some point in spacetime and attains its maximum at some “instant” in time
in the case of k = 1 T HOOFT 1977). The configuration as given above depends
on 5k + 4 parameters. From studies of related objects in algebraic topology it is
known that the kth instanton depends maximally on 8k-3 gauge-invariant parameters
(ATIYAH 1979). Consequently, (3.5.8) cannot be considered to be the most general
solution. This raises the further question whether all spherically symmetric solutions
of the Yang-Mills equation in a Euclidean space R* U {oo} ~ S*, which is confor-
mally compactified, can be obtained from the duality ansatz (3.5.5). For “weakly
stable” Yang—Mills fields, this issue was answered affirmatively by BOURGUIGNON
& LAWSON (1981).
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Now, what is the significance of these classical instanton solutions or pseudopar-
ticle solutions for quantum field theory? According to Feynman’s method of quan-
tization by means of path integrals, all physical quantities are derivable from the
transition amplitude between the asymptotic states | — oo) and (oo |. This ampli-
tude or generation functional for the Green’s functions is given by the following
functional integral:

(00| — o0) = Z/ doplw] expi/ (Ly + Loo). (3.5.10)
M M

2]

Its virtue is that the spacetime integration is performed over the classical Lagrangian
n-form of the gauge fields and over a boundary term that if present, ought to elimi-
nate undetermined phase factors in the transition amplitude. Here Z denotes an (in
general infinite) normalization constant. The functional integration extends over the
configuration space ., of all inequivalent gauge fields, i.e., of all possible connec-
tion 1-forms w on P modulo gauge transformations. Consequently, the quotient space
M, = /9, has tobe taken as the configuration space proper. Under not too stringent
conditions, this space forms an infinite-dimensional (pseudo-)Riemannian manifold
(BABELON & VIALLET 1981) and may therefore be regarded as a gauge-theoretic
counterpart of WHEELER’s notion (1970) of a superspace in geometrodynamics. It
can be shown that the “measure” ju[w] for the functional integration, as given by the
Faddeev—Popov determinant, is nothing but the Jacobian determinant with respect to
the “supermetric” of the configuration space (BABELON & VIALLET 1979, 1981).
However, it has to be pointed out that p[w] constitutes a mathematically well-defined
integration measure only for a base space M with Euclidean signature. Therefore,
it is necessary that the functional integral be continued analytically to a “Euclid-
eanized” spacetime manifold with an “imaginary” time variable. In order to generate
physically meaningful assertions by means of the quantum formalism, a so-called
Wick rotation has to be applied again. Then it is possible to evaluate the results in the
real Minkowski space by means of perturbative expansions. Further details of these
important quantum-field-theoretic aspects of Yang—Mills theories are dealt with by
FADDEEV & SLAVNOV (1980), JACKIW (1980) in their respective surveys.

For our purposes, it is important to accentuate that the functional integration—in
contrast to the formalism of the perturbation theory—subsumes also a summation
over different and nontrivial topologies of the configuration space. In the Yang—Mills
theories proper, this circumstance is more appropriately accounted for by adding the
boundary term

Ly = (i)aiTr(.Q A $2) (3.5.11)
8

of Chern—Pontryagin type to the classical Lagrangian 4-form (3.4.19). The relation

+ 1 -
Lym + Loo = (—)2—Tr(*.Q(+).Q)2 >0 (3.5.12)
e
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indicates that the leading action for the functional integration attains extrema for
self-dual or anti-self-dual configurations, i.e., for solutions satisfying

2= (D2 (3.5.13)

cf. GU (1981). According to the inequality in (3.5.12), which holds only for a
Euclidean spacetime, it can be stated that the functional integration (3.5.10) is dom-
inated by self-dual instanton solutions.’ Their stability is guaranteed—similarly to
that of the solitons in the strict sense—by an exact conservation of the “topological
charge.” Moreover, a quantum-mechanical “tunneling” can occur between topolog-
ically distinct vacuum sectors of the theory (JACKIW 1977).

3.6 Relation to the Seiberg—Witten Equations

The duality of electric and magnetic fields in Maxwell’s theory was already known to
von Laue; see SOMMERFELD (1910). In 1925, the symmetry of duality rotations was
realized by RAINICH (1925) and developed further in geometrodynamics by MISNER
& WHEELER (1957). Then MONTONEN & OLIVE (1977) observed in the context of
magnetic monopoles that this generates also a duality of the strong—weak coupling
regime of gauge fields, the so-called S-duality.

These ideas were taken up by SEIBERG & WITTEN (1994) because of their pos-
sible consequences for quark confinement and the Higgs field. From a mathematical
perspective, the Donaldson invariants of four-dimensional manifolds should be cal-
culable in terms of classical solutions of a system of gauge equations (DONALDSON
2006) coupled to spinors ¥ regarded as a lift from the frame bundle to Spin©(4).

Let us begin with the Seiberg—Witten (SW) Lagrangian

1 1 2
Lsw = EDﬂ/f A*Diyr Fi (FjE - 51/“711//)
1
= FiTr (F* A F*) + 7DV A Doty
£iJos AFEF Posy AYosy 3.6.1)

cf. JOST et al. (1996), where here the decomposition ¢ = v, + Yg = P_¢ + Py
of the Dirac spinors into left- and right-handed pieces is suppressed. The U (1) gauge
part of the SW Lagrangian corresponds to a chiral decomposition.

It can be regarded as a self-dual or anti-self-dual Maxwell (or Yang—Mills)
Lagrangian coupled to the convective and polarization parts of the Lagrangian result-

5 According to DE ALFARO (19794, b), the so-called meron solutions with half-integer topological
charge are supposed to be dominant instead.
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ing from a (classical) Gordon decomposition of a Dirac field; cf. HEHL et al. (1991).
The squared term of the polarization moment two-form

Py = Yo y/2m, (3.6.2)

as is typical for a four-fermion-type self-interaction, then plays the role of an effective
mass term.
The variation with respect to 1 and A leads to the convective-type spinor equation

D™Dy Fi (Fi — %%w) Aoy =0 (3.6.3)

coupled to the Yang—Mills-type equation

i

_ 1—
zw*Dilﬁ = :le// Y ATy ADLy). (3.6.4)

T
D \F™ — ET//UiT// =7F
The convective part of the above spinor equation is related to the Lichnerowicz—
Weizenbock formula

11
D*Dy = (v*v + R+ §F+> v (3.6.5)

Solutions (SACLIOGLU 1999) of this system necessarily satisfy the Seiberg—Witten
equations

1—
i*y ADyy =0 and F* = EWin =mPy, (3.6.6)

which constitute a kind of linearization of the system (3.6.3) and (3.6.4). These
equations, in contrast to those of Yang—Mills, cease to be conformally invariant. The
solutions, called monopoles also for Euclidean signature, minimize the Lagrangian
(3.6.1). For a nonnegative scalar curvature R in the Weizenbock formula, all solutions
satisfy ¥ = 0 and then are U (1) instantons.

It is interesting to note that the algebraic SW relation for the gauge field strength
F* resembles (MIELKE 1984) the modified (double) duality ansatz

1
8 __
2% = 550.. (3.6.7)

later on used for the Riemann—Cartan curvature in the (broken) Poincaré gauge
theory of gravity. There, its solutions are known (BAEKLER 1981) to be of anti-de
Sitter (AdS) type.
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3.7 Higgs Fields

Pure Yang—Mills theories have no direct physical applications. One reason for this
is the occurrence of infrared divergences in the quantized theory. Even in the most
prominent model for strong interactions, that of quantum chromodynamics (QCD;
see MARCIANO & PAGELS 1978), the conceptual simplicity of the theory is marred
by the addition of gauge fixing terms. In order to formulate a consistent quantum
field theory, even the “ghost” terms of Faddeev—Popov take over a necessary part.
Furthermore, it is the principle of gauge invariance that forbids massive terms for the
gauge potentials A,/ in the Lagrangian n-form. However, there is only one massless
spin-1 particle, the photon, known in nature.

In order to incorporate massive states of short range into the theory, HIGGS (1964a,
b, 1966) suggested a dynamical mechanism of symmetry breaking. This mechanism
was then generalized to the nonabelian case by KIBBLE (1967), which again made
it possible for some of the gauge potentials to be transformed into fields with mass
without thereby destroying the gauge invariance of the theory. In this elaborated
approach, a non-linearly coupled scalar field is instrumental for this mechanism.
Here, we are concerned with the geometric aspects of this theory only.

Following the presentation of BERNSTEIN (1974), we are adopting the first-order
formalism of Petiau, Duffin, and Kemmer, according to which not only a set of scalar
fields ¢/ with f components but also the vector fields ©@ "7 will be coupled to the
gauge potentials. More precisely, these components are the bundle coordinates of
the 0-form ¢ and the 1-form @V with values in the adjoint representation of G.
In terms of these fields, the Lagrangian 4-form (3.4.19) of the Yang—Mills theory is
supplemented as follows:

_ _ A 2 2
Ly=-0Y A" D¢’ + 0V A*0M 4 = (”T - ¢-<p) . (3.7.1)

4

The form of the dynamics is borrowed from the Landau—Ginzburg theory of super-
conductivity (ROSE-INNES & RHODERICK 1969), which has many important analo-
gies to the Higgs model. The coupling of the gauge potentials A,!(m) to the Higgs
field, which is achieved via the G-covariant derivative, is in perfect harmony with
the G-equivalence principle. From the variations and §Ly/ 85(0) and 6Ly / 85(1), the
following field equations for the Higgs field are obtained:

. o
D @(1) — 5 (7 -9 (P) on, (3.7.2)
oW — qu(o). (3.7.3)

Insertion of the form @ into (3.7.2) by means of (3.7.3) leads back to a gauge-
covariant generalization of a nonlinear Klein—Gordon equation. According to the
Lagrangian formalism, these fields couple back to the gauge fields that are dynamically
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restricted by (3.4.11). The source is given by the 3-form of the canonical current
w = —[¢”."6"] (3.7.4)

of the scalar field. Then the field equations of the total system, consisting of Yang—
Mills and Higgs fields, take on the following form:

A 2
A
DIT? +[¢©, "0V = 0. (3.7.6)

It should be noted that the parameter w in (3.7.5) complies formally with an imaginary
mass of the Klein—Gordon-type field. However, the trivial field configuration ¢ = 0
does not correspond to the ground state of this model. In the configuration space, the
local maximum occurs just at ¢ = 0, whereas the “locus” of local minima is found at

0= = o (3.7.7)
This is a consequence of the nonlinear term in (3.7.1), which is quartic in |¢|.
Therefore, it is reasonable within this theory to assume the existence of a nontrivial
quantum-mechanical state *¢, for which the vacuum expectation value

(01*¢010) = /v (3.7.8)

does not vanish. This is a crucial feature of the model, insofar as the shifted fields
@1 = @ — u/~/A along with the gauge fields A,’ acquire a real, i.e., physical, mass
that is determined by the curvature of the potential at the bottom, i.e., by my = /2,
and this for all but one of the gauge field components.

Consequently, the gauge symmetry of the Yang—Mills—Higgs system appears to
be spontaneously broken by the occurrence of a nontrivial vacuum sector (Fig.3.2).

From the geometric point of view, this mechanism of symmetry breaking may
be construed as follows (TRAUTMAN 1977): the constraint (3.7.8) restricts the Higgs
field ¢ such that its range is an orbit G/H of G in V” with respect to a subgroup H,
i.e., the minimal Higgs field consists of the cross section

Omin P — C™ (f/(M, p(G/H), p(G), P) C V") : (3.7.9)

Letvy € V* beafixed vector for which the cross section <Opmin = o0 (vg) € C*(VP)
satisfies (3.7.8). Since the orbit has the structure of an equivalence class, it is possible
to find a g € G that connects any two vectors v and vy from V* via the relation
v = p(g) - vo. An invariant subgroup of G, the so-called isotropy group
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Fig. 3.2 Mexican hat
potential in the abelian Higgs
model

Im ¥

H :={h € Glp(h)vy = vo}, (3.7.10)
can be uniquely adjoined to the fixed &)min = 0(vp). Then

Q=1{p e Plpp) =ao)} (3.7.11)

is a subbundle of P(G,M,r, §) over the same base space; its structure group is H
(MADORE 1977, KN I 1963). But what is to be considered the structure of the con-
nection that Q inherits from P? This is answered by the following result:

Proposition A connection w in P is reducible to an h-valued connection wy in Q if
and only if the “Higgs field” ¢ is covariantly constant with respect to the original
connection, i.e., if and only if

D¢ = 0. (3.7.12)

Asymptotically, the magnetic monopole solutions found by T HOOFT (1974)
and POLYAKOV (1974) and the vortex solution of NIELSEN & OLESEN (1973) (cf.
also TAYLOR 1976, p. 48) satisfy this condition. There exists an instructive method
of generating such solutions that may establish rather good parallels to the gauge
theories of gravity that will be developed later on. Let wy be a timelike component
of the Yang—Mills connection with regard to an (an-)holonomic frame of reference.
The curvature splits into a timelike part

Ot =2y =dwy — (@ A =dwy—wg A — A
0 wy — (w A w)o Wy — Wy AW — A Wy (3.7.13)
= da)() - [(,t)(), a)] = D(,z)o
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and a remaining purely spacelike curvature 2-form

Q=do— (@AD)=do — o A o. (3.7.14)

In the following, we will restrict ourselves to a frame of reference in which the
monopole is at rest, i.e., to static solutions that satisfy

dp*$20 = 0. (3.7.15)
For the time being, let us concentrate on the Yang—Mills equations (3.4.11) in vacuum

for which the field momentum is given by (3.4.21). This equation decomposes under
the above assumptions into

(D*Q2)o=D*2y=D*O =0 (3.7.16)
and
(D*$2) = D*§2 + [wy, §20]
—D*2 + [w. O] = 0. (3.7.17)

A comparison with the Yang—Mills—Higgs system reveals strikingly that the system
(3.7.16) and (3.7.17) reproduces exactly the coupled system (3.7.5) and (3.7.6) in
the static case.

As can be shown, it is a precondition for the construction that the component w,
of the connection can be identified with the Higgs field ¢ without self-interaction:

wo = ¢'L; ® Oy. (3.7.18)

According to this result, first observed by BOGOMOL’NYI (1976), a solution of the
Yang-Mills—Higgs system (3.7.5) and (3.7.6) in the so-called Prasad—Sommerfield
limit A — 0 may be obtained by identifying wy in the interaction-free Yang—Mills
equation (3.4.11) with a I-form involving the Higgs field ¢. The spacelike part of w
provides the static Yang—Mills potential o w of the monopole. After this identifica-
tion, the resulting pure Yang—Mills equation may be solved by means of the duality
ansatz

Q2= (i)Q. (3.7.19)

Almost exclusively, such a method provides the starting point for the deduction of
monopole-like configurations of the Yang—Mills—Higgs system. For further details,
we refer the reader to the papers of PRASAD & SOMMERFIELD (1975), WITTEN
(1977), TCHRAKIAN (1981, 1983), PRASAD & ROSSI (1981a, b). The topological
meaning of the magnetic charge quantization (see STRAZHEV & TOMIL’CHIK 1973)
was analyzed in terms of fiber bundles by QUIRES et al. (1982), ALVAREZ (1985).
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In this context, it is worthwhile to mention that in the nonlinear o -model, a variant
of the Higgs model, the conditions (3.7.7) for an extremum are introduced as geo-
metric constraints via the method of Lagrange multipliers. The geometric as well
as gauge-theoretic aspects of this theory are concisely treated by, e.g., BARBASHOV
& NESTERENKO (1980), and in the case of a four-dimensional base manifold, by
FELSAGER & LEINAAS (1980) and PERCACCI (1981).

At this stage, it is important to accentuate that the Poincaré gauge field theories
of gravity (HEHL 1981)—as will be demonstrated in the next chapter—can also be
formulated as a dynamically “broken” theory. Therefore, the formal structures dealt
with in this section may provide a prerequisite of prior order for the understanding
of these modern gravitational models.

3.8 Translation of Terminologies

Following, e.g., WU & YANG (1975), this chapter will close with a comparison of the
notation used in the theory of physical gauge fields and that used in the mathematical
theory of fiber bundles.

Gauge Field Terminology Fiber Bundle Terminology

spacetime base space

space of phase factors bundle space

symmetry or gauge group structure group

gauge transformations inner automorphisms of the bundle

gauge principle G-equivalence principle

classical fields cross section of a vector bundle

gauge potential connection 1-form

gauge field strength curvature 2-form

electromagnetism dynamical theory with a connection in a U(1)-bundle

electromagnetism with monopoles |connection in a nontrivial U(1)-bundle over R? x S?

Dirac’s monopole quantization classification of U(1)-bundles according to the first Chern
class

Yang—Mills theory dynamical theory with a connection in a SU(2)-bundle

instanton number classification of SU(2)-bundles over S* according to the
second Chern class
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Chapter 4
Gravitation as a Gauge Theory

Reconsidering current developments in particle physics, clear evidence can be gath-
ered that all efforts converge in the goal of a unified theory concerning all the fun-
damental physical forces. The most promising approach seems to be founded within
the geometric framework of gauge field theories. At very high energies, the gravi-
tational interaction is expected to dominate all other interactions and this despite its
diminutive coupling constant given by the Planck length £*. It may even provide the
final regularization of all the divergences that occur in quantum field theory (ISHAM
et al. 1971c, 1972). The question then arises whether gravitational interaction can
also be formulated in terms of gauge fields.

To be sure, it is commonplace that Einstein’s theory of general relativity (GR;
EINSTEIN & GROSSMANN 1913; EINSTEIN 1915, 1916, 1955) is already a highly
satisfactory theory of gravity. Built on Ricci’s tensor calculus (SCHOUTEN 1954),
it is generally covariant and so far has not only passed—in contrast to most of its
concurring and competing alternatives—all classical tests (see: MTW, pp. 1045ff.,
WILL 1981), but also has recently been verified with great accuracy for a highly
relativistic Keplerian system (see, e.g., STRAUMANN 1981). Facing these facts, one
has to think of convincing reasons to legitimate the reformulation of the theory of
gravity in terms of gauge fields. First of all, it has to be kept in mind that GR is
applicable only to macroscopic matter concentrations and to electromagnetic fields.
This is implied in the notion of massive structureless test particles and massless
(scalar) photons, an axiomatic notion that underlies the foundation of GR (THORNE
et al. 1973).

However, from a microscopic point of view (HEHL 1985), all tangible matter
consists of fermions. In order to obtain a consistent coupling to Dirac’s theory of the
electron, for instance, a theory that is empirically at least as successful as GR (see
BJORKEN & DRELL 1964), it is indispensable to develop a theory of gravity that is
invariant with respect not only to general coordinate transformations, but also to local
rotations of a pseudo-orthogonal “comoving” frame of reference (Cartan’s “repere
mobile”). This is a prerequisite for the construction of spinor fields, a fact that was
© Springer International Publishing Switzerland 2017 65
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pointed out by (WEYL 1919). Due to the postulated orthogonality of the associated
tetrads, these transformations have to contain local Lorentz rotations. Moreover, it
has to be recognized that special-relativistic fields in flat spacetime—as exemplified
by Dirac spinors—not only are Lorentz-invariant, but, speaking mathematically in a
more precise manner, transform according to induced unitary representations of the
Poincaré group (MACKEY 1968; see also NACHTMANN 1967),! which, taken together
with the reflections, is the complete invariance group of the flat (affine) Minkowski
space of special relativity (SR). Besides the (global) Lorentz transformations, it
includes the group of space and time translations.

The method of inducing representations via certain subgroups (in this case via
the Lorentz group) into those of the full group may be substantiated by the theory of
fiber bundles in a geometrically natural manner (TRAUTMAN 1970). By applying this
theory of representations to the Poincaré group, WIGNER showed in 1939 that all fields
that are used for a quantum-field-theoretic description are characterized invariantly
by mass and spin (i.e., helicity in the massless case). “The universal applicability of
the mass—spin classification scheme to all known particles establishes the Poincaré
group as an unalterable element in any approach to spacetime physics” (HEHL 1980).

If the G-equivalence principle is again adopted as one of the principles of physics,
it follows that the dynamical construction is to be invariant merely with regard to local
Poincaré transformations. This brings about a gauge theory of gravity, as suggested by
HEHL (1970), which couples the Poincaré gauge potentials canonically not only to the
current of the energy—momentum but also to the current of proper angular momentum
(spin) of material sources. Their geometric counterparts are to be found in both the
curvature and the torsion of spacetime (CARTAN 1922). Rather shortly after Einstein
outlined his theory of GR, such theoretical concepts were taken into consideration by
CARTAN (1923). But it was only after Dirac’s relativistic interpretation (DIRAC 1928)
of the spin of the electron and under the gradually increasing influence of gauge ideas
that these structures were noticed on a larger scale, as, for instance, by WEYL (1929,
1950), UTTYAMA (1956), KIBBLE (1961) and SCIAMA (1962).

The precise gauge-theoretic dimension, as well as the empirical significance of
those theories of gravity, was worked out in more detail by HEHL (1980, 1981) using
tensor calculus. As shown in the fundamental works of VON DER HEYDE (1976a;
1976b), the dynamics of the gravitational gauge fields can be described by elegant
Yang—Mills-type equations. The resulting formalism is flexible enough to include
GR or the Einstein—Cartan theory as those subcases that remain physically the most
relevant (at least if considered on a macroscopic scale).

With reference to the proper foundation of a gauge theory of gravity, however,
there is no absolute agreement among the members of the scientific community. It
is the incorporation of a dynamical geometry as realized by Einstein via the pseudo-

IWith reference to MIELKE (1977¢c), we seize this contextual opportunity in order to correct a
printing error. Concerning the action of the induced representation of G on a local cross section, it
rather should read

Tg: Tgy(m)=D (gzlggg—lm, mo) Y(g~'m).
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Riemannian metric that seems to prevent a direct transfer of the Yang—Mills gauge
program. Remarkably enough, there exists, however, a rather close structural analogy
between the gauge theories of gravity and the Yang—Mills—Higgs models. In this
chapter, this analogy will be worked out using almost exclusively the geometric
intrinsic calculus of differential forms as advocated, e.g., by TRAUTMAN (1973).

4.1 Affine Frames

In order to present the conceptual foundation of the Poincaré gauge theory as clearly
and precisely as possible, it is instructive to enlarge our field of interest only slightly
and to start off deductively from the affine group A(n, R) as structure group. As a
generalization of the Poincaré group, it consists of the affine transformations of the
Euclidean space E", regarded as an affine space A".

Let a = (a*) € R" be a row vector. According to its definition, the action of an
element of A(n, R) on a vector x € A" can expressed as the composition of a general
linear transformation and a translation:

x—>x =gx+a, geGLnR), aeR" 4.1.1)
1

n + 1 components and to replace the group action (4.1.1) by the abstract transfor-
mations of X via the matrices

a:= [gmzH)”m[glﬂzaT-aLeA(n,R). (4.12)

This faithful representation of A(n,R) by a subgroup of GL(n + 1, R) shows clearly
that the affine group decomposes into the semidirect product

S . . - X .
In the following, it will be convenient to introduce a vector X := ( € R with

A, R) =R" & GL(n, R) (4.1.3)

of the translations a € R" and the linear transformations g € GL(n, R). The rule for
such a semidirect multiplication of group elements is already implied in (4.1.2).
In order to obtain the Poincaré group

P=R'g0(l,n—1)C A, R), 4.1.4)

the linear transformations are to be restricted to the pseudo-orthogonal subgroup
0(I,n — 1) C GL(n, R). The invariance of the (flat) metric ground form of the
n-dimensional Minkowski space will be thereby guaranteed. For the Lie algebra
a(n, R) of the affine group, the analogous decomposition
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a(n,R) =R" € gl(n, R) (4.1.5)
is effective due to the fact that the Lie algebra of the abelian vector group of trans-

lations is isomorphic to R". That a(n, R) has the structure of a semidirect product is
also reflected in the commutation relations:

[P, Pp =01 (Po :=0/3x"), (4.1.6)
[Po, Lys] = 8usPy — 8ay P, (4.1.7)
[Lap, Lys] = Capys” *Ley, (4.1.8)
Capy™ = 8585 - (4.1.9)

In these formulas, L,g € gl(n, R) and P, € R" denote the infinitesimal generators of
the linear and translational parts of a(n, R) with respect to an appropriate parame-
trization of A(n, R).

For a dynamical formulation, a “geometric arena” is needed. As for the theory of
special relativity, the notion of an inertial system is of paramount significance. Cor-
respondingly, for a geometric theory of gravity ruled by the principle of equivalence,
the introduction of a more general, local, frame of reference serves as the starting
point for its foundation. In order to get a precise definition of such a local “inertial”
frame, we define it deductively with reference to the notion of a tangent vector e(m)
spanning the tangent space Ty, (M) at m € M. With the aid of the natural basis of R",
we obtain the ordered basis

eq(m) = e d; (4.1.10)

for the tangent space. The general linear group GL(n,R) acts on this basis as follows:

eq(m) — e,/ (m) = goPeg(m), @.1.11)
g = [g."1 € GL(n, R). (4.1.12)

It thus generates a space L, (M) of linear frames of reference at the point m. Let

LM) = | Ln(M) (4.1.13)

meM

be the bundle resulting from the set-theoretic union of these frames. This bundle
may be equipped with a differential structure. In this context, it is important to
remember that in a neighborhood U C M of a point m € M with coordinates x/,
a basis vector e,(m) of T,,(M) may always be written in the way given above.
Furthermore, the group GL(n,RR) has a natural manifold structure if it is regarded as
an open neighborhood of R™. Since e, (m) represents a nonsingular n x n matrix,
the collection (x', e?) may be regarded as a choice of coordinates of the Cartesian

product U x GL(n, R). These coordinates arise from the original domain ;Tl (U), for
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which the projection 7 of the principal fiber bundle with the structure group GL(n,
R) onto M is defined.
On the other hand, this principal fiber bundle can be identified with the bundle

L(M) =P(M, GL(n,R), r, ) (4.1.14)

of linear frames. This is the case if an R"-valued 1-form ¥ exists that not only is
left-invariant, i.e.,
§i0 =g'0, geGL(R), (4.1.15)

but also has a contact of first order, i.e.,
He)=0sm(e) =0,ecT,(P), (4.1.16)

with the manifold. The mathematical theory of jets considers also frames that enter
into contact of a higher order with the manifold (KOBAYASHI 1972). Considering
this close contact and due to the fact that  has rank n = dim M, it is natural to call
it the canonical 1-form (KOBAYASHI & NOMIZU 1963, p. 118) or soldering 1-form*
(TRAUTMAN 1979; KOBAYASHI & NOMIZU 1963, p. 140) of the manifold. In local
coordinates, it is endowed with the expansion

ovf = Elav (4.1.17)

which has already been employed for generating a basis of the cotangent bundle
T*(M). The tangent space per se is simply the bundle

T(M) = V(M,R", GL(n, R), L(M)) (4.1.18)

associated with L(M). Its standard fiber is R", and thus T(M) has the same dimension
as the manifold.
By comparison of the linear frame bundle L(M) with the bundle of affine frames
A(M), we get
AM) :=PM,A(n,R), m,8) = L(M) x R". (4.1.19)

The possibility of identifying L(M) with the quotient bundle A(M)/R" results from
the homomorphism

B:A(n,R) > GL(n,R) = A(n, R)/R". (4.1.20)
The left-action of A(n, R) on this fiber bundle is determined by
A(n,R) xAM) —> AM)

§:11 J N (4.1.21)
(g,@) (e(m),x) = (g.e(m), g~' (x — @)).

2Derived from the French “soudure”.
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Fig. 4.1 Affine frame of
reference at the point m € M

Accordingly, the affine frame can be considered a linear one, for which the origin of
the basis vectors e, (m) in the tangent space Ty, (M) at the point m € M appears to
be shifted (Fig.4.1).

This relation between the affine and the linear frames results from the fact that the
group T = R" of translations can be regarded as the quotient space A(n,R)/GL(n,R),
i.e., as an affine space in accordance with (4.1.3). Correspondingly, the affine tangent
bundle of M is nothing but the bundle

Ta(M) = \°/(M, R", A(n,R), A(M)) c V4 (4.1.22)

on M associated with A(M). In such an affine “geometric arena,” translations are rep-
resented “merely” intrinsically (NE’EMAN 1978). This is related to the fact mentioned
above that the representations of the Poincaré group of physical relevance consist
of induced representations of the Lorentz group. Here the translational subgroup is
realized by translations acting on the coset space T = P/L, which is isomorphic to the
Minkowski space regarded as an affine space. Related geometric constructions are
considered by MULLER- HOISSEN (1984) in the case of the inhomogeneous Galilean

group.

4.2 Affine Gauge Theory with Torsion

In order to explicate a gauge theory of gravity within this geometric framework,
it is again necessary to introduce potentials for the formulation of the dynamics.
This is to be accomplished by endowing the bundle A(M) of affine frames with a

connection. Let @ be the 1-form of such a generalized affine connection, and let
x :LM) — 0, x L(M) C A(M) be the natural injection of linear frames into the
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bundle of affine frames that is induced by the zero vector field 0. Then the inverse

image ;EZ) of the connection  is an a(n, R)-valued 1-form in L(M) that decomposes
into

Yo =o"® o, 4.2.1)
or in matrix notation, into
. o | T
Xw = |: oo |- 4.2.2)

This splitting is a logical consequence of the infinitesimal version of the represen-
tation (4.1.2) of A(n,R). In the above formula, w" denotes a gl(n,R)-valued 1-form
in M, while T is an R"-valued 1-form, i.e., a tensorial form of the representation
type (GL(n, R), R"). The 1-form w" of type Ad defines a connection in L(M) that
is referred to as a linear connection of the manifold (KOBAYASHI & NOMIZU 1963,
p- 119), which is due to the close contact of L(M) with M. On the other hand, the

a(n, R)-valued 1-form o that is imprinted in A(M) merely determines a Cartan con-
nection with an absolute parallelism in L(M). The decomposition (4.2.1) is true for
each of the groups G for which the quotient space G/H forms a weakly reductive
structure with respect to a subgroup H C G.

A more detailed discussion of these mathematical concepts can be found in the
works of KOBAYASHI (1956). In the context of bilocal quantum-mechanical models
of strong interactions, Cartan connections have been studied by DRECHSLER (1977)
and DRECHSLER & MAYER (1977).

The curvature £2 in A(M) can be derived from o by an analogous application of
the structure equation. For the following, it is important to have a precise theoretical
definition of the affine curvature that is in conformity with the decomposition (4.2.1).
The commutator [T, w'] occurring in the calculation

% * ~ 1 ~ ~
x9=x(dw—§[ , @])
1
=da)L—a)L/\a)L+da)T—a)T/\a)L—a)L/\wT+E[a)T,a)T]
=+ o7 (4.2.3)

vanishes due to the abelian structure of translations. The term that is additional to the
“linear” part of the curvature may for this reason be written as the covariant exterior
derivative
2T := Do’ =do" — [0", 0", 4.2.4)

which is induced by w". It is of importance to realize that the commutator [, @]
takes values in the Lie algebra a(n, R) of the affine group.

A gauge theory with an affine connection should be in accordance with the G-
equivalence principle. Following the formalism developed before, this means that
the theory has to be invariant with respect to the infinite-dimensional group
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(1, R) = C%(AM) xpq AGr, B)). 4.2.5)

The group
Y (n, R) := C*°(A(M) xaq GL(n, R)) (4.2.6)

of linear gauge transformations and the group
T (n, R) := C*(AM) xaa R") (4.2.7)

of local translations are subgroups of o7 (n, R). Taking the cross section in the asso-
ciated bundle is abbreviated by C*°, and Ad denotes the adjoint representation with
respect to GL(n, R). Due to its construction, the group of local translations .7 (n, R)
is locally isomorphic to the group of active diffeomorphisms Diff (n, R) of the man-
ifold. The latter group is isomorphic to the group Z(M) of diffeomorphisms of
M; cf. OGIEVETSKII (1973), STERNBERG (1985). The infinite-dimensional group
Diff (n, R) contains the (n + n?)-dimensional group A(n, R)y of holonomic affine
transformations as a subgroup, generated by the vector fields P; = 9; := 9/3x’ and
L = xiaj. Note that differentiable coordinate transformations, which leave exterior
forms invariant, are regarded here as passive diffeomorphisms.

Similarly, affine gauge transformations act inhomogeneously on the connection
1-form

g

>0 =A"0A —AT'dA, A€ o, (4.2.8)

Proceeding to the matrix representation (4.1.2) of the affine group, an analogous
representation

Az[g{}e%p, Ge¥%,TeJ, 4.2.9)

of the gauge transformation is induced. The splitting of e allows us to derive the
effect of the affine gauge transformations on the linear and translational parts of the
affine connection:

ot = Aok = GG — GTdG, (4.2.10)
ol 4T =G0 - G 'DT. 4.2.11)

Likewise affected is the transformation formula
Q54" =A"104 (4.2.12)

of the curvature of the affine bundle. Under the inverse image (4.2.3) with regard to
the natural injection y, this formula decomposes into

QAL — g 'l (4.2.13)
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and
QT AT ' @QT-DDT) =G ' 2T -G 'Rt T. (4.2.14)

Concerning affine “recalibrations,” the linear part shows the typical behavior of a
connection with its corresponding curvature.

4.2.1 Affine “Higgs” Mechanism

The latter is not true for the translational remnants, which indicates that they can
be regarded only as being represented “purely” after a “spontaneous” breaking of
the underlying symmetry has taken place. In order to achieve this, we transfer the
geometric construction of the Higgs—Kibble mechanism, which has been discussed
before, to the affine case. For our purposes, the local cross section

¢ AM) — CX(V) (42.15)

in the associated affine bundle provides the alleged “affine Higgs field.” Its range
in V¢ consists of an orbit R" of A(n,R). The isotropy group of the zero section

o

¢ = 0(0p) is H = GL(n, R), i.e., the general linear group. Then the subbundle

04 = {p e AM)|p(p) = 0(0,)} = L(M) (4.2.16)

is isomorphic to the bundle L(M) of linear frames due to (4.1.19). It follows from
(4.2.9) that the Higgs field (4.2.15) transforms inhomogeneously with respect to
affine gauge transformations, i.e.,

o>"'9=G"@-T1. (4.2.17)

Let N
o' =9 — Dy (4.2.18)

tentatively be a decomposition of the translational part of the connection; cf. IVA-
NENKO & SARDANASHVILY (1983). If this is inserted in (4.2.11), it yields

AT =" —G'DGY '
(4.2.19)

=G ' — G Dy,

if use has been made of the covariance of D. This means, however, that the contri-

bution ¢ transforms under .27, like
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9 — 49 =Gy, (4.2.20)

Comparing this with (4.1.15), we come to the conclusion that 9 can be identified
with the canonical 1-form, up to a multiplication by a scalar function f, i.e.,

SR

= . 4.2.21)

The covariant derivative

O := DY = d¥ — [0", ¥] (4.2.22)

of the canonical 1-form is known to represent Cartan’s torsion 2-form of the under-
lying spacetime manifold. It can be related to a local notation (cf. HEHL 1980) via
the pullback

*

| 1. A .
oB = ET&LPC RN = ET'yCPC & dx' A dx, (4.2.23)
where Cartan’s torsion tensor is given by

.c __ c c .c d
T4 = 2D ESg =2 (a[aE| g1+ TiaiaES ﬁ]) ) (4.2.24)

o

Geometrically speaking, the torsion of spacetime may be interpreted as the mismatch,
i.e., closure failure, of parallel transported vectors, analogously as in the theory of
crystal dislocations (HEHL & KRONER 1965; HEHL 1985). From (4.2.20), if applied

toD = ( )?]5), it follows that the torsion 2-form transforms like
o—>4""0=c"e, (4.2.25)

i.e., as a vector with respect to the subgroup %, of linear gauge transformations. As
a result of the Ansatz (4.2.18), the relation

QT =fO+df AY -2 ® ¢ (4.2.26)

is found for the translational part of the affine curvature. Thus the torsion is only
one part of the translational curvature of the generalized affine connection (NORRIS
etal. 1980). This result can also be derived from a more formal consideration of Cartan
connections on M. For a Higgs—Kibble-type mechanism of “symmetry breaking,” a
subsidiary condition like

Dy =Dg =0 4.2.27)
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is completely sufficient, since it restricts unequivocally (while for R"-valued fields

D = D itremains valid) the affine connection to the linear gl(n,R)-valued connection
" within the reduced bundle L(M). Disregarding the factor of proportionality, it then
follows from (4.2.18) that the torsion remains the only constituent of the translational
part of the affine curvature. In this way, the local symmetry group A(n,R) of a gauge
theory with affine connection gets broken down to the group GL(n,R).

In order to achieve these interim results, which are of relevance concerning their
physical interpretation, we have considered mainly the advanced propositions of
TSEYTLIN (1982). The idea of breaking the symmetry via an affine Higgs field can
be found already in PILCH (1980). Within the framework of that study, however, the
idea is flawed by an unfortunate and unnecessary mixup with the reduction of the
group GL(n,R) to the Lorentz group O(1, n-1). This should rather be carried out in
a further step. According to a slightly divergent view (HENNIG & NITSCH 1981),
the difference between gauge theories with affine connections and those with linear
connections can be traced back to a differing order of “contact” of the frame bundles
with the underlying manifold. This has to be analyzed within the framework of the
mathematical theory of “jets” (KOBAYASHI 1961).

If in addition to the connection, the spacetime manifold is also endowed with a
metric tensor as an independent field, a metric—affine theory of gravitation can be
constructed; cf. HEHL & KERLICK (1978). Its classification as a gauge theory of the
affine group was particularly well clarified by LORD (1978). In general, the affine
connection is not metric-compatible in these models, and the tensor

QK;/.V = =D, 8uv (4.2.28)

of nonmetricity measures this deviation. In a dynamical formulation, the field
momentum being canonically conjugate to the general affine connection leads to
the notion of hypermomentum current. Such models might have considerable impact
on high-energy physics. According to a proposal of HEHL et al. (1978, 1989), it
is exactly the hypermomentum that is responsible for those band structures in the
mass spectrum of hadrons that follow the Regge trajectories. For theoretical rea-
sons, the light-cone structure of spacetime is deformed by the shear part of the non-
metricity tensor, so that violations of causality cannot principally be excluded. This
effect, however, can by no means be reason enough to reject such theories in general
(HAYASHI 1976), since within dynamical models, it is typical of these defects that
they remain restricted to the interior of microscopically “extended” particles (HEHL
et al. 1976). In terms of quantum field theory, however, it is possible to postulate
only a microscopic causality condition—if any such condition at all.
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4.3 Metric Structure of the “Spontaneously Broken”
Poincaré Gauge Theory

A space with an affine connection has to be a richer structure than a differential
manifold, since it allows parallel displacements of vectors. However, we are still
not able to measure distances within this space. This, in turn, is mandatory for
determining geometrically the relative location of physical objects in space. (A dis-
cussion of the postulate of metricity from an ontological viewpoint is to be found
in GRUNBAUM 1973). According to the special theory of relativity (EINSTEIN 1955),
the field-free flat region between such objects is to be characterized as follows: The
square of the “distance” between two adjacent points in spacetime is a measurable
quantity if an apt coordinate system is provided for. Its amount is to be determined
by

(As)? = =2 (AD)? + (Ax)* + (Ay)? + (A2)? 4.3.1)

= gl-ijiij .

Due to the fundamental postulate of the constancy of light propagation in vacuum,
this four-dimensional expression is indefinite. Such a Minkowski structure, however,
is only locally existent in the presence of gravitational fields, due to curvature of
spacetime.

A conceptually central problem of measurability for a generic curved manifold
consists in associating a positive length

3]

UE) = / ds(?) (4.3.2)

fo

to a smooth curve ¥ C M that is parametrized by s(t). In order to satisfy
L(C + ©6>) = L(6)) + £(6) 4.3.3)

for a piecewise smooth curve, the infinitesimal length of the curve ought to be
expressed as
ds = F(m, 9)dt, (4.3.4)

where F(m, ) : M x T*(M) — R™ is a smooth, positive, and homogeneous funda-
mental function, i.e.,

F(m, fv) = |[fIF(m, ),
F(m,9) >0 if o #0. 4.3.5)
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The homogeneity of first order is at our disposal on account of the postulated invari-
ance of (4.3.4) versus admissible reparametrizations of the curve 4. Generally, these
requirements lead up to Finsler spaces (RUND 1959; MATSUMOTO 1977) with the
anholonomic components of the metric defined by

1 32F2(m, ©)

—_—. 4.3.6
299 @, 0P ( )

ap(m, V) =

Riemannian spaces are distinguished by their intrinsic geometry as metric spaces
with a special Finslerian function. Then the latter is derivable from the quadratic
differential form

ds* = (F(m, 9)dt)* = gup® ® 0P = gi(m)dx' ®; dx’'; (4.3.7)

see, e.g2., LAUGWITZ (1965). The angle between two infinitesimal vectors dV and dW
can be determined implicitly in such spaces by

Sud VI dWY
V8updVdVP /g, dWedWF’

cos¢p = (4.3.8)

Subsequently, a covariant symmetric tensor field of degree (2, 0) is imprinted onto
this space, which is now referred to as a (pseudo-)Riemannian manifold. According
to the axiomatic foundation of GR, the components of this fundamental tensor for a
holonomic coordinate system determine not only the metric relations of spacetime.
Indeed, the functions g; € C*°(M) describe “concerning the chosen, arbitrary coor-
dinate system both the metrical relations of the spacetime continuum as well as the
gravitational field” (EINSTEIN 1955).

It is for these reasons that the metric seems to play a special role in a gauge
approach to gravity, especially if one tries—as has earlier been attempted by, e.g.,
THIRRING (1978)—to establish a direct relationship between this metric field and the
gravitational gauge potentials. In order to work out the true nature and significance
of the metric tensor within the framework of a unified gauge-theoretic approach, let
us compare the two equivalent formulations of the line element (4.3.7), e.g., written
in holonomic and anholonomic coordinates. This yields the relation

gielel = gup. (4.3.9)

Since ¥* forms a basis for the frame bundle L(M), it follows that this Eq. (4.3.9) can
be expressed in terms of exterior forms as

P ATY =01 (4.3.10)
(For tensor fields, the metric ground form is essential in performing the so-called

contraction, while for exterior forms, the metric is concealed in the definition of the
Hodge dual *.)
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Similarly as in the Higgs—Kibble mechanism of spontaneous symmetry breaking
(SSB), the tetrad field or the canonical 1-form is kinematically restricted by (4.3.9)
or (4.3.10), respectively. In the Poincaré gauge theory, however, in contrast to the
affine gauge theory in which the group GL(n,R) is the residual structure group after
the symmetry breaking, there are only orthogonal tetrads, or orthogonal canonical
1-forms ¢ admitted. Since the e; have been considered as local bundle coordinates
of L(M), the bundle of linear frames is then reduced to the orthogonal frame bundle

LS(M) := P(M, O(s,n — 5), 0, 8). 4.3.11)

In order to ensure that the linear connection " within this bundle reduces to a
(s, n — s)-valued connection w?, the constraint

Del=0 (4.3.12)

is a necessary and sufficient condition. For tensor-valued 0-forms ¢(®, the exterior
covariant derivative D can be replaced by the covariant derivative V in the following
manner:

D ¢ = 99V,9. (4.3.13)

It is for this and the relation (4.3.9) that the above-mentioned constraint can be
considered equivalent to the postulate

Dy 8ij = E.ulivagij =0 4.3.14)

of the metric compatability of the Riemannian connection w®. Locally, the latter is

usually written as

1 1 :
o0t = EwaﬁLaﬂ =37 PLyp ® dx', (4.3.15)

where the I'Q'aﬂ denote the (local) Ricci rotation coefficients. Due to the fact that
the infinitesimal generators L,g become skew after the restriction to the orthogonal
subgroup, the constraint (4.3.14) analogously yields w* = —wf®, i.e., the skew-
symmetry

;Y = —r™ (4.3.16)
of the rotation coefficients with respect to the last two indices. According to the
preceding considerations, these coefficients can be regarded as gauge potentials of
the Lorentz group, whereas the (invertible) ;' may be interpreted as the “soldered”
gauge potentials of local translations (HEHL 1980).

Within GR, the condition (4.3.14) is commonly justified by the equivalence prin-
ciple. If applied here, this means that the measurement of lengths and angles in the
neighborhood of a point m, € M depends entirely on Minkowski’s metric tensor o;;
of special relativity, i.e., that
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gi 2o (4.3.17)

holds for orthonormal frames. Deviations from the flatness of the spacetime domain
occur, if at all, only at the second differential order,’ i.e.,

dgy 2 0. (4.3.18)

Its covariant generalization, i.e., (4.3.14), guarantees that the square of the distance,
considered an “infinitesimal measuring rod,” remains constant with respect to parallel
displacements. This requirement, which is physically sensible and experimentally
not explicitly disproven, represents, strictly speaking, an a priori element in GR; see
HUBNER (1983).

From our viewpoint, however, it is easily to be recognized that a further mech-
anism of symmetry breaking of Higgs—Kibble type is at work here. As has already
been mentioned, the tetrad field is kinematically restricted by the “metric” subsidiary
condition (4.3.9). It is then that the “geometric arena” (4.3.11) of a gravitational
gauge theory has only the orthogonal “isotropy group” H = O(s, n — s) as resid-
ual symmetry. As it turns out, (4.3.14) is nothing but the consistency condition for
the reduction of the linear connection " to an o(s, n — s)-valued connection w?®
in L&(M). This consistency does not, as is implied by HANSON & REGGE (1979),
demand the vanishing of the torsion, i.e., D& = 0. In a Lagrangian formulation of
such a “spontaneously broken” Poincaré gauge theory, there will occur not only its
connection and curvature. Similarly as in the Yang-Mills—Higgs models, the metric
Higgs field ¢, i.e., the canonical orthogonal 1-form,* and the resulting torsion ®
constitute additional elements for the construction of the dynamics.

In the following, we can assume that the orthogonal bundle L&(M) is endowed
with a connection 1-form w® compatible with the metric. The curvature 2-form

28 =dw® — o N * (4.3.19)
satisfying the general definition may locally be written as
* 1 cd o B
o828 = ZR;’;’“ Leg @ 9% A O, (4.3.20)

Here
.d d .d .k
Ryg. = 2 {8[,11“/3]6. + F[alhrlﬂ]c (4.3.21)

are the anholonomic components of the curvature tensor in a Riemann—Cartan space.

3Locally, these requirements are always to be satisfied by introducing the Riemannian normal
coordinates; see LAUGWITZ (1965).

4 As for the nomenclature, the 1-form ¢, which is restricted by (4.3.10), will not be denoted by 2
and thus differs from w® and 28, since we prefer to stick to (4.3.10) or (4.3.9), respectively, as
explicit subsidiary conditions for the breaking of symmetry with respect to both the tetrad field and
the torsion.
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Implicitly the Riemann—Cartan curvature tensor contains torsion-dependent
pieces. In order to separate them from the purely Riemannian content, the metric-
compatible connection can be decomposed into

o =l — K. (4.3.22)
Here w!! denotes the 1-form of the torsion-free Christoffel-type connection for which
do — [0V, 91=0 (4.3.23)

holds by way of assumption. Using this in the defining relation (4.2.22) of the torsion,
we obtain the relation
O =K, V] (4.3.24)

between the 2-form ® and the 1-form K of the so-called contortion, having values
in the Lie algebra of the Lorentz group (see also: KOBAYASHI & NOMIZU 1963, p.
159). Locally, the latter may be expanded as

1 .
oK = EKf‘L,gc Q V. (4.3.25)

Consequently, the components of the contortion tensor’ are antisymmetric with
respect to the last two indices:

(4 1 c c -C
-5 (Top — Ty %+ T

Cs = <) = —KSg- (4.3.26)

If all these decompositions are taken together, it leads to the desired splitting

22 =02V —dk+ K ro' + 0" AK —KAK
=QUVU-_DUK—KAK=02U-DK+KAK (4.3.27)

of the RC-curvature tensor® into its Riemannian and non-Riemannian parts. Later,
we are going to make use of this decomposition.

In order to complete the transcription into Ricci’s tensor calculus—*“contaminated
by indices,” cf. EGUCHI et al. (1980)—it remains to be added that the rotation coef-
ficients are given by

K _ kb . B
I* = ey IES + eg O, (4.3.28)
with respect to a holonomic basis. This formula was obtained by applying local
translations (gauge transformations). It then follows that the decomposition (4.3.22)

5Tn German, Verdrehungstensor.

6Follcpwing SCHOUTEN (1954), a Riemann—Cartan manifold of dimension n with torsion is also
denoted by Uy, in contrast to a purely Riemannian manifold, which is symbolized by V,,.
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takes the form

Ko K K
r* = [ijl —Ki*, (4.3.29)
where
{ Z } == _g (8 gjl + ajgll 81glj) (4330)

are the more familiar Christoffel symbols of the second kind. They are formed entirely
out of the metric tensor. The splitting (4.3.27) has its local counterpart in

Rid =R — 2DuK;d + 2K K i (4.3.31)

ye ’Jf

In this formula, R,{ﬂ are the mixed components of the Riemannian curvature tensor,
which again is calculated according to (4.3.21) merely using Christoffel symbols.
Since it is the curvature tensor of a metric-compatible symmetric connection, its
holonomic components R have the following symmetries with respect to an inter-

change of indices:

ijkl

{} {}

Rt = Rijoeny = 0 (4.3.32)
{}

Rl]Kl = R/clz]

In the torsion-free case, the first Bianchi identity reduces to the algebraic identity

l[ﬂd] =0 (4.3.33)
involving a cyclic permutation of three indices. For later purposes, it is important to
write down the contractions of the curvature tensor, which lead successively to the
Ricci tensor

R;j = wa‘ (4.3.34)
and the scalar curvature
R = R;f‘ = RW =*(25 N0 AD). (4.3.35)

After this digression into the tensor calculus of classical differential geometry, we can
summarize the following results, which are relevant for a gauge-theoretic approach
to gravity.

Starting from a gauge theory with an affine connection, it was the twofold appli-
cation of a Higgs—Kibble-type mechanism of SSB that resulted in the construction of
a “broken” Poincaré gauge theory of gravity. Following “hierarchical” procedures,
the affine structure group A(n, R) is “spontaneously” broken into the Lorentz group
O(1, n-1) as the “residual” symmetry of the theory via the general linear group
GL(n, R).
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The idea of regarding the metric (more appropriately, the tetrad field) as the
gravitational analogue of the Higgs field appears in ISHAM et al. (1971a). With
certain modifications, this interpretation was later adopted by TRAUTMAN (1979),
TSEYTLIN (1982), WALLNER (1982), and MULLER-HOISSEN (1984). Concerning the
quantization of gravitational fields, it was also considered by HANSON & REGGE
(1979). However, it must be pointed out that our approach to the Poincaré gauge
theory of gravity, as it is expounded here, has not yet gained the status of a generally
accepted scientific explication. This is made explicitly clear by a comparison with
the publications of UTIYAMA (1980) and HEHL (1981).

Thus it is HEHL (1980), above all following VON DER HEYDE (1976a) and
NE’EMAN (1978), who favors a gauge-theoretic interpretation of the Poincaré group,
in which the generators of local translations are not represented by partial derivatives
but in an already curved spacetime by covariant derivatives. Subsequently, these
generators violate the usual commutation relations (4.1.6), and as aresult, they change
into noncommutative ones. Due to the appearance of the curvature tensor in the
commutator

[Dy. Dgl = Ryi'Leg — T;4D., (4.3.36)

spacetime-dependent “structure constants” R&}"‘,d (m) occur in the generic case. (The
additional torsion-dependent term would disappear in a holonomic formulation.) A
deeper understanding of these insights has been established by SOHNIUS (1983) with
a new approach involving “soft” gauge algebras.

4.4 Gravitational Field Equations

Independently of the particular gauge-theoretic approach to gravity, there exists a
general consensus as to its geometric and dynamical structure. Compared to Yang—
Mills theories, the gravitational gauge models have a richer structure in that both the
linear connection w* and the canonical 1-form ¥ represent independent dynamical
variables. Arguments have already been advanced that allow us to consider ¥ a
“metric Higgs field.”

The corresponding gauge field strengths consist of the curvature $2¢ of the
Riemann—Cartan space and the covariant exterior derivative of ¥, i.e., the torsion
2-form ®. Consequently, the Lagrangian n-form depends on the following geomet-
ric objects for the generic case:

L, = L(gap; U, (%), O, £29). (4.4.1)

However, contrasting with o, @, 28 (see (4.2.20), (4.2.14), and (4.2.13)), the
1-form w® does not transform as a vector or covariantly, respectively, with regard to
the residual local Lorentz group. Due to this property, the postulate of gauge invari-
ance allows only an indirect dependence of the Lagrangian n-form on w#, and this



4.4 Gravitational Field Equations 83

only via of the forms ® and §28. The variation of Lg, regarded as a total differential,
i.e.,
8Ly =: 80 NE+80 A" +8Q28 ATV, (4.4.2)

defines the franslational and (Lorentz-)rotational canonical gauge field momenta 177
and IT". Due to the special role of ¥, there occurs additionally the (n-1)-form E,
comprising the energy—momentum current of the gravitational gauge fields.

In order to derive the field equations, the variation with respect to the torsion &
and the curvature §2 will have to be rewritten with respect to the original dynamical
variables ¥ and w®. Within this variation procedure, the general result may be adopted
here with respect to the curvature; a corresponding conversion of the variation for
the torsion yields

80 = 5§(dv — [o", 9])

=d(v) — [o", §9] — [Sw", ¥]
= D(89) — [S", 9] 4.4.3)

Our subsequent proceeding is similar to that in the Yang—Mills case. By the Leibniz
rule, the total variation results in

8Ly =380 NE— 89 ADIT" +d (80 A ITY)
— [80®, 91 A U], 9] — 8® A DIT" + d(8e® A IT"), (4.4.4)

where the “contortional” 1-form IT [T], having values in the Lie algebra of the
Lorentz group, is derived from the translational gauge field momentum implicitly by
nr .= [H[T], ©']. This is in complete analogy to the relation (4.3.24) for the contor-
tion. The exact forms occurring in (4.4.4) in general do not yield any contribution
to the resulting field equations, since they generate only constant boundary terms
within the action integral

S = /(Lg ~+ Linat) (4.4.5)
M

of the gravitationally coupled system.
The application of Hamilton’s principle to the independent variations of S for §2
and dw? leads to the Euler—Lagrange equations

DIIT—E=%

DI+ 11T ~ =, (4.4.6)

(4.4.7)

for the gravitational field; cf. MIELKE (1982).
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In terms of Ricci’s classical tensor calculus, these equations were first derived by
VoN DER HEYDE (19764, b). Later, they were analyzed in detail by HEHL (1980)
particularly in the case of a quadratic Poincaré gauge field theory.

The sources on the right-hand side are formally defined by the first-order variations

8Lmater =: 80 A X 4+ 8® Aty + 8, ALY (4.4.8)

of the material Lagrangian n-form. The external sources that occur have to be identi-
fied with the 3-form X, the energy—momentum current, and the 3-form t of the spin
current of the matter fields, as was seen by WEYL (1929).

If the Euler-Lagrange equations A = o of the matter fields are satisfied, it will
turn out that X' and 7, are the field momenta of matter that are canonically conjugate
to the translational and rotational degrees of freedom, respectively. In analogy to
this, the 3-form E, canonically conjugate to the translations (compare (4.4.2)), will
be interpreted as the intrinsic energy—momentum current of the gravitational gauge
fields. Analogously, the term H[T] has to be regarded as the canonical spin current
of the gravitational gauge fields. Compared to the Yang—Mills equations, both these
additional terms constitute covariant self-interactions of the gauge fields that are on
a par with the matter sources. Similar field equations arise in a gauge theory with
an affine connection. Only the spin current 7y would have to be replaced by the
hypermomentum current 7" of the matter fields in such a generalization (HEHL &
SIACKI 1980).

4.4.1 Bianchi Identities and their Contractions

The general field Egs. (4.4.6) and (4.4.7) are complemented by the Bianchi identities
DO = [0, 2% (4.4.9)

and
D% =0, (4.4.10)

which are relations of the same differential order. Considering not only the definition
(4.2.22) of the torsion but also those of the curvature, the first identity can be obtained
by calculating the exterior derivative of the torsion,

dO = ddy — d[o", 9]
= —[do", 9]+ [0", dV] (4.4.11)
= —[2", 01— [o" A &", 3]+ [0, O + [o", [0, 91]
= [o", O] + [9, 2"].
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This identity holds for a general linear connection. The restriction to a metric-
compatible Lorentz connection and to the corresponding orthogonal 1-form ¥ is
self-evident. The identity (4.4.10) likewise represents a special case of the general
second Bianchi identity, which is valid for the curvature of any principal fiber bundle.

In addition, it can be stated that the conservation law for the current of the total
angular momentum has its counterpart in the contracted form

D[O, 9] = [0 A ¥, £2°] (4.4.12)
of the first Bianchi identity (4.4.9). In order to prove this, the definition of the torsion
is used as well as the already mentioned fact that the commutator of a Lie-algebra-

valued 2-form with itself vanishes. This yields

D[®, 9] =[DO, ]+ [O, DY]

= [[v, 28], 9]+ [©, O] (4.4.13)
=VOAANY — Q22 APANYF+FOIADTARE—DAREAND
= [0 AW, £2%].

Accordingly, the contraction
D AN*28) =60 AN*2¢ (4.4.14)

of the second Bianchi identity (4.4.10) is on a par with the conservation law. Com-
pared with more general gauge models of gravity, it is a distinctive feature of the
Einstein—Cartan theory that the conservation laws via the field equations intertwine
completely with the contracted Bianchi identities.

A related structural redundancy is inherent in the two field Eqs. (4.4.6) and
(4.4.7) of the PG theory, and this despite their being deduced independently from
Hamilton’s variational principles. In order to prove this, let us consider the “contor-
tional” antisymmetric part

DI} —E;) = X (4.4.15)

of the first field equation (4.4.6). After covariant differentiation of the second field
Eq. (4.4.7), exactly the same dynamical contribution of the translational momentum
occurs in

D DI" + DIT}| = Dr,. (4.4.16)

According to the general rule, the twofold covariant derivative of the rotational field
momentum I7" can be converted into a commutator with the curvature 2-form $2¢.

Both field equations being valid, a comparison of (4.4.15) and (4.4.16) yields

[2¢, [T"] + By = Dt, — X). (4.4.17)
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Under the sensible assumption that the Euler-Lagrange equations of the gravita-
tionally coupled matter system are satisfied, the second Noether identity forces both
sides of (4.4.17) to vanish separately. This argument can also be seen the other way
round: the algebraic relation

[2¢, T*]+E; =0 (4.4.18)

involving only the gauge fields and the corresponding field momenta ensures the
validity of the conservation law.

4.5 Noether Identities

Within the canonical formalism, let us assume that the matter Lagrangian 4-form
depends at most on the matter field ¥ and its first derivative:

Linat = L(gap, 9%, ¥, DY) . 4.5.1)
Then the forms
oL oL oL
o = s ()'aﬁ = 2 s and Tclﬂ I ﬂlll N ——— (452)
09¢ 08up dres oDY

are the canonical energy—momentum, the Hilbert stress-energy, and the spin currents,
respectively. Here and in the following, the partial derivative with respect to the anti-
symmetric connection 1-form I'®f = —I"#% is defined by SL = §I"*F A (AL/dTP).

The action § = f v Lmat for the matter Lagrangian is, by construction, invari-
ant under the group Diff (M) of coordinate transformations and local frame rota-
tions. In order to obtain a covariant Noether identity from invariance of L under a
one-parameter group of local translations .7 C Diff (M), we employ the SO(1, 3)-
covariant Lie derivative £¢ := & |D + D& | on M with respect to an arbitrary vector
field £. Since Dg,p = 0, we obtain

fel = a0
L) A 2E 4 Dw
+ (ke )/\—-I—(g )Aaw
. L
= D[ A o ) A+ EIDE) A ]
— (§]9)D s + EIT) A oL + EIRHA TP, ‘I/Ai
EBE EBE g DY
5L SL
+EIDW) A <o+ (SDPEIY) ADS (4.5.3)

4



4.5 Noether Identities 87

Recall that & |, formally acting analogously to a derivative of degree —1, obeys
the Leibniz rule. Since the Lagrangian L is a 4-form, its Lie derivative reduces to
t:L = D& |L. Comparing the boundary term, we can read off the identity

oL oL
L= (&]|v” /\ v /\ — A — 454
E1L = (§]9%) +(EJ ) ~|—($J v) DU (4.54)
Incidentally, the left-hand side is just the Bessel-Hagen term occurring in the non-
covariant Noether theorem; see HEHL et al. (1991).
If we replace £ — ¢, by the basis frame, then (4.5.4) yields directly the explicit
form of the canonical energy—momentum current

Xy = L— Dy /\i /\% 45.5
o = ealL = (€alDW) A 550 — (e W) A 455)

The last term vanishes for a 0-form, as exemplified by the Dirac field. From the
nondivergence part of (4.5.3) we can read off the first Noether identity

DX, = (eq|TP) A Zp + (e JRPY) A 15, + Fy
~ (eq]TP) A Zg + (e IRPY) A 15, (4.5.6)

Here, in the case of forms of arbitrary degree,

SL SL
Fy = (eaJD‘I’) ~ +( DP(ea]¥) /\Dﬁ (4.5.7)
is the Lorentz-type covector force four-form. This is, similarly as in Maxwell’s theory,
coupled to the electric current three-form j, where the Lorentz force reads in exterior
calculus Fg’[a" = (eq|F) Aj.

Accordingly, our first line provides the Noether identity in the strong form, where
no field equations are invoked. Weak identities, which are denoted by ~~, hold only
if the matter field equation §L/6W¥ = 0 is satisfied.

For the derivation of the Noether identity arising from Lorentz transformations,
we apply the “internal variation” of the general Noether procedure:

AL sw A O L 5wy A OE (8.10)
32ap Jve 17 DY ‘

0L =

Since DW = DSW + 8I,P A I% W, this is equivalent to

L aL
+ 89% A

SL = 6gus N
80 " gus 99

(4.5.8)

+ 8P ANTY W A oL +5lI/A8L +D|s¥ A oL
« =2 aDw W DY
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Under an infinitesimal Lorentz rotation &,° (x) := A.? (x) — 85 of the frames, we
have

88ap =2e@” gpyy . OV = 0" gp", (4.5.9)
8, =De.f.  8W = —e 1%V . (4.5.10)

Consequently, we get (HEHL et al. 1995)

T ) oL SL
5L = —g, [—o 8rp TN s+ Do WAW]. 4.5.11)

Thus, due to the antisymmetry of the RC-connection, the second Noether identity
reads
SL
Dtog + Vg A Zgy = —IgW¥ A 30 ~0. (4.5.12)
Again, we distinguish between strong and weak versions. In a first-order formalism,
the potentials and field strengths, as well as the Bianchi and Noether identities, are
summarized in the following Table:

potential |field strength |Bianchi identity |Noether identity
9 T« =Dp*  |DT® =R pgr|D Tu = (€alRs") A AV,
P p _j(eaJQﬂy) AabY
R, =drI, . ~
r,f SR AL DR, =0 DA% + 9% A 5 = 0%

For the first Noether identity, it is convenient to use the covariant exterior derivative

D with respect to the transposed connection [P =10+ e, TP

The physical meaning (HEHL et al. 1989) can be extracted by passing to an isolated
matter system in special relativity (SR), stipulating that the Euler—Lagrange equation
S8L/8¥ = 0 for the matter field ¥ is satisfied. Then torsion and curvature vanish.
Accordingly, global (or rigid) Poincaré invariance of SR yields, due to Noether’s
theorem, the differential identities

DX, ~0, 4.5.13)
D(Top +Xja A Zpp) ~0. (4.5.14)

These four-form relations represent the 4 plus 6 conservation laws of energy—
momentum and (total) angular momentum. The latter, the so-called TETRODE (1928)
identity, consists of an intrinsic or spin part 7, = —7g, and an orbital part x;, A Xg;,
a fact that is familiar from the nontensorial expression in (4.5.14) if we use Cartesian
coordinates x' with x* = 8 x'.
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Since local affine variations of the “soldering” form ¢ implement the action of
the diffeomorphism group and conversely, the second Noether identity can also be
deduced from the requirement that the matter Lagrangian be invariant with respect
to the group Z(M) of differentiable coordinate transformations; see SCHWEITZER
(1980).

This correspondence in flat spacetime can be considered the most convincing
argument in favor of our identification of X' and v with the canonical currents,
which represent cornerstones in any interpretation of the dynamics of matter fields.
Further evidence for their importance is Wigner’s successful mass—spin classification
of elementary particles.

4.5.1 Mass and Spin of the Kerr-AdS Solution

In the anti-de Sitter-type gauge model of gravity proposed by MACDOWELL &
MANSOURI (1977), (WISE 2010), see also PAGELS (1984), the translational part of
the gauge algebra is spontaneously broken.

Recently (MIELKE 2001), the combined energy and spin complex

R = £ Ty + (es) DE) TP, (4.5.15)
of TRAUTMAN (1973) and HECHT et al. (1992) for Riemann—Cartan (RC) space-
time was generalized. Then in such a spontaneously broken AdS gauge model, the
modified complex

Bma = erc +EJL = — (A TEY) AHP, + dHo (4.5.16)

leads, “on shell,” to
9 3 2, Ao 5 2 2, Ao
M :=M/IM +§J 1, J:=JIM" /M +§] 1, 4.5.17)

i.e., to the renormalized mass and angular momentum of the Kerr—anti-de Sitter
solution, if £ = d/0¢ or & = 9/0¢, respectively, is chosen. Here no “factor of two”
discrepancy in the Komar currents occurs.

In the first Casimir operator

~ A~
Cags = M> + ng (4.5.18)

of the AdS group, the cosmological constant features as regularizer of the grav-
itational “charges,” which at the end can be put to zero. In the subcase of the
Schwarzschild—AdS solution, it is shown that the Komar and Euler parts of the
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complex each contribute one-half of the mass, so that the divergent terms £(A /3)r?
proportional to the cosmological constant A exactly cancel each other.

4.6 Gravitational Aharonov—Bohm Effect
and Cartan Circuits

The generalized affine connection

[i=rMep, ¢ s, (4.6.1)

includes the true translational potential I"™* and the GL(n, R)-gauge connection

I'M# as can be deduced from the Mobius-type five-dimensional representation of
the affine gauge group A(n, R) := R" & GL(n, R).
The Cartan transport may be understood rather directly from the affine point of

view: the condition for a parallel transport of an affine vector § around a small closed

loop by means of F reads

D& = dg® + M A &P 4 1D
=Dg* + ' De =9, (4.6.2)

Consequently, the parallel transport of (4.6.2) along an affine tangent vector of the
Cartan circuit yields

L bE =B bE) + B

= y|(DDE* + RT*) = (4.6.3)

where £, := y|D + Dy]| denotes the gauge-covariant Lie derivative and R the
translational curvature. Integration of the first one-form in (4.6.3) along a closed
loop parametrized by y yields

- f yJ(DDE®) = f IR = / R
c c N

1 A .
E(T,-j“ — Rijs® €7) / dy' ndy . (4.6.4)
N

AE®

[

This rather concise derivation via (4.2.26) yields the standard result.

This may also affect the issue of measurability of a connection. Quite generally,
quantum interference measurements (BATELAAN & TONOMURA 2009) depend on
the nonintegrable phase factor
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DA, y) = P exp[(i/h) f A]. “46.5)

where A = Aij Ay dx' is a Yang-Mills-type connection and P is the principal value
of the integral. If the loop y lies in a field-free region, i.e., one with U(1) field
strength F := dA = 0 or Yang-Mills curvature F = dA + A A A = 0, but encloses
a “confined” region with nontrivial “magnetic” flux F # 0, the potential A can still
be measured via the amount of phase shift for closed loops. In a nutshell, this is the
meaning of the Aharonov—Bohm effect, actually first described by FRANZ (1939).
In principle, the same would hold true for a gravitationally induced phase factor

qs(F, y) = P exp [(i/h) ?{(F(T)"‘ P, + I[PF L“ﬁ)] (4.6.6)

arising from a gauge theory of the affine structure group A(4, R).
For a closed loop enclosing an infinitesimally small surface area S, the total phase

shift induced by the generalized affine connection Iis given by
AD(T, y) ~ 7’3 / (RD* P, + RDP L ). (4.6.7)
s

This total phase shift involves the same contribution from the translational curvature
as in the result (4.6.4) obtained from the Cartan circuit.

For a so-called manifield ¥ carrying no GL(4, R)-excitations, i.e., no spin, no
shear, and no dilation, we need a closed loop y to detect the gravitational analogue
of the Aharonov—Bohm effect in a conical space, since outside the (rounded) apex
of the cone there is I"™* = locally.

This analogy to Yang—Mills theory would break down, however, if we considered,
instead of the true translational potential I" %, the coframe #* soldered to the space-
time manifold; cf. ANANDAN (1993, 1994). Because the coframe is nondegenerate
by definition, it could be measured even by a nonclosed loop, showing its essentially
classical character.

Since the physical dimension of P, is 2 h/£, the gravitational analogue of Dirac’s
quantization condition would be

BT, y) = QrhalyG/htc®) = 2mn, (4.6.8)

i.e., the mass would turn out to be a multiple ., = nMpjycx of the (huge) Planck
mass.
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Chapter 5
Einstein—Cartan Theory

5.1 Introduction

The difference between Einstein’s general relativity and its Cartan extension is ana-
lyzed classically as well as within the scenario of asymptotic safety of quantum
gravity. In particular, we focus on the four-fermion interaction, which distinguishes
the Einstein—Cartan theory from its Riemannian limit.

In coupling gravity to Dirac-type spinor fields (WEYL 1929b), it is at times sur-
mised that the Einstein—Cartan (EC) theory (TRAUTMAN 1973a) is superior to stan-
dard general relativity (GR), inasmuch as the involved torsion tensor of CARTAN
(1924) can accommodate the spin of fundamental fermions of electrons and quarks
in gravity.

Classically, however, the effects of spin and torsion cannot be detected by Lageos
or Gravity Probe B (WILL 2011) and would be significant only at densities of
matter that are very high, but nevertheless smaller than the Planck density, at
which quantum-gravitational effects are believed to dominate. It was even claimed
(TRAUTMAN 1973b) that EC theory may avert the problem of singularities in cos-
mology, but for a coupling to Dirac fields the opposite happens (O’CONNELL 1976b).

The Riemann—Cartan (RC) connection I'*# = e — KB 3 one-form, can be
split into the unique Levi-Civita connection I"'*# of Riemannian geometry and
a contortion one-form K,5 = —Kpg,, a tensor-valued one-form K =i K 0,4/4,
implicitly related to torsion via T% = K% A 9P, Recently, it has been stressed by
WEINBERG (2005) that this RC connection I" = I'! — K is just a deformation (or
field redefinition) of the Christoffel connection 1" by the contortion, at least from
the (quantum) field-theoretic point of view. Although algebraically complying with
the review of HEHL et al. (1995), this argument has been refuted (BLAGOJEVIC
& HEHL 2013) on the basis of the geometric interpretation (WISE 2010; WEST-
MAN & ZLOSNIK 2013) of Cartan’s torsion within models of (singular) classical
defects. Nevertheless, for an agreement with experiments (PROVILLE et al. 2012), a
quantization of crystal vibrational modes appears necessary.
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It is well known (HEHL & DATTA 1971; MIELKE & ROMERO 2006) that EC
theory coupled to the Dirac field is effectively GR with an additional four-fermion
(FF) interaction. However, such contact interactions are likewise perturbatively non-
renormalizable in D > 2 without Chern—Simons (CS) terms (ALVES et al. 1999),
which was one of the reasons for giving up Fermi’s original theory of beta decay.

Since GR with a cosmological constant A appears to be asymptotically safe, in
the scenario (REUTER & SAUERESSIG 2012) first devised by WEINBERG (1979), one
may ask (MIELKE 2015) what the situation is in EC theory, where Cartan’s algebraic
equation relates torsion to spin, i.e., to the axial current js in the case of Dirac fields,
on dimensional grounds coupled with gravitational strength.

5.2 Dirac Fields in Riemann-Cartan Spacetime

Let us recall that a Dirac field is a bispinor-valued zero-form 1, for which
¥ := ¥y denotes the Dirac adjoint and Dy := dvy 4+ I" A 1 is the exterior covari-
ant derivative with respect to the RC connection one-form I'*? = —I"#% providing
a minimal gravitational coupling.

In the manifestly Hermitian formulation, the Dirac Lagrangian is given by the
four-form

Lp =Ly, ¥, DY) = % (V57 ADY + DU Ay} —mYyn,  (52.0)

where y := y,0* is the Clifford-algebra-valued coframe satisfying Dy = [y, K]
= v, T%, and T* := Dv* is the torsion two-form.

Since Lp = Lp = L]T) even in an unholonomic frame, the minimal coupling pro-
vides us automatically with the Hermitian charge current and standard axial current
three-forms

J=yy =", and jsi= 9 yysy = 5, (5.22)
respectively, which are familiar from quantum electrodynamics (QED) in curved
spacetime.

Let us now separate in (5.2.1) the purely Riemannian part from spin—contortion
pieces:

Lp = L(y, ¥, DUy) — IEE (‘y AK =K A*y) ¥
= L(y, v, DVy) + Z—llmf AJs - (5.2.3)

Hence, in an RC spacetime, a massive Dirac spinor feels only the axial torsion
one-form
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1 * %/ qo 1 [eBy] i
o = Z Tr(y ADy)= "0 ATy = ET Napy = o dx', 5.2.4)

which can be expressed in various equivalent forms.
The spin current of the Dirac field is given by the Hermitian three-form

rop 1= — 2D zlw(*ya + o0, *y)ll/zln VYl ys U’ = tapy 1
o = STap = 3 ap F Oup apys apy

4
(5.2.5)

with totally antisymmetric components T,g, = Tj4p,]. Eventually, torsion merely
couples to the spin—energy potential j1, = Uy A *js/4, i.e., to a two-form propor-
tional to the axial current js of the Dirac field.

Transitions from EC theory or GR to GR can be generated via the Chern—-Simons-
typeterm Crr- := 9% A *T,,involving the Hodge dual of the torsion. On the material
side, a related change of the Dirac Lagrangian can be induced via Lp — Lp +dU,
where U = 9* A u, features as a superpotential. Then the corresponding boundary
term

dU =T* A jtg — 9% A Dty = 9% A leg) (TP A p1g) — D] (5.2.6)
compensates the torsion coupling in (5.2.3) and thereby induces the relocalization

Xy —> 0g =Xy — Dy +65J(Tﬂ A M) s
Tap = Tap = Tap — Vja A gy =0 (5.2.7)

of the fermionic Noether currents, resembling the Belinfante—Rosenfeld-type expres-
sions (R1) and (R2) of MIELKE et al. (1989), such that the relocalized spin 7,4
vanishes. Observe that for Dirac spinors, U = 9% A 9, A *js/4 is trivial “on shell.”

5.3 Classical Einstein—-Cartan Theory

Already EDDINGTON (1924) considered the possibility of an asymmetric connection,
but it was CARTAN (1922) who envisioned a possible significance of torsion for
the gravitational coupling to matter with spin. After the discovery of the spin of
the electron, WEYL (1929a, b, 1950) accomplished the coupling of the Dirac field
to the so-called EC theory by means of gauge-theoretic concepts, resulting in the
specification

1
Ligc := —— R A g, 5.3.1
EC P Nap ( )

of the Lagrangian 4-form of the gravitational field. It depends on the curvature tensor
and the orthogonal tetrads, whereas k = 8 Gy is the gravitational constant in natural
units.
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This theory was enlarged by KIBBLE (1961) and SCIAMA (1962) and later by HEHL
(1970). (It is for this reason that the EC theory is also referred to as the Einstein—
Cartan—Sciama—Kibble theory (KERLICK 1975; NESTER & ISENBERG 1977); how-
ever, for the sake of convenience we stick to the abbreviation.) Subsequently, it was
rendered in the more elegant calculus of differential forms by TRAUTMAN (1972,
1973a). A detailed survey incorporating a list of further reading is to be found in the
well-known work of HEHL et al. (1976).

The Einstein—Cartan (EC) equation (TRAUTMAN 1973a)

1
Gy = ERﬂV A Napy = KXy, (5.3.2)

coupled to the canonical energy—momentum current X, of matter, is obtained by
varying the matter coupled Lagrangian Lgc with respect to the coframe 9.
It satisfies the contracted Bianchi identity

~ 1
DG, = E(eo,JRﬁV) ANgyu ATH (5.3.3)

with respect to the transposed connection I',# := I',# + ¢, |T#. Observe that the
three-form (5.3.2) is not covariantly conserved in RC spacetime, which seems to have
discouraged Cartan from pursuing such a model further; cf. TRAUTMAN (2006). Only
for vanishing torsion does it reduce to the contracted second Bianchi identity

DGl =0 (5.3.4)

familiar from GR.
When molded into “Clifforms,” forsion and curvature become Clifford-algebra-
valued forms:
®:=Dy and Q2°:=dl+T AT. (5.3.5)

Consequently, the first and second Bianchi identities assume in RC geometry the
concise form
DO = [2%,y], D% =0, (5.3.6)

respectively, which involve p-form commutators; cf. MIELKE (2001) for details. Then
the Einstein tensor can be rewritten as the three-form

o 1 v r . .
G:=Gyuy* = ER" Auny” = —iys(QF Ny +y AR5 =ily, ys2°].
(5.3.7)
In view of the contracted Bianchi identities

Dly , 0] =2ilo, 2°], Dly, 281 =1[0, 2°], (5.3.8)
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involving the unit-curvature two-form o := %aaﬁ DA = % y Ay, the equiva-
lent Clifform version
DG =i, ys828] (5.3.9)

of the identity (5.3.3) arises.

Consequently, the automatic conservation of the Einstein three-form holds only
for vanishing torsion, i.e., for ® = 0 in Einstein’s standard GR.

By varying (5.3.1) with respect to the linear connection I"*#, we obtain the second
field equation of EC theory, i.e., Cartan’s algebraic relation

Napy N TV = 2K‘L'aﬂ (5.3.10)

between torsion and the canonical spin of matter.

Simple supergravity (SUGRA) is essentially equivalent to EC theory coupled
to a massless Rarita—Schwinger field ¥, a spinor-valued one-form; cf. MIELKE &
MACIAS (1999) for details.

5.3.1 Effective Einstein Equations

Similarly to the subsequent decomposition of Lgc, the EC equations can be decom-
posed into Riemannian and torsion-dependent parts. Applying again the Cartan equa-
tion, an Einstein-type field equation in a Riemannian spacetime comes into existence

in which Hilbert’s definition
2 8L
= (5.3.11)

VB g

of a metric energy—momentum tensor is replaced by the “combined” tensor

Ty =Ty + 5*2{_4'[,;’(.[1‘7\‘,}.“,(] - ZT,‘LK)LT\;KA + T.K.)\MTK)\I)
1 A
+ Eguv(‘l'ral.{[)\f.s.)\,(] + 78“775:()\)}- (5.3.12)

Cartan’s equation has already been inserted in this expression in order to show that
T,w contains additional terms depending quadratically on the spin angular momen-
tum of matter; cf. HEHL et al. (1976). In the instance that 7y = o, the EC equation
reduces exactly to Einstein’s field equation of GR.

These field equations and, indirectly, the dissociation of the Lagrangian 4-form
reveal that the additional non-Riemannian terms sacrifice minimal coupling because
they induce a spin—spin contact interaction into the theory. On account of this
additional interaction, the EC theory is effectively equivalent to GR in the pseudo-
Riemannian space if outfitted with a nonminimally coupled source. The additional
terms in (5.3.12) are proportional to £** and could thus, with a modified Planck
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length £* = 10733 cm, play a role on the macroscopic scale only in cosmology; cf.,
for instance, the early survey of KUCHOWICZ (1975a, b, ¢). The rather idealized situa-
tion of a dust-filled universe, whose corpuscles would carry aligned spins, would not
be threatened by a final singularity, since the gravitational collapse of 108 baryons
would bounce, according to TRAUTMAN (1973b) and HEHL et al. (1974), at a minimal
radius of about 1 cm.

However, for the physically much more justified description of spinning matter
via Dirac fields, the collapse predicted by the singularity theorems of Hawking and
Penrose (HAWKING & ELLIS 1973) is more likely to be accelerated than deferred
in the EC theory. The reason for this, as will be seen in the following, is the total
antisymmetry of the canonical angular momentum tensor of spinor fields. This leads
to a weak but attractive spin—spin contact interaction as first pointed out, on the
Lagrangian level, by O’CONNEL (1976a, 1977).

To be more specific, let us decompose the RC curvature two-form

R*® = RV — pUgeP _ g A K" (5.3.13)

into the Riemannian curvature RY*? plus contortion pieces.
Then the geometric identity

RYP Angsg = R Anjgg — K" A K2 A jag + K ATV A g,
+d (K A nygp) (5.3.14)

1
= R A nos + T A *(_ O 42071, 4 > (S)Toz) +2dCrr-

relates the Hilbert—Einstein Lagrangian to the EC Lagrangian, and to proper telepar-
allelism as a consequence. Here (T, are the three irreducible pieces of the torsion.
In particular,

Or, = % (g A ) (5.3.15)

is the irreducible axial torsion two-form algebraically related to the axial torsion
one-form (5.2.4).
When only this axial torsion .27 enters algebraically, the EC Lagrangian

1 1
Lgc = ——R® Angs =L — AN 5.3.16
EC P Nap HE + T ( )

generalizes' the metric Hilbert-Einstein Lagrangian Lyg to an RC spacetime with
torsion.

' Adding torsion squared terms (DAUM & REUTER 2012, 2013) is not an unambiguous proce-
dure, since the particular combination 7% A *((I)Ta 207, — % (3)Ta) of irreducible pieces is

related to a nontopological boundary term derived from the dual CS term Ctr+ := 9% A *Ty. In
the space of gravity theories, the term dCrr+ interrelates GR with its teleparallelism equivalent
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Likewise, the EC three-form

1
G, = ER'S” A Nagy (5.3.17)

=’ =’
12

=G4+ —— (eaJ%A*%——%A aj*d)

can be decomposed into the Einstein three-form G!! = G,#ng with respect to the
Riemannian connection "V and additional axial torsion pieces (HEHL & DATTA
1971; MIELKE & ROMERO 2006).

Due to (5.2.5), in the case of Dirac fields, the Cartan equation (5.3.10) is equiva-
lent to

tof = gjs, (5.3.18)

coupled via the “bare” fundamental length £ = /k. Then “on shell,” EC theory
coupled to Dirac spinors deviates from GR merely via

2

_~ K
AL = k(Lec = Lug) = s A “Js = 4125 7 s (5.3.19)

i.e., by a four-fermion interaction.

5.4 Asymptotic Safety of EC Theory?

Particle physics is based on the Yang—Mills theory, which in the standard model
is a renormalizable and asymptotic-free quantum field theory (QFT). For the weak
interactions, as shown by Veltman and ’t Hooft (VELTMAN 2000), an important
part is played by the Higgs mechanism, which provides a scalar ghost that cancels
divergencies in the propagators of the gauge bosons. Nowadays, these cancellations
can be more easily understood as a result of a global BRST symmetry T HOOFT
2007) that to some extent allows extensions to gravity (MIELKE 2008).

Since GR is perturbatively nonrenormalizable, one recurs to asymptotic safety
(AS). It amounts to the requirement that dimensionless coupling constants remain
bounded in the ultraviolet limit k — oc. Quite generally, the renormalization flow is
controlled by an exact functional identity, the Wetterich equation (WETTERICH 1993)
for the effective action I}, i.e.,

1
ko T = ESTr{[rk(z) + Rk]’l(kakRk)}, (5.4.1)

(Footnote 1 continued)

(MIELKE 1992). Exactly, the above teleparallel “nucleus” leaves its traces in the controversies
(HECHT et al. 1996; HO & NESTER 2011) about the well-posedness of the classical Cauchy problem
and the particle content of the (broken) Poincaré gauge theory.
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where kdy is a scale derivative returning the Euler degree of homogeneous functionals.
For the Hilbert-FEinstein Lagrangian

A
Lyg := Lyg + = (5.4.2)

with cosmological term, the dimensionless running coupling constants can be defined
by
gn =k, A= AJK?, (5.4.3)

where k is the renormalization group (RG) scale in momentum space and A the
cosmological constant related to dark energy (DE) of density p,; see also BIORKEN
(2013). Then, in the case of gravity in 4D, the renormalization group equations are

0 0
kﬁgN = Bi(gn, A) = 2 +dn)gn, kﬁl = Ba(gn, A), (5.4.4)

where dy is the anomalous dimension of the running Newton coupling gn.

According to the AS scenario (REUTER & SAUERESSIG 2012), the coupling con-
stants (5.4.3) run into some nontrivial fixed points gn, and A,, depending on the
specific truncation of the effective Lagrangian to the celebrated Hilbert—Einstein
Lagrangian (5.4.2) without torsion. This can be extended (FALLS et al. 2016) to
high-order polynomials R" of the Ricci scalar, similarly as in the classically bifur-
cating f(R) models (SCHUNCK et al. 2005), but then the issue of physical ghosts or
nonunitarity arises, familiar (KUHFUSS & NITSCH 1986; LEE & NE’EMAN 1990)
from Stelle-type higher-derivative models.

Quite generally, the dimensionless product

4 1 ) 4
w= SKA = 5(2/{) pa < ggN*)»* ~0.2 (5.4.5)

appears to have a rather robust and universal bound independent of the particular
truncation.

A topological field theory, however, is empirically much closer to a Gaussian fixed
point when an SSB is assumed. Thus, gravity does not appear so nonrenormalizable;
cf. KREIMER (2008). This could also affect cosmological constraints (KISELEV &
TIMOFEEV 2011) on the mass of the standard Higgs boson. The AS scenario yields a
rather realistic estimate (SHAPOSHNIKOV & WETTERICH 2010; LITIM et al. 2012) of
the Higgs mass, when the mass of the tau lepton is used as input, and it provides an
exactly scale-invariant (CONTILLO et al. 2012) scalar power spectrum in inflationary
cosmology.
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5.4.1 The Issue of Four-Fermion Interactions

Interestingly enough, the EC-induced four-fermion (FF) interaction (5.3.19) with its
tiny “bare” coupling constant

2
o — =3 x2710 (%) —os (5.4.6)

also scales with the gravitational constant «, but inversely compared to the Hilbert—
Einstein and cosmological terms.

If the renormalization flow starts to the right from a non-Gaussian fixed point, the
coupling actually diverges (EICHHORN & GIES 2011) at a finite RG scale. When the
contact- or point-like truncation breaks down, a boson-like description of fermion
bilinears is mandatory, including the 1/k* dependence in the functional integral.
Then, the FF interaction becomes nonlocal (SHAPOSHNIKOV & WETTERICH 2010),
and the corresponding dimensionless renormalized running coupling f becomes
asymptotic safe or even free. In a nonlinear o model (BAZZOCCHI et al. 2011),
nonrenormalizable FF interactions may be instrumental for restoring asymptotic
safety.

In view of these problems, the EC theory has been amended (DAUM & REUTER
2012; BENEDETTI & SPEZIALE 2011) by the pseudocurvature scalar term of HOIMAN
et al. (1980) (the infamous “Holst” term, cf. MIELKE 2009), or even nonminimally
coupled Dirac fields (OBUKHOV & HEHL 2012). Unfortunately, in many of these
extensions (POPLAWSKI 2012, KHRIPLOVICH 2012, KHRIPLOVICH & RUDENKO
2012), a possible running of the gravitational couplings should not be ignored.

Moreover, in QFT, the axial current is not conserved; rather, there arises in RC
spacetime the axial anomaly

_ 1
(djs) = 2imFysv)n - 5 [2R§ﬁ ARV 4 dos A d,;a%] (5.4.7)

for its vacuum expectation value, which involves the topological Pontryagin term
quadratic in the curvature.

One way to avoid such anomalies is to employ curvature constraints like Rog = 0,
typical for teleparallel models (MIELKE 2002). Another approach, inspired by the BF
schemes (MIELKE 2012, 2013) of topological quantum field theory (TQFT), is to start
from a “minimalist” SL(5, R) gauge model that includes only a “bare” Pontryagin-
type four-form as its own counterterm. Then a tiny symmetry-breaking would be
mandatory in order to recover the classical metric background of GR.

So far, the search for a theory of quantum gravity (QG) that is free of anomalies
and leaves Einstein’s GR as a well-established macroscopic “nucleus” has produced
rather contradictory partial results, to some extent resembling a “Babylonian confu-
sion,” according to NICOLAT (2014).



104 5 Einstein—Cartan Theory

5.5 Constraints from the Weak Equivalence Principle

In a constraint-type gauge approach, the weak equivalence principle (WEP) is, after
SSB, anchored in the covariant constancy of the ground state (MIELKE 2011). Thus,
cornerstones in Einstein’s foundation of general relativity (GR) may surface here
as “Mach”-type features of the gravitational Higgs vacuum, resembling (BRANS
1999, NE’EMAN 2006, KAISER 2007) a new “ether,” which, however, remains locally
Lorentz-invariant, nowadays measured at the unprecedented Ac/c ~ 107 level
(HERRMANN et al. 2009).

In the laboratory, the WEP can be corroborated with a torsion balance (WAGNER
et al. 2012) at the 10~!3 level. Moreover, the upper bound for a violation of the
WERP in the proton—antiproton system, taking into account the binding energy of the
quarks, is about 107%; cf. HUGHES (1993).

A neutrino pulse from the supernova SN 1987A lasting for about ten seconds was
detected by Kamiokande IT and the IMB detectors in Japan and the USA, respectively.
Assuming that not only the dominant delayed antineutrinos v, but at least one prompt
neutrino v, was in the pulse, one could infer that the equivalence principle is valid
(Guzzo et al. 2002) for electron—neutrinos v, up to 10-°.

Moreover, a test of the CPT theorem for the neutral kaon system indirectly
yielded an upper bound for the relative difference of the inertial masses of the K°

meson and its antiparticle K" of less than 10~'8, when employing (MURAYAMA
2004) new bounds from neutrino oscillations. In the proposed STEP satellite exper-
iment (OVERDUIN et al. 2009), the WEP would be tested macroscopically to an
unprecedented accuracy.

Observationally, GR is rather well established for the solar system (WILL 2006)
and, more recently, in double pulsars (KRAMER & WEX 2009; SHAO 2014) as well
as via large-scale gravitational lensing (REYES et al. 2010) of galaxy clustering.
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Chapter 6
Teleparallelism

According to FEYNMAN (1962/63), “gravity is that field which corresponds to a gauge
invariance with respect to displacement transformations.” Taking this literally would
favor Einstein’s teleparallelism equivalent of GR, which has been recast (MIELKE
1992; MIELKE et al. 1996) into a Yang—Mills-type gauge theory of translations.
On the other hand, Ashtekar’s reformulation ASHTEKAR (1986, 1991) of general
relativity (GR) is a complex reformulation that essentially projects out the right and
left helicity modes of the graviton.

6.1 Chiral Teleparallelism

Originally, these complex variables were developed in the Hamiltonian approach.
In the equivalent Lagrangian formulation, this change of variables is more simply
induced by a generating function (DOLAN 1989; MIELKE 1990) that involves a bound-
ary term d Crr constructed from a translational Chern—Simons term (CS) multiplied
by the imaginary unit. This is facilitated in the framework of Riemann—Cartan (RC)
geometry, where the coframe ¥ surfaces as a soldered translational gauge potential
(MIELKE et al. 1993; TRESGUERRES & MIELKE 2000) having T¢ := DY as its
corresponding translational field strength, i.e., torsion.

Via a sort of duality rotation, CS-type boundary terms dC transform into a viable
gravitational Lagrangian: the standard Hilbert action of general relativity (GR), or,
as was already suggested by EINSTEIN (1928), a theory with teleparallelism (GRy).
Recently, it was shown (MIELKE 1992) how a complex Yang—Mills-type version
of GR arises by a canonical transformation induced via d Cyr. Moreover, the nat-
uralness of Sparling’s energy complex in this approach has been pointed out; cf.
DUBOIS-VIOLETTE & MADORE (1987).
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Since the resulting chiral version of gravity is surprisingly close to Yang—Mills,
we can adopt a related Hamiltonian formulation in which the Poisson brackets for
the constraints are on a par with the local Poincaré algebra. Interestingly enough,
the corresponding Gauss constraint of spatial diffeomorphisms is annihilated, on the
operator level, by a state vector that is proportional to the exponentiated transla-
tional CS term, thus improving on MIELKE (1998, 1999). Classical configurations
dominating this action are torsion instantons, thus hinting at another close formal
parallelism of internal Yang—Mills with chiral GR;. Moreover, this similarity with
quantum gauge theories paves the way to a Becchi—Rouet—Stora—Tyutin (BRST)
quantization of gravity based on translational ghost operators. The correlation func-
tion for Wilson loops is known (GUADAGNINI et al. 1990) to yield, to first order,
the Gauss self-linking number. For the full expectation value, the generalized Jones
polynomial related to the Kauffman bracket of knots (BRUGMANN et al. 1992) arises
once a framing has been chosen. In the case of chiral teleparallelism, the loops auto-
matically carry an orthonormal frame along their path, a concept that was realized
much earlier by CARTAN (1924). Thus such Cartan circuits winding around torsion
instantons may provide another clue to a field quantization of gravity based on chiral
GRH .

One may speculate that teleparallel (“flat”) spacetime may reveal, on the Planck
scale £ := /87ThGn/c3 ~ 1073 cm, a topologically rich spectrum of dislocations
and knotlike loops.

6.2 Parity-Violating Topological Invariants in Gravity

In the one-dimensional harmonic oscillator model (MIELKE 1998) with ¢ as gen-
eralized coordinate, a canonical transformation can be induced by a boundary
term derived from the Chern—Simons (CS)-type term ¢ = q°/2 as generating func-
tion. After quantization, the corresponding operator . = exp (—%’) = exp (—q2 / 2)
induces a well-known renormalization of the Schrodinger wave function. On the other
hand, for diffeomorphism-invariant topological field theories, HOROWITZ (1989) has
shown that ¥ = N exp (i¢ [ €) is, up to an overall factor, the unique solution of the
Hamiltonian constraints. It is worth investigating whether this carries over to gravity:

Since the Poincaré group P := R* & SO(1, 3) is the semidirect product of trans-
lations and Lorentz rotations, its gauging leads to the two associated Chern—Simons
(CS) three-forms:

(-1,

T (6.2.1)

Crr = 2%2(19@ A Ta,) -
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1
Cgrr := —Tr FAQ—gF/\F/\F
1 I} el 1 5] @
=3 I, ANRg™ + gl‘a‘ AT AT ). (6.2.2)

They are translational and Lorentz-rotational CS terms, where o7 := *(J, A T%) =
of,dx" is the axial torsion one-form. In the first translational CS three-form, there
necessarily occurs a fundamental length ¢ for dimensional reasons.

In a gauge theory with the linear group SL(5, R) as structure group, containing
the de Sitter group SO(1, 4) or SO(2, 3) as a subgroup, both CS three-forms are
intimately interrelated: via a Wigner—Inonii-type contraction, the CS decomposition

C = Crg — 2Crr (6.2.3)

into linear and translational terms was realized already in HEHL et al. (1995) (see
footnote 31), and later by NIEH (2007), MERCURI (2009). In contrast to the metric-
free Pontryagin form, in the NY term (6.2.4), a metric g, is needed to raise and
lower the indices, for instance in T, = go37T".

The corresponding boundary or Nieh—Yan term (NIEH & YAN 1982; GUo et al.
1999) can be obtained by exterior differentiation

1 « « 5]
dCrr = ﬁ(T ATy + Raog A 9% A0 ) (6.2.4)

whereas the corresponding Pontryagin term
1
dCrr = -Tr (2 A 2) = 3 R“P A Ry (6.2.5)

is more familiar. Its integration is proportional to the Pontryagin number. Both are
parity violating (MIELKE 1999).

Whereas the Pontryagin term (6.2.5) is a topological Lagrangian whose variation
returns the second Bianchi identity

DR,; =0, (6.2.6)

the less well known torsion identity (6.2.4) is based, after exterior multiplication by
U4, on the first Bianchi identity

DT = R A9 (6.2.7)

in Riemann—Cartan (RC) geometry.
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6.2.1 From Chern-Simons to Einsteinian Gravity

The starting point of Ashtekar’s formulation of gravity with complex variables is
the parity-violating boundary four-form (6.2.4) of NIEH & YAN (1982) (NY).! A
fundamental length ¢ necessarily enters in order to keep all topological invariants
(L1 1999) dimensionless.

By converting one field strength via a duality rotation into its Hodge dual, the NY
term suggests two options for a viable gravitational Lagrangian:

1. Hilbert’s original choice:

1
Lie = —5-Ryly A @0 A 07) (6.2.8)
- Koy

of general relativity (GR), where R({l}ﬁ denotes the Riemannian curvature with respect
to the Levi-Civita connection Fa{},

2. A torsion—square Lagrangian: The NY term, after a duality rotation, suggests
another option (KOPCZYNSKI 1982; NESTER 1988) for a classically viable gravita-
tional Lagrangian: the special torsion—square Lagrangian

1 1
Lj=——T"A *((I)Ta —o07, _ ~ (3)Tn), (6.2.9)
2K 2
involving a specific combination of irreducible torsion components. Here
H:= —0L/0T" = (1/k)as, A K (6.2.10)

is dual to the contortion one-form K3, which features in the decomposition I3 =
—T5y = Fi}ﬁ — Ko = F;E +eqlTs + (eqleg]T,) A 97 of the RC connection.
Due to the geometric identity

1 L2
Ly = Lug + 5-Rap A *(9* A V%) + Z—dCrr, (6.2.11)
K K

where Crp+ := 9 A *T,/2€? is a dual CS term, proper teleparallelism (GR) spec-
ified by (6.2.9) is classically equivalent to GR up to a boundary term when con-
strained by the vanishing of RC curvature. In a consistent Lagrangian formulation,
the proper constraint R*? = 0 has to be imposed by subtracting R’ A A3 from
(6.2.9), where the 2-form \,3 = —\3, is a Lagrange multiplier, see HEHL et al.
(1980) and KOPCZYNSKI (1990). Then the proper teleparallelism Lagrangian reads

IThe self-dual formulation of gravity was anticipated already by PLEBANSKI (1977), whereas
HoIMAN et al. (1980) discussed the pseudoscalar curvature as a parity-violating Lagrangian for
gravity and noted already 1980 its relationship to a complete divergence, before NIEH & YAN
(1982), NIEH (2007).
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Ly=Lj—R" AN (6.2.12)

By varying this Lagrangian independently with respect to ¥, I'*”, and the mul-
tiplier \,3, we obtain as field equations

DH(U - Eﬂ = Ea’ (6213)
DAos + o A H);'] = Tag, (6.2.14)

and
R =0. (6.2.15)

Since the multiplier term in (6.2.12) does not depend on the coframe, the resulting
first field Eq. (6.2.13) is the same as that of the unconstrained Lagrangian L. The
integrability condition for the second field equation is identically satisfied, because

DD)\G,Q = —2R[M7 A AWW] =0 (6.2.16)
in a Weitzenbock spacetime, whereas
D(Taﬁ - 19[& A Hg]) =0 (6.2.17)

follows from the “weak’” Noether identity (see (6.8.12)) for matter and gravitational
gauge fields, together with the first field equation. Thus, the only role of the second
field equation is to determine (nonuniquely) the Lagrangian multiplier \,g. For
spinless matter, a possible solution is \,3 = (7/@2)77(% as will be shown below.

We should remark that the Cauchy problem for GR is not completely settled; cf.
EHLERS (1981), KopCzZYNSKI (1982), HECHT et al. (1991).

6.2.2 Yang-Mills-Type Formulation of Complex GR)

In the self-dual formulation, the Lagrangian of the Einstein—Cartan (EC) theory of
gravity (TRAUTMAN 1973) plus cosmological term takes the form

) , 1 @ e g A
Lgc:=Lgc £idCrr = —2—£2Raﬂ/\ (19 A Y )+ £—2’I7.
This chiral reformulation (SAMUEL 1987; MIELKE et al. 1996, 1996b) was to some
extent anticipated in 1982 in the complex duality ansatz
Rug = E"RY) + (7/€) [9a A5 £ i ¥ (W0 A9p)], (6.2.18)

af
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of BAEKLER et al. (1982); if o = =%iy is chosen for one of the free parameters there.
Later on, this was “recovered” by SO0 (1995) for quadratic-curvature Lagrangians.

The NY term is again instrumental (MIELKE 1992) for converting the teleparallel
version (6.2.9) of Einstein’s GR for the choice 61 = +i into a chiral gauge theory
of translations:

&) 20% 202 )
L” = L” ﬂ:i—dCTT =LHE—LEcz|:i—dCTT. (6219)
K K

The deviation of chiral GR| from the Hilbert—Einstein action turns out to be a bound-
ary term derived from the chiral CS term

. A a s L.
2£2 ( )

()
where T % := % (T* £i*T*“) denotes the self-dual or anti-self-dual torsion. The

resulting complex field momenta

(£) (*)
M,=-0L/OT" = H' F (i/r)T, (6.2.21)

satisfy the algebraic relation

), &) 3 —4 1
H“/\Hﬁ:H“/\Hﬁ—FZ T ATz =0. (6.2.22)

Consequently, the field equation

(H(E) i, B, )
DI F ;] (M7 Ag) = X, (6.2.23)

for the complex translational momentum of GR| takes on the particularly concise

Yang—Mills-type form
(HE)
DIl,=X,. (6.2.24)

Moreover, the complexified quadratic PG Lagrangian
() i, (+) (=) (&)
L=-2[A" =1 A,

ir (=) (&) ) a
. Z[nuﬁ - n“ﬂ] A (nmf, F 7300 A V5= 2—;277(”3) (6.2.25)
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reduces to the GR| Lagrangian

Es) i B @ SR
L” ::FZE 1'1"/\17&, L” = L”, (6226)

which is purely quadratic in the new translational momentum. To some extent,
we have thus realized Trautman’s and Thirring’s “dream” (cf. TRAUTMAN 1973;
THIRRING 1980) of rewriting Einstein’s equations in a Maxwell-type form. Observe
that the Hodge star is absorbed in the definition of the complex field momenta. Mat-
ter with spin could formally be incorporated in our scheme by admitting (MIELKE
et al. 1989) an additional piece ™\, in the ansatz for the Lagrangian multiplier,
provided it satisfies D M\, = 7,5

()
The complex translational field momenta I7“ replace the role of the torsion if we
use the Sen connection

(®) i 2 aB (€]
DY = :I:EZ g’ I 5, (6.2.27)
which is not metric-compatible. The equivalent presentations of the GR| Lagrangian

(€3] 1
= D)

(DD () 1 & ()
[19“ ADIT,+dW" A na)] = =3 DV A I, (6.2.28)

allow us to rederive the field Eq. (6.2.24) via § (i)” /09 from a variational principle.

In order to solve the vacuum equation (6.2.24) for the coframe and the complex
momenta, the integrability conditions have to be satisfied. In a teleparallel Riemann—
Cartan spacetime with R,3 = 0 and in view of the first Noether identity (6.8.11),
these conditions read in vacuum?

(D) () () (&) i (*)
DDV =R;* A9’ =0,DDI,=—-R,’AIT5= :I:EEZ (ea) TP A 35 =0.
(6.2.29)
Is it then possible to generate all exact vacuum solutions of Einstein’s equations by
means of prolongation methods? At least for the complex Ernst equation, a similar
type of approach is possible for generating “almost all” stationary axisymmetric

solutions (HARRISON 1983; PLEBANSKI 1975).

As aconsequence of this, the complexified Lagrangian (6.2.19) becomes quadratic

in these new field momenta, cf. (6.2.26), resembling the chiral version

(®) F &
Lym = F(1/4)Tr (F A F) (6.2.30)

2In the presence of matter, the first Noether identity enters the game. For a resolution of (6.2.24) in
(€3]
terms of the momenta 7 ,, it would be convenient to have a relocalized energy—momentum current

(£) () (E)
X, for which D ¥ , = 0 holds.
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of Yang—Mills theory. The gravitational field equations of chiral GR| in vacuum read

() (E)
DI, =0, (6.2.31)

where the modified covariant exterior derivative

(B (D) (*) i 2 ) 3 (%)
DIM,:=DIT,+ EE (el IT7) A M 4, (6.2.32)

contains the linear connection I, which is combined with the complex translational
(*)
momentum /7, to the complex connection

) e} & 1 &),
r.’=r+iA.%, A= 1552 e TP, (6.2.33)

and it is of the type introduced by SEN (1982) in a rather ad hoc way.* The tensor-

valued 1-form (j)a"g deforms our original Riemann—Cartan connection I',” similarly
to the way in which the contortion deforms the Levi-Civita connection. From the
viewpoint of quantum field theory, the deformation (6.2.33) of the connection could
be regarded as the classical counterpart of a field redefinition (MIELKE & HEHL
1991) of the “bare” connection.

They are formally those of Yang—Mills for the translational gauge field momenta
“living” on a nondynamical RC background fixed by the teleparallelism constraint
R = 0. For consistency, this constraint ought to be enforced via Lagrange multi-
pliers \,p in the teleparallel Lagrangian (6.2.12) with constraints.

6.3 Energy-Momentum Complex

It is a consequence of the first field equation of the (broken) PG theory that the
energy—momentum complex

Ey,:=E,+TI."AH;+ X, = dH,, 6.3.1)

due to the Poincaré lemma dd = 0, is weakly closed. In the subcase of GR|, related
expressions have been given before; cf. MgLLER (1961), HAYASHI & BREGMAN
(1973), THIRRING (1978), HEHL et al. (1980). In the teleparallelism limit Lﬁﬁ — 0,
the “superpotential” H, is the Mgller or Freud complex (FREUD 1939)

3The transposed connection, which has the property (MIELKE et al. 1989) that Bnn, = Dny —
(ea) TP A 1 = 0, may be regarded as a special real version of our Sen-type connection, for

(£) (),
which D1, = £(i/2)02143 A IT7 holds.
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H = 612[193 A F(dIg A D) — %19(, A *(d9° A 19[,)] - % % A pas,
(6.3.2)
of GR or GR, respectively. On the basis of (6.3.1), it has been observed by ANDRADE
et al. (2000) that E,, is a covariant conserved gravitational energy, i.e., that DE, =
DDH, = —R.” A Hz = 0 due to the vanishing of the Ricci identity in a teleparallel
spacetime.
It also should be noticed that the complex conjugate three-form

) @, @ ® @ @
Sa=T " AN+ X,=dIl,, Soa= S, (6.3.3)

is the corresponding energy—momentum complex of chiral GR; see MIELKE (1992).
Its real part turns out to be related to the so-called Sparling form; cf. DUBOIS-
VIOLETTE & MADORE (1987).

However, in spacetimes with Killing symmetries, energy and angular-momentum
expressions suffer from the well-known factor two problem. One way out is to amend
the equivalent Hilbert—Einstein Lagrangian by an additional Euler term; cf. MIELKE
(2001).

6.4 Hamiltonian Formulation of Complex GR|

For the canonical analysis, let us assume that the spacetime manifold admits a slicing
into a family of spacelike three-dimensional hypersurfaces X; that are parametrized
by the coordinate time x° = ¢. Then there exists the future-directed timelike vector
field

n:=0, — N*9/ox", A=1,23, (6.4.1)

which is uniquely linked to the hypersurface orthogonal I-formu := —N2dt, <=
du Au =0 viau = g(n, .). The lapse function N and the shift vector N4, which
are familiar from the ADM formalism, are arbitrary; cf. Fig.6.1

The normal part of a p-form ¥ is defined by

Ly =di AW U, = n|Y, (6.4.2)

whereas the part rangential to the hypersurface X, is given by
Y=nldi AW)=( — Hy, n|¥ =0. (6.4.3)
The decomposition operators “1” and “ ” form a complete set of projection
operators. (For more details on this very concise (3+1) decomposition of exterior

forms in Riemann—Cartan spacetime, see WALLNER 1990; MIELKE & WALLNER
1988.)
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Fig. 6.1 Foliation by a
family of spacelike
hypersurfaces

Let us consider a Lagrangian L = L(¥*, ¥, D¥) which is of first differential
order in the (collection of) fields ¥. In concordance with the classical prescription,
the corresponding Hamiltonian 3-form is given by

A=A~ A % , (6.4.4)

o

where #" = L := n|L denotes the normal part of the Lagrangian. Since the “time
derivative” ® is more precisely given by the Lie derivative ¢, := dn] + n]d along
the timelike vector field n, we have

OL

Now compare this with the canonical energy—momentum 3-form

Soim 2L il eatpwy A 25 ey £ 2L
T fga T G ¢a opw @ ow
e e i (6.4.6)
(el TP A~ + D2 — (ea R, .
(ea_] ) A 8Tr3 + 8T“ (e( _] B ) A BR/;W

For the intended comparison, we drop the contribution from possible ‘“Pauli terms”
and transvect the resulting expression with the four-vector n® := n|9“ of lapse and
shift, for which the useful relation n® e,, | = n|¥ can be derived. For the projection
of the anholonomic index of the truncated energy—momentum current (6.4.6) in the
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normal direction, we get the expression

‘X IL — (n|D¥) A oL ( Jlll)/\aL (6.4.7)
n*X2,=n|L— (n — = —. 4.
opw " ow
In introducing the gauge-covariant Lie derivative L, = Dn] + n] D, separating
a boundary term, and using the variational derivative (6.8.2), the following relation,
which holds ‘strongly’ or ‘weakly’, respectively, is obtained:

ay = L LW/\aL_ lI’/\(SL+D ) A
n“Y,=n|L— (L, V) 3D_![/ (n]¥) 6_11/ [(nJ ) 8Dl1/] (6.4.8)

. oL
=)L — (6,9 + I p(Lap) W) A —— D[ W) A .
nJL = (LW + I plap)¥) A 55 + D (1)) A o
We are going to show that the fangential part of this energy—momentum expres-
sionisrelated to the Hamiltonian (6.4.5). Indeed, usingn |¥ = n](dt An]¥) = n|¥
and the fact that the boundary term is a Lorentz scalar, we obtain

; oL oL
~ afl p _
H=n"2, + T p(Iap)¥ A DY g[(njlll) A 3 ] (6.4.9)

If ¥ represents a collection of gauge fields, the partial derivatives in the truncated
definitions

oL
= pUap)¥ A ——— (6.4.10)

Tag - DY

T oras
of the 3-forms of energy—momentum and spin are to be replaced by variational
derivatives, and the sum over all individual ¥’s has to be performed. Quite generally,
the Hamiltonian then acquires the following form:

5L 5L
A= e T S

(6.4.11)

oL op OL ] -

d '4 oL @ r
—d[ W) Ao S b T

oDV oT«

Neglecting the boundary term, the gravitational Hamiltonian of general PG theory
takes the form
H=Zn" G+ TG, (6.4.12)

where the normal vector n® := n ]9 comprises lapse and shift and I, ** := n |’
is the normal part of the Lorentz connection and ¢, and ¢, 3 represent the tangential
generators.
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6.4.1 Poisson Brackets

Their Poisson brackets (BAEKLER & MIELKE 1988) at “equal times” read

[Go(t,%), Dy(t.Y)} = (=T’ D, + Rap,95) - 0(x —y), (6.4.13)
(9°5(1,%), 4, (1,y)} = (52,’ G30(x —y), (6.4.14)
[G°5(t,%), D5t y)) = (0§ 95— 63,9%) - 5(x — y). (6.4.15)

This Poisson bracket structure is on a par with the local affine algebra:

[Da, D) = —Tos"(x) Dy + Rap,’ (x) L7, (6.4.16)
[L%5. D] = 6 D, (6.4.17)
[Los. L] = 05175 — 6L, (6.4.18)

where D, := e,]D are the anholonomic components of the exterior covariant
derivative. Equations (6.4.16)—(6.4.18) constitute a soft gauge algebra (NE’EMAN
et al. 1980; SOHNIUS 1983), since the group-theoretic “structure constants” are the
spacetime-dependent components of torsion and curvature.

In the Lagrange multiplier formulation (6.2.12) of teleparallelism, there would
arise the extra tangential term D) ; in the Lorentz generator ¢, where
W =W —dt An]¥ in the notation of differential forms. However, as suggested
by the geometric identity (6.2.11), the Lorentz constraints are identically satisfied
byA,; = (1/202)* (94 A Jg) = —(1/N*)ng, *9 5, This is another manifestation of
the dynamical equivalence of GR and GR up to a canonical transformation induced

by the boundary term d (jCF‘)TT.

After this trivialization of the Lorentz constraints, the Hamiltonian (o = 6) and
diffeomorphism constraints (o = B) of complexified GRy, in terms of a complex
Sen-type connection (MIELKE 1992) are

(£) (H) ) (B )
4, =DMHy=D *o, =0, (6.4.19)

generalizing the Gauss constraint of Maxwell’s theory to a gauge theory of transla-

tions. Only first class constraints remain after this gauge fixing, according to MALUF
() (£)

(1994). Here the tangential Ashtekar-type connection &7, := *I1,, is three-dual

to the translational field momentum, and canonically conjugate to the triad densi-

ties *J,, where we note that the spatial Hodge dual is involutive, i.e., ** = 41.
Moreover, by adopting tetrads in the temporal gauge 90 = 0 of SCHWINGER (1963)

(®) ()
and the gauge /5 = d ¢ of NESTER (1989), the Hamiltonian constraint

() )
M= D*oy =0, (6.4.20)
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i.e., (6.4.19) for a = f), vanishes identically.

6.4.2 Chern-Simons Solutions of the Chiral Teleparallelism
Constraints

According to this canonical decomposition of forms (MIELKE 1992), the tangential

parts of the basic one-forms, i.e., the triad densities *v,, and the tangential part of
(£) (x)
the self-dual or anti-self-dual connection 7, := *I1,, the three-dual of the chiral
&) . ) + :
momenta I7 ., become the generalized coordinates ¢ and momenta p of the bosonic

sector.
In the transition to quantum gravity, in contrast to GR (KoDAMA 1990), for GR|,
the Schrodinger representation

q: 2079 = 297 ¥ ), (6.4.21)

+ () .2
p: iﬂa l1/”(19) = —il

N @, (D), (6.4.22)

()
prevails (MIELKE 2002), where the complex field “momenta” *I7 , become differ-
ential operators, whereas the triad densities *¢” remain generalized coordinates ¢.
For the remaining Gauss constraint (6.4.8) with o = B, let us try the state vector

¥y (9 fa ! 59, AT B 6.4.23
()_exp(—/M}_TT)—exp(ﬁ/Ms[ VR N\ _]) ( )

as a solution, with the integration variables hidden in the 3-forms and a sign inverse

to that of MIELKE (1998, 1999). It involves the tangential complexified translational
()
Chern—Simons term C . in terms of the triads or triad densities and the tangential

part of the self-dual or anti-self-dual torsion.

When the tangential complexified translational Chern—Simons term (6.2.20) is
rewritten in terms of the triad densities *12 with B = 1, 2, 3 and the tangential part
of the self-dual or anti-self-dual torsion, the chiral version of Eq. (16) of MERCURI
(2008) for “large”-gauge transformations is anticipated (MIELKE 2002). Then the

()
momentum operator (6.4.22) returns the chiral torsion 7 Z as a prefactor:

_gsz(ﬁ)_Q?wa) (6.4.24)
sz, 1= LRI ol

Since the corresponding connection I” ﬁ‘ﬁ = 0is of pure gauge type, the state vector

(6.4.23) depends merely on the triads as sole dynamical variables. Consequently, the
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operator version of the Sen covariant tangential diffeomorphism constraint (6.4.19)

simplifies to

(€2 ) () () (€2 (€2

—522*(5*19 )=QZBEBCBAQC=0, (6.4.25)
=B

where the rule ¥ A *@ = @ A *Y¥ for differential forms of the same degree has
been applied. Observe that the first Bianchi identity (6.2.7) gets truncated to

() (&)
DT?

=0 (6.4.26)

in ateleparallel space with zero RC curvature or at least for configurations of self-dual
or anti-self-dual tangential RC curvature.
Thus, similarly to what occurs in topological field theory (HOROWITZ 1989) with
a flat connection, in teleparallelism, (6.4.23) appears to be the unique solution.
Unlike the KODAMA (1990) approach, our formalism has the advantage that the
CS term for constructing the state vector is gauge-invariant. In the former, the choice

of the state vector 3 “
WA (A) = exp (— / C RR”) , (6.4.27)
A Sy,

borrowed from SU(2) Chern—Simons field theory (WITTEN 1989; GUADAGNINI
1993; COTTA-RAMUSINO et al. 1990), is known to solve the Hamiltonian con-
straint ¢, ¥,(A) = 0 of GR with cosmological constant in the nonperturbative
loop approach (BRUGMANN et al. 1992; GRIEGO 1996).

+
Moreover, the translational CS term (Q)TT does not depend on any cosmological
constant A in a singular manner, and in spite of the appearance of the Planck length
£, it is dimensionless and nonsingular even for £ — 0, due to dim QB = [£].
Since the coframe is nondegenerate, the largest contribution would come from

()
configurations with T 8 = 0, i.e., self-dual or anti-self dual tangential torsion. Con-

sequently, Wilson-type solutions (6.4.23) of the corresponding quantum Gauss con-
(£)
straint are dominated by self-dual torsion solutions satisfying 7 = 0.

6.4.3 Torsion Instantons

Such exact instanton-type solutions for teleparallelism have been found: for spherical
symmetry, one was given by OBUKHOV et al. (1997) in a study of chiral anomalies
(MIELKE & KREIMER 1998, 1999, KREIMER & MIELKE 2001; MIELKE & MACIAS
1999), whereas a related axial solution has been studied by NAKAMICHI et al. (1991)
for self-dual topological gravity.

Exact torsion instantons “live” on a conformally compactified Euclidean space
R* U 0o = S$* with the spherically symmetric metric
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ds* = h*dr* + f*[dy* + sin’ ¢ (d6” + sin® 0d¢?)] (6.4.28)

where (r, 1, 0, ¢) are the standard hyperspherical coordinates that parameterize the
unit three-sphere S°. The function f carries physical dimension [length]. This space
is parallelizable such that the RC curvature vanishes but then is endowed (OBUKHOV
et al. 1997) with the nontrivial spacelike torsion

1 2 5
T4 = 7 (df no* = 20047195 A 9,) = —?nA,,,,W AP =£TA TY =0,

(6.4.29)
which is self-dual or anti-self-dual, provided that df = %2 hdr. Here the self-dual
generalized Levi-Civita symbol 7/}, := 10" ., 4 67,67 — 0,169 of *T HOOFT (1991),
cf. BAEKLER et al. (1982), MINKOWSKI (1986), is instrumental. Substituting this into
the translational Chern—Simons term is particularly simple (CHANDIA & ZANELLI

1997) in the zero-connection gauge I” ﬁ‘ﬂ = 0, where

1 1 PSR
CCop = S0 AdY, = EQA AdD, =309 AP A (6.4.30)

results.
Applying Stokes’s theorem and integrating over the boundary three-sphere at
radial infinity r — oo yields

nny = / dCrr = / Crpr = 3Vol($Hk = 67°k. (6.4.31)

RS s

One can deduce (LI 1999) that k is the winding or instanton number of Pontryagin,
in compliance with the CS decomposition (6.2.3). If torsion is self-dual or anti-

(G2 (¥)
self-dual, i.e., T # = 0, then integration over the chiral CS term C 1 yields the
same value or zero, respectively.*
As an example, one can imagine

arz

= —— 4.32
f=5ra (6:432)

for an instanton-type behavior in 4D Euclidean space. The axially symmetric solution
given earlier by NAKAMICHI et al. (1991) also is teleparallel with self-dual torsion,
whereas the instanton of D‘AURIA & REGGE (1982) has vanishing translational CS
term.

Thus one can surmise that the state vector ¥ () o< e™“ as a solution of the
quantum Gauss constraint (6.4.25) is dominated by such torsion instantons.

C

“Interestingly, in the gauge Qﬁ = 3krd0O. = hdr = £df/2, such instantons are solutions to the
topological Eq.(6.7.12), due to 70 = 0.
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6.5 Wilson Loops and Links

In QFT, a useful tool beyond perturbation theory are Wilson loops, when the four-
dimensional spacetime lattice is exhausted via the enclosed plaquettes; cf. KAKU
(1993).

From the holonomy of a Lie-algebra-valued connection one-form A = A/")\I
dx" € €, one can construct a gauge-invariant operator, or character, along the loop
with coordinates " (s). Then the Wilson loop can be written as

W(A,~) = TrP expj{ A =TrP expfds%" () A7 (v(s) Ay, (6.5.1)

where P denotes path-ordered exponentials of line integrals along knots parametrized
by s. We disregard here the self-linking problem or go over to framed loops introduced
in the original work of WITTEN (1989), which are equivalent to twisted bands.

In lattice gauge theories such nonintegrable phase factors form an (overcomplete)
basis for the infinite-dimensional group ¢ of gauge transformations in spacetime.
The state vector ¥ (A) for the gauge potential can be transformed via the Wilson
loop into a loop-dependent state:

(y) = DA W(A, V)W (A). 6.5.2)
€|

The integration is performed over a coset space 6'/¢ in order to factor out gauge-
equivalent connections. This loop transform may be regarded as a generalization of
the usual Fourier transform.

In topological CS field theory (GUADAGNINI et al. 1990; OOGURI & VAFA 2000),
it is known that the first-order part of the correlation function or expectation value

OIW ()]0) D = DA WA, )
€/G
_ i) 748 =70
= 4ﬂfdsfdm‘ ()7 ) nopvs ) — O (6.5.3)

of the Wilson loop is the self-linking number G (7y) of Gauss. It is interesting to see
how this link invariant of the nineteenth century turns into one of the key ingredients
of CS theories (COTTA-RAMUSINO et al. 1990; BRUGMANN et al. 1992).

Moreover, the full correlation function

OIW()[0)e CPV (), (6.5.4)
associated with a link L satisfies the skein relation (JONES 1985) of a generalization

of the Jones polynomial V (). If we could formally transform these results of lattice
gauge theory to quantum (super)gravity, cf. ARMAND-UGON et al. (1996), then the
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state vector |¥) of the universe would be characterized by knot invariants, such as
the KAUFFMAN bracket (1990).

A comprehensive exposition of this subject can be found in WU (1992) as well
as in the monograph of GUADAGNINI (1993). These line integrals can be calculated
either numerically or by expanding the generalized Jones polynomial mentioned
above, as demonstrated in a paper by ALVAREZ & LABASTIDA (1995).

6.6 Topology of Cartan Circuits?

The teleparallel version of GR is a gauge theory of translations with the abelian
group R* as structure group. Then, instead of Wilson-type loops, we encounter
Cartan circuits (CARTAN 1924) with dislocations at the Planck scale. Due to the
condition R,3 = 0 of “flat” RC spacetime, this is a parallel transport of “sliding”
without “rolling.” In spaces with topological defects, the phase could be affected
by the gravitational Aharanov—Bohm effect (MACIAS et al. 1996). Since these Car-
tan loops carry triads along, they are inherently framed (BRUGMANN et al. 1992;
GUADAGNINI 1993) via one of the orthonormal legs n® = n]J%. In view of (6.4.25),
it is a conjecture that the degeneracy problem (WITTEN 1989) of the Wilson-type
loops in the Ashtekar approach is automatically avoided for GR, and diffeomor-
phism invariance is retained.

It is well known from differential geometry that the Euler number (1/1672)
J R A R((;; and the Pontryagin integral (1/872%) [ R,” A R3 bear an intimate
relationship to topology. However, in GR, both vanish due to the teleparallelism
constraint R,3 = 0. Thus one can expect (MIELKE 1999) that gravitationally induced
chiral anomalies in the coupling to Dirac fields are also absent. On the other hand,
dynamical torsion perse is generally considered to be unrelated to topology, due
to the following argument: For a real constant ¢ with 0 < ¢ < 1, the RC connec-
tion can be deformed in a continuous way into its Riemannian piece according
to I,a(e) = Fi}, — €K, such that I,3(0) = Fi}, Provided a topological quantity
depends on the connection I7,3, it must be invariant under this continuous defor-
mation, and consequently, a continuous torsion two-form drops out; cf. MILNOR &
STASHEFF (1974), as well as WU & ZEE (1984).

A different situation arises when torsion is discontinuous or has singularities
(HANSON & REGGE 1979) as in the three-dimensional case of classical crystal dis-
locations (HEHL & KRONER 1965): a well-known example is the case of a pure vector
torsion T := e, |T“ = do derived from a scalar field via a gradient (GREGORASH &
PAPINT 1981). (Such a scalar field may measure the vorticity of the “coupled super-
fluid” and may be related field-theoretically to the Higgs phase or the conformal
structure of spacetime.) The integration over a closed contour in the four-dimensional
manifold, which may enclose the singularity line of the dislocation N times, yields

/T = /da = 27N, 6.6.1)
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provided the scalar field is not single-valued, as, for instance, in the case of o =
arcsin(|x|).

For our spherically symmetric torsion instanton (6.4.28, 6.4.29), we expect that a
nontrivial winding number will occur as a result of the homotopy group m3(SO (4)) =
7 @ 7. On the other hand, the 3D hypersurface admits the intriguing mapping £9* —
I** := In"8€ Iy of the triads to the corresponding three-dual of the su(2)-valued
connection (BAEKLER et al. 1992). Since this implies a mapping Crp — Crg + A'n
to the associated Chern—Simons term with “induced” cosmological constant A, we

expect that the chiral translational CS term E)TT will account for the same knot
invariants as the Ashtekar connection, but in a more natural manner.

Wilson-type loops usually live on simply connected spacetime. However, on the
small scale of “quantum gravity,” the underlying spacetime manifold R x W3 may
have a foamlike structure, with a hypersurface that is not simply connected, such
as the three-dimensional sphere with N wormholes (MIELKE 1977; NICOLAI &
NIEDERMAIER 1989) attached:

wh = $3# NSt x §%). (6.6.2)

Thus, it would be interesting to see applications of Cartan circuits to spacetimes with
knot wormholes (MIELKE 1977) with their proper energy spectrum (MOFFATT 1990),
for which generalizations of torus knots (LABASTIDA & MARINO 2001) and links
would occur, which cannot be shrunk to a point.

After reviewing the group-theoretic origins of the two parity-violating topological
terms of Pontryagin and N, we shall analyze the modifications of the gravitational
gauge equations by such #-terms. Then the topological amendment (6.7.2) provides
an intriguing relation (6.7.12) for axial torsion 7, independent of RC curvature.
This result has repercussions on teleparallelism constrained by (6.2.12), where the
path-integral-type CS solution (6.4.23) of the quantum constraints are dominated by
torsion instantons.

In classical EC theory, the net axial current production djs seems (CHANG &
S00 2003; KAUL 2008) to establish a link to the NY term via the Cartan relation
(6.7.7). However, a careful analysis of the axial and trace anomalies (KREIMER &
MIELKE 2001; MIELKE 2006) in gravity does not support this, but rather provides
a relation to the scale-invariant Pontryagin term, including a U (1)-type four-form
d<f A dof involving the axial torsion. Since torsion instantons are characterized
via (6.4.31) by the instanton number k, they would ultimately induce a periodic
f-vacuum of quantum gravity, similar to what occurs in Yang-Mills theory; cf.
MIELKE & ROMERO (2006).
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6.7 Topologically Modified Einstein—Cartan Theory

Let us generalize the EC Lagrangian by including, besides the Pontryagin term, a
dynamical coupling to the NY term, and in addition, liberate possible #-angles to
scalar fields.

This amounts to considering the topologically modified gravitational Lagrangian

L := Lgc+ Lo+ Lp, (6.7.1)
where the 6-type boundary term
Ly = 0rdCrr + 0.dCrr (6.7.2)

is a linear superposition® of the topological Nieh—Yan term and the Pontryagin four-
forms. We recover parity or CP invariance (MIELKE et al. 1999) in the case that the
f-angles are axionlike pseudoscalars (MIELKE & ROMERO 2006).

In the translational field momentum,

oL Or
Hy=——=—=T,, 6.7.3
ore 22 ( )

there is only one torsion term, whereas the rotational field momenta

oL 1 0
5 Nap — _Tﬁa AVs — OLRap (6.7.4)

Hyjpi= ——— =
g OR ~ 2 202

of the EC theory is amended by two contributions from 6 terms.
Due to this topological modification, the first gauge field equation reduces to

DOy AT, + 01DT, + 0*E, = —0>X,,. (6.7.5)

Using the second Bianchi identity (6.2.6) for the curvature, the second gauge field
equation reduces to

1 DOy
—T7" ANagy — —= AN9q A0+ DO A Rog = Fja A 1
o gy = 50 p+ Do 5 RAWI)
1
= Zﬁa ANdg A *Js. (6.7.6)

This is a generalization of the Cartan equation

K
Crr = —J 6.7.7
™= gl (6.7.7)

5The translational angle Ot = 2/~ is at times identified (FREIDEL et al. 2005) with the inverse
Barbero-Immirzi parameter . Such 0-terms and the canonical transformation induced by the trans-
lational Chern—Simons term d Ctt were considered earlier by MIELKE (1992).
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for constant values of 6.

Note that the angular momentum part Y3 A H,; of the gauge fields induced by
the NY term cancels identically against one part of D H,3. In the case of Dirac fields
(MIELKE 2004), the spin—energy potential ji,, a two-form, is related to the axial
current three-form js = 1) *y7y51) via

1
Ha = Zi‘}u A *Js, (6.7.8)

where the one-form  := 7,9 is Clifford-algebra-valued. At first sight, it appears
that (6.7.6) for DO, # 0 provides torsion with a dynamical coupling to RC curva-
ture. However, in view of the first Bianchi identity (6.2.7), this is not quite true: by
contracting (6.7.6) with the coframe ¢, it converts into

T Anys+ kDO A DTy =0. (6.7.9)

This is a first-order equation only for torsion, even in the presence of Dirac fields,
since the antisymmetric piece of its spin—energy potential vanishes automatically,
i.e., o A U9* = 0, in view of (6.7.8).

Equivalently, it can be rewritten as

kDO, AN DTg = =T Ang = Dng, (6.7.10)

where the vector torsion one-form 7' = ¢, | T“ enters as an intermediate source. Due
to the Poincaré lemma D D6 = ddf = 0 for a (pseudo) scalar field, Eq. (6.7.10) has
the exact torsion solution

kdOL A T3 = —ng (6.7.11)

as a first integral. After a contraction with ©¥°, the dual of the axial torsion one-form
o = *(9* A T,),i.e., the translational CS term, turns out to be related to the volume
four-form 7 via

k02d0y A Crp = 21). (6.7.12)

This topological result is independent of the RC curvature. There occurs, however,
a coupling to a kinetic term arising from the pseudoscalar field f; rescaling the
Pontryagin term (6.2.5).

Information on other irreducible torsion components can be obtained from (6.7.5)
or from (6.7.6) after covariant differentiation, with the result that

DT Aoy + 6DOT A Tio AV /0% = 26 (Tia A gy — V1o A Dpgy) . (6.7.13)

Second-order derivatives of the axionlike field drop out, again due to the Poincaré
lemma DD6 = ddf = 0, and a quadratic torsion term vanishes identically, i.e.,
TY A TH144,, = 0. Again we end up with a first-order equation for torsion, where,
however, the spin-energy potential 1, (of Dirac fields) remains as a source.
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6.8 Dynamics of Quadratic Poincaré Gauge Theory

In Poincaré gauge (PG) theory, the total action of interacting matter and gravitational
gauge fields reads

W= /[L(ﬁ", T R, W, DW) + L, (9", T, R“ﬁ)]. (6.8.1)

It is a functional of a (nonminimally) coupled matter field ¥, which, in gen-
eral, may be a p-form, and of the geometric variables ¥* and I'*? = —I"%®_ Their
independent variations yield the following field equations:

0L 0L oL
— =——(=D)’D = MATTER 8.2
s —ap D Papy =0 ( ) (6.8.2)
DH,—E,=X,,  (FIRST) (6.8.3)
DH.3 — Eo3 =T,3. (SECOND) (6.8.4)

Here the gauge field momenta are defined by

oL,  IL,

H = oL, 0L,
ST adve T

ddres — QRS

and H,p:= — (6.8.5)

Part of the sources for the Yang—Mills-type divergence terms “D H” are the mate-
rial energy—momentum current

oL oL oL
XY= S9e = Pge + 5T (6.8.6)
and spin current
oL L L
TaB i= =p(Uap)¥ N ——— + Vja A 8_ + Da—, (6.8.7)

5ras apw) T oA T T 9RAP

respectively. Our definitions take care of optional “Pauli-type terms” in the matter
Lagrangian L. In addition, the 3-forms of energy—momentum

aL <) 6
E, = Fo0 =e,]Ly + (ea)T") A Hg + (ea]R”Y) A Hp,, (6.8.8)
and the spin current
Eqp 1=~V A Hy (6.8.9)

of the gravitational gauge fields themselves occur in (6.8.3) and (6.8.4), respectively.
Intuitively, this is due to the universality of gravitational interactions. Observe that
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the antisymmetric piece of the energy—momentum current (6.8.8), formed with the
aid of the coframe ¥, in general gives us back the gauge Lagrangian L, amended
by Yang—Mills-type terms:

0 A Ey =4Ly +2T% A Hy +2RP A H,p. (6.8.10)

From local Poincaré invariance one “weakly” obtains the first and the second
Noether identities

DX, = (e T) A 2y 4 (ea|RY) ATys (6.8.11)

and
DTaﬁ + 19[0, A Eﬂ] = 07 (6812)

respectively, provided that the matter field equation 0 L /¥ = Qs satisfied. Note that
in the differential identity (6.8.11) for the energy—momentum current there occur, on
the right-hand side, Lorentz-type force densities of the general structure field strength
x current. The first term corresponds to a translational force of Peach—Koehler type,
and the second term is known as Mathisson—Papapetrou force (HEHL 1985).

If we discard a possible “bare” cosmological term, the gauge gravitational
Lagrangian, which is at most quadratic in the irreducible pieces T and /) RS
of torsion and curvature, respectively, can be written (MIELKE 1984; HEHL 1985),
using Euler’s theorem on homogeneous functions, as

1 1 / ap
L =——T‘¥/\Ha——RW/\(HM _ 4, ) 6.8.13
qPG 5 5 8= 2g2"les ( )

where the translational field momentum is given by

3
1 .
H, = s *( E a; (’)Ta), (6.8.14)

and the Lorentz-rotational field momentum by

aop
Hop = =35 1o — Zb DRus | - (6.8.15)

The gravitational coupling constant is absorbed in the Planck length £ ~ 10732 cm
whereas ag, a; (i =1,2,3), K, and b; (j =1, ..., 6) are dimensionless coupling
constants.

The zeroth field equation arising from the variation of the metric g, is omitted
here because it is known to be redundant “on shell,” i.e., once the matter equation is
satisfied.
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In metric—affine extensions, there are not 6 but 11 irreducible pieces: five more
quadratic terms have been proposed by ESSER (1996) in an interesting decomposition.
However, they may be partially related to the irreducible components of the topo-
logical Pontryagin and Euler invariants. For instance, the Ricci squared term (27) of
VASSILIEV (2005) appears to be part of the Euler invariant. From the corresponding
second Noether identity there arises the generalized Bach—Lanczos identity, (A.3.7)
of HEHL et al. (1995), which relates some of the a priori independent quadratic
curvature pieces in the first of the two vacuum field equations as equivalent terms.

6.9 CP Violation in Quantum Gravity?

According to TREDER (1975), EINSTEIN indirectly discovered in 1925 the particle—
antiparticle symmetry in physics. As an instructive example, let us consider, with
Einstein, the Reissner—Nordstrgm metric

M Q2 oM %\ !
is* = (1 M Q—) it + (1 e Q—2) dr? + 72492, (69.1)
r r

r r2

which is an exact solution of the coupled Einstein-Maxwell equations. Applying
a charge conjugation C : Q — Q' = —(, one obtains the same gravitational field.
This, however, has to originate from exactly the same mass. Since the Einstein—
Maxwell equations are invariant under CPT, charge conjugation C has to be accom-
panied by an additional time reversal T (particles moving backward in time = antipar-
ticles) and by a space reflection P. Thus there is a particle—antiparticle symmetry
already inherent in classical GR coupled to the Maxwell field.

However, a CP violation cannot be ruled out in the high-energy region of quantum
gravity. In order to exhibit its possible origin, let us consider, for example, a qPG
Lagrangian that is purely quadratic in torsion and curvature, i.e., one that is specified
by the choice ag = 0,a; = 1, and b; = 1. In order to obtain its complexified version,
we add, similarly as before, two Chern—Simons-type boundary terms. But in this
more general setting, the boundary terms will be multiplied by two constant complex
parameters 6 and 6y :

o1
L= ﬂ[w/\ “T. + 0r (Ta/\Ta—}-Raﬂ/\ﬁa/\ﬁﬂ)]

(6.9.2)
1 aff * af
+§[R A *Rap + 0 R™ ARag]-

Note that all 4-forms involving the Hodge star, as for example the volume form

1 )
Nagys 0 AP AIT A, (6.9.3)

— 1 —
n="1=y
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are invariant under space reflections P : 94 = —94, where A = 1, 2, 3, due to the
occurrence of the determinant of the metric in 7,3,s. In contradistinction to these
dual forms, the f-terms violate parity P; cf. HOIMAN et al. (1980). If the 0’s are
real, these terms will also violate CP. On the other hand, in the standard process of
generating Ashtekar’s variables, the 6’s are purely imaginary, thus preserving CP
invariance. According to a different strand of ideas (ASHTEKAR et al. 1989; SERIU
& KobpaMA 1990), it is not indispensable to go over to complex variables, but then
one would have to face CP violation.

The term R,” A R;® is known to yield, after integration over spacetime, a topo-
logical winding number, the Pontryagin index

1 )
P=3 R, AR5 (6.9.4)

Observe that no metric is involved here. Consequently, this formula should hold
for “spacetime” manifolds of any signature and provide us with a genuine topological
invariant. On the other hand, the translational 67 term is not directly connected with
the topology of spacetime. Nevertheless, for certain nontrivial configurations, this
term could still acquire some topological significance, provided it is dynamically
induced by the Pontryagin term via field equations. Configurations in which torsion is
dynamically related to boundary terms in the curvature are Taub—NUT solutions with
torsion, for which a Witten-type effect (MIELKE 1985) has already been demonstrated:
the f term induces a “rotation” in the parameter plane spanned by the Schwarzschild
mass M and the NUT parameter N (“dual mass”).

The Yang—Mills type terms quadratically in the curvature are surmised to dominate
in the high-energy region, and one would expect a CP violation by a real 6 term
in quantum gravity (ASHTEKAR 1988). On the other hand, the low-energy region
is governed by the Hilbert—Einstein Lagrangian, i.e., in our teleparallel formulation
by specific torsion-squared terms, supplemented by the 61 terms. Because of the
teleparallelism condition R*” = 0, one would naively expect that the Pontryagin
term does not contribute in this case. However, teleparallelism holds only classically.
Even above the Planck scale, we can at most require (0|R*?|0) = 0, but we could
be forced to admit small curvature fluctuations with induced CP violation.

The generating function for our new complex variables is necessarily imaginary.
If we go over from the (classical) Hamiltonian formulation to quantum theory, the
complexification of the action will induce a nonunitary transformation of the cor-
responding operators such that in a Schrodinger representation, the states become
renormalized, and the measure for the momentum representation becomes a nonlocal
function (FUKUYAMA & KAMIMURA 1990). In gravity, this may have far-reaching
consequences for the corresponding Wheeler-DeWitt equation (WHEELER 1968;
MIELKE 1977; KIEFER 1994) for the wave function of the universe.
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Chapter 7
Yang’s Theory of Gravity

7.1 Introduction

It was not only the sixtieth anniversary of the Yang—Mills (YM) equation (YANG &
MILLS 1954), but also the fortieth anniversary of Yang’s theory of gravity (YANG
1974) that was commemorated in 2014. The historical route to SU(2) gauge theory
is laid out beautifully by MILLS (1989). Ramifications (MIELKE & HEHL 1988) are
mainly due to the paper of SCHRODINGER (1932), in which the compact “Clifform”
formula (MIELKE 2001) for the Riemannian curvature anticipated, to some extent,
the concept of gauge curvature. In a letter to the author reprinted in MIELKE &
MAGGIOLO (2005), the late Bob Mills confessed that he remained “still very much
puzzled by gauge fields.”

Here we will concentrate on the gravitational aspect: YANG proposed 1974 to
generalize Einstein’s general relativity (GR) by an affine gauge theory with a YM-
type action. In fact, curvature-squared models had been considered before, first by
WEYL in 1919 and then later by STEPHENSON (1958), HIGGS (1959), KILMISTER &
NEWMAN (1961), as well as STELLE (1977); cf. SCHIMMING & SCHMIDT (1990) for
more details.

Its scale invariance qualifies Yang’s theory as an archetype of a fundamental the-
ory of (quantum) gravity in the high-energy limit. In this chapter, we investigate its
nonperturbative classical limit, corresponding to the most probable extremal “trajec-
tories” in the Feynman path integral. In turns out that these are classical configurations
with anti-self-double-dual curvature.

It was emphasized already by WEYL (1929) that curvature-squared models of
gravity are scale-invariant, and therefore may convert into a fundamental theory of
quantum gravity (QG) in the high-energy limit (HEHL et al. 1989), without invoking
extra dimensions or supersymmetry; cf. KIBBLE & STELLE (1986). From the work
of STELLE (1977), we know that the curvature-squared gravity in Riemannian space-
time is perturbatively renormalizable but plagued with ghosts (LEE & NE’EMAN
1990). However, by absorbing the quadratic Weyl curvature part of (7.3.1) into the
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Wess—Zumino action, these negative-metric states may be removed dynamically
(HAMADA 2000) and unitarity restored.

On the other hand, the path integral quantization a la FEYNMAN (1988) eventually
leads to a dimensional parameter, in this case Newton’s constant ¥k = 87 Gy (in
natural units), pertinent to the emerging Hilbert—Einstein Lagrangian for the classical
background.

7.2 Dual Conformal Structure

Similar to the SO(4) gauge-invariant Yang—Mills theory, the dual representation’
permits the construction of a double-dual curvature form

1
* (8 . Z*RL’ZCdLCd ® Y AP, (7.2.2)

whereby the star operator (x) applies only to the Lie algebra. Independent of the
signature of the base space, the repetition of this double-dual operation leads back
to the original curvature form, i.e., it is involutive. We already encountered such
terminology in studying the pseudoparticle solutions (BELAVIN et al. 1975) of Yang—
Mills theories with SO(4) as structure group. Then, the decomposition

+ —
Q8 = Q8+ Q¢ (7.2.3)

into the self-double-dual or anti-self-double-dual curvature 2-forms

+

Q%= - (28 £725Y), (7.2.4)

N =

respectively, is a dissection into real eigenspaces.
Let £2¢ be the 2-form of a generalized curvature tensor (NOMIZU 1972) that is
locally equivalent to the conformal Weyl tensor

. R
€ty = Ry = 2R+ o), 025)

I The bispinor representation of the covering group SL(2, C) & SO@G, 1) is inapt for this purpose,
since its infinitesimal generators oy g = % [V«, vp] are neither self-dual nor anti-self-dual. As a direct

sum of the spinor and its conjugate representation, they rather satisfy the relation 0()(5;) = y5aaﬁ,

whereby the matrix y° := % €abed Y2y Py y 9 is, within the Clifford algebra, an axial Lorentz scalar.
However, (BJORKEN & DRELL 1965) the following generators are self-dual:

* ] .
L(,(II)) = E‘SabchLd = Lap. (7.2.1)
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Then the following decomposition is valid:
= 1
2% = Q¢+ 2% — 619 A UR. (7.2.6)

This decomposition is even irreducible (DEBEVER 1956) if we restrict ourselves to a
Riemannian manifold.
According to the “remarkable” relation

- 1
Q4 =0 A0 AR~ 19 AR, (7.2.7)

which was found first by LANCZO0S (1938), or in components

ab la ¢b]. a. a 1 a
R .ca = /R'.[c 8d]’ /R’~b~: R~b - ZgbR, (7.2.8)

the anti-self-double-dual part spans the orthogonal complement to Weyl’s curvature
2-form (NoMIzU 1972) in the space of the trace-free generalized curvature forms,
for which

Tr(d A9 A 2c) =Tr(d AP A 29 =0 (7.2.9)

is valid.

In a four-dimensional Riemannian manifold with the Euclidean signature s = 0,
both the Hodge star operating on differential forms and the Lie dual (%) are involutive,
a fact that can be explained by the special isomorphism

50(4) ~ 50(3) x s0(3) ~ su(2) x su(2). (7.2.10)

(HELGASON 1962, p. 204). This, however, even allows it to refine the decomposition
(7.2.6) and to split Weyl’s curvature 2-form into

(+) (=) (*) 1
Qc=8Rc+ Rc, ¢:= 3 (2c £ 2% (7.2.11)

(SINGER & THORPE 1969). Since the Weyl tensor and the duality operator, when
applied to a 2-form, are invariant under conformal changes of metrics

g — g = ¢Lgij, (7.2.12)
cf. MIELKE (1977a), it clearly follows that the condition

)
2¢=0 (7.2.13)
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determines a self-dual or anti-self-dual conformal structure on an orientable four-
dimensional Riemannian manifold. A classification of the corresponding eigenspaces
is to be found in CHAO-HAO et al. (1978) and XIN (1980).

7.3 SKY Gravity

When written in differential forms of Cartan, the so-called Stephenson—Kilmister—
Yang (SKY) Lagrangian (STEPHENSON 1958; KILMISTER & NEWMAN 1961),
(YANG 1974) is given by the purely quadratic 4-form

* 1 off *
Lsky = Tr(2% A*Q%) = — R A "Ry (7.3.1)

where R,g is the curvature two-form. In WEYL (1919), in the concluding chapter
of that famous work it was pointed out that from a gauge-theoretic point of view,
(7.3.1) has to be appreciated as a rather natural choice. Nevertheless, and especially
with regard to an improvement of the tensor dominance model (ISHAM et al. 1971)
of strong interaction, this model is of sufficient relevance to justify a further analysis.
Classically, the short-time initial value problem of Yang’s vacuum equations

D*Q¢ =0, (7.3.2)

or
D*Ryp =0, (7.3.3)

in anholonomic components is well posed (GUILFOYLE & NOLAN 1998), in con-
trast to some other quadratic curvature Lagrangians including boundary terms; cf.
(BAEKLER & HEHL 2011).

These follow from varying the Lagrangian with respect to the connection one-form
I .= I;*fdx!. In his purely affine approach, Yang did not consider the canonical
energy—momentum current. More explicitly, this was left to STEPHENSON (1958),
who added to the vacuum equations the energy—momentum current

1
E, := dLsky /09" = 3 (e ]R™ A *Ryuy — R™ N eg] *Ruy) =0 (7.3.4)

of the gravitational gauge fields themselves. They arise readily via variation of (7.3.1)
with respect to the coframe ¥ = E;* dx’ dual to the local anholonomic frame e.
In fact, the expression (7.3.4) generalizes the current three-form

1 1
Gl = SR Ay, Gyo= Ric!] — 580 (1.3.5)
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which is dual to the usual Einstein tensor G;; in Riemannian spacetime. In exterior
form notation, the symmetric Ricci tensor is the holonomic version of the zero-form
Ricys 1= (— 1) * (R’ A 1sjp)-

Macroscopically, the matter coupling” to the spin current three-form Top = Vo A
i) seems to disfavor such models, a criticism which has already raised by FAIRCHILD
JR (1976). However, at short distances or very high energies, spinfoam approaches
(OrITI & TLAS 2006) to QG may provide a natural extension.

In Riemannian spacetime, with its Levi-Civita connection "% o dg, these
equations are, respectively, of third and second order (THOMPSON 1975) in the met-
ric. However, all the metric information can be encoded into the “decent” equations
(7.3.7) and (7.3.8) for classical configurations with self-double-dual or anti-self-
double-dual curvature.

7.3.1 Double-Dual SKY Gravity

In order to exhibit more clearly the intriguing instanton or pseudoparticle content of
Yang’s theory, the SKY Lagrangian is supplemented by the topological Euler term
(7.7.49) as a boundary term, i.e.,

. 1o =D . .
LY, = —5R P A *Rap — — R N (7.3.6)

1 * * o, * pap (*
=— (Rap + “RG) A * (R + *R#)
1 — —
= STr(S2* A 2.

In this partially topological Lagrangian, we distinguish between the Hodge dual *
and the Lie dual ® of the curvature Ry in a space(time) of signature s.
It is obvious from the equivalent binomial form of the Lagrangian that there arises
a branching of SKY gravity into two exact subspaces with respect to double duality:
anti-self-dual solutions
Rup = — "R, (7.3.7)

i.e., Einstein spaces (MIELKE 1981), annihilate the corresponding partially topolog-
ical action, whereas the self-dual spaces

Raﬂ — *R(*)

o, (7.3.8)

i.e., so-called THOMPSON (1975) spaces, are extremals in the Lagrangian functional,
i.e., they lead to Lé*ng = 2Lsky. Both second-order duality conditions satisfy Yang’s

2For Dirac fields v, the spin-energy potential o = 94 A *js /4 is dual (MIELKE 2004) to the axial
current js := ¥ *yysir.
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equation (7.3.3) due to the Bianchi identity (7.7.42) for the curvature, as well as
its Lie dual, due to Drn.g = 0 in a Riemannian spacetime. More on this “vacuum
degeneracy” can be found in VASSILIEV (2002), where such a dual reformulation has
been called Yang—Mielke theory of gravity.
In accordance with our general procedure, these equations are to be satisfied by
the double-duality ansatz
Q80 = £ Q8. (7.3.9)

whereby only ¢ = %1 (and zero) are admitted.

On behalf of the decomposition (7.2.7) of the curvature tensor, the
eigenspaces respecting duality in a Riemannian spacetime can be characterized as
follows (SINGER & THORPE 1969):
¢ = +1: self-double-dual curvature

2'=0e=2)=0 and RV =0. (7.3.10)
¢ = —1: anti-self-double-dual curvature

px 0 0 _ A

QU=0=R=0 R/ =Ag;. (7.3.11)

Subsequently, it follows (MIELKE 1981; BAEKLER et al. 1982) that Yang’s theory, in
the case of anti-self-double-dual curvature, reduces to Einstein’s GR with an arbi-
trary cosmological term, while the self-double-dual case reproduces NORDSTROM’s
vacuum theory (1913) as reformulated in 1914 by EINSTEIN & FOKKER; cf. MTW,
p- 429.

Concentrating on topological terms such as those of Pontryagin and Euler,
related self-dual modifications are advocated as topological 4D self-dual gravity
by NAKAMICHI et al. (1991). There, self-dual and anti-self-dual solutions “live”” on
Einstein spaces as well. The addition of the Pontryagin term with respect to the
Riemannian curvature Rgﬂ and the axial torsion one-form &7 := *(¥, A T%) is moti-

vated by the axial anomaly (djs) = 2i*m{yysy) — (R({X}/S ARUYP %d%/\dd)/
4872 in the coupling to Dirac fields .

7.4 The Path Integral Dominated by Einstein Spaces

The path integral formulation of Feynman, as later exemplified in the case of the
H-atom (DURU & KLEINERT 1979), implies a reconciliation of quantum theory
with classical physics, the latter providing the most probable contribution to all
possible amplitudes. In the gravitational context, Einstein spaces are emerging as the
most probable classical background when properly chosen boundary conditions are
imposed for the SKY Lagrangian (7.3.6) modified by the topological Euler term.
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Analogous to the internal YM case, where the path integral is dominated by
instanton solutions with finite action—cf. Chap. 16 of the textbook by CHENG & LI
(1984) for details—in the path integral approach to quantum gravity, the quantum-
mechanical transition amplitude

/ 9T exp [ / Lg;gY/h} (7.4.1)
:/.@Fexp |:_/(Ra/3 + *R((;ﬁ)) A *(R“ﬂ—i- *Raﬂ(*)) /4;1]

arises, where the four-dimensional integration over d*x is already implied in our
four-form notation.

After a Wick rotation, in an imaginary “spacetime” with Euclidean signature, cf.
MIELKE (1984a), the evaluation of the path integral is dominated by anti-self-double-
dual instanton-type configurations (CHAO-HAO et al. 1978; JACKIW 2005) near the
classical ones, i.e., Einstein spaces. Accordingly, they are much more probable than
the “spurious” Thomson spaces, which are heavily “damped” due to Léﬁy = 2Lgsky
in this case. (This “vacuum degeneracy” can be lifted (MIELKE 1984b; ZHYTNIKOV
1994) via a modified duality *R,g = 0] R;‘Z + (61A/6) nug, which, however, explic-
itly breaks scale invariance. For torsionless configurations, only Einstein’s GR sur-
faces, consistently coupled to the Belinfante—Rosenfeld (MIELKE et al. 1989; MIELKE
& MAGGIOLO 2005) symmetrized energy—momentum current o, = X, — DY u,.)

As is well known, the Riemannian curvature 2-form can be decomposed into

1 R
Rotﬁ = Caﬁ + ERﬂaﬁ —Eﬁa VAN 19/9, (742)

with the conformal Weyl curvature, the trace-free Ricci curvature, and its remaining
trace with R := eajeﬁJR"ﬂ as irreducible pieces. Then the double-dual curvature
inherits, following GEHENIAU & DEBEVER (1956), WALLNER (1983), MC CREA
(1987), HAMMON & NORRIS (1993), the decomposition

*R™ — _¢, +1R' 519 B 7.4.3
wp = ~Cop + 5RiCap +150a A Dp. (7.4.3)

Accordingly, the double-self-dual Thompson spaces (7.3.8) are characterized by
vanishing Weyl and scalar curvatures, i.e.,

Cyp=0 and R=0, (7.4.4)
such that exact solutions are conformally flat,

g = 220, (7.4.5)
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with og.’“"k denoting the (pseudo)orthogonal Minkowski metric. Earlier, EINSTEIN &
FOKKER (1914) had considered this in their covariant reformulation of NORDSTROM’s
scalar theory of 1913. In the path integral approach to QG, however, such a classical
background is exponentially suppressed and therefore less probable.

Rather, the dominating part comes from the anti-self-double-dual configurations
(7.3.7), which are equivalent to

1
R]:gaﬁiz RiCaﬂ — ZRgaﬂ =0. (746)

A model with vanishing trace-free Ricci tensor in vacuum was tentatively consid-
ered by Einstein and Grossmann in their Entwurftheorie and was to some extent
resurrected by WILCZEK (1998).

Due to the contracted Bianchi identity D'G!) = 0 in Riemannian spacetime, the
curvature scalar is constant, i.e., more precisely, R = —4 A. Thus, (7.4.6) is equivalent
to Einstein’s equations

Gy —Ang =0 (7.4.7)

with cosmological constant A ~ 1/«. It is crucial to note that the latter carries phys-

ical dimension of mass squared, thereby realizing the “dimensional transmutation”
necessary for inducing a mass gap.

7.5 Graviton Spectrum

Let us consider the conformally covariant d’ Alembertian

Oc:=0- éR, O := (1//2)3:(/28"9)). (7.5.1)

Then for conformally flat spacetimes,
O¢gy = O°(2%0)™) = 2°0Fo}™ =0 (7.5.2)
holds. This tells us that gravitons are exactly massless propagating modes on a clas-

sical Einstein—Fokker background due to R = 0 in double-dual Thompson spaces.
On the other hand, the linearized Einstein equations for h; := g;; — ggs in a de

Sitter background gés with a positive cosmological constant are

(D - %A) hyj =0 (7.5.3)
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when the harmonic or de Donder gauge

'hy — 0jh =0 (7.5.4)

is imposed on the tensor modes.
This means that the lowest-order graviton propagator (ALLEN 1986) of the partially
“topological” SKY gravity will exhibit a real mass gap

Am =/2A/3>0 (7.5.5)

inan expanding universe with a de Sitter background, due to the induced cosmological
constant occurring in the dominating branch (7.4.7).

Massive models of gravity (HINTERBICHLER 2012) are commonly plagued by the
van Dam—Veltman—Zakharov (vDVZ) discontinuity (VAN DAM & VELTMAN 1970;
ZAKHAROV 1970; IWASAKI 1970), and thus disfavored by observations of gravita-
tional light bending. However, in the de Sitter background, the construction of two-
point functions is still a subject of debate (BORCHERS & BUCHHOLZ 1999; YOUSSEF
2013) for massless scalar fields. Even the notion of masslessness is not unambiguous,
since one may require conformal invariance instead; cf. MIELKE (1977b). Accord-
ing to KOGAN et al. (2001), the vDVZ discontinuity can be avoided for gravitons in
de Sitter space if m/H is kept finite in the massless limit. For gravitons, the mass
of the corresponding helicity-two states are below the recent observational limits
(GOLDHABER & NIETO 2010) of m < 7 x 10732 eV, but larger than the Hubble
scale of H ~ 10~ eV.

7.6 Mass Gap in Yang—Mielke Theory of Gravity?

In Yang’s gravitational theory, via a double duality decent, the mass gap (7.5.5)
is induced via the tiny cosmological constant Ay, > 0 of our expanding universe.
Invoking a Mach-type principle, a “dimensional transmutation” arises due to a degen-
eracy of the trace-free Ricci model, in which R is an arbitrary constant of dimension
mass squared.

Comparing this with the quantization of the YM field, its dimensionless coupling
constant 1/g? is ‘traded” for a dimensional one. This “dimensional transmutation” 2
la Sidney Coleman is absent in the classical theory in four dimensions; cf. FEYNMAN
(1981). One of the Clay Millennium Problems (JAFFE & WITTEN 2006) requires the
conclusive demonstration that there exist a mass gap in the spectrum of YM fields,
i.e., “the question of the mass of the b quantum” according to the original formulation
of YANG & MILLS (1954). Classically, the YM theory is scale-invariant, whereas
its divergences due to field quantization appear to be beneficial (FADDEEV 2002) for
the generation of such a dimensional parameter.
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Originally, Yang and Mills formulated their model as an SU(2) gauge theory with
some hindsight (YANG 2012) to Einstein’s gravity. Its gravitational analogue (YANG
1974) is an SO(1, 3) gauge theory, whose covering gauge group, after a Wick rotation
to Euclidean space in the path integral quantization, is locally isomorphic to SO(4) =
SU(2) ® SU(2). This doubling of the (internal) unitary structure group SU(2) was
used by BELAVIN et al. (1975) to explicitly construct instanton or “pseudoparticle”
solutions of the YM theory. This construction is at the root of the double duality used
here for the space(time) curvature in the gravitational case.

No solution to the Clay problem is presented here. It is merely indicated how such
a “dimensional transmutation” may occur in QG in view of the above-mentioned
group-theoretic correspondence. Conversely, in 2007, FADDEEV & NIEMI consid-
ered “the tantalizing possibility that long distance Einstein gravity metamorphoses
into a renormalizable Yang—Mills theory at short distances.”

Moreover, according to an indirect argument of KHOLODENKO (2011), a de Sitter-
type gravitational background may assist the generation of a mass gap for internal
YM fields as well as for chiral fermions (FLACHI & FUKUSHIMA 2014) in QCD.
However, the analogy presented here focuses more on duality transformations (JAFFE
& WITTEN 2006) within the path integral formulation of double-dual SKY gravity.

In the scenario (DAUM & REUTER 2013; MIELKE 2013a) of asymptotic safety,
the gravitational constant «, as well as A, runs toward an ultraviolet fixed point.
Consequently, similarly (GOGOKHIA 2014) to the case of QCD, dual SKY gravity
may exhibit a “renormalized” or asymptotically safe mass gap.

On the other hand, in generalizing Yang’s theory to a topological SL(5, R) gauge
model of gravity, it is challenging that a (spontaneous) symmetry breaking should
occur at the tiny dimensionless scale of k Agps = 107123, as suggested by observa-
tions; cf. MIELKE (2012, 2013b).

7.7 Field Redefinition Scheme of Renormalization

In perturbative quantum gravity (ALVAREZ 1989), there arise counterterms AL of
higher order in the curvature. According to T HOOFT (1974), DIETZ & ROLLNICK
(1975), these terms can be simulated, already on the classical level, by a first-order
field redefinition (FR)

gi — By = gy + aRic; + bg; Ric* (7.7.1)

of the metric. In exterior form notation, the symmetric Ricci tensor is the holonomic
version of the zero-form Ricyg := *(Ri® A 5)))-

More generally, in a gauge framework based on the (broken) Poincaré group, the
independent variables are the one-forms % and I"*#. In applying this to a Yang—
Mills-type formulation of gravitational interactions, such an FR is, in general, non-
linear (MIELKE & HEHL 1991; MIELKE 2006) and dictated by the appropriate form
degree and the correct physical dimension as follows:
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9% = 9% = 0%+ ep| *HYP (7.7.2)
.,/ - Lf.=r/+06e]|"H". (7.7.3)

Here the field momenta H,, and H,g are understood as arising from a generating
n-form G as part of some effective gauge Lagrangian L. that includes the countert-
erms from the sought after renormalization. Observe also that a fundamental length
£ squared necessarily occurs for dimensional reasons.

The dual unit two-form then gets deformed according to

- o
Nepg  —>  Nap = Nap + Eznaﬁy A e}LJ THM + Eﬂaﬂy&(euj *Hyﬂ) A (ey] *Hav)-

(7.7.4)

In our dynamical approach, the (n — 2)-forms H, and H.g will be gauge field
momenta canonically conjugate to the coframe and the Lorentz connection, respec-
tively. Due to the semidirect product structure of the Poincaré group P := R* &
SO(1, 3), the gauge field momenta contribute to the gauge potentials via H*¥ — 9
and H* — I'*f in the FR (7.7.2, 7.7.3) just in an intertwined manner.

In the field redefinition (7.7.3) of the connection, we could have included,
similarly as for Yang-Mills fields, a term proportional to *DH,?. However, “on
shell,” i.e., when the second vacuum field equation is satisfied, this is equivalent to
*(HP A ¥,) = eq] *HP due to an algebraic identity. In the FR (7.7.2) of the coframe,
the same situation arises, with the modification that the “on shell” term *DH® = *E“
is of second order in the field strength and therefore would be equivalent to a higher-
order generation functional G. When coupling to matter, FRs have to be handled with
care, because they may induce violations of the macroscopic principle of equivalence;
cf. BRANS (1988).

7.7.1 Legendre Transformation

For exhibiting physically equivalent gauge field Lagrangians via a Legendre trans-
formation, let us depart from the Hilbert—Einstein Lagrangian of GR or the Einstein—
Cartan Lagrangian

1
— of
Lgc = 2K2R A Nap (775)

as our prime field-theoretic “nucleus.”
Let us compare this with the more general Lagrangian

K

~ (2k)

L==>(1/20R" A Hop+ 1Ly, (7.7.6)
k=0
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which is quadratic, quartic, etc. in the curvature. The first term in this expansion

corresponds to the SKY Lagrangian quadratic in the curvature. The gauge field
~ ~ ~ 2 (4)
momenta Hyg := —8L/8R“‘/3 can bE expanded as Hyg = Hog + Hop + - - - . (For the

time being, the field momentum H,, := —HZ/ aT“ conjugate to the torsion 7% :=
D©H* will be set to zero.)
Then we can infer the resulting Yang—Mills-type field equations

—Ey = —ey)L — (eg)JRP") NHp, = %, (7.7.7)
DHyp = Tap . (7.7.8)

However, the Legendre transformation (JAKUBIEC & KIJOWSKI 1988)
~ 1 ~ ~
L - L= -3 (R** ANHyp — L) (7.7.9)

provides physically equivalent gravitational dynamics. (The overall factor 1/2 is
chosen such as to render the EC Lagrangian invariant.) The new rotational gauge
field momenta

oL

Haﬂ = _aR"‘ﬂ =

7 1 v 7 of
Hup + ER A (0H,, /OR*) (7.7.10)

will depend on the Hessian (n-4) form

- 3L 0H,,

= 9RORP . 9R%P (7.7.1D)

afuv -—

of the higher-order Lagrangian that we started with.

7.7.2 Vanishing Hessian: GR as a Stable Fixed Point

Since classical GR or EC theory tends to surface from different higher-order models,
we have an infinite ambiguity in such a “renormalization” program; cf. KAKU (1993),
p. 210. However, we can improve this by showing that EC theory is a stable fixed
point of the quadratic SKY gravity.

For a fixed point of the transformation (7.7.9), the Hessian H,g,,, obviously has
to vanish. This condition, i.e., 8I7W / dR*? = 0, can be readily solved.

If parity-violating terms such as 61 R** A 9, A ¥4 arising from the Nieh—Yan
term (7.7.46) are admitted, then the relation

0*

_ o -
o = My — ET O A — L2 Hyp =0 (7.7.12)
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can be regarded as a singular FR derived from (7.7.2) via some appropriate effective
Lagrangian L.

Accordingly, 14s and I:?a,g interchange their roles as generalized coordinates and
momenta, respectively. If we had started from L= Lgc, then we would be led back
to L = Lgc for the choice 6f = 1 and 61 = 0. In the case 0 = 1 and 6y = i, this
leads to a chiral formulation of gravity. Thus, the EC Lagrangian or its chiral version
remains “stable” under FR, provided that it is embedded in a class of gravitational
Lagrangians for which Lgc is located at some local functional minimum.

More recently, the asymptotic freedom of Einstein’s GR with such “on-shell”
redundant higher curvature terms has been analyzed by SLOVICK (2013).

Our gauge framework clearly exhibits the coupling to fundamental matter, such
as to the Dirac field. However, as has been stressed by DIETZ & ROLLNICK (1975),
an FR of the coframe may ruin the nice features of the Dirac Lagrangian, which in
GR and its RC extensions, has to be formulated in terms of #* only in a multiplica-
tive manner: otherwise, dangerous derivative couplings would occur in the Dirac
equation, and the positivity of energy could get lost during this procedure.

On the other hand, in the transformation to Ashtekar’s complex variables, the
coframe is kept fixed, whereas the connection is subject to the complex field redefin-

(&) F)
ition I,? — I',?:=T,? F (it>/2)e,| H?, induced by the translational Chern—
Simons term idCrr. The resulting Sen-type connection still couples minimally to the
Dirac field, but poses the issue of reality conditions.

Appendix: Clifford-Algebra-Valued Exterior Forms

More concise formulations employ Clifford-algebra-valued differential forms, or
“Clifforms” for short (MIELKE 2001), as described here.

Dual Basis

In a topologically trivial frame bundle, the Hodge dual * of exterior forms is defined
such that the normalization

O AP AT ADY) ="’ where nagys = +8040s. (7.7.13)
holds. Applied to p-forms, it is almost involutive, i.e., **@ = (—1)?*="+@_ For
spacetimes in which s := sig = 1 holds, it induces an almost complex structure, and
in the case of two-forms, it is conformally invariant (BRANS 1974; ATIYAH et al.

1978).
The volume four-form

0= Napys 0% AP A DY A0 /4) (7.7.14)
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makes it possible to generate the so-called n, or dual, basis {1, 7u, Nag, Nupy Napys}
of exterior forms via consecutive interior products: 7y 1= ey |n = *Vy, N 1=
6,3J77a = Napy v = eﬂjeaJn = *(Da A 19/3) = %naﬂyzS B A 198’ and Napy : €y
1ap = *(¥« A ¥ A1,). Anholonomic indices are lowered by o5 = €'y €/p gjj,
where 0,4 denotes the Minkowski metric.

Distances in space(time) are measured by

ds® = 0,59 @ VP = gudx' @ dY, 045 = diag(l, —1,---,—1}, (7.7.15)
—

sig

where 04 is constant in an anholonomic frame with signature sig. On a four-
dimensional manifold, the Hodge dual of a p-form @ = ﬁd’il---ip dx"" A Ndxt
is defined by

1 o . .
e T LT I PRV N (R AT

so that it is almost involutive, i.e., **@ = (—1)P@-P)+siggp,

Clifforms and Chiral Transformations

In the familiar Pauli representation, the 16 matrices {14, Yu, 04, Vs, V5Va ), Where
Oup = %(ya Vg — YpYa) are the Lorentz generators, and ys = —iy; ¥; ¥5 ¥3 With
yZ = (—=1)%¢+11, constitute a basis of the Clifford algebra in four dimensions with
the defining relation

YoV + V5 Ve = 204 14 (7.7.17)

They are normalized by the traces Tr(yy ¥5) = 4 0y and Tr(oug 07°) = 86/, Sg],

where [« 8] = %(aﬂ — Ba) denotes the antisymmetrization of indices. For the unit
two-form o := So,5 9% A ¥ = Ly Ay of dimension [length®], the Hodge dual
and the Lie dual turn out to be the same, i.e.,

1 1 .
o = > 0u WA = > 0u n? =106% =iyso. (7.7.18)
The Hodge dual of the basic Clifform
y = y%0, (7.7.19)
leads to the associated three-form
*Vzl/aﬂa=£y5)//\)//\% (7.7.20)

6
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whereas for the Lie (or right) dual O'OE;;) = % ov? Napys = i¥5 O4p, WE Obtain the asso-
ciated two-forms

1 ] 1
o::i aﬂﬁ"‘/\ﬁﬂ:%y/\y, *U:E 1P =10® =iyso. (1.7.21)

In orthonormal frames, the Hodge dual * and the Lie dual * are identical operations
for o. Moreover, this allows one to reconstruct the Hodge dual and therefore a con-
formal equivalence class of spacetime metrics from the Lie dual as defined by Kihler;
cf. TRAUTMAN (1999): for the metric-free two-form o, we can build the Lie dual
o™ solely by multiplication by ys, which here is regarded as just an anticommuting
element of the Clifford algebra. This Lie dual is antiinvolutive:

o™ =iyso, o™ =2 )/52 0=—0. (7.7.22)
Since the Clifform relation

[y, 0=y Niyso —iyso Ay = —iys(y N\o+0 AY) =25y AV Ay
(7.7.23)

relates this to 12i *y, the Hodge dual® for the basis of Clifforms has been recovered.
This allows us to identify

ysi=(@@/4) "y Ay Ay Ay) (7.7.24)

with a zero-form that appears metric-free.
Also, the self-dual or anti-self-dual combination

1
oy =(c+xi%0)/2= 5(1 Fys)o, with i*oyr = toy (7.7.25)

occurs, originally being due to DEBEVER (1964) and BRANS (1974), but at times
is referred to as the Plebariski two-form (PLEBANSKI 1975,1977). Our Clifford
representation involves explicitly the chirality projector Py = %(1 =+ ys5), obeying
PP, =P,.

In four dimensions, the Hodge dual applied to two-forms is conformally invariant
(ATiYAH et al. 1978) under the Weyl rescalingy — y = ¢y, where ¢ can be viewed
as the dilaton-type field. Conversely, an initially metric-free involutive star operation
# on arbitrary two-forms allows us to reconstruct a spacetime metric s, which is,

3For Minkowski signature (sign = 1), the Hodge dual satisfies ** = —1, and therefore, i * is used
at times instead, in order to have an involutive duality operator.
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however, merely conformally related to g. This decomposition is invariant under the
chiral transformation
4 s
y =y ="y (7.7.26)

of the coframe, where 6 denotes the so-called theta angle; cf. *'T HOOFT (1991).

Clifford-Algebra-Valued Torsion and Curvature

The Riemann—Cartan (RC) geometry is a basis for the Einstein—Cartan (EC) theory
of gravity. In terms of the Clifford-algebra-valued connection I' := ﬁF“ﬁ Oug, the

SO.(1,3) = SL(2, C)-covariant exterior derivative
D=d+|[I, ] (7.7.27)

of p-forms employs the algebra-valued form commutator [¥, @:=¥ A @ — (—1)P?
DAY,
The Clifford-algebra-valued coframe and connection

y i=0%,, [I:= ;—‘F"‘ﬂ oup = IV — K, (7.7.28)

involves K := iK o 0yp, the contortion one-form.
In view of Cartan’s structure equations, differentiation of the basic variables leads
to the Clifford-algebra-valued torsion and curvature two-forms

O :=Dy =dy + I, y] = (d9* + I[3* A9P)y, (7.7.29)

1 . )
=T%, = > T Yo dx' NdX |

Q¢:=dl + T AT = i(draﬂ — I ATy (7.7.30)

= %Raﬁ O = éRijaﬂ Oup dxi A dxj y
respectively.

This compact “Clifform” formula for the curvature is due to SCHRODINGER (1932),
who to some extent anticipated the concept of gauge curvature developed much later
by YANG & MILLS (1954). It admits a generalization to (singular) distribution-
valued forms (TAUB 1980).

The Lie dual of the curvature involves a permutation of the Lie algebra indices,
ie.,
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1 1

QW = IRy, Ry = SR (7.7.31)

Our “unit” curvature two-form is not covariantly constant, i.e.,

Do = %[@, 1 (7.7.32)

in RC spacetime with nonvanishing torsion.

The torsion two-form can be irreducibly decomposed into the trace part ¥ @ :=
1y AT, the axial torsion @@ := —1*(y A &), and the tensor torsion N :=
© — PO — ®@, where the one-forms of the trace and axial vector torsion, respec-
tively, are defined by

1 1
Ti= T (710) = e T*, o = 7 T AO) = "W AT, (1.7.33)

Under a Weyl rescaling, the axial torsion remains invariant, i.e., o = f. Both
the trace and the axial torsion pick up a gradient term under a conformal or chiral
transformation:

T=T-3d¢, &= —idb. (7.7.34)

The Hilbert—de Donder- and Lorentz-type gauge conditions on the coframe or
connection are the following four-form conditions:

d*y =0, d*I'=0 (7.7.35)

involving the Hodge dual.

Bianchi Identities

The Ricci identity for a p-form ¥ reads
DD = [2%, ?], (7.7.36)
whereas the first and second Bianchi identities assume in RC geometry the form
DO = [£2%, y], D5 =0, (7.7.37)

respectively; cf. MIELKE (2001) for further details.
The Clifform version of the Einstein tensor can be rewritten as the three-form

1
Gi=Gay® = SR A Moy = —iys(R25 Ay +y A Q%) =iy, ys2°].
(7.7.38)
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In view of the contracted Bianchi identities

Dly,©]=2ilo, 2f], Dly,R%]=[0,2°%], DG=il0O,ys2°],
(7.7.39)

the automatic conservation of the Einstein three-form holds only for vanishing tor-
sion, i.e., for ® = 0 in Einstein’s standard GR.
The Lie dual of Lorentz-algebra-valued forms such as contortion and curvature
is defined by
K™ =145, AKPYy* (7.7.40)

i 1 .
Q80 = R n*%0,s = —ZR“5y5aaﬂ = iys02°. (7.7.41)
The latter satisfies the second Bianchi identity
DR} =0, (7.7.42)

i.e., DR2%™ = 0, provided that D1y, s = 0 holds as in spaces with vanishing Weyl
covector.

In four dimensions, it is useful to consider also the self-dual and anti-self-dual
torsion and curvature two-forms

1
)

O* (©@L£*0), 2= ! (26 £72¢), 0% .= % (2% £ 250,

2
(7.7.43)
defined respectively in terms of the Hodge and Lie duals.

Topological Terms in Four-Dimensional Manifolds

In a RC spacetime, the translational and Lorentz-rotational Chern—Simons terms
read

C L n (y AO) LosonT, (-,
= — 1T ) — —— — —
=g Y 202 o 202

1
Crr :=Tr (F A 28 — 51" AT A F) , (7.7.45)

o, (1.7.44)

where &7 1= *(94 A T*) = dx' is the axial torsion one-form. The translational
Chern—Simons term is not Weyl-invariant, cf. (3.14.9) of HEHL et al. (1995), due
to the occurrence of a fundamental length ¢. The Clifford algebra approach has the
advantage that we can employ the trace in the definition (7.7.44), whereas the usual
translational generators P, commute and do not have a nondegenerate Cartan—Killing
metric.
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The Lagrangians corresponding to the Bianchi identities (7.7.37) are the boundary
terms

1
Lyy = dCrr = 755 (T* ATy + Rop A O¥ ADF) (7.7.46)
and
1o s Lo plias
Lpony :=dCrr = ERot ARg" = _ER"‘"" A RV (7.7.47)
1 1 1
— Ed[*%/\R” - g.ﬁZfAd&Zf-i-g*%/\* (o A *42%)]

Up to normalizations, the four-forms (7.7.46) and (7.7.47) are known as NIEH &
YAN (1982) and gravitational Pontryagin terms, respectively. The latter contains,
provided only axial torsion is present, a term proportional to the Riemannian cur-
vature scalar R := (—1)si&+! *(RU®# A 54,) and the axial torsion piece d.«7 A d.o/
familiar from the axial anomaly, with a relative factor of 9.

On the other hand, there exists a boundary term involving the dual torsion that
induces a transition of Einstein’s to its teleparallelism equivalent GR, i.e.,

202 dCrrs 1= 2d (9% A *Ty) (7.7.48)
= RYP A jap — R A o

1
— T“*|:TO, — B A (ep] TP) — EeaJ(Tﬂ A ﬁﬁ)}
1
= RUP A nug — R*P A i — T A *(— W1, +2%1, + 5 (3)TO,),

where T, are the three irreducible torsion pieces.
The topological Euler term

sigt1 W _ D™ s
LEuler = (_l)l ¢ Tr{.Q A 2 } = TR /\Raﬁ
—1)sie
= dCrr» = =D

1
d (Faﬂ AR 51"0/3(*) AT A Fy"‘)

1 1
= 5 Rap A *R*P — 2Ricys A *Ric* + S Riea A *Ricg”
= —Lsky
1
— 2(Rica,3 A “Rie” — ZRic," A *Ric/gﬂ) (7.7.49)
has, in view of the Lanczos identity, an equivalent representation in terms of Yang’s
Lagrangian Lgxy as well as a Ricci-squared term and a scalar-curvature-squared

term. The expression in terms of the symmetric Ricci tensor, i.e., the zero-form
Ricyg 1= (—1)%8 *(R(a‘s A 1s1p)), 18 also known as the Gauss—Bonnet term.
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Due to the algebraic Lanczos identity (LANCZOS 1938), the double-dual curvature
Ry} = (=1)™Ryp + €1a|Gp) + 4Rnaﬂ + (=¥ D, Ty (7.7.50)

can be written in terms of a contraction of the Einstein—Cartan (EC) three-form
G, :=RPFY A N«py /2 and the curvature scalar R. The latter is the zero-form

R:=egle,JR?,  *RP N9y AOs =R A =—Ry, (7.7.51)
which constitutes one irreducible piece
(6) pap 1 o B
R* = —ERz? AU (7.7.52)

of the curvature. Likewise, the EC three-form

. ! By o
G:= zR A Nay Y (7.7.53)
-1 sig 1 —1)sig
:G{}+(12) (eaj.ng/\*%—gszf/\eaj*,;z/)y ( ) ———y Add

decomposes into the Einstein three-form GY = GUfn4zy® with respect to the
Riemannian connection 'Y and axial torsion pieces, provided that the vector and
tensor torsion are absent; see MIELKE & ROMERO (2006) for details.
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Chapter 8
BRST Quantization of Gravity

8.1 Introduction

On the macroscopic level, Einstein’s general relativity (GR) has passed every test
“with flying colors”; see WILL (2014, 2006) for recent reviews. However, Einstein’s
theory has thus far resisted every attempt at quantization, e.g., it is known to be per-
turbatively nonrenormalizable, partially due to its dimensional coupling constant.’
String theory, or brane scenarios with extra dimensions, has been proposed as a
rescue, though some of these scenarios imply deviations of standard gravity in the
submillimeter range. Recent torsion balance experiments (KAPNER et al. 2007) have
probed the inverse square law and found no deviation even below the hypotheti-
cal dark energy (DE) scale of Apg = (hic/ppg)'/* ~ 85 pm. Thus this “window” of
possibly new gravitational physics seems to be closing.

In 1974, YANG proposed an affine gauge theory gravity that due to its scale
invariance can be regarded as a rather promising fundamental theory of (quantum)
gravity in the high-energy limit (HEHL et al. 1989), without invoking extra dimensions
or supersymmetry (KIBBLE & STELLE 1986). Moreover, from the work of STELLE
(1977), we know that the curvature-squared gravity in Riemannian spacetime is
perturbatively renormalizable but unfortunately plagued with physical ghosts, i.e.,
negative residues in the graviton propagator (LEE & NE’EMAN 1990). This finding
has diminished the initial interest (FAIRCHILD 1976, 1977) in such models.

Much more promising and elegant is to start from a purely topological classi-
cal action, proportional to the gravitational Pontryagin (or Euler) invariant and then
quantize this model by nilpotent Becchi—Rouet—Stora—Tyutin (BRST) transforma-
tions generated by s. Such a topological action is not only completely metric-free,
but also conformally invariant (WITTEN 1988a; LABASTIDA & PERNICI 1988), and

Tt has to be kept in mind that Newton’s gravitational constant G is one of the less precisely known
constants of physics. In order to improve this situation, there are plans (ALEXEEV et al. 2001) to
measure the gravitational attraction of two bodies in a spaceship (Project SEE), where the larger
body will function as a shepherd for the movement of the test mass, similarly as in the rings of
Saturn.
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it can provide a consistent topological quantum field theory (TQFT), as shown by
WITTEN (1988b), BIRMINGHAM et al. (1991). Later, it was realized by BAULIEU &
SINGER (1988) that in the Yang—Mills case, Witten’s action is a gauge-fixed version of
the classical topological action through the standard BRST quantization procedure.
Then the total Lagrangian consists of a d-exact part, as exemplified by the Pontryagin
invariant of the relevant structure group, as well as an s-exact piece accounting for
the chosen gauge fixing. Modulo an exact form, the full Lagrangian turns out to be
BRST-invariant.

In the case of gravity, we can obtain a rather realistic gravitational “background”
dynamics if we complete the topological action by gauge constraints, enforcing
the Lorentz condition on the linear connection and double duality on the curvature.
Then the resulting model depends on the metric of spacetime only via the s-exact
term. This conforms with the general expectation that it is ultimately the process of
quantization that necessarily induces a physical scale into a primordial topological
and conformally invariant model. According to a lucid essay of FADDEEV (1996),
quantization amounts to a stable deformation of the classical Poisson algebra with a
dimensional transmutation due to the physical dimension [%] = [p][g] of Planck’s
(reduced) constant .

In this chapter, a BRST quantization of topological gravity (WITTEN 1988a) is
developed, following essentially BAULIEU & SINGER (1988) and BAULIEU (1985),
DE CARVALHO & BAULIEU (1992), BAULIEU & TANZINI (2002). Moreover, its
classical limit, corresponding to the most probable extremal “trajectories” in the
Feynman path integral, is analyzed. In the case of gravity, these are classical config-
urations with either self-dual or anti-self-dual curvature. In order to lift this “vacuum
degeneracy,” a modified double duality constraint is considered that explicitly breaks
scale invariance. For torsionless configurations or algebraic constraints on their cou-
pling constants, only Einstein’s GR, consistently coupled to the symmetrized energy—
momentum current of matter fields, surfaces as a low-energy (long-range) effective
theory, thereby satisfying all macroscopic tests. Extending MIELKE (2008), the focus
is on the breaking of the duality symmetry accompanied by a scale violation. This
symmetry-breaking is achieved by replacing double duality by a modified constraint
induced via a four-parameter boundary term.

8.2 Topological BRST Transformations of Gauge Fields

In the BRST formalism, the infinitesimal gauge transformations are converted, via
ghosts, into operator transformations. Let C :=§C p 04p denote the zero-form of the
usual Faddeev—Popov ghost, (MIELKE & MAGGIOLO 2003; VAN HOLTEN 2005),
Y= i 11/]0”3 o4pdx’ the topological ghost one-form, and @:= ﬁ @ g4 the correspond-
ing ghost of the topological ghost. All are Lie-algebra-valued due to the appearance
of the generator o, of the linear (or Lorentz) group.
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Then the global BRST transformations generated by the zero-form s take the form

sI'=¥ —DC,
1
sC:qﬁ—z[C,C],

5028 = —DW — [C, £2¢],
sW =D& —[C,¥],
5@ = —[C, ®]. (8.2.1)

This is consistent with the interpretation of I and £2¢ as connection one-form and
gauge two-form, respectively, under infinitesimal gauge transformations. The topo-
logical ghost ¥ complements the gauge fields in a reducible manner, and due to its
own gauge invariance, it is supplemented by its associated ghost @ such that the net
number of degrees of freedom carried by the ghosts C, ¥, and @ is equal to that of
the connection I”. By construction, these BRST transformations are nilpotent for all
variables, i.e., sZ = 0.

A rather elegant geometric interpretation was obtained by BAULIEU & SINGER
(1988) by introducing the graded” connection and curvature forms

'=rec, Q%5=2°0vaoaoP. (8.2.2)

Then the corresponding graded Cartan-type structure equation and second Bianchi
identity for the graded curvature, i.e.,

d@s)I + %[f, I =0¢,
d®s)Q8+ [T, 2% =0, (8.2.3)

are satisfied. This graded Cartan-type formalism constitutes an ordinary de Rham
cohomology (BAULIEU 1987) and comprises all the BRST transformations (8.2.1).
The latter can be recovered by an expansion in the ghost number g and collecting
those terms with the same form degree p and ghost number g.

Moreover, a straightforward proof of the nilpotency ss = 0 of the BRST operator
s follows simply from (d @ s)(d @ s) = 0 as a result of the graded Bianchi identity
(8.2.3), the anticommutation of the graded commutator [s, d]:=sd + ds = 0, and
the Poincaré lemma dd = 0 for the exterior derivative.

In order to implement the gauge constraints, one can employ the antifield formal-
ism, where the Lorentz-algebra-valued antighosts C, ¥, and @ obey the following
BRST transformation rules:

2The grading permits using the direct sum @ of exterior forms carrying different form degree p and
ghost number g, such that the graded commutator is more generally defined by [¥, @]:=¥ A & —
(=DP1tsD(p2te) p A W (CHANG & SO0 1992).
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sC=DB, sB=0,
S7=ﬂ7 Sﬁ_o?
s =7, sn1=0. (8.2.4)

By construction, s is nilpotent for the antighosts, since the Lagrange multiplier 7,
the self-dual two-forms B, and g are auxiliary fields introduced as trivial pairs.
A symmetric ghost/antighost spectrum of an extended BRST invariance could be
obtained via a field redefinition (BRAGA & GODINHO 2000). (For metric-affine
gravity, an antifield formalism has been developed in GRONWALD (1998) without,
however, resorting to topological ghosts.)

By introducing a BRST gauge field @ = a;dx’ with ghost number —1 and a
commuting ghost A of «, one can promote (DE CARVALHO & BAULIEU 1992) the
global BRST transformations (8.2.1) into local ones, where

Sioc(@ + A1) = —dA, Sioch =0 (8.2.5)

satisfies the algebra
(d @ sioc) (@ + 1) =do. (8.2.6)

The cohomology (8.2.3) of the BRST transformation remains unchanged by this
promotion, which likewise, can be generated via the field redefinitions C — (« +
MNC, ¥ — (a+ MW as well as @ — (a + A)>® of the ghosts. Thus, local BRST
invariance of an action puts no more restrictions on its form than the usual global one:
the gauge field « is present only to compensate for the enlargement of the symmetry,
from global to local, but it cannot propagate, due to its nonvanishing ghost number.

8.3 BRST Quantization of Translations

In the affine or (broken) Poincaré gauge theory, the coframe y = 9%y, (locally
equivalent to the familiar tetrads) is usually “soldered” (TRESGUERRES & MIELKE
2000) to the base manifold. Then the topological structure equations (8.2.3) for the
linear connection get amended by the corresponding graded first Cartan structure
equation and the first Bianchi identity

d®s)y +IIyl=6,
d®s)O+ (I, O] = [2¢, ], (8.3.1)

respectively. In the graded torsion two-form 0:=0 @ Y, there occurs the transla-
tional “Clifform” : =y Yodx’ of the corresponding topological ghost.

In an expansion in the ghost number, we can recover the Clifform definition of
the torsion and deduce the BRST transformations
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sy =¢ —I[C,y] (8.3.2)

of the coframe and the corresponding “unit’-curvature two-form

soi= %s(y Ay) = ’5 (. y1—[IC. 1. y]) = lz“”’ y1—1C.o].  (833)

Eventually, this needs to be amended by the BRST transformations of the antifields,

e.g.,
sc=b, sb=0. (8.3.4)

8.3.1 Diffeomorphisms

Holonomically, spacetime diffeomorphisms can be taken into account of by gener-
alizing the BRST transformations s vias — § = s + L, involving the covariant Lie
derivative £,:=¢ |D — D¢ along an anticommuting ghost vector field ¢ = ¢'9;.
The definition involves the interior product | and a sign difference in the definition
of £, since ¢ has ghost number one. Its BRST transformationis s = ¢ 4+ £, ¢, such
that the BRST algebra remains intact (BAULIEU & TANZINI 2002; CHANG & SOO
1992), up to a redefinition of all graded fields by means of a similarity transformation
generated by the formal exponential

1 1
exp(¢]) := 1+§J+5§J§J+§CJCJ§J+~-. (8.3.5)

Its action on a p-form, reduces to a finite series with up to p + 1 terms. In effect, the
graded curvature and torsion in the cohomologies (8.2.3) and (8.3.1) are replaced
by exp(;J)ﬁg and exp({J)(@ @ ¢), respectively, where ¢p:=¢*y, are the ghosts of
the translational ghosts. Due to the notion of “horizontality” in curved spacetime
(BAULIEU 1987), the exterior derivative d suffers from the similarity transformation

d — exp(ldexp(—¢]). (8.3.6)

In undoing the “soldering” of y, and really gauging the translational part R* of the
affine group (MIELKE et al. 1993; HEHL et al. 1995), there would arise a dimensionless
translational connection I'™ = (y — D&) /¢ and corresponding curvature 27 =
DI'™ = (® — DDE&)/¢. Then the translational connection I"™ should be graded
as well, e.g., by the substitution y — y:=£(I"P @ ¢) in the first structure equation.

The “quartet” of scalars £:=£%y,, corresponds to the “generalized radius vectors”
of Cartan and lives on the coset space A(4, R)/GL(4, R) ~ R* of the affine group.
Quite recently, similar scalars where introduced by T HOOFT (2009), who observed
that his “alternative” metric
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, 1 * o B
ds® = ZTr{)/ ® Y} =o0upDE” ® D& (8.3.7)

naturally arises in the affine gauge theory after, locally, the gauge I'™ = 0isimposed
on the true translational connection.

8.4 Topological Gravity Action

Let us adopt ideas of WITTEN (1988b) for a topological Yang—Mills theory (TYM)
and replace the internal SU (N) group by the linear group SL(4, R) of the tangent
space embracing the Lorentz group SO(1, 3) (or SO(4) in Euclidean space with
signature sig = 0) as subgroup. Then one starts from the gravitational Pontryagin
four-form

1
Lponyr := dCrr = TI'{Qg A Qg} = ERD(/S A Rﬁa (8.4.1)
1 1
— zd([“aﬁ A Rg® — graﬂ ATg" AT,

which is locally a d-exact form violating, however, parity P. This topological
Lagrangian is completely metric-free’ and invariant under the topological BRST
transformations s modulo an exact form as well, i.e.,

SLpony = —2dTr{W A 28} = —d(W,* A Rg%). (8.4.2)

On top of the standard BRST transformations of Yang—Mills fields, BAULIEU &
SINGER (1988) employed an arbitrary field redefinition (FR) of the gauge fields in
order to introduce a fopological ghost W . Thereby the field content is enlarged in a
reducible manner and needs to be constrained afterward. In the gravitational case,
the one-form ¥ has values in the Lie algebra of the linear group.

This purely topological action can be amended by any s-exact four-form s{- - - },
provided s is a nilpotent BRST transformation, i.e., one with 52 = 0, without affecting
the nice properties of the topological action. Following again BAULIEU & SINGER
(1988), we may choose the Lorentz-type conditions d *I" = 0, D *¥ = 0 on the
connection and the topological ghost, respectively, as well as the self-duality or anti-
self-duality condition 24 = 0 on the curvature as gauge constraints consistently
implemented via the Faddeev—Popov-type Lagrangian

3For the CP-invariant Euler term, a similar result would hold, i.e., S Lgyler =
(—1ysie+ly (11/00‘3 A Ra’g) However, the latter is only partially metric-free, since it involves

the signature sig of the metric implicitly in the definition of the Lie dual ® (BLAU & THOMPSON
1991), and therefore appears less well qualified as a starting point.
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e * P2 R ) 1 — * 7% 1_ *
Lrp:=—sTrix A *Q28 +®D lI/—i—pr/\ B+Cd F+§CA B
! wap A xpEd | H sy o 1 —af A * Y7
= ES XN Raﬁ + @ugD TP + 5,0)( A Tbyg + PR | . (8.4.3)

The trace is over the generators of the Lie algebra. Such a constraint, at the same
time, constricts the linear group SL(4, R) to the Lorentz (or 4D orthogonal) group
as a subgroup. For comparison, its component form is also given. In order to comply
with the four-form character of a Lagrangian, the auxiliary fields ¥ and 8 have
to be self-dual two-forms. In this framework, the so-called fermionic constraint is
Wp:=Cop(d *I'*F + L *B*F).

In the following, we consider the full topological gravity Lagrangian

Lt =dCrr + Lrp = dCrr + s{- - -} (8.4.4)

and are going to demonstrate that it is BRST-invariant and classically equivalent to
the double self-dual or anti-self-dual version of SKY gravity. Hence the constraint
four-form {- - - } is able to induce a dependence on the metric that in is not present in
the primordial topological action. The physics will be independent of any parameters
that are introduced into the theory via BRST-exact terms, except for an overall factor
in the resulting partition function and a possible “background” dependence (ALFARO
& DAMGAARD 1990).

Performing the BRST transformation s in the gauge-fixing Lagrangian (8.4.3),
we obtain, after a long but straightforward calculation using the algebra specified
before, the result

+ N +
Lip = — Tr{,B AFQE—FTADEE A [c, Qg}
+7D*W +PD*D® + D[V, *W]|+Bd*TI"
_ — 1 1
~Cd*w +Td (DO +3pp A "p+ 3B /\*[EB} . (845)
The variation with respect to the auxiliary field B yields the Lorentz-type condition
d*I" = *B on the linear connection. Moreover, for vanishing real gauge parameter

p = 0, the equation of motion for the auxiliary Lagrange-multiplier-type two-form
B enforces the self-double-duality or anti-self-double-duality condition

£ 1
Qg::E (2¢ £ *Q8W) =0 (8.4.6)

on the curvature two-form §2¢, where we distinguish between the Hodge dual * and
the Lie dual ™ in a space(time) of signature sig.
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8.4.1 Effective Self-dual SKY Gravity

In the case of the choice p = 1 of the real gauge parameter, the two-form 8 is present
in two terms, but then can be eliminated by a Gaussian integration (in Euclidean
space) such that up to gauge-fixing terms, the SKY Lagrangian remains supplemented
by the topological Euler term as a boundary term, i.e.,

(%) 1 ig *ig
Ligy = 5Tr (25 "2

1 o * (_I)Sig
—ERf’/\ Rop F

R AR

1
* (%) * «Q * paf(x
- (Raﬁ + Raﬂ) A * (R £ *R%PW) (8.4.7)
Due to the second Bianchi identity D£2¢ = 0, the dual field equation

+
D*R8=0 (8.4.8)

is equivalent to Yang’s original equation. The corresponding canonical energy—
momentum current of the gravitational gauge fields, i.e.,

1 + + + +
£, = 1 (.Qg Ae) 05— ey 3¢ A m) —o, (8.4.9)

is zero, which is equivalent to the vanishing of the metric stress—energy tensor,
ie., T,,:=2*(0L/0g,,) = 0. In turn, this implies that the BRST quantization is
independent of the metric “background.”

It is rather obvious from the equivalent binomial form of the effective SKY
Lagrangian that anti-self-dual solutions (MIELKE 1981; BENN et al. 1981; MIELKE
& MAGGIOLO 2005) as well as self-dual spaces, i.e.,

Rup = F*R} (8.4.10)

are extrema. The sign difference in the curvature constraints resemble the two roots
of a quadratic equation.

Concentrating on topological terms such as those of Pontryagin and Euler, related
self-dual modifications have also been advocated as topological 4D self-dual gravity
by NAKAMICHI et al. (1991) with the emphasis on gravitational instantons with an
additional duality constraint on torsion. Conformal gravitational instantons living
on Einstein spaces with the additional constraint of anti-self-dual Weyl curvature
(TORRE 1990; MYERS & PERIWAL 1991) and their deformations can be classified
topologically (PERRY & TEO 1993). The consideration of the Pontryagin term with
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respect to the Riemannian curvature R i}ﬁ and the axial torsion one-form o7 :=*(9, A
T*) is rather well motivated by the axial anomaly in RC spacetime

_ 1 1
(djs) = 2i *m(Yysyr) — yrw (Rfjﬁ A RV 4 Ed,ef//\dﬂ) , (8.4.11)

where 1 is a Dirac spinor field.

8.5 Symmetry Breaking Via Duality Rotations

In order to lift the vacuum degeneracy of self-dual SKY gravity, we may use the
freedom in the choice of the constraint four-form and impose instead the gauge
constraint (8.4.3) modified via

*

9’[‘[ — * — 7%
ALgp = sTr e XN "o —cd y] (8.5.1)

involving the “unit”-curvature two-form

0’::%)/ AY. (8.5.2)
In addition, the coframe y:=19*y, is constrained by the Hilbert—de Donder gauge
condition d*y = 0 complying with the BRST algebra of translations.
Then for p = 0 there arises from Lgp:=Lpgp + ALgp the modified double duality
constraint

+ 0
28 =i—Lgo
402

(8.5.3)

on the curvature two-form £2¢, which is real due to the extra imaginary unit i.
However, since o is automatically double-(anti-)self-dual, i.e.,

o = (-1)"%0, (8.5.4)

only one sign for the dual curvature ég leads to a self-consistent constraint. This
depends on the signature: in Minkowski spacetime, e.g., a modified anti-self-double-
dual curvature arises.

The choice p = 1 of the real gauge parameter would leave the two-form § present
in two terms, but it can again be eliminated by a formal Gaussian integration in
Euclidean space such that up to gauge-fixing terms, the Einstein—Cartan Lagrangian,
the SKY Lagrangian, and an induced cosmological term remain supplemented by
the topological Euler four-form, i.e.,
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- 1 + 05 £ 07
LYy = ST [(Qg — iﬁa) A (98 - ir;a)} (8.5.5)

(— 1)

o 1
= —Z—ZER““ A o + 05 Aetr 1) — ER‘““ A *Rop F

R® AR

Related Lagrangians* with broken scale invariance were considered before in the
Poincaré gauge framework in 4D or as a reduction of five-dimensional de Sitter
models (MACDOWELL & MANSOURI 1977). In our topological BRST formalism,
they arise as gauge constraints.

The quadratic form (8.5.5) of the Lagrangian, related to the expression (9.8) of
MIELKE (1984a) in components, again suggests an important link to the path integral
approach to quantum gravity. Then instanton-type configurations (GU et al. 1978;
ATIYAH et al. 1978) near the classical ones, i.e., Einstein spaces, are more probable
then the “spurious” Thomson spaces, in concordance with what one would expect
naively. For the modified duality (8.5.3) accompanied by a breaking of scale invari-
ance, the transition amplitude peaks at classical Einstein spaces only. Alternatively,
in a four-dimensional Yang—Mills theory gauging the de Sitter group (MACDOWELL
& MANSOURI 1977; AOUANE et al. 2007), scale invariance would get spontaneously
broken by a pseudo-Goldstone-type “radius vector” (PAGELS 1984; TRESGUERRES
& MIELKE 2000), odd under CP transformations, in order to recover the Hilbert—
Einstein action plus the Euler term.

More generally, following RAINICH (1925), MISNER & WHEELER (1957), MIELKE
(1987), one could consider the double duality rotation

289:=y/2 (2% 5in6 + *25™ cos 6) (8.5.6)

+
of the curvature, which for § = /2 specializes to the self-dual curvature §2¢, and for

6 = 3m/2 to the anti-self-dual curvature £24. Since the “unit”-curvature two-form o
is either self-dual or anti-self-double-dual, depending on the signature, cf. (8.5.4),
the additional term (8.5.1) in the constraint again would induce a breaking of the dual
symmetry (8.5.6). Thereby, the vacuum degeneracy of Yang’s equations is lifted.

8.6 Generalized Double Duality

Before analyzing its consequences for the metric “background,” let us turn to a
further generalization that will include the constraint (8.5.3) as a special case. Such
a generalization can be more concisely derived in a gravitational gauge framework

“The instanton solutions of Yang’s theory of gravity, classified as early as (1981) by MIELKE, are
a special case of the Ansatz (8.6.4) for the choice , = 6r = 0 and 6] = F(—1)%e, Interestingly
enough, it can be regarded as a field redefinition (FR) of the linear connection I” such that (8.6.4)
is induced; see MIELKE (2006b) for details. Such an FR was applied in OBUKHOV & HEHL (1996)
to Euler- and Pontryagin-type terms. However, such deformations change the latter four-forms to
no longer being d-exact terms, thus preventing a topological interpretation.
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with torsion, where the most general parity-invariant quadratic Poincaré gauge (qPG)
Lagrangian reads

Lopg = A 0 R A 1T A H, lR“ﬁAH (8.6.1)
PG = 3 n—= 462 Nap 2 B ap - -0.
Here \
1 3
Halz— BLqu/BT“ = K_Z*(Z a) (M)Ta), (862)
M=1
and
ap 6
Hypi=— anPG/aRaﬂ = 202 Nep + * (Z by W) Raﬂ) (8.6.3)
N_

are the translational and rotational field momenta, respectively. The fundamen-
tal length € fixes the relative strength of the rotational and translational interac-
tion parts of the gravitational Lagrangian Lgpg. In the field momenta, each of the
three irreducible torsion pieces and six irreducible curvature pieces contribute to
the Lagrangian with individual dimensionless weights a(y and by, respectively.
The volume form 7 accounts for the possible occurrence of a “bare” cosmological
constant A.

In such a more general setting, one could impose (MIELKE 1984b, 2006b) the
generalized double duality Ansatz (DD)

oF Or

202 10 T oy
~ —9Ly/dR* , (8.6.4)

Hop (x5) = 0 Rop + 0f Ry + —5 00 A D

for the rotational field momenta (MIELKE 1992; ZHYTNIKOV 1994), where 6ér, 67,
0., and 6] are dimensionless constants. The constraint (8.5.3) corresponds to the
SKY Lagrangian with ap = 0, by = 1, and the choice 6] = F(—1%2 as well as
6. = 6y = 0. The left-hand side of (8.6.4) can be, as indicated, related to the 6-type
boundary term

Lo:=01 dCrr + 07 dCrr- + 60 dCrg + 67 (= 1) dCrg- =dCy.  (8.6.5)

The latter is a linear superposition of the topological Nieh—Yan term, the term
dCrr:=d(¥® A *T,)/2¢* inducing the teleparallelism equivalence, as well as the
Pontryagin and Euler four-forms. The DD Ansatz (8.6.4) could be implemented as the
BRST gauge constraint %s%aﬂ A (Hyp + 3Lg/d R*) generalizing the corresponding
terms in the Faddeev—Popov Lagrangian Lpp modified by (8.5.1).



172 8 BRST Quantization of Gravity

The metric consequences can be derived by inserting the duality Ansatz (8.6.4)
into the two nonlinear gauge field equations (HEHL et al. 1995),

DH, — E, = %, (8.6.6)
DHaﬂ + ﬁla A Hﬁ] =TaB (867)

where due to the universality of gravity, there occur the three-form of the energy—
momentum

Ey:=3L/30" = ey |L + (eq | T?) A Hg + (ea |RY) A Hp, (8.6.8)

and the angular momentum current Vg A Hy of the gravitational gauge fields.
The DD Ansatz maps the second field equation (8.6.7) into the second Bianchi
identity for the RC curvature, provided the translational gauge field momenta H,
satisfy the algebraic equation
ﬁ T”+ﬁz9 A Tgy 4+ Bg A Hg(x%) = (8.6.9)
202 ety 72 Vle AN g+ Ve A H = Tap - 6.
The covariant derivative D of the “unit”-curvature pieces proportional to 7,4 and
o A ¥ in the DD Ansatz is responsible for the two additional torsion terms. For
spinless matter, i.e., 7,4 = 0, one can algebraically resolve (8.6.9) using Eq. (A.1.26)
of HEHL et al. (1995) for the translational momenta H,, (%) constrained by double
duality, with the result that

H, (%) = 29;2 KPY A s, — %Ta = e% [0r K — 61T, ]
= G—F*[T -, A(eﬁjTﬁ)—le J(TﬂAﬁﬂ)} —Q—TT
2 | T = Ve 5 ¢ 2l
~ —9Ly/0T" . (8.6.10)

Here the identity 7% = K%g A ®# has been employed in the conversion from torsion
to contortion, and vice versa. In vacuum, this implies the vanishing of some of the
three irreducible pieces of torsion or algebraic constraints on its coupling parameters
(MCCREA 1987, 1995). For the general case with spin, see MIELKE (1984b).

The insertion of the duality Ansatz (8.6.4) and (8.6.10) into the first field equation
(8.6.6) implies important information (MIELKE 1984a; ZHYTNIKOV 1994; MIELKE
2006b) on the Riemannian background, but requires rather involved algebraic manip-
ulations, even with computer algebra like REDUCE.

A calculational shortcut occurs on the Lagrangian level, provided the constraints
are compatible with the variational principle. After inserting (8.6.4) and (8.6.10) into
(8.6.1), we obtain
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ap ap 1 « 1 af
LqPG(**) = Z_Z — @R A Nap — ET A Hy (kx) — ER N Haﬁ(**)
A 9—?: +a0 1
= Ly TR\ e — — T A[0E KD — 61T,
2T T ep ~ 5 T A 01 KLY = O]
1 0
_ ~ pap * pO) T
SR A [QL Rop + 6 Rl — 3750 A 19,3] : (8.6.11)

Since the explicit torsion terms drop out due to the Nieh—Yan relation and the telepar-
allelism identity, we are left, up to an exact form, with an effective Hilbert—Einstein
Lagrangian®

07 lep 07 Acti
Leff:ZLqPG(**) —dCy = —2—£2R A Nap + 12

n. (8.6.12)

The contraction Hyg (%) A 0% A 9P of the DD Ansatz (8.6.4) together with the linear
expansion (8.6.3) implies, for 0, # 0, that the pseudoscalar curvature vanishes for
consistency, i.e., Ryg A 9% A 9# = 0. Then the scalar curvature

o 6(6+ — ap)
R:=egleq]R B — m (8.6.13)

is constrained to be a constant such that an effective “cosmological” constant

A —1 A 1(0* )R —A A (8.6.14)
ett—&? 4 T — do —9; 0 -0.

of partially ropological origin (MIELKE 1984b, 1987; MCCREA 1995) is induced.
Observe that the “bare” cosmological constant A gets subtractively renormalized by
6-terms induced via boundary terms. Thus one may speculate that some topological
mechanism is responsible for the necessary fine-tuning of the “bare” constant A to
the tiny cosmological constant of the present epoch of our universe.

After inserting the double duality Ansatz (8.6.4), we are left with Eq. (5.8.29) of
HEHL et al. (1995), i.e.,

*

9 —~
—E, = ?TR{}M ATy — O Aeiing = €% 2y . (8.6.15)

5There occurs an interesting modification in the case that 6;, = 0, since then the pseudoscalar cur-
vature four-form 61 R* A 04 A g /462 needs to be subtracted from (8.6.12), which would induce
(MIELKE 1992) a partially chiral reformulation of Einsteinian gravity a la ASHTEKAR. However,
this would violate parity P and even C P if 61 remained real, (MIELKE 2001).
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8.6.1 Classical GR by Constraining Torsion to Vanish

The same Riemannian “background” can be obtained by imposing the constraint of
vanishing torsion 7% ~ 0 via Lagrange multipliers in the gravitational gauge field
equations, cf. MIELKE & MAGGIOLO (2003). This alternative method eventually
amounts to a degenerate variational principle for the metric: to be consistent, the
constraint of vanishing torsion is implemented via Lagrange multipliers,

LqpG = Lgpg + Ao AT . (8.6.16)

Then obviously, 7% = 0 will emerge by varying the Lagrange multiplier, and the
second field equation (8.6.7) amounts to an algebraic equation for the two-form A,,.
After its resolution, it converts the first field equation (8.6.6) into Eq.(5.8.25) of
HEHL et al. (1995), i.e.,

1
2D (eﬁJDHaﬁ — Zﬁa A eyje‘SJDH},g) —Ey =%y —Dug, (8.6.17)

which, generically, is of third order in the Levi-Civita connection I'}*# of Rie-
mannian spacetime, i.e., of fourth order in the metric, with all the implications com-
prehensively reviewed in SCHIMMING & SCHMIDT (2004).

In the case of Dirac spinors, the spin-energy potential |1, = iz‘}a A *Jjs is dual to
the axial current js:=v *yysyr; cf. MIELKE (2004). Since A, involves /iy, (8.6.17)
can likewise be obtained from the variation u, A §T°.

Let us now consider again the double-duality Ansatz (8.6.4) for the rotational field
momenta where the s are dimensionless “vacuum angles” related to the individual
coupling constants in the 6-type boundary term (8.6.5): since DRyg = 0, DR;;) =
0, Dnug =0, and D9 A Ug) = 2T A V¥g; = 0 in a Riemannian spacetime, the
higher-derivative Cotton-type three-form in (8.6.17) drops out completely. Moreover,
the Lie dual Ri;;) of the curvature does not contribute in (8.6.8), due to the Bach—
Lanczos identity (A.3.7) of HEHL et al. (1995) for Riemannian spacetimes.

Then we are again left with (8.6.15) or, finally, with Einstein’s field equations

Gl — At 0o = ket Ty - (8.6.18)

Here GU:=RUA7 A Napy¥* /2 is the Einstein three-form dual to the usual Einstein

tensor G ::Ricg — % gij written in terms of the Riemannian connection I” U}, Matter
fields would act as source via the symmetric Belinfante—-Rosenfeld current three-form

S=%, — Dy, (8.6.19)

whereas the effective gravitational coupling constant efr = ¢°/65 depends on a
“bare” length scale £ “renormalized” by the vacuum angle 6;.
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In order to maintain macroscopic correspondence, the coupling of the effective

Einstein equation (8.6.18) to the symmetrized energy—momentum current X', of
matter requires, at least locally, the macroscopic Newtonian value k. = 87 Gy /c*
of the gravitational coupling constant. In the coupling to fundamental Dirac fields,
again a BRST formulation (GRENSING 2002) is feasible.

Observe that our constraint method provides a simple rendering of the Lovelock
theorem, stating that the Einstein equations with cosmological constant are the only
second-order partial differential equations for the metric; cf. RUND & LOVELOCK
(1972).

8.6.2 Effective Einsteinian “Background”

Thus by modifying the gauge constraint, the double duality relation (8.5.3) surfaces,
which eliminates the “vacuum ambiguity” for the exact instanton solutions of SKY
gravity. The latter emerges as a special case from the generalized DD Ansatz (8.6.4)
mapping the gravitational field excitations H,g to those generated from the four-
parameter boundary term (8.6.5). As an intermediate step, we have considered an at
most quadratic Lagrangian Lgpg with ten® parameters a(y and by).

The classically allowed set is still the subject of investigation: In a pioneering
work, SEZGIN & VAN NIEUWENHUIZEN (1980), using spin-projection operators,
determined the propagating modes and the particle content. By performing a mode
decomposition based on a flat Minkowskian background, a three-parameter class of
unitary qPG Lagrangians has been found (KUHFUSS & NITSCH 1986). However, these
earlier works effectively depart from a linearization of the gravitational gauge fields.
Then problems with the Cauchy formulation, shock waves, and the positivity of the
gravitational energy may arise (HECHT etal. 1991; HECHT et al. 1996). A more recent
Hamiltonian analysis (YO & NESTER 2002; DESER et al. 2014) has revealed that due
to nonlinear effects entering the Poisson brackets, a bifurcation in the constraint
chain or a field activation may occur. Thus, in passing from the strong to the weak
field regime, the status of presumably viable parameters can switch.

Nevertheless, the 10-parameter Lagrangian (8.6.1) serves as a convenient means
to facilitate the derivation of the metric consequences of the generalized double-
dual constraint (8.6.4), resulting in Einstein spaces as the only classical Riemannian
“background.”

Due to the explicit appearance of a length scale in the Ansatz (8.6.4), it is sugges-
tive to associate this with a (spontaneous) symmetry breaking (¢) o 1/£ of the scale
or Weyl invariance of the original Lagrangian L 4pg, for instance in a model (HEHL et
al. 1989) dynamically coupled to the dilaton field ¢; cf. DERELI & TUCKER (2002).
In a Riemann—Cartan—Weyl spacetime, by alleviating the induced algebraic torsion
constraint (8.6.10), generalizations of Einstein’s equations with a coupling to axial

50ne has to keep in mind that due to the Bach-Lanczos identity, the parameters by, are not all
independent; cf. Eq. (A.3.7) of HEHL et al. (1995).
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torsion as well as a derivative coupling to the Weyl covector can arise (KAUL 2006).
When these covectors are induced by an axion a and dilaton ¢ as respective potentials,
a cancellation of the axial torsion part in the chiral anomaly (8.4.11) can be achieved
(MIELKE & ROMERO 2006; MIELKE 2006a). Similarly to the case of strings, both may
even combine into a single complex scalar, the axidilaton ® = a +if, exp(—¢/f,);
cf. MIELKE & SCHUNCK (2001).

Quite generally, an induced cosmological constant

3(6% — ap)?

= 8.6.20
202(0F — be)0 ( )

0

of partially topological origin (MIELKE 1984b) is unavoidable, leading to an inter-
esting (anti-) de Sitter “background,” resembling, to some extent, the intriguing
AdS/CFT correspondence and/or a coupling of the Euler or Gauss—Bonnet term to a
hypothetical scalar field (COGNOLA et al. 2007).

Thus, there is still a valid avenue to a consistent quantization based on a topo-
logical version of self-double-dual SKY gravity or its modifications, departing, in a
gauge-covariant approach, from a d-exact topological term. Due to the nilpotency of
the corresponding BRST charges (MIELKE & MAGGIOLO 2003), the s-exact term can
easily account for the necessary gauge constraints such as (8.6.4), implying standard
Einsteinian gravity for the classical “background.” This, to some extent, provides a
partial answer to the issue already raised in 1963 by FEYNMAN et al. (1995), whether
Einstein’s GR, in view of its force-free geometric concepts, needs to be quantized at
all or whether curved spacetime can be left as an arena for quantized (topological)
fields to play out. Possible observables (AOUANE et al. 2007) include field polyno-
mials in the Pontryagin, Euler, and Nieh—Yan invariant (KREIMER & MIELKE 2001;
NIEH 2007) constructed from torsion and curvature two-forms, including their grad-
ing via the topological ghosts as well, or even from superconnections (NE’EMAN
1998). Relations to the Donaldson invariants, lucidly reviewed by ATIYAH (1990),
need to be seen as well as the unique and quite singular role of four dimensions
in topology.
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Chapter 9
Gravitational Instantons

Most of the known vacuum solutions of Einstein’s field equations, as for instance
classified by PETROV (1964), HARRISON (1980), and recently by, e.g., STEPHANI
et al. (2009) are providing the metric background for nontrivial torsion solutions. In
order to derive these exact solutions explicitly, it is then sufficient to solve the duality
ansatz with the symmetry of the looked after configurations given in advance.

9.1 Exact Solutions

A particularly simple case is SKY gravity in vacuum, since then, a complete clas-
sification of the double-dual subspaces is available from the preceding chapter. For
anti-self-double-dual solutions of the Yang—Stephenson equation, these are Einstein
spaces. Spherical symmetry provides Birkhoff’s theorem in its more precise form, cf.
NEVILLE (1980), RIEGERT (1984), and BOUCHER et al. (1984) that such solutions—
after due application of differentiable coordinate transformations—can be traced
back first to the Schwarzschild—de Sitter (SdS) space or Weyl-Trefftz metric:

ds* = —e"dt* + e*dr* + r’d "2 9.1.1)
with
2\ 3 2 Aese
P e =1 (M o ot 2 9.1.2)
r n—1n-2)
M

p=—s; d2°:=dv* +sin’ 9d¢’
m*

(here generalized to an n-dimensional manifold) and second for A. > 0to the Nariai
metric
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n—2 (—dt2 n drz) n n—=2)(n-3)

== don? 9.1.3
2Aefft2 2 Ay, ( )

ds?

(NARTAI 1950, 1951). This second and less well known line element is isometric to
the canonical metric for the Cartesian product of both a two- and (n-2)-dimensional
space of constant curvature. Contrary to possible misperceptions, this “cosmolog-
ical” configuration—exactly like the SdS metric—is a static solution of Einstein’s
field equations. On the other hand, the Nariai solution also satisfies the coupled
Einstein-Maxwell system with a cosmological term and is then considered to be a
configuration in which homologous electromagnetic fields are “trapped” within the
metric background of the product topology (PERCACCI 1979).

Anti-self-double-dual configurations lead to the theory of Nordstrgm, whose most
general spherically symmetric solution is conformally flat,

N £\
ds? = (M) (—df® + dr? + r2d2?), (9.1.4)

r

with N = N(r % t) denoting an arbitrary harmonic function of r and ¢; cf. N1 (1975).

In a pseudo-Riemannian space, these metrics exhaust all possible spherically
symmetric solutions of SKY gravity (BAEKLER & YASSKIN 1984; BAEKLER
et al. 1982). The fact that it is especially the Schwarzschild metric that is contained
in this solution manifold was recognized already by PAULI (1919a, b) while he was
investigating the scale-invariant theory of WEYL (1919) mentioned earlier. In real
spacetime, however, the Schwarzschild solution (9.1.1, 2) with A = 0 is of para-
mount significance for the description of the external (in GR also with respect to the
internal) gravitational field of a macroscopic mass distribution, as for instance that
of a star; cf. SCHEEL & THORNE (2014).

But what role do these solutions play in the more microscopically founded
Poincaré gauge theory? According to the canonical common opinion, such theories
are normally not thought to contribute to a realistic description of physical reality
unless they have undergone a satisfactory quantization. Again we apply Feynman’s
method of quantization by means of path integrals; see, e.g., DE WITT (1972). Then
it can be expected that solutions with duality properties play a dominant role, at least
as gravitational analogues of the pseudoparticle solutions of Yang—Mills theory.
Following the nomenclature of GIBBONS & HAWKING (1979), these are given by
nonsingular, complete, and positive definite metrics that satisfy Einstein’s equations
(cosmological term included). Since the qPG theory is closer to the Yang—Mills theo-
ries, and this not only as far as its conceptual base is concerned but also with respect
to its dynamics, it seems to be far more appropriate to define those nonsingular
configurations as gravitational instantons, which, in a Euclideanized spacetime with
signature s = 0, satisfy duality Ansitze. This concept, however, is not necessarily
contradictory to the findings of the Cambridge school, since we know that we are
bound to Einstein spaces as a metric background, as far as vacuum solutions are
concerned.
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In order to show, for instance, that the SAdS metric in a Euclidean spacetime is a
nonsingular one, we first pass to a different coordinate system. Let r* be the “tortoise”
coordinate (WHEELER 1955) defined by the differential form

dr* .= e*"V?dr. (9.1.5)
Using the implicitly given Kruskal-Szekeres coordinates (MTW, p. 831)
ut —? = /M 9.1.6)

and
(u+v)/(u—v)=e'*, 9.1.7)

the line element (9.1.1) transforms into
ds? = 162" """ (—dv* + du?) + r*d 22, (9.1.8)

whereby r and r* are considered to be functions of u and v. On the surfaces
u?> —v? = 1, that is, for r = r* = o, this geometry becomes singular in real space-
time. Here, exactly as in the case with the instantons of Yang—Mills theory, this can
be avoided by making use of a purely “imaginary” coordinate v := iv. The sphere
S? given by e” = 0 deteriorates to a rotational axis, while the imaginary time axis
T := it represents an angle variable about this axis in Euclidean spacetime. (Corre-
sponding nonsingular cross sections are to be found in the complexified (SCHIFFER
et al. 1973) KERR metric (2008)). It is especially the Euclidean version (EGUCHI
& FREUND 1976), of the de Sitter cosmos that can be considered the most con-
vincing analogue to the instanton solution of BELAVIN et al. (1975), since it grows
asymptotically “flat” with respect to all four dimensional directions.

There are other exact solutions of Einstein’s field equations that can be consid-
ered as gravitational instantons. Provided that only simple self-duality, equivalent to
certain deformations of a flat twistor space (PENROSE 1976), of the curvature tensor
is considered, a condition that leads to real metrics in a space with 2signature s = 0,
it is well known (HAWKING & POPE 1978) that the universal covering space of the
Kj3-surface represents the only compact manifold that is allowed by a metric with
self-dual curvature. Gravitational multi-instantons can be generated by a generaliza-
tion of the Taub—NUT spaces (TAUB 1951, NEWMAN et al. 1963). Further details
concerning these solutions are to be found in EGUCHI et al. (1980), a work that also
presents a good introduction to the characteristic classes, which are of utmost impor-
tance for questions of global topology. Further gravitational instantons of Petrov type
D have been studied by LAPEDES & PERRY (1981).
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9.1.1 Solutions with Torsion

Spherically symmetric solutions of the qPG theory with nontrivial torsion, for a
spacetime with Minkowski signature, were first found by BAEKLER (1980, 1981).
Since these nontrivial torsion solutions with duality properties “live” on Einstein
spaces as metric background, the only information that needs to be added is the struc-
ture of the torsion 2-form being coded into the duality ansatz. In order to decode this
information, we have to recall the splitting of the metric-compatible Riemann—Cartan
connection w? into a Christoffel-type connection w! and the remaining contortion
I-form K. This reflects itself in the corresponding decomposition of the curvature
2-form in an RC spacetime. Its Riemannian part may be decomposed further into

1
V=l 42" - ER{}z?Az?, 9.1.9)

where .Qg denotes Weyl’s conformal curvature 2-form in a Riemannian spacetime.
Concerning the qPG Lagrangian 4-form with quasilinear field momenta and with the
choice f; = oand ¢ = —1, as discussed by BAEKLER et al. (1982), the duality ansatz
used for the reduction of the field equations is simplified to

+
.(21»’:%’;19/\19. (9.1.10)

As a consequence of these algebraic relations, the Riemann—Cartan spaces are of
constant scalar curvature

R="@¢no Aoy =2 _yn 9.1.11
- = -2 —4aa ©.1.11)

On the other hand, the metric background manifold has to be an Einstein space which,
in vacuum, may be characterized in the following equivalent way:

=0. (9.1.12)

Its Riemannian background is likewise of constant scalar curvature

6Ky

0 =7
RV = R

(9.1.13)

I (9.1.9) and (9.1.12) are taken together, the constant-curvature pieces drop out, and
the double-duality constraint (9.1.10) on the solution spaces reduces to

+ +
(DK) — K ANK = 2¢U. (9.1.14)
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As aresult, the remaining contortion 1-form K is determined solely by Weyl’s con-
formal curvature 2-form of the background manifold via a nonlinear differential
equation involving double duality. In the derivation of (9.1.14), use is made of the
fact that K A K is already self-double-dual.

Exact solutions can now be derived (for details, see MIELKE 1984, BAEKLER 1985)
from the remaining Eq. (9.1.14), after specifying the symmetry of the background and
independently those symmetries of the torsion. For our purposes, however, it suffices
to present only some of the most important examples in the case of spherical symme-
try. Then, the background manifold is given by the 4-dimensional Schwarzschild—de
Sitter line element (3.9.1,2), whereas the spherical reflection-invariant torsion tensor
can be written as

f—h o
R
[Tee’]=| = 7 gg 9.1.15)
e 13
01 2 3

in a (bivector)-(vector) representation (MTW, p. 360). Subsequent to a tedious cal-
culation (BAEKLER et al. 1982) that will not be reproduced here, the radial torsional
functions turn out to be

This solution, found first by BAEKLER (1981) while analyzing the original qPG
equations, was generalized to a charged configuration by LEE (1983). It is highly
important to note that the resulting torsion (9.1.15), after passing to a pure de Sitter
cosmos, vanishes without Schwarzschild’s source term, i.e., for © = 0. This is in
complete analogy to the properties of certain instanton solutions of the coupled
Einstein—Yang—Mills system. As could be shown by CHARAP & DUFF (1977a, b),
the latter configurations can exist only on a curved spacetime, but not on a flat
Minkowski space.

On the other hand, there is a further solution, found by BAEKLER et al. (1982),
that exists only in a spacetime of constant curvature, i.e., one for which the mass
parameter mu vanishes in the metric ground form. Here the radial functions occurring
in the matrix representation (9.1.15) take the form

1 K2\ —up2 1v/2
=t )
1 /— 1
h=— Y% k=4 VA 9.1.17)

T mex 3 20%



186 9 Gravitational Instantons

For areal solution, k < 0 is necessary. In this case, torsion can exist only in an anti-de
Sitter cosmos. Spherically symmetric solutions based on the Nariai metric (9.1.3)
have not yet been considered. Among the vacuum solutions of qPG theories are
known not only those with a spherically symmetric metric background (BAEKLER
et al. 1983) but also some with cylindrical (MCCREA 1983) and axial symmetry
(MCCREA 1984). The latter is a torsional extension of the Taub—NUT solution. A
solution with purely axial torsion was constructed by LENZEN (1984).

Moreover, electrovac solutions, i.e., solutions of the qPG theory coupled to
electromagnetism have been found (BAEKLER & HEHL 1984, BAEKLER 1985; cf.
MIELKE 1984), which likewise exhibit double duality properties. Some anticipating
results aiming prospectively in this direction may be found in the works of BENN et
al. (1980), BAEKLER et al. (1982), MIELKE (1981b, 1985) and RUDIGER (1984).

9.1.2 Instantons with Torsion

In an imaginary “spacetime” with Euclidean signature s = 0, some of the vacuum
solutions should yield gravitational instantons not only in SKY gravity, but also in
the full gPG theory as well. However, a transfer of the exact torsion solutions to
the Euclidean domain is usually prohibited. A direct correspondence of spacetimes
with Minkowski signature to those with a positive definite signature arises only for
those qPG solutions in which the torsion components remain real after application of
Weyl’s trick, i.e., the formal substitution t — —it of the timelike variable. It follows
from the matrix representation (9.1.15) that the anholonomic components f = T(;)'?
andg = Té = Tlg are the only ones that are then allowed to be nonzero. A solution
with one nonzero torsion component was first derived by BENN et al. (1981) on a
real spacetime; after it has been transferred to a “Euclideanized” Schwarzschild—de
Sitter space given by

2
dsédsz(l——u—i— “ )dt2

Y
21 1\ 2 2 762
1= g At (9.1.18)

it reads

g=h=k=0 9.1.19)

(cf. MIELKE 1984). For i = 0, it degenerates to a de Sitter-type torsionless instanton,
which nevertheless has to be regarded as a pseudoparticle solution of the full PG
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theory. Topologically, the base manifold is S*. Within the framework of the Einstein—
Cartan theory, it was TSEYTLIN (1982) who obtained a torsional instanton.

As already mentioned, the criteria for gravitational instantons are stated differently
by different schools; cf. MIELKE (1981a). But within the context of the qPG theory,
we prefer to distinguish gravitational instantons by both the double-duality properties
and the invariant characteristics of the global topology.

9.2 Topological Invariants on Manifolds

Accordingly, we have to turn to the question whether and to what degree gravitational
instantons are globally characterized by topological invariants. Again we restrict
ourselves to a manifold of dimension n = 4. The previous classification of the source-
free Yang—Mills gauge fields, especially by means of the Pontryagin—Chern index,
can be transferred to the gravitational case insofar as the tangent bundle T(M) is
exactly the bundle associated to L(M). Furthermore, the real Euclidean space R"
occurs as the typical fiber of T(M), and thus it is allowed to characterize topologically
the space of linear connections w' (i.e., those defined in L(M)) by the Pontryagin
index

1
T 2(27)?

(_1)s/2 N
= W/4 Rapys R*P7%\/|gld*x (9.2.1)
M

pr(M*) / Tr(2F A 21)
M4

(KN II, p. 312). This index is known, for instance, as soon as there exists a smooth
self-transversal immersion of the oriented compact manifold M* into the Euclidean
space R®. For then

(MY = =37 9.2.2)

is valid, and t provides the number of isolated triple points, i.e., the Hirzebruch
signature. These threefold self-intersections are isolated due to self-transversality
(WHITE 1975). Since torsion can be switched off continuously, it does not change
the Pontryagin index of a manifold (WU & ZEE 1984).

“Broken” Poincaré gauge theories of gravity do not reside on the bundle L(M)
but on the bundle L&(M) of orthogonal frames. Furthermore, our formal transfer
of the Higgs—Kibble mechanism onto gravity demanded the introduction of metric-
compatible connections w®. Connections of this kind are additionally to be charac-
terized by the Euler classes (KN II, p. 314). Regarding oriented compact (pseudo-)
Riemann—Cartan manifolds of dimension n = 4, these classes are represented by the
closed Euler form
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LEuler» = ;;(Vzg) = TI'(Qg AN Qg(*))

(4m)?
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Under the above-mentioned conditions, it is the integration of the inverse image of
the form y; over the basis manifold, which provides for a topological invariant. It is
exactly given by the Euler—Poincaré characteristic

x(M) = (=1)?b, = /M 778 9.2.4)

p=0

according to the generalized Gauss—Bonnet theorem (CHERN 1944, 1963). In alge-
braic topology, however, this invariant can be determined in the stated way from the
rank of the pth homology group Hp(M, R), i.e., from the so-called Betti numbers
b := dim H,(M, R), which were introduced by Riemann. Similarly as in the case of
the Chern index, it can be shown that the Euler form, projected to the base, is even
an exact one. An elementary proof of this is to be found in NIEH (1980). The gener-
alizations given above for spaces with indefinite metrics can be found in the works
of LEVINE & ZUND (1970), which themselves are indebted to an earlier extension
of CHERN (1963). The first-mentioned paper contains also sufficient conditions for
the vanishing of x (M). In particular, it is known that a compact even-dimensional
manifold admits a pseudo-Riemannian metric of signature s = 1 (“Lorentz metric”)
if and only if the Euler characteristic vanishes (cf. SULANKE & WINTGEN 1972,
p. 242).

In the case of noncompact manifolds, a boundary term has to be taken into con-
sideration as well:

x (M) =/n(y ) — Gy / <a/\fzg<*> + %oz/\(oz/\oe)(*)]. (9.2.5)

M oM

This additional term, however, is then dependent on the second fundamental form
a:wf — o of the embedding of the boundary dM in M. Although it is exactly
this situation that is likely to be the generic one (GIBBONS & HAWKING 1979), it is
impossible to enlarge upon it here.

The same is true with regard not only to the important relation of the Euler number
to the Pontryagin index (cf. TAUB 1976) but also with respect to their relation to other
topological invariants and to the evaluation of their numerical size, as for instance
in the case of Einstein spaces (EGUCHI et al. 1980; MATSUSHITA 1981). A necessary
condition for the proof of (9.2.4) is also the metric compatibility of the connection
w®. With reference to interesting analogies between gravity and superconductivity,
this has also been accentuated via counterexamples by MILNOR & STASHEFF (1974,
p- 312) and by HANSON & REGGE (1979). However, here the restriction to a (torsion-
free) Levi-Civita connection is not necessary.
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Fig. 9.1 Wormhole
embedding

In contrast to the case of the Chem—Pontryagin index, the Euler number (9.2.4) is
solely determined by the topology of the base manifold, and accordingly, the Gauss—
Bonnet theorem can be proved as well by a purely topological-combinatorial proof
(PALATS 1978). The first statement becomes more transparent if the Euler number is
introduced axiomatically (cf. for instance OSBORN 1975). Within this foundation, the
connected sum M#N of two manifolds of the same dimension—which do not have
to be distinct—is an important geometric concept. For the construction of this sum,
an open ball B" is to be cut out of M and N in order to identify the then respectively
existing boundary spheres 9B" = S"~! with each other via a diffeomorphism that
inverts the orientation. Since this is equivalent to adding a handle or “wormhole”
W := S' x S"~! (WHEELER 1955), the manifold M#(S' x S"~!) comes into exis-
tence. The embedding of Scharzschild’s exterior solution is a segment of paraboloid
of revolution calculated in 1916 by FLAMM (2015); see Fig.9.1.

The Euler—Poincaré characteristic is the sole invariant that satisfies the topological
relations

X(M#N) = x (M) + x(N) — x(8"), (9.2.6)
XM x N) = x(M) - x(N), (9.2.7)
xX(M?) =2(g— 1), 9.2.8)
x(CP* =3 (9.2.9)

for manifolds of even dimensions. Here g is supposed to be the genus or “handle
number” of a surface (cf. SEIFERT & THREFALL 1934), and CP? denotes the complex
projective two-space in E2. For spaces with uneven dimensions,
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is valid in any case. Although there is no field-theoretic analogue to the concept of
the electric charge within the framework of general relativity (WHEELER 1963), it is
these properties of the Euler number that suggest it as the topological—gravitational
“charge” in a Riemann—Cartan space. Something that is comparable to a related
interpretation of the Chern index of instanton solutions in the Yang—Mills theory.

It was already in 1973, in the standard reference book on gravitation (MTW,
p. 381), that the central issue was raised whether such topological invariants are
of some physical meaning. In the case of the Poincaré gauge theory, the duality
Ansatz, induces an Euler-type term on the level of the Lagrangian 4-form. The Euler—
Poincaré characteristic is henceforth a necessary element of the “reduced” action,
concerning solutions with duality properties. This has an important consequence if
we are considering, e.g., the subcase of SKY gravity. From the inequality

(1 +¢2) /M Lsr = (<1 E@m? - ) (MY

1
=7 (28 — c*QR8W) A ¥ (28 — ¥ 28M) > 0, (9.2.11)
M4

which is valid for spaces with positive definite metrics (Euclidean gravity), it fol-
lows that the gravitational action is minimized by the self-double-dual solutions
for which the Euler number is zero. “Euclideanized” de Sitter universes (EGUCHI
& FREUND 1976) as connected complete spaces of constant curvature are isomet-
ric to the sphere S* (or to the real projective space in the case of nonorientabil-
ity). Consequently, the Pontryagin index vanishes here, while the Euler number is
“merely” 2 (or 1 respectively). It is for this reason that Yang’s gravitational action
is not minimized by the de Sitter metric (9.1.1, 2), having i = 0, but for instance
by the flat torus T* = S! x S! x S! x S!. Solutions with anti-self-double-dual cur-
vature exist globally only on manifolds with vanishing Euler number, and this on
account of (9.2.11).

9.3 Quantum Meaning of Gravitational Instantons

The meaning of such topologically characterized gravitational instantons has to
be looked for in the domain of the quantized theory. We are thinking not only
of those methods that have been developed in the context of the Hawking effect
(HAWKING 1975, 1976), i.e., the quantum field-theoretic treatment of nongravita-
tional fields in a curved, metric background (DE WITT 1975); cf. also
MIELKE (1977b). But the central issue is the quantization of the gravitational field
itself. There are mainly two methodical approaches that have to be distinguished:
first, the canonical quantization in “superspace” (‘“quantum geometrodynamics”; cf.
also ISHAM 1976), a method that has been especially fostered by Wheeler (1962,
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1968, 1970), and second the so-called covariant procedures (DE WITT 1972; cf.
HAMAMOTO 1983). Concerning the calculation of the scattering matrix in terms of
asymptotic states, the latter depart from Feymann’s method of quantization via path
integrals. In the case of gravity, it can be shown (CATENACCI & MARTELLINI 1984),
similarly as in the case of Yang—Mills theories, that the occurring functional measure
of Faddeev—Popov type is nothing but the volume element of the extended “super-
space” %, (M) := .# /2 of all Riemannian metrics modulo the diffeomorphisms
that respect isometries as fixed points.

For a quantized quadratic Poincaré gauge theory (qPG), it is then to be expected
that the contributions of the gravitational instantons dominate the transition ampli-
tudes in the “Euclideanized” version. Configurations with nontrivial topology
(HAWKING 1978) and nonvanishing torsion may be important. As for the compensa-
tion of divergences occurring in the “one loop” or WKB approximation, itis necessary
already in Einstein’s GR to supplement the conventional Einstein—Hilbert Lagrangian
4-form with counterterms that are quadratic in the curvature. STELLE (1977) were
able to show that a model that from the outset pays attention to Yang—Mills-like
terms in the gravitational Lagrangian 4-form is renormalizable in each order of the
perturbative expansion. However, in such a modified SKY gravity, physical “ghosts”
generally come into existence. These can be suppressed in the special cases of the
qPG theory that were worked out by SEZGIN & VAN NIEUWENHUIZEN (1980).
On the other hand, such tensorial states, having a negative norm in a Hilbert space,
are innocuous, since they do not necessarily cause a violation of Froissart’s unitar-
ity condition (boundedness condition) in the scattering cross sections (SALAM &
STRATHDEE 1978; SMOLIN 1984; TOMBOULIS 2015).

9.3.1 Euler Term and Induced Wormhole Configurations
Let us recall that the metric-dependent Euler—Poincaré invariant
dCrpe = %d (raﬂ A RS — %Faf‘“) ATEY A FV"‘)
= —Lsky — 2Ricyp A *Ric®” + %Rica"‘ A *Ricg? (9.3.1)
has an equivalent representation in terms of Weyl’s quadratic curvature Lagrangian

1
Lsky i= =5 Rup A *RY, (9.32)

amended by Ricci-squared and curvature scalar-squared terms. This is known as the
Gauss—Bonnet (GB) theorem. In the realm of gravity, topological ideas date back
to Riemann, Clifford, and Weyl. They found a rather concrete realization in the
wormholes of Wheeler, characterized by the Betti number related to the integrated
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Euler—Poincaré topological invariant (9.3.1). The two-sphere part S? of these R x
S x 82 topological configurations may even be knotted (MIELKE 1977a), and within
BF theory (COTTA-RAMUSINO & MARTELLINI 1994), it can be characterized by the
Alexander knot invariant. A possible topology change on the Planck scale has been
recently analyzed via the Ricci flow of Hamilton and Perelman; cf. DZHUNUSHALIEV
(2013).

On the other hand, four dimensions, according to the results of Donaldson, are
topologically special, since there are uncountably many nonisomorphic smooth or
piecewise linear structures (MILNOR 2011) on a noncompact R*. However, mani-
folds in such an “exotic” set are homeomorphic and thus will have the same Euler
characteristic. On the other hand, the Euler number does not characterize “exotic”
smooth manifolds, and one has resort to the intersection form in terms of the first
Chern class; cf. ASSELMEYER- MALUGA & BRANS (2007). Thus its contribution
will not affect the path-integral approach (ASSELMEYER-MALUGA 2016) to quantum
gravity (QG). One-loop ultraviolet divergencies in perturbative QG are proportional
to a GB term in the trace anomaly; cf. BERN et al. (2015).

Moreover, in the reduction of the BF model, the emergent Euler invariant neces-
sarily gets multiplied by the inverse of the symmetry-breaking constant w, possibly
a huge parameter. However, in view of the observed positive value of the cosmo-
logical constant, the presence of a primordial “gas of wormholes” would move the
contribution from the Euler invariant toward a tiny number close to zero (KAWAI &
OKADA 2012), similarly as in quintessence scenarios, where the cosmological term
is associated with the energy of a scalar field rolling down a runaway potential. This
may solve the naturalness problems in the standard model and the current cosmology
without introducing “new physics” such as supersymmetry or extra dimensions.
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Chapter 10
Three-Dimensional Gravity

Since the first three-dimensional (3D) model of STARUSZKIEWICZ (1963), the
topological model of gravity of Deser, Jackiw, and Templeton (DJT) (DESER et al.
1982a, b; DESER & JACKIW 1984; DESER et al. 1984) continues to attract con-
siderable theoretical interest. In order to obtain a nontrivial vacuum theory, DJT
added a metric Chern—Simons (CS) term for the Riemannian curvature to the 3D
Hilbert-Einstein Lagrangian, regarded as the high-temperature limit (for Euclidean
signature) or dimensional reduction of the four-dimensional theory. The topological
term is supposed to come from the -vacuum of 4D physics. The nice and intrinsic
feature of the DJT model is that the CS term induces a mass for the “graviton” with-
out breaking infinitesimal gauge invariance or invoking the Higgs mechanism. The
discovery (BAEKLER et al. 1992) of anti-de Sitter (AdS) and black hole solutions
(BANADOS et al. 1992) has added further interest in 3D gravitational models as a
“laboratory” to study geometric, dynamical, and statistical properties. In part, this
stems from the fact that spacetime in 3D is Ricci-flat, and the dynamical properties
cannot be attributed to the metric. The dynamical properties must be induced by,
e.g., topological terms instead.

From a gauge-theoretic point of view, however, it appears much more natural to
formulate a dimensionally reduced gravitational theory in a Riemann—Cartan (RC)
space(time) with torsion (HEHL et al. 1995), thereby going over to what is convention-
ally called afirst-order formalism. This happens in simple supergravity (ACHUCARRO
& TOWNSEND 1986; MIELKE & MACIAS 1999), where torsion enters as an auxiliary
field facilitating local supersymmetric transformations (DESER & ZUMINO 1976).

There are other reasons for studying the dynamical aspects of topological gravity
in three dimensions: some problems in 4D gravity reduce to an effective 3D theory,
such as the high-temperature behavior of 4D theories or some membrane models
of extended relativistic systems. Moreover, some formal aspects of black hole ther-
modynamics are effectively reduced to problems in 3D (CARLIP 1995, 2005). On
the other hand, the continuum theory of lattice defects in crystal physics is similar
to gravity with torsion in 3D, where such defects are modeled by connections in
© Springer International Publishing Switzerland 2017 197
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the orthonormal frame bundle, and the Chern—Simons-type free-energy integral by
Riemann—Cartan (RC) spaces with constant torsion (DERELI & VERCIN 1991).
To this end, the trivial dynamics of the Einstein—Cartan (EC) Lagrangian

Lic = —%19"‘ AR (10.0.1)

in 3D is generalized by adding Chern—Simons (CS) -type terms, an approach sim-
ilar to Witten’s (WITTEN 1988). By gauging the Poincaré group, we arrive at the
MIELKE-BAEKLER (MB) model (1991), which is at most /inear in the field strengths.
A slight modification arises by the introduction of a “mixed” Chern—Simons-type
term Crr, which simulates to some extent Einstein’s theory in 3D, allowing us to
build an almost completely topological theory (MIELKE & MAGGIOLO 2003).

In four dimensions, the symmetry under duality rotations has a long history. For
Maxwell’s theory it was known to RAINICH since 1925 and developed further in
the context geometrodynamics by MISNER & WHEELER (1957), MIELKE (1987). In
analogy, the general 3D Poincaré gauge field equations can be simplified by modified
duality rotations intertwining the 3D field momenta. As a result, the field momenta
exhibit the strong/weak coupling duality inverting the contortional coupling constant
e — 1/e.

These encouraging findings imply the following dynamics: First, a general Proca
equation constrained by a Hilbert—de Donder-type condition is an exact result of the
S-duality Ansatz. In particular, for RC spaces with constant axial torsion, an induced
cosmological constant surfaces as an important consequence. An equivalence relation
for the energy—momentum complex of the MB model induced by the mixed CS term
thereby becomes more transparent. In contrast to other topologically massive models
(DESER & TEKIN 2002), in which there is an unavoidable conflict in the choice of
the coupling constant of the Einstein action in order to avoid ghosts and tachyon
excitations, our S-duality approach leads to a ghost-free positive energy without
inducing a negative residue in the propagator.

Outside of quantum gravity, the continuum theory of lattice defects in crystal
physics can be regarded as “analogue gravity” including Cartan’s torsion in 3D
(LAZzAR & HEHL 2010). Recently, flexural modes of graphene have also been con-
sidered as membranes with a “gravitational” metric (KERNER & NAUMIS 2012) or
coframe induced from its embedding into three-dimensional spacetime.

10.1 Chern-Simons Gravity with Torsion in 3D

In three spacetime dimensions, the basic gravitational variables in the RC formal-
ism are the one-forms of the coframe and the Lie dual of the (Lorentz) rotational
connection I'#Y = F]ﬂydxf, ie.,
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o o g0 * 1 B
U =E%x' and T := Enaﬂyr v, (10.1.1)

Since the coframe v, has physical dimensions [length] and the connection I is
dimensionless, one can use ¥, /¢ and I',; as dimensionless gauge potentials of local
translations and local rotations, respectively, even though the coframe is “soldered”
to the base manifold (TRESGUERRES & MIELKE 2000).

The related field strengths are the two-forms of torsion

T :=dv* — (-1’ AT} (10.1.2)

and curvature
(=1)°
—n

1
R, = EnaﬂyRﬂV =dIy + ALy, (10.1.3)

respectively.
In 3D, the two Bianchi identities of the RC geometry can be rewritten as

DT* = (—=1)°n*’ ARy (10.1.4)

and
DR, =0. (10.1.5)

The corresponding Chern—Simons three-forms of gauge type C = Tr{A A F} are the
translational CS-type term

(=D &
5K (10.1.6)

1
Cri=—=0"AT, =—
RRYE

and the (Lorentz) rotational term (CHERN & SIMONS 1971; DESER et al. 1982b;
WITTEN 1988) involving the curvature:

1
Cui= (=)' T ARG = 3 ey T A r? Ar+. (10.1.7)

The variational derivatives

8Cr 1 8Cr (=1)°
—— 7, and - » 10.1.8
soe 2 me s T T 7 (10.1.8)
as well as 5C 5C
L L
—0 and — (=1)"2R". 10.1.
50 e (10.1.9)

are uniquely related to the torsion 7, the curvature R},, and a cosmological term 7,
respectively (HEHL et al. 1991).
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Table 10.1 Geometric objects and fields

Objects p-form Components |n =4 3 2
DA Vector 1 n? 16 9 1
Iy Vector 1 n? 16 9 1
T Vector 2 n*(n—1)/2 |24 9 2
R*P Bivector |2 n?(n—172/4 |36 9 1
Xy Vector n—1 n® 16 9 4
Top Bivector |n—1 nn—1)/2 |24 9 2
Na Vector n—1 n* 16 9 4

It is pertinent to 3D with torsion that there exists the “mixed” topological term

1 —1)*
CrL = 7 (r*“ AT, — % Napy T A TP A w) . (10.1.10)
Its variations lead to
5C 1 5C 1
LR and —==-T,, (10.1.11)
sve ¢ sr* ¢

i.e., with a response of gauge two-forms opposite the character of the field.

Table 10.1 summarizes the number of components of the basic variables and their
components in various dimensions: Observe that only for n = 3 do all fields have
the same number of components and that all decompose under SO(3) or the lower-
dimensional Lorentz group SO(1, 2) asa9 = 5 ® 3 ® 1 multiplet after bivectors are
converted into vectors via the Lie dual; a linear combination of all variables paves
the way to a better understanding of the geometry in 3D.

10.1.1 Noether Theorem in 3D Gravity

In 3D with vanishing nonmetricity, independent variations of a gauge-invariant
Lagrangian with respect to the coframe and connection lead to

DH, — E, = %, (10.1.12)

and
DH, — S, =1, (10.1.13)

respectively. In 3D, the one-forms
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oL —1)* oL
Hy:=———, H, ::—( ) , (10.1.14)
aT« 2 9R*
are the translational and rotational field momenta (or the excitation H = —dL/dF

as in Maxwell’s theory) with dimensions [1/length] and dimensionless, respectively.
The canonical energy—momentum two-form of the gauge fields is given by

oL ‘
E, = Tpe = eo]L + (o ]TP) A Hg +2(—=1)* (e, JR*?) A HS, (10.1.15)

where the covariant right-hand side follows again from the Noether theorem; cf.
HEHL et al. (1995). The gauge spin two-form is defined as

(=1 oL 1
Sy 1= = —nos AHP. 10.1.16
2 are 2% ( )

(In the particular case of an antisymmetric field H, = H[aﬁ]ﬁﬂ, this is dual to the
translational field strength, i.e., S, = —*H,.) The sources for the gravitational field
are the material energy—momentum and the spin current

8L —1)* 8L,
y = —L g = (51 Olwar (10.1.17)
A 28I
respectively, which are both two-forms in three dimensions.
10.2 Topological Mielke-Baekler Model
In 3D, the Einstein—Cartan (EC) Lagrangian
. X o * X * a
Lgc = —zz? AR, =—x CTL—Zd(Fa A D%) (10.2.1)

merely gives rise to locally trivial dynamics. This can be traced back to its equivalence
to a “mixed” Chern—Simons-type term Ctr. plus a total divergence.

Let us now add further CS-type terms: by gauging the Poincaré group
R3 & SO(1, 2), we arrive at the MIELKE & BAEKLER (1991) (MB) model, which is
at most linear in the field strengths. This is slightly modified here by replacing Lgc
with the “mixed” Chern—Simons-type term Crp, which to some extent simulates, in
3D, Einstein’s theory with “cosmological” term, as is indicated above.

Allowing for arbitrary “vacuum angles” 6t, 6, and 6y, = — x, the most general
topological gravity Lagrangian in 3D, in first-order formalism, takes the form

Ly (0%, I')) = 6:Cr + 6.CL + 61.Crr, (10.2.2)
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where Cr, Cr, and Cry, are respectively the translational, rotational, and “mixed” CS
three-forms given above. The three-form (10.2.2) is the topological Lagrangian of the
Mielke—Baekler (MB) mix model (MIELKE & MAGGIOLO 2003). Since the transla-
tional term Cr is covariant, it appears that the MB model is only semi-topological,
as is reflected in the number of propagating modes.

Consequently, varying the Lagrangian (10.2.2) with respect to ¢* and I"** yields
the covariant field equations

1
— 6L R, — ZGT T, =1¢X%, (10.2.3)
and {
— (=6 T, — ﬁQT Ne —OLLR, =1L7T); (10.2.4)

cf. Eq.(6.9) of BAEKLER et al. (1992). Observe that the translational CS term pro-
portional to Ot induces in the second field equation a constant term proportional to
61/2¢, resembling a cosmological constant familiar from 4D gravity.

When including matter couplings and combining the field equations (10.2.4) and
(10.2.3), we explicitly obtain

e 2
Ty — -0 = —£ (OrLT, — 6LLX,) (10.2.5)
£ A
for the torsion, and
. P2 N
R, — 7l =7 (OrLt Xy — 6r7y) (10.2.6)

for the RC curvature.
In vacuum, torsion and RC curvature are constrained by

€ o

Ty = =7y, RX = —n,, 10.2.7
7" o« =7l ( )
where the contortional constants ¢ = 6 07/A and p = —9% /A are related to the

vacuum angles. A singular case can be excluded by assuming that the constant
A = —(=1)'0% + 2676, # 0 is nonvanishing.

10.2.1 “Prolongation” of Anti-de Sitter to Black Hole
Solutions

In order to study vacuum solutions, it is convenient to consider the decomposition

rr=r"—k: (10.2.8)

o a
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of the connection into Riemannian and contortional pieces. This implies the identity
1
R, =R — DK* + EnaﬂyK*ﬂ A K (10.2.9)

for the RC curvature. From the relation K = —*T, /2 = —(—1)*(¢/2£) ¥, for the
contortion and the definition 7% := D¥“, it can be inferred that the Riemannian part
of the curvature is also constant, i.e.,

RV = — Aegr 14, (10.2.10)
where

Aer = —[4p — (1 +2(=1))&’]/4€> = 67 [(9 + 2(=1)")07;, + 861611/ (2A0)°
(10.2.11)
is the effective cosmological constant, which is induced by the topological terms
in our gauge Lagrangian (10.2.2) as confirmed by EXCALC/REDUCE calculations
(SCHRUFER 2004).

In principle, we can have a nonzero effective cosmological constant even for
e =0, i.e., in a purely Riemannian spacetime. Alternatively, for p = 0, i.e., in the
limit of vanishing RC curvature, there exists a nontrivial “parallelizing” torsion,
resembling the “squashed” seven-sphere construction of ENGLERT et al. (1983), in
higher dimensions.

Inasmuch as the three-dimensional “image” of a cosmological term of either sign
is already induced by the Chern—Simons terms in the Lagrangian, one can disregard
a “bare” cosmological term and is still able to simulate cosmological models in 3D.
In our topological model, however, the translational CS term proportional to Oy is
indispensable for obtaining a nontrivial result.

For vanishing torsion, the three-dimensional Einstein equations with effective
cosmological term A.g has the anti-de Sitter (AdS) metric

ds®> = —(1 — A r2)dt® + (1 — Aege )" 'dr? + 1 dop? (10.2.12)

as an exact solution. BAEKLER et al. (1992) were the first to recognize this for the
MB model.
From (10.2.12), by appropriate identifications of the boundaries, the vacuum solu-
tion
ds®> = —N*(r)dt* + N~2(r)dr® + r* [d¢ + N? (r)dt)? (10.2.13)

can be obtained (BANADOS et al. 1992, 1993), where the lapse squared and shift are
given by

2

N?(r) = =M — Aeg 1? i N? -t 10.2.14
= off I s r=-73" (10.2.14)



204 10 Three-Dimensional Gravity

respectively. Observe that the shift is proportional to the angular momentum J of
the solution, which allows for J> < M? to interpret this configuration as a rotating
black hole with mass M (MENOTTI & SEMINARA 2000). For the (unconventional)
normalization M = —1 and J = 0, it reduces to the AdS metric.

A check via EXCALC confirms that the rotating black hole solution (10.2.13) has
constant Riemannian curvature (10.2.10) and is therefore nowhere singular. Then the
construction of configurations with constant axial torsion and RC curvature (10.3.6)
rest essentially on a “prolongation” I''"* — I = '™ — K* of the Riemannian to
an RC connection and an inversion of (10.2.9); cf. BAEKLER (1991). Provided the
effective cosmological constant A is related to € and p via (10.2.10), the black hole
configuration (10.2.13) with (10.2.14) is also an exact solution of the 3D topological
gauge model. Generalizations to spaces with nonmetricity have been considered by
TRESGUERRES (1992).

10.3 S-Duality in 3D

The previous “prolongations” suggest that one may consider a continuous deforma-
tion [or a field redefinition (FR)] of the (Lorentz) rotational connection by adding a
tensor-valued one-form, similarly as in Eq. (3.11.1) of HEHL et al. (1995). In 3D, the
particular deformation

~ £
I''=I"—(—1)°’—1,, 10.3.1
v — (=D 2 ( )

where ¢ is a continuous parameter, involves the Lie dual Iy = 144, I'?" of the
connection. This FR implies

g2

Tk (10.3.2)

Ta=Ta—§na, R =R — (- 1)S—T + (=1 —

o

for the deformed torsion and curvature, respectively. Two special subcases can arise:
R1emann1an spacetime with T, = 0 and deformed teleparallelism in the local gauge

= 0, equivalent to the covariant constraint of vanishing modified RC curvature,
1. e R* = 0. In the latter case, coframe and connection are locally Lie dual to each
other i.e.,

€
Iy =(—1)°"="10,, 10.3.3
« =D 7 ( )
which implies the corresponding duality
L
Sy = —E, (10.3.4)

of gauge spin and covariant energy—momentum. This induces a complete symmetry
under duality rotations in the two vacuum field equations (10.1.12) and (10.1.13),
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provided that, additionally,

H, = gHa (10.3.5)
holds.

Observe the inversion of the parameter ¢, i.e., a small deformation ¢ will induce a
large rotational momentum proportional to 1/ and conversely, resembling, to some
extent, strong/weak duality.

In fact, for internal Yang—Mills theory, MONTONEN & OLIVE (1977) and OLIVE
(1996) discovered a duality of the strong/weak coupling regime of gauge fields,
the so-called S-duality. For Chern—Simons (super)gravity, such aspects have also
been discussed in DESER & MCCARTHY (1990), GARCIA- COMPEAN et al. (2001).
In Yang’s theory of gravity, a related (double) duality Ansatz has been analyzed
in 4D as well (MIELKE 1981; ZHYTNIKOV 1994; MIELKE & MAGGIOLO 2005),
see ELLWANGER (2005) for related ideas. In 3D, the intertwining mapping (10.3.5)
between the translational/rotational pair of field momenta arises as a novel feature.

The seemingly trivial case of a completely flar deformed spacetime, i.e., T,=0
and I~?; = 0, corresponds to configurations with constant axial torsion and constant
RC curvature ¢ P

Ta= 5l Ri= G500 (103.6)
asoriginally envisioned by CARTAN (1924). Here p = (— 1)signg2 /4 depends quadrat-
ically on the deformation parameter ¢. A visualization of Cartan’s spiral “staircase”
should notignore that R}, = (— 1)sieng T, /4¢ induces, for ¢ #~ 0, a constant-curvature
background; cf. GARCIA et al. (2003).

10.3.1 Modified S-Duality in 3D

More generally, one can consider, as in MIELKE & MAGGIOLO (2003), the modified
S-duality Ansatz

H* = 8¢H, + %ﬁa (10.3.7)

in 3D, which “breaks” the dual symmetry (10.3.5) of the field momenta in order
to allow for a coupling to the translational CS term (10.1.6). Here § and y are
dimensionless constants that depend on the corresponding model, and £ denotes a
fundamental length that guarantees dimensional consistency.' Inserting the Ansatz
(10.3.7) into the second field equation (10.1.13), we obtain the first-order equation

1
5¢DH, + %Ta — 3t NP = (10.3.8)

A feasible additional term proportional to I'y is not considered here due to its lack of gauge
covariance.
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for the translational momenta H, . Observe that our intertwining Ansatz (10.3.7) has
achieved a decoupling of the two Poincaré gauge equations (10.1.12) and (10.1.13),
with the exception that the Lie dual of the material spin now becomes the source.
A vacuum solution of (10.3.8) is
ye €

Ta = 0. (10.3.9)

Hy=——""9,
(1 + 8¢)

provided the RC spaces have constant axial torsion, similar to case of the spiral
“staircase” of Cartan.
Due to (10.3.7), we obtain

¢
H=—"_9,=—"H, (10.3.10)
(1 + o2) e

which can be view as a different branch of the strong/weak duality inverting the
coupling constant ¢ — 1/¢, but with opposite sign. Applying a kind of “mirror
symmetry” ¢ — —¢ in (10.3.9) and (10.3.10), we see that the limit y = (1 — §¢) —
0 would lead us back to the original duality (10.3.5).

On the other hand, the modified S-duality relation (10.3.7) converts the energy—
momentum (10.1.15) of the gauge fields into

2
Eq = eq|L + [(ea)TP) + (—1)*28€(eq JR*")] A Hp + (—1)‘7)/(60,JR*’3) A Vg,
(10.3.11)

where the last term corresponds to the field energy of an induced EC Lagrangian
(10.2.1). For y # 0, the vacuum solution (10.3.9) yields

2y &2 2
y nDt + (_1)A y

Fa = L) = 505 (1 +5e)

[(ea]RP) ADg], (10.3.12)

where an implicit reduction of the Lagrangian is understood. Observe that a cosmo-
logical term proportional to 7, is induced by the modified S-duality. In particular,
in the limit ¢ — 0 of weak axial torsion coupling, the translational field momenta
(10.3.9) will vanish and

Ey = eq|L(*) + (—1 [(ea|RP) A D4] (10.3.13)

2y
s_7
) 4

remains as a field energy, whereas the rotational momenta (10.3.10) become unity,
ie., H, = yvU,/{, similar to the case of the EC action. Conversely, in the limit
& — oo of strong axial torsion coupling, the translational momenta (10.3.9) become
H, = —y1,/8¢2, and the rotational momenta turn out to be H* = 0. This implies
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2y

E, =e¢,|L(*x) — —
ealL() = 55

T, (10.3.14)

as expected for spacetimes with teleparallelism.

10.3.2 Toward Integrability in 3D

Starting from (10.3.8), one can attempt to derive more general exact solutions by
projecting out the axial part via 9 and taking the Hodge dual. We obtain

1
V 4% AT+ —*(" AHy).  (10.3.15)

DO AHy) — *(T* AHy) = —
( )—( ) e 57

By defining the one-form
H = *(0% A Hy), (10.3.16)

as well as the following axial zero-forms
t="(T*"ANHy), o :=%0*"AT,), h=*0%AH,), (10.3.17)

a basis {H, dt, d.</, dh} of one-forms can be constructed that, for nonzero torsion
and H, is “overcomplete” in 3D. However, (10.3.15) has the integrability condition

y 1
OH — (=1D)**D*DH = dt + —d.o/ + —dh, 10.3.18
(-1 + ol + ( )

where
O:= (_1)P"+S[*D *D+(_1)”D*D*] (10.3.19)

is the gauge-invariant d’ Alembert operator in #» dimensions.
For H = 0, the three one-forms on the right-hand side become linearly dependent,
thereby sending us back to the exact solution (10.3.9). However, for H, # 0, an exact

metrical solution
ds* = (=1)*di* + do?* + dh? (10.3.20)

can be proposed in which one coordinate “leg,” for instance d.</, needs to be con-
strained by (10.3.18). Although a complete integrability (MIELKE et al. 1993) as
in the case of 2D Poincaré gauge models is not available here, a new avenue for
implicitly deriving exact solutions in 3D is opening up.
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10.3.3 Nonlinear Gravitons

As a first step toward analyzing the particle content in 3D, we derived a general
expression for the gauge-covariant d’ Alembertian of the coframe %, departing from
the modified S-duality (10.3.7).

Employing the Poincaré gauge field equations (10.1.12) and (10.1.13), as well as
the modified S-duality relation (10.3.7), we get

9, = ; D12 — Sy — 8(Z0 + E)] + fD* (D*H — 8¢D*H,) .
(10.3.21)

The covariant subsidiary condition

¢
D*Vy := — [D*H} — 34D *H,| (10.3.22)
14

generalizes the Hilbert—-de Donder or transversality condition d*v, = 0 for the
coframe.
In vacuum, we arrive at

¢
09y + — *D* (8CE, + S,) = 0, (10.3.23)
y

jointly with (10.3.22). Hence, the nonlinear Klein—Gordon or Proca-type equation
(10.3.21) and the general subsidiary condition (10.3.22) for the coframe are both
exact consequences of the modified S-duality (10.3.7).

In principle, one could now determine the different propagating modes in 3D
gravity and distinguish physical particles, physical ghost with negative residue of
the propagator, or tachyons with complex poles. However, the right-hand side may
contain higher-order derivatives, depending on the model. In general, one would
expect the occurrence of nonlinear gravitons, akin to those of PENROSE (1976), as
well as “caustics.” Fortunately, in special cases, (10.3.22) and (10.3.23) admit a
complete classification.

10.3.4 Effective Proca Equation

To this end, we will employ the relation n, = *¥, for the n, basis and iterate the
algebraic relations (10.3.6) for the torsion and RC curvature, as well as the first
Bianchi identity (10.1.4). Then the Proca-type equation

[0+ (—D*m?] 9* =0, (10.3.24)
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where m = ¢/¢, results in vacuum and the gauge-covariant Hilbert—-de Donder or
transversality condition
D*9* =0, (10.3.25)

for the 3D coframe.

Consequently, in the MB model, the count of the propagating degrees of freedom
is as follows: In 3D, the coframe 9 = E;%dx' has3 x 3 =9 components, of which
3 are pure gauge due to the SO(1, 2) Lorentz transformation ¢'“ = Ag® (x)0P. The
Hilbert—de Donder transversality condition (10.3.25) amounts to three further con-
straints. The remaining three modes are the two in the DJT model,? spin-2 degrees
of freedom of a massive graviton and a massive scalar mode, as in BAEKLER et al.
(1992), DESER et al. (1982b), MIELKE & MAGGIOLO (2003, 2007).

The mass and the induced cosmological constant

bror _ 0F[—(—=1)*363 + 8616.]

S — nd = , 10.3.26
" 2(02, + 6r60)¢ T A= 1)502, — 2006, 22 ( )

respectively, depend on the vacuum angles 6, but are always real. Since the mass of
the Proca equation in an AdS background can be tuned to a cosmological constant for
certain combinations of the vacuum angles, the propagating modes can be partially
massless, for instance the conformal mode.

10.3.5 Energy—-Momentum and Spin Complexes

The nature of real propagating modes from physical ghosts can be distinguished by
determining their mass and spin.
To this end, we define the energy—momentum and spin complexes

&y = dHy = Sy + Ey — (—1)*1japy TP ANHY (10.3.27)
and 5
I =dH, =T+ EL — (=) negy TP AHY, (10.3.28)

respectively, such that these gauge-dependent complexes are “on shell” related to
canonical currents (MIELKE & WALLNER 1988) of the Poincaré gauge theory.
Observe that the gauge field momenta function here as superpotentials. The energy—
momentum and spin vectors are then obtained by integration over a two-dimensional
spacelike surface, respectively

2In MIELKE & MAGGIOLO (2003), it is shown that the remaining three degrees of freedom cannot
be diffeomorphisms preserving the covariance of the Hilbert—de Donder condition.



210 10 Three-Dimensional Gravity

Py = /(5‘;, Jo = / 7. (10.3.29)
In the case of our topological model (10.2.2), the definitions (10.1.14) lead to

0 o
g — e =

Ha:__ o Qs o ;9
202 £ 2

(10.3.30)

for the translational and rotational momenta. Consequently, by applying the exterior
derivative, we obtain the energy—momentum complex

\ 61011 1 44
&y = — —dd, — —— 7, 10.3.31
242 (HTL 0oL /"‘) ( )
where the additional term 0
Ir= —?Ldl“; (10.3.32)

arises from the “mixed” topological model (10.2.2).
On the other hand, the analogous expression for the original MB model is

. 616 2
A =yt (dr; v 2 /54‘3*) , (10.3.33)
L

where the spin current
, 6
gMBs (—1)‘Y2X—ed1§‘a - dr; (10.3.34)

contributes to the mass with an “anyon”-type g-factor of 2/6; ; cf. JACKIW & NAIR
(1991). Consequently, these two energy—momentum complexes are related via

3 .0
EMB _ &, = %dr;, (10.3.35)

where I'} surfaces as a superpotential. Moreover, this relation is valid even in topo-
logical models with a “bare” cosmological constant A. These energy complexes
differ at most by an exact differential form, and thus would establish a cohomology.
In other words, the energy states of the two models fall into the same equivalence
class.

The connection I',; emerges as the superpotential of the Freud complex, which
upon integration of the timelike field component in (10.3.29) yields the correct ADM
mass (MIELKE & WALLNER 1988). Thus, the numerical coefficient in (10.3.33) has
to be constrained to 616 /2 = 1, or at least to be positive in order to avoid nega-
tive energies, or physical ghosts with a negative residue in the graviton propagator.
However, in our framework, this can always be achieved by an appropriate choice of
Or # 0, the vacuum angle of the translational Chern—Simons term Cr. In any case,
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a nonzero 6 has made possible the equivalence of the field equations (10.2.3) and
(10.2.4) to the Proca equation (10.3.24) for the coframe.

In the original DJT model (DESER et al. 1982b) without torsion, there is an
unavoidable conflict in the choice of the sign of the constant x in the Einstein action
(10.2.1), the realness of the mass, and the positivity of the energy. Thus ghosts cannot
be avoided (DESER et al. 2005). In contradistinction, the inclusion of the torsion in
the MB model not only avoids unphysical modes, but due to a lower derivative order,
also facilitates an exact equivalence proof of a Proca system for the coframe.

10.3.6 Central Charges in Topological Gravity
Equivalently, we could also begin from the CS-type Lagrangian

~ ~ ~ 1 ~ ~ ~
CL= (DT AR, — 31 e T NT*F AT (10.3.36)

where the deformation (10.3.1) of the (Lorentz) rotational connection and the corre-
sponding one (10.3.2) for the curvature are considered a starting point.
Then, for different continuous parameters ¢ # &, we obtain

AbrL

e X qa * A Or o
QLCL_QLCL:_Zﬂ /\Rw——n-l——ﬁL ATy + A6LCL +

d(I" A 8,
£ 24 ( )

(10.3.37)
for the deformation of the CS term, provided that the coupling constants are restricted
to

(_ I)Y

- - —1)* -
x =0 =0 A=—r-e’ —0F), or= %(ﬁez - 6.8%),
(10.3.38)
- 1 -
A@L = 9L — QL, AQTL = E(OLS — 9L§) (10339)
Let us rewrite this in the form
- A
6.CL — 6.CL = Ly + iTLd(r*a AT, (10.3.40)

in order to make the relation to the MB Lagrangian of BAEKLER et al. (1992) trans-
parent. Consequently, the constants 6, and 6 give rise to the two central charges

c=12-476,, ¢=12 476, (10.3.41)

in the Virasoro algebra of a purely topological theory with all the implications ana-
lyzed by BLAGOJEVIC & VASILIC (2003, 2005), CACCIATORI et al. (2006).



212 10 Three-Dimensional Gravity

10.3.7 Coupling to the Symmetric Cotton Tensor

The classical correspondence of the MB model to 3D gravity in Riemannian
spacetime arises by reconsidering the constraint of vanishing torsion, consistently
implemented by Lagrange multipliers:

L=L+xr AT" (10.3.42)

After varying (10.3.42) with respect to the Lagrange multiplier one-form A,, one
recovers the constraint 7% = 0, and the second field equation (10.1.13) amounts to
an algebraic equation for A,. Employing the algebraic identity (A.1.26) of HEHL
et al. (1995), we see that the first field equation (10.1.12) is converted into (5.8.25),
which in 3D reads

Cy—Ey, =X, — DV, (10.3.43)

where
1
C =E" *{D{} [2 (¢ IDYHyogy) + 5190[ A (eﬁJeVJD{}H[ﬁV])“ (10.3.44)

is the one-form associated with the symmetric Cotton tensor CX = C’. In general,
this is a third-order equation in the Levi-Civita connection I e ;e of fourth order
in the metric.

Dueto T, = D¥, = 0inRiemannian spacetime, implying H,, = 0in 3D, the mod-
ified S-duality leads to DH}; = §¢DH,, + (y /£)D¥, = 0, and the two-form DU H,4
in the higher-derivative Cotton-type one-form (10.3.44) drops out. Then we are left
with (10.3.11), i.e.,

—E, = —ey]L(») — (—1)‘Y27(eaJR”*ﬁ) ANOg = L5, (10.3.45)

in Riemannian spacetime. Since G, = R({x}* is the Einstein current two-form in 3D,
we arrive at Einstein’s equations

GV — Any =t %, (10.3.46)
with an induced cosmological constant for the Riemannian background with the
symmetric Belinfante—Rosenfeld two-form X, := X, — DY u, as source.

Comparing (10.3.45) with (10.3.46), we see that the induced cosmological term
reads

. 1
A= DLW+ 55 [4y + (—D%€] *(R" A y) (10.3.47)
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where again a similar reduction of the Lagrangian L is understood. Is this an inter-
esting hint for the origin of the “dark energy” (PERLMUTTER 2003) in the real 4D
universe, induced via CS-type boundary terms dC in 4D?

10.4 Graphene and Emergent Gravity

Recently, graphene (NOVOSELOV et al. 2005) as a new material has attracted con-
siderable attention because its charge carriers can be described by massless Dirac
fields, (FERKOUS & BOUNAMES 2004), whereas the flexural models of the 2D
membrane of graphene have been tentatively considered as membranes, (KERNER
& NAUMIS 2012), evolving in a (2 + 1)-dimensional curved, but conformally flat,
spacetime (IORIO 2011). There are also indications of dislocations (DE JUAN et al.
2010) related to singular torsion. Moreover, the elastic deformation of corrugated
membranes of graphene looks like an extrinsic curvature effect but could as well
be described more aptly by emergent teleparallelism (ZUBKOV & VOLOVIK 2015).
Ripples in graphene can be regarded as the 3D analogue of “gravitational waves”.

A related topological framework with a coupling to Dirac fields in 3D was consid-
ered before by LEMKE & MIELKE (1993). In principle, it seems be possible to enlarge
the dynamical framework of the MB-type theory by including Weyl spaces (IORIO
& LAMBIASE 2014), or even supersymmetry (EZAWA 2008), as a new “playground”
for the topological ideas developed here.

10.5 Dirac Equation in 3D

Electrons in the graphene sheet are 2+1 Dirac fermions. When massless, the energy
spectrum is E = pcg, where cr is the effective speed of fermions in the 2D carbon
material.

In general, the spinors that will be used in 3D depend on the signature of
space(time): in the Euclidean case, the covering group of the rotation group SO(3)
is isomorphic to the unitary group SU(2). Since an element of SU(2) can be para-
meterized by three numbers, the most convenient basis of the Lie algebra are the
familiar Pauli spin matrices:

1 (01 2 (0 —i 3 (10
G_(IO , o7 = o) o’ = 0o—1) (10.5.1)

These matrices satisfy the following Lie algebra:

[0%, o?] = 2in*" 5. (10.5.2)
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On the other hand, for Lorentzian signature s = 1, the covering group of SO(1,2) is
isomorphic to the real group SL(2, R), or as well to the symplectic algebra sp(2, R).
In both cases, the generators may be realized by the matrices

vw=iol, y=0c', p=o. (10.5.3)
These real matrices satisfy

YaVp = gapl + Napry”, (10.5.4)

thus providing a realization of the Clifford algebra y, g + g Ve = 28ap in 3D.
In RC spacetime, the minimally coupled manifestly Hermitian Dirac Lagrangian
takes the two equivalent forms

i —

Lp == (Y'Y ADY +Dy Ay ) —myryn

N |

=y (" AD—mn)y +d (%E*}/lﬁ) , (10.5.5)

where DY := dyr — %ya A I denotes the covariant spinor derivative in 3D.
The covariant Dirac field equation

iy ADY —myrn — %(D*y)lﬂ =0 (10.5.6)
is obtained by varying Lp with respect to . Since
DYy =" AT, T :=e,|T", (10.5.7)
one can go over to the new covariant derivative
D:=D— %T, (10.5.8)
involving the trace torsion 7. Then we obtain
iy ADY —mny =0, (10.5.9)
which reveals that the coupling to RC geometry is nonminimal on the level of the
covariant Dirac equation.

The curvature associated with the deformed covariant derivative D is

) I ' 1
R=R— —dl = ‘R*0,5 — ~dT (10.5.10)
2 4 2
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and the corresponding Ricci identity simplifies to
[D,D1=R+TD,. (10.5.11)

Then the integrability condition for the matter equation (10.5.9) is a Klein—-Gordon
equation

DY — mPny + i'o A (ie + T“ba) =0, (10.5.12)

supplemented by Pauli-like interaction terms. The connection /™*“ still contains con-
torsional pieces, such as the axial torsion &7 := *(3% A T,), a zero-form in 3D. How-
ever, 2D fermions do not couple to axial torsion; cf. DE JUAN et al. (2010). Materials
that support screw dislocations, including axial torsion, are, e.g., graphites. Cosmo-
logical solutions in a minimally coupled Dirac-MB model are discussed in SERT &
ADAK (2013).

10.6 Topological Massive Photons in 3D

A topological extension of electrodynamics in 3D, sometimes called CS electrody-
namics, goes as follows: If A denotes the U (1) connection one-form, then Faraday’s
field strength reads F := dA, i.e., it remains an exact two-form. In 3D, the Maxwell
Lagrangian can be supplemented by an abelian Chern—Simons term, with the result
that

1
La= 5 (F A'F + mypoonF A A). (10.6.1)

However, this three-form is gauge-invariant only modulo an exact form d(A A *F) /2.
Nevertheless, the sourceless field equation

d'F — MppotonF = 0 (10.6.2)

remains U (1) gauge-invariant. Since dF = 0 is still the abelian Bianchi identity, the
integrability condition reads

OF — m?

photon

F =0, (10.6.3)

where [ := d*d* — *d*d is the d’ Alembertian in 2 + 1 dimensions. Since (10.6.3) is a
Klein—Gordon equation for the field strength F', we conclude that the photons become
massive. This is induced by the CS term when inversely coupled, for dimensional
reasons, via the Compton wavelength A = h/cmiphoon for massive photons.

This construction can be generalized to topological massive Yang—Mills theory
(YILDIRIM 2015), where a mass gap is induced via a CS term.
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10.7 Membranes with Torsion Defects

As an example of a spacetime with torsion and/or curvature defects (DE JUAN et al.
2010) or singularities (Fig. 10.1), let us consider a planar graphene solution within
the “mixed” MB model governed by the two Einstein—Cartan-type field equations
(10.2.5) and (10.2.6).

Let us assume that the 2D membrane of a corrugated graphene is evolving in an
intrinsic three-dimensional spacetime, suppressing for the moment the embedding
of a real graphene into flar 4D Minkowski spacetime. Then we may adopt the con-
vention that x* and y* are spacelike orthogonal vectors that span the (x, y)-plane
perpendicular to the time coordinate ¢, which itself is orthogonal to the world sheet
of the graphene. The corresponding one-forms (MIELKE & KREIMER 1998) are
denoted by capital letters, i.e.,

X = x, 0%, Y =y, 0%. (10.7.1)

Moreover, the vector n® is a timelike unit vector normal to the hypersurface with
n* n, = s, the signature s of our 3D spacetime. Following SOLENG (1992), ANANDAN
(1994), and BAKKE et al. (2009), we assume that the two-forms X, and 7, of the
energy—momentum and spin current, respectively, vanish outside the graphene sheet,
whereas “inside,” they are constant, i.e.,

Yy =ex, XNY, T, =0y, XY, (10.7.2)

which satisfy
VEANX, =0, VAT =0 (10.7.3)

Fig. 10.1 “Screw”
dislocation with singular
torsion in a cubic lattice. The
Cartan circuit is indicated in
blue; cf. LAZAR & HEHL
(2010)
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by construction. The constant parameters ¢ and o of this spinning string-type Ansatz
are related to the exterior vacuum solution by appropriate matching conditions. For
the related solution with conical singularities and torsion of TOD (1994), it turns out
that ¢ and o are formally delta distributions (TAUB 1980) at the idealized location
of the defect; cf. Fig. 10.2. From the specification (10.7.1) of the one-forms X and
Y, it can easily be inferred that the only nonzero components are X # 0 and 735 =
—79 7 0.

Due to the identities (10.7.3), contractions of the second field equation (10.2.6)
with x% and y* reveal that x[%y#] Ry = Rj5 = —R5; # 0 are the only nonvanishing
components of the RC curvature. From its covariant expression

R = e>x1PIX N Y, (10.7.4)
there follows the identity
EZ
Rﬁ"‘/\ﬁ’szEs(x“Y/\X/\Y—y“X/\XAY):O. (10.7.5)

We recall that N* = n]9¢ is the lapse and shift vector in the (2+1) decomposition a
la ADM to see that the corresponding coframe and connection can now be obtained
explicitly by applying a finite boost to the usual conical metric of a “cosmic string”-
type defect:

90 = dr + CPop™[1 — cos(p/p*)]d¢
ol =dp, 9% =p*sin(p/p")ds,
r'? = cos(p/p*dp = —I'?" . (10.7.6)

From the Cartan-type relation (10.2.5) and the identities (10.7.3), we can infer that
in 3D, the axial torsion

Fig. 10.2 “Screw”
dislocation in atomic
resolution in inverted
perspective viewed by means
of a scanning tunnel
microscope
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A = O AT,) = —(—1)31532 (10.7.7)

of such a membrane defect is a constant pseudoscalar.

Thus, from the embedding of 3D into 4D, there arises no contribution to the
Pointryagin-type term d(</ A d./) from the axial torsion. Moreover, the Nieh—Yan
term dCt proportional to d *.</ vanishes identically for this example of a spinning
cosmic string exhibiting a forsion line defect.

10.8 Supergravity

Fundamental interactions like QCD are rather successfully formulated in terms of
Yang—Mills theories with large gauge groups, stipulating that symmetry breaking is
prevailing. The idea of supersymmetry or supergravity, anticipated to some extent
already by WEYL (1931), goes in the same direction but so far lacks empirical support
in particle physics. There are, however, interesting, thus far speculative, directions
(ABREU et al. 2015; ALVAREZ et al. 2015) in the realm of condensed matter.

Supergravity (DESER & ZUMINO 1976; FREEDMAN 1994) with one supersymme-
try generator, i.e., .4/ = 1, represents the simplest consistent coupling of a Rarita—
Schwinger (RS) spin-3/2 field (RARITA & SCHWINGER 1941) to gravity.

In writing the Rarita—Schwinger-type spinor-valued one-form?

U = Ydx' = P, 0% (10.8.1)

holonomically, it becomes clear that it does not depend on the coframe, inasmuch
as ¥, := ¢, |¥ involves the tetrad that is inverse to the frame in the anholonomic
formulation. However, in 3D we adhere to the conventions that the holonomic indices
runoveri,j, k,... =0, 1,2, whereasa, 8, ... = 6, i, 3 for the anholonomic indices.
In addition, the coframe basis ©#* converts into one Clifford-algebra-valued one-form

Y = vt (10.8.2)

Then ¥ will become real two-component spinors, with the Dirac adjoint defined by
v =wly0

3In four dimensions (4D), the RS field ¥ := W, 9* entering (10.8.1) is a Majorana-spinor-valued
one-form. As is well known (VAN NIEUWENHUIZEN 1981), it satisfies the Majorana condition,
ie, ¥ =CW¥T, where C is the charge conjugation matrix given by C = —iyy satisfying CT =
c!', T=—Cand C'y2C = — (y9T. Consequently,

UAY =0, UApysy*W =0, WAps¥ =0.

For the real Majorana representation, all y* are purely imaginary, and the components of the
gravitino vector—spinor consequently are all real (MIELKE & MACIAS 1999).
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10.9 Rarita—Schwinger Lagrangian in 3D

The corresponding manifestly Hermitian RS-type Lagrangian three-form of HOWE
& TUCKER (1978) reads

LRS=i(@ADW—W/\DW)+imE/\)//\W, (10.9.1)
including a mass term. Here minimal coupling to gravity is achieved via
1 *i
DY =dv¥ — EV“F CAY, (10.9.2)

which is nothing more than the gauge covariant derivative of a spinor-valued one-
form V.

The generalization of Lgg analyzed by MIELKE & MAGGIOLO (2012) exists only
in 3D. In general, the energy—momentum current two-form X, of matter is given by
the variational derivative
5. 8Ly 0Ly oLy

o = = D , 10.9.3
8% 9V, * oT“ ( )

where the second term accounts for the possibility of a nonminimal coupling to
torsion via Pauli-type terms; cf. Eq. (5.1.8) of HEHL et al. (1995).

Without Pauli terms, the energy—momentum current two-form of matter can be
rewritten as

0Ly — 0Ly
Yy = ey]Ly — (g |¥) N — — (ex|¥W — 10.9.4
cally = (€al¥) A 500 = (el ) A 2 (10.9.4)
(ea) DW) A 22X _ (01D A 2
— €y — €y —;
oDy oDy

see (5.4.11) of HEHL et al. (1995) for details. This is often more convenient, since it
involves only partial derivatives of the matter fields and avoids the intricate treatment
of a possible dependence of the matter Lagrangian on the Hodge dual. Since the
kinetic terms in the Rarita—Schwinger Lagrangian Lrg do not depend explicitly on
the coframe %, they provide no contribution to the energy—momentum current, with
the result that

ey aoss

where the 3-dual of the spin current is given by the chain of definitions

(=1)'3Ly  (=1)"i—
v LT Ay 10.9.6
2 eorr . 2 4 N (10.96)
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Thus for the pure RS Lagrangian in 3D, the energy—momentum current turns out to
be proportional to its dual spin.

10.10 Topological Supersymmetry in 3D

The first-order topological Lagrangian
L=Lx(®* I, ¥)=Lys+Ls (10.10.1)

can be verified to be supersymmetric under certain constraints: the variation of its
independent variables (8¢, I, ¥) yields

SL = §9% A oL +8I A oL +8¥ A oL (10.10.2)
B s TSIy N7 o

where for convenience, only the Dirac adjoint ¥ is varied for.
The supersymmetric (SUSY) transformation of DESER et al. (1984) reads, in
exterior form notation,

Beusy 0" = io Wy“, Ssusy [y = i0 Y, DV +icT (Vu ¥ + e, |*W),
SsusyW = 2Do + cyo, (10.10.3)

where o stands in for a spinor-valued zero-form and c is a real constant. Let us probe
the SUSY invariance of the Lagrangian (10.10.1) by inserting this into (10.10.2):

or,

o

0 . OL . oL - SL
SsusyL = i0 Wy /\m—i—(?susy['a/\—*—i—(ZDG—}—CG)/)/\ﬁ, (10.10.4)

where cyo = coy holds for the Dirac adjoint.

In the following, let us assume that the second field equation L /81 = 0 satisfies,
“on shell,” Eq.(10.2.4) of the “mixed” MB model. Then the SUSY transformation
reduces to

sl 25 (iv7w A 22 —op2E Loy A 2EY foa (54 LY. (10.10.5)
sus =0 |1 - o C — (o2 — 1. dU.
Y Ve T s T sy 5

For later convenience, the Rarita—Schwinger equation

2L DlI/—i-1 AV =0 (10.10.6)
- = —m = VA

i 6w 2"

is allowed here to be massive. Moreover, in (10.10.5), the term in parentheses fol-
lowing from the supersymmetric transformations explicitly reads
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SL SL
+ cy /\ — —2D—

w SL
iy'v A 59

= iy*w A —R* —T —l—Z‘)

. Or I
Mpey O oy a N ZmTyew
¢ Rt le )J”’ (4'" Y )

o

+cy A (lDlI/—f- my/\lI/) —D(iDlI/—f-%my AlI/)

= iy*¥ A (

+cy A (%DlI/ + imy A lI/) —iRy¥ — %mTay“W

+ émy A DY. (10.10.7)

By a Fierz rearrangement, i.e.,
YU ATy =0, (10.10.8)

terms arising from the energy—momentum current X, or likewise from the dual spin
77, vanish. Moreover, we require ¢ = —m, in order to eliminate kinetic terms like
y A DV . Then, using the 3D formula

YAy =2y, (10.10.9)

of HOWE & TUCKER (1978), we find from (10.10.7) the requirement

6 0 §
,[(%_1) + (%‘%) Ta—l—m?nai| AYew =0, (10.10.10)

so that our Lagrangian becomes supersymmetric.

At first sight, it appears that there is no cosmological constant to compensate a
similar one arising from the RS mass. However, one should compare the expression
in brackets with the second field equation (10.2.4) inserted, which indeed involves a
cosmological term induced by the translational CS term proportional to 8y. Then

. 9TL '9TL 91" m 1 9
6 — —1)R; -—+—=—-—=|T,
ll:(L‘i‘e )a+(( )E-i-gz 2) +2(€2+m)

+ 7| Ay o, (10.10.11)

results, although the dual spin 7} of the RS field will not contribute, again due to the
Fierz rearrangement (10.10.8). This finally leads to the mass-dependent “on shell”
conditions
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1) ) 1)
)m(2m+1)£,0L:1—%=1—( )

Or ~ —m>0?, O ~ ( m2m + 1)

(10.10.12)
for the coupling constants of the bosonic part of L,. Consequently, massless RS
spinors do not require a translational or a “mixed” CS term in order to acquire
supersymmetry.

In MIELKE & MAGGIOLO (2012), there were preliminary attempts to generalize
the peculiar dynamical symmetry of BAEKLER et al. (1992), identified before as
S-duality, to a supersymmetric version via the Ansatz

O = (=DUTT + Ty ¥ . (10.10.13)

Here o is again a spinor-valued zero-form, and ¢ a fundamental length.
More recently, ALVAREZ et al. (2015) considered an .#” = 2 supersymmetry with-
out the RS field.
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Chapter 11
Spinor Bundles

The intended unification of electromagnetic, weak, strong, and gravitational interac-
tions within the geometric concept of gauge invariance is still flawed by one essential
shortcoming that cannot be disregarded. For it is still lacking an exact geometric
description of the constituents of (tangible) matter sources! Here we are following
Weyl’s assertion, which is still valid nowadays, that the electromagnetic field (and
consequently all the different gauge fields) “is a necessary accompaniment of the
matter-wave field” (WEYL 1929b, p. 331).

Matter, which not only surrounds us in daily life but also constitutes our very
selves, is known to extend itself and thus to take in a “material” part of space. Accord-
ing to the empirically asserted relation between the intrinsic angular momentum
(spin) and the so-called Fermi—Dirac statistics, the material core has to be described
quantum-mechanically by wave functions with half-integer spin. Moreover, all
actual models of particle physics (KOKKEDEE 1969; PATI & SALAM 1973, 1974;
TAYLOR 1979; MARCIANO & PAGELS 1978; BARUT 1980) agree that only fermions,
such as electrons, protons, neutrinos, muons, and colored quarks, are to be consid-
ered fundamental building blocks of matter and that all other phenomena are taken
to be accounted for by (quantized) gauge fields. Therefore, it is of basic interest to
incorporate DIRAC’S relativistic theory of the electron (1928) into the gauge-theoretic
framework. Then it is equally important to investigate the exact physical meaning
of the geometric and topological structures thereby introduced. One has to bear in
mind, however, that a precise dividing line cannot be drawn between matter and
gauge fields proper. It is for this reason that (WEYL 1924, p. 609) considered “a
dynamical theory of matter to be the most promising one: matter as a field-inducing
agent, the field as an extensive medium that transfers interactions from matter to
matter.”! In this context, it is to be kept in mind that the constituents of subnuclear

L(WEYL 1924, p. 609), “eine dynamische Theorie der Materie am aussichtsreichsten: die Materie
ein felderregendes Agens, das Feld ein extensives Medium, das die Wirkungen von Korper zu Korper
iibertragt.”
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matter can be characterized operationally only by the fields with which they are able
to interact.

11.1 Global Spinor Fields

In relativistic quantum mechanics (BJORKEN & DRELL 1964), fermions with spin
1/2 are described by bispinor representations D12 g p(:3) (3\50(1, 3)) of the
proper Lorentz group SO,(1,3) (GEL’FAND et al. 1963).2 These representations
are not unitary, although the fields transform according to unitarily induced rep-
resentations of the (restricted) Poincaré group P, := R* & SO,(1,3) of flat
spacetime (MACKEY 1968; TRAUTMAN 1970; MIELKE 1977¢; KAZMIERCZAK 2010).
Despite counterclaims, spinorial polyfield representations of the linear group do exist
(HEHL et al. 1978). Unitary representations are infinite-dimensional again, this time
consisting of the direct sum of fermion fields with an unlimited increase in spin:
Voo = Y12 @ Y52 @ Y9p @ ...

This description of the spinor fields is, however, insufficient to achieve a coupling
to generally covariant field theories, since a rudimentary relevance of this descrip-
tion is maintained only in the local tangent space, the reason being that such a local
representation does not allow the incorporation of a nontrivial topology of the back-
ground manifold and of the configuration space, which is of increasing importance
to the formalism of gauge theories. This is particularly true for fermions if one keeps
in mind that their half-integer spin originates in a “nonclassical two-valuedness”
according to PAULI; cf. WHEELER (1968, p. 75).

The structural reason for this has to be seen in the global topology of the
(pseudo-orthogonal) structure group SO(s,n — s) of the tangent bundle of an
n-dimensional manifold® of signature s. Provided s # 0, this topological space
has two connected components, which are, however, not simply connected accord-
ing to homotopy theory. Concerning the connected component SO, (s, n — s) of the
unit group element, its connectivity relations are marked by the first homotopy group
(HELGASON 2001, p. 346):

Zz n =2k
T1(SO.(s,n—5),e) =3 Zo D Zy n =4k (11.1.1)
Ly n=2Q2k+1).

However, it is possible to turn to a simply connected universal covering group
SO.(s,n —s) (=: Spin(n) for s = 0), whose irreducible representations provide
the desired spinor representations.

2Fermions with a higher half-integer spin are not to be considered here.

3In order to make possible a generalization of the Dirac equation in the higher-dimensional spaces
of the Kaluza—Klein theory, the formalism is again developed for arbitrary dimensions (BRAUER
& WEYL 1935). For this purpose, the work of KERNER (1980) is rather useful.



11.1 Global Spinor Fields 229

This transition is achieved by a group homomorphism A : G — G, which is
based on the following explicit construction: Let C(s, n — s) denote the so-called
Clifford algebra, which is spanned by generalized complex Dirac matrices y,,. These
matrices obey the algebraic relation

YaVp + VpYe 22001/9]1 (11.1.2)

and admit realizations by N x N matrices for which N = 2"/?! corresponds to the
lowest-dimensional faithful complex representation. Here [ ] denotes the next lower
integer. In the four-dimensional world, the so-called Pauli realization of the Dirac
matrices is commonly used, as is, for instance, done by BIORKEN & DRELL (1964):

1 0 0 of
0. k. k. . -
o= (O _1), yhi= (—ak 0 ), o : Pauli matrices. (11.1.3)

Let the transformations of the Euclidean vector space E" with coordinates x* be
determined by the (Lorentz) rotations g € SO (s, n —s) on behalf of the group action

x> x'"=g4 xP [gfl € SO(s.n—s), x* € E". (11.1.4)

These points may be related to a complex N x N matrix X by means of the one-to-one
mapping
X = 1x%yy > x% = —lﬁTr(y"‘X). (11.1.5)

(Concerning areal vector bundle V on the manifold, this construction can be extended
to a 2N -dimensional bundle, the so-called Clifford bundle CV. For details, see ATIYAH
et al. (1964)). This complex vector space is specified as follows. The determinant

det X = —0,px*x", (11.1.6)

as well as the square
XX = —04px*x"1 (11.1.7)

of such a matrix, leads back directly to the generalized Minkowski distance squared
of signature s (CARTAN 1966). In order to keep this distance invariant, the covering
group is bound to act on the space X by means of a similarity transformation

X — X =8XS', SeS0.(s,n—ys). (11.1.8)
A comparison of (11.1.5) and (11.1.4) indicates that the covering homomorphism is

determined by

w w (11.1.9)

?50(& n—s)— SO,(s,n—s),
A )
S — g% = —;\,—Tr(y"‘SiyﬁS’l),
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due to the geometric construction. For instance, the covering group of the proper
orthochronous Lorentz group SO, (1, 3) is represented by §50(1, 3) ~ SL(2,C)
on account of a special isomorphism (HELGASON 2001, p. 353). Furthermore, the
infinitesimal generators of the group SO, (s, n — s) are

o = %[y“, v#, A = L, (11.1.10)
which may be derived by a symbolic “inversion” of the homomorphism (11.1.9).
As was stressed initially, it is globally insufficient to characterize the spinor fields
as induced representations of the “covering” Poincaré group Py := R" € SO,
(s,n — s) in a curved spacetime. It is necessary to obtain from a more general
“geometric arena” the bundle L& (M) of orthogonal frames concerning the foundation
of the “broken” Poincaré gauge theory of gravity. We resume this here but make use
of the principal fiber bundle

LE(M) := P(M, SOy(s,n — 5), 7, 8) (11.1.11)

having merely the proper* Lorentz group SO, (s, n —s) as structure group. However,
the topological structure of this group necessitates the consideration of an additional
principal fiber bundle with a corresponding covering group as structure group. Then
a spin structure is imposed on a base space M as follows: Besides LS (M), the
“covering” principal fiber bundle

L(M):=P(M,SO0.(s,n—2),7,8) > p (11.1.12)

is introduced (MILNOR 1963) together with the bundle map f : Z(M ) — LE(M),
which must be compatible not only with the right action of the group in both spaces
but also with the group homomorphism (11.1.8), i.e.,

F(pS) = F(P)A(S), S € SO.(s,n —2). (11.1.13)

A spin structure over M is equivalent to a double covering of L$(M). This spin
structure is identical to a second one that is represented by (L'(M), f") if the iso-
morphism between the spinor bundle leads by composition with f to the second
bundle mapping f’. Additionally, a spin manifold is understood as a Riemannian
manifold that can be oriented and for which a spin structure exists in the tangent
bundle (TRAUTMAN 2008).

This raises a question concerning the premises under which such a spin structure is
globally legitimate. In mathematically abstract terms, the solution runs as follows: In
order to imprint a global spin structure on the SO, (s, n — s) principal fiber bundle,
it is necessary and sufficient that the Stiefel-Whitney class w, € H2(M, Z,) of
the base space M be zero. Here the g Stiefel-Whitney class is considered as the

“This restriction is to be explained later on.
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characteristic class of the g™ relative cohomology group H&(M, Z,) of the manifold
(MILNOR & STASHEFF 1974). The number of inequivalent spin structures is thereby
defined by the dimension § = dim H' (M, Z,) of the first relative cohomology group
(MILNOR 1963). Accordingly, there are exactly § = 2" spin structures possible
(WHEELER 1968, p. 72) if we are concerned with a spacetime for which the spacelike
hypersurface consists of the connected sum of v handlebodies (“wormholes”) W3 :=
St x 82, 1ie., for

M =R x $*#'W3. (11.1.14)

On the other hand, it is known that these multiply connected spaces indeed admit
harmonic electric fields as solutions of Maxwell’s source-free equations but no cor-
responding spinor solutions of Weyl’s equation of the neutrino field; cf. KLAUDER
& WHEELER (1957).

While introducing the spin structure, we have deliberately restricted ourselves to
the bundle of the orthogonal frames with the connected component SO, (s, n — s) as
structure group, since the question of existence of spin structures for the SO, (s, n—s)
bundle has to be considered in analogy to the problem of the orientability of O (s, n —
s) bundles. The last bundle can be oriented if w; = 0 is valid, while the number of
distinguishable orientations has to be processed out of the dimension of H°(M, Z;)
(MILNOR 1963). The notion of spin manifold is also of enormous mathematical
importance in relation to the construction of an exotic smooth involution on the 7-
dimensional sphere S7 (MILNOR 1965). Attention can be drawn to other topologically
oriented works that likewise profit from the use of spin structures (ANDERSON et al.
1966; ASSELMEYER-MALUGA & BRANS 2015).

However, it was GEROCH (1968, 1970) who pointed out an intuitive and in the
context of Poincaré gauge theories more convenient premise for the existence of
spin structures. Concerning the legitimation of a spin structure on a noncompact
spacetime manifold M of signature s # 0, it is accordingly necessary and sufficient
that there exist a global field of (orthonormal) tetrads, or stated otherwise, a system of
“orientation-entanglement relations” (WHEELER 1968, p. 69; MTW, p. 1148). This
means, for instance, in the 4-dimensional case that

L(M*) = M* x SL(2,C) (11.1.15)

is, viewed from this angle, a trivial bundle and that the possibility of nontrivial spin
structures on 7' (M) is dependent only on the mapping f (ISHAM 1978).

As far as the theory of representations is concerned, it is to be understood that the
spin of fermions is to be related to the “external” invariance group of spacetime; in
order to incorporate “internal” local symmetries, such as, for instance, the isospin
invariance or Gell-Mann’s SU (3)-group as well into these global constructions, the
idea of generalized spin structures has been analyzed by AvIS & ISHAM (1980).

Following this intricate terminology of a “spin-carrying geometric arena,” we
can proceed analogously to our preparatory observations to describe the physically
relevant spinor fields of matter. Our point of departure is the introduction of a complex
vector bundle
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VS = V(M,CN, p°(SO.(s,n —s)) C GL(N,C), L(M)) (11.1.16)

associated to the spin bundle L(M). For this reason, it is also called an associ-
ated spinor bundle. Within this general setup, we consider the fundamental (com-
plex) representation DF of dimension N = 2/"/?! of the structure group SO,
(s,n — s), which contains the physical Lorentz group S0, (1,3) as a subgroup.
Then the restriction of DF to :S:\O/O(l, 3) yields the following product representation:

D =Dix...xD:. (11.1.17)
500(13) e
(n—4)/4
Here 1 1 3 I 3
D> := D22 @ D% (S0,(1,3)) (11.1.18)

denotes the bispinor representation of the covering group SL(2, C) ~ S0,(1,3) of
the proper Lorentz group, which itself is the direct sum (—3, 3) @ (4, 3) of spin-
l representations labeled according to GEL’FAND et al. (1963). This formulation
has the advantage that it can be extended to a representation of the general Lorentz
group 0(1,3)if required. Concerning the spinor basis b(l), i =1,..., N,their cross

sections form the space of Dirac spinors:
U=y ®beC®(V2). (11.1.19)

According to the construction, this means a differential form of degree zero with val-
ues in the field CV of complex numbers. In generalized Kaluza—Klein models, these
n-dimensional Dirac spinors need to be restricted to the four-dimensional physical
world. Due to the construction of DF, one finds a “tower” of spin—% fermion fields
(see, e.g., KALINOWSKI 1984):

¥
. L)
Yis0.0.3 = | - . (11.1.20)

Yy

The G-equivalence principle demands that the coordinates y of the spinor bundle
transform according to

=5 y=5"ly (11.1.21)
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with respect to an element

S(p) € s ~CZ(L(M) xpd4 SOo(s,n — ) (11.1.22)
A(Sp) =G(p) €9,

of the group %5 of (local) spin gauge transformations. This group results from ¥, a
subgroup of the affine gauge group, by a formal inversion of the covering homomor-
phism (11.1.9) onto the pseudo-orthogonal group with local gauge transformations.
These gauge transformations can be expanded in terms of the infinitesimal generators
of the structure group SO, (s, n — s); due to (11.1.10), this results in the following
equivalent representation:

S(p) = expt O,p(m) A~ (L) = exp1 Opp(m)o™?

1
= €xp (_4_1 up (M) [y, )/ﬁ]) . (11.1.23)

See also BJORKEN & DRELL (1964). This again determines the action of the spin
transformations on Dirac’s y-matrices

ST (P)vaS(p) = vGo" (p), G (p)) €%, (11.1.24)

The spin bundle L(M) can, analogously to the bundle LE(M) of the orthonormal
frames, be endowed with a right-invariant 1-form y. It takes on values within the
Clifford algebra and thus differs from the already familiar canonical 1-form #. To
be more precise, the form

y = E%(m)ya ® dx’ = y;dx! € C¥(TE(M) x CV) (11.1.25)

has to be considered as a cross section in the product bundle of the (complexified)
cotangent bundle and the Clifford bundle CV. Moreover, on account of (11.1.25), y
appears to be “soldered” to the spin manifold. In order to be able to reckon with this
Clifford-algebra-valued form, corresponding to the calculus of exterior forms, it is
only to be kept in mind that the formation of the dual obeys the rule

!
A Ay = —L A Ay (11.1.26)
P n—p

The matrix y"*! that is thereby implicitly defined is an axial Lorentz scalar and can
be understood as an element of a higher-dimensional Clifford algebra as well, due to

(y"™H? = F1. (11.1.27)
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If one realizes the Dirac matrices in the “Cartan basis,” then y”“ can be regarded as
a Casimir operator, since it commutes with all elements of the Clifford algebra. The
symmetrized product of the 1-form y with itself and the formation of traces, due to
(11.1.2), leads necessarily to the pseudo-Riemannian line element

1 ) .
NTr(y Qs y) =ds* = gij(m)dx' ®; dx’. (11.1.28)

This can be looked upon as a generally covariant generalization (SCHRODINGER
1932) of the well-known anticommutation relations (11.1.2). For the formulation
of the dynamics of the Dirac theory in curved spacetime in the next section, it is
convenient to make use of the Dirac adjont spinor, which is defined by

¥ =yty, (11.1.29)

as already noticed by BARGMANN (1932). Following the BJORKEN & DRELL con-
ventions (1964), in addition the following rules are to be obeyed:

o — y o y = o‘wﬂ7 y* = yoyaerO =y“ (11.1.30)

The introduction of a ?50 (s, n — s)-valued 1-form @ of the connection in the asso-
ciated spinor bundle (11.1.16) enables us to define the gauge-covariant spinor deriv-
ative

Dy =dvy + iy, (11.1.31)

which is necessary for the formulation of an interacting gauge-invariant theory.’
The spinor connection @ was introduced by FOCK (1929); WEYL (1929b) and
SCHRODINGER (1932), and was given its axiomatic foundation by LUEHR &
ROSENBAUM (1974, 1984). Due to the covering homomorphism (11.1.9) or (11.1.10),
the spinor connection is closely related via

A(iw) = o (11.1.32)

to the metric-compatible connection ¢ in the bundle L&(M) of orthogonal frames.
This implies the following form of the local expansion:

SO 1 s . ,
ow = Ew"‘ Oup = EF’ Oup @ dx' =: Idx'. (11.1.33)

The local components of the spin connection, i.e., Ricci’s rotation coefficients Fi""’3 s
can be generated from the holonomic connection coefficients I j'k by means of
translational gauge transformations, as shown in Chap. 4. These “tetrad gauge trans-

3In compliance with our previous conventions, we denote the covariant derivative in a vector bun-
dle by the same symbol D, since it is always possible to infer from the field in question which
representation of the structure group or its covering group is meant.
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formations” cannot always be covered by a spinor gauge transformation (11.1.36) of
 in an unequivocal way. It is necessarily dependent on the topological properties
of the bundle mapping f of the spin structure and can occasion globally different
Lagrangian n-forms (ISHAM 1978).

With respect to the group ¥s of local spin gauge transformations, these spinors
transform according to the rules

v — Sy =51y (11.1.34)

and
Y —5S" Y =S8, (11.1.35)

which are to be expected for cross sections of vector bundles, while more geometric
objects, i.e., the connection @ and the covariant derivative D, turn, respectively, into

o— 30 =SaS '+ dS)S! (11.1.36)

and, ]
D— 5 D=5"'DS. (11.1.37)

The transformation of the Clifford-algebra-valued “soldering form”
y — Sy =5"lys (11.1.38)

can also be fitted into this canon.

If we had started from a spinor representation of the Poincaré group R” & SO,
(s,n — s), it would have been possible to extend this to a theory that is invari-
ant with respect to “broken” affine spinor gauge transformations. That this is also
possible with regard to the 1-form y is shown via a comparison of the affine trans-
formation rule with (11.1.24). And yet all these global considerations point to a
Riemann—Cartan space as the appropriate geometric arena for spinor fields. And in
fact, it will be shown that a (pseudo-) Riemannian manifold is too narrow a frame
for the description of gravitationally coupled spinor fields.

11.2 Covariant Dirac Equation

A generalization of the DIRAC equation (1928) in curved spacetime was advanced at a
rather early stage. Especially, the basic works of TETRODE (1928), WIGNER (1929),
WEYL 1929b, FOCK 1929, SCHRODINGER (1932) can be mentioned here. It was
Wigner, effectively influenced by EINSTEIN’S theory of teleparallelism (1928), who
strived for an extension by inserting the tetrad fields e('j (m), i.e., the local bundle coor-
dinates of L&(M), in the special-relativistic Dirac equation. However, it was TETRODE
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(1928) and subsequently SCHRODINGER (1932) who pointed out that it was possible to
start off from the generally covariant version (11.1.28) of the commutation relations
(11.1.2) of the Dirac matrices y*. Obviously, it is our coordinate-independent formu-
lation with the help of the Clifford-algebra-valued 1-form (11.1.25) that explains that
these locally differing formulations describe globally the same mathematical struc-
ture. WEYL’S fundamental works of 1929 on the generally covariant formulation of
Dirac’s theory of the electron already make use of matrix-valued differential forms in
full scale. However, his notation has grown unfamiliar by now. Although there were
already hints by TETRODE (1928) concerning the necessity of formulating the Dirac
equation not only as generally covariant, but also as gauge-invariant with respect to
local spin transformations by means of introducing a covariant spinor derivative, this
was recognized in full only by WEYL (1929a, b) and Fock (1929) simultaneously.

Due to these initial works and the modern gauge-theoretic concepts that have
been established in the meantime, it is not difficult to determine the precise form into
which Dirac’s theory has to be moulded. To this end, the gauge-invariant Lagrangian
formalism has to be transferred to the case of a spin structure group. According
to (11.1.19), the spinor field i is a O-form. In order to construct an n-form out of
this by means of the gauge-covariant spinor derivative D and the Clifford-algebra-
valued 1-form y, there is only the following way to achieve this within a first-order
formalism:

Lp = % (Fy A*Dy + (DY) Ay ) — myy. (11.2.1)

Since it will turn out to be useful later, we have chosen an invariant Lagrangian
n-form that is symmetric with respect to the formation of the Dirac adjoint spinor;
see WIGNER (1928); TRAUMAN (1972); ISHAM (1978). The invariance of (11.2.1)
with respect to the group D(M) of differentiable coordinate transformations is again
guaranteed by the occurrence of exterior differential forms. In addition, the trans-
formation rules (11.1.34)—(11.1.38) guarantee that the G-equivalence principle is
satisfied, in complete agreement with the idea of gauge invariance. It would be pos-
sible, of course, to construct spinor models containing derivatives of higher order,
disregarding possible causality violations. However, (11.2.1) is the sole Lagrangian
n-form that is of first order in ¥ and is reducible to the special-relativistic Dirac
theory in the interaction-free case.

By variation of (11.2.1) for 8 Lp /8 or for 8 Lp /8, respectively, the generally
covariant Dirac equation

iyA*Dl/f—%(D/\*y)lﬁ—mlﬂr]:() (11.2.2)
and the corresponding adjoint equation

i(DY) A"y + 50D Ay +miy =0, (11.2.3)
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which are gauge-covariant with respect to the structure group SO, (s,n — ), are
obtained. As can already be noticed here, these equations, which are valid in a
Riemann—Cartan background space, contain an additional term that vanishes only
for a covariant constant y, i.e., for Dy = 0. However, the latter condition is globally
admissible in a flat spacetime only.

Before we turn to an additional dynamic aspect of the generally covariant model
given by (11.2.1), we have to consider the dynamical feedback of spinors on gauge
fields in general. In order to work this out, it has to be kept in mind that the Dirac-
adjoint connection

&=y =& (11.2.4)
occurring in (11.2.1) cannot be distinguished—due to (11.1.30)—from a common
spinor connection. Then the following equivalent description of the Lagrangian
n-form of a Dirac field can be given:

- B B .

using the rules concerning exterior forms. According to the definitions t := éL/éw
of the canonically conjugate matter currents, the Dirac field is, under all conditions,
retroactive not only on the gauge fields of Yang—Mills type by means of the 1-form
T = iy of its charge current, but also on the (Lorentz) rotational gauge fields of
gravity by means of its spin current

T, =iy ). (11.2.6)

In the derivation of this well-known result, use is made of the fact that the covering
homomorphism (11.1.9) is absorbed by Dirac’s bilinear product. In case that the
Euler-Lagrange equations (11.2.2) and (11.2.3) of the variational problem (11.2.1)
are satisfied, it can be shown that the covariant conservation laws® are valid with
respect to the current T or 7y, and this according to whether the “internal” Yang—
Mills connection or the “external” spinor connection is used for the construction.
In order to get locally conserved currents, we have to add terms to t; depending
on the gauge potentials. In the limiting case of interaction-free Dirac fields, even

A corresponding conservation law is also valid for the axial vector current j,41 := iy*yy"Tly
of a Dirac field without mass. However, a quantum-theoretic treatment by means of a functional
integral, due to an anomaly, results in (cf., for instance, JACKIW 1977)

) 1
—00|DTgl00) T = ———Tr (2% A 28%).

(—o0l Draloc) ~ = e T )

Thus in quantum field theory, the conservation of the axial current is violated by topological contri-

butions of the Pontryagin class, and this in dependence on the asymptotic helicity states concerning
y" 1. This is the physical content of the celebrated Atiyah—Singer index theorem (ROMER 1981a,

b; EGUCHI et al. 1980).
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dt, =0 (11.2.7)

is valid, a fact that permits the introduction of the invariant scalar product

(w,x>:=/ nw,x):i/ Wy x (11.2.8)
Hn—l Hn—l

into the solution space of the Dirac equation that will be spanned by . For spacelike
hypersurfaces H"~!, this is not only independent of time, but even positive definite,
and it reduces itself subsequently to

W, x)=i vxd 'x. (11.2.9)

Hn—1

Nevertheless, one could not interpret t° as the probability density in a non quantized
theory, since the energy density of the /inear Dirac field is not bounded from below.
Thus, such a semiclassical model would necessarily imply the “instability and rapid
decay of all matter” (JOST 1965, p. 39).

11.3 Nonlinear Heisenberg—Pauli-Weyl Spinor Equation

The introduction of spinor fields as cross sections in the associated spinor bundle with
the group SO, (s, n — s) or the covering group of the Poincaré group as a structure
group, respectively, starts from a Riemann—Cartan base manifold together with its
frame. In order to show that the spinor fields even necessarily induce a torsion of the
spacetime, we decompose the (metric-compatible) spin connection

o=a"—K, AGK)=K (11.3.1)

into the Christoffel-like connection &' and the spin contortion that is projected by
the covering homomorphism (11.1.9) onto the contortion, and insert this into the
Lagrangian n-form (11.2.1). This splitting procures a further, equivalent, description
of Dirac’s Lagrangian n-form:

Lo =3 (#y A*DVw + DY) Ay v ) —mfyn
o (11.3.2)
+ S VIK Y1 = Ly + L

Here D! denotes—similarly as in HEHL et al. (1976)—the covariant derivative with
respect to a merely (pseudo-) Riemannian spinor connection. It was WEYL who in his
work in 1950, noted that an additional term, depending on the contortion, necessarily
occurs in RC spacetime. Considering the resolution of the relation ® = [K, ¥] for
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the contortion, this additional term, which would not be discernible in the special-
relativistic formulation, can also attain the form

—3i*[0, 9 IN YY)
= =31, A O, T].

1— ~ *
La. = Ew[K, 1214 (11.3.3)

For the time being, it is to be taken for granted that the Dirac field interacts with the
Einstein—Cartan theory of gravity, as was proposed by WEYL (1929a, b, 1950). Then
it follows that the modified torsion [®, #] couples algebraically to the canonical
spin current of the Dirac field such that Cartan’s torsion equation reads

[0,9] =02 1,. (11.3.4)

This relation can again be used to eliminate the torsion-dependent term (11.3.3) in
(11.3.2). With the result that a spin—spin interaction corresponding to a quadratic
axial vector coupling necessarily occurs in the Lagrangian n-form (11.3.2) of the
Dirac field:

La = =300 Aoy = 302 y Y Ay )

=329y "y AWy ). (13
This physical effect, however, is not necessarily restricted to a coupling of the Dirac
field to the Einstein—Cartan theory. In a generic Poincaré gauge theory, torsion
acquires a more dynamical status according to the second field equation and may
propagate. However, the algebraic relation of the antisymmetric torsion to the spin
current t; of the Dirac field is maintained for those dynamic field configurations that
satisfy double-duality conditions even in the presence of external sources. In case of
quasilinear translational gauge field momenta, the resulting equation can be solved
for the antisymmetric torsion [®, ©¥]. This leads back to an algebraic relation like
(11.3.4), however, with a differing constant of proportionality corresponding to the
model in question.
As an important result, we thus can ascertain:

Spacetime that is twisted (“subject to torsional stress”) by the half-integer spin of a particle
induces a quadratic self-interaction of the spinor fields, and this in a geometrically natural
way.

Equivalently (NESTER 1977), this means also that our interpretation draws us back
onto the (pseudo-) Riemannian spacetime of GR apart from “nonminimal” coupled
sources in the field equations. Thus the spinor equation

iy A*DYy — 602y Ty AWy Ty —myn =0, (11.3.6)

which is valid in a Riemannian spacetime, is obtained by the variation of (11.3.2) for
8Lp /8y . This equation will be referred to as the nonlinear Heisenberg—Pauli—Weyl
spinor equation in the following and reads in a more familiar local representation
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with D = 9%V, taken into considerations, as follows:
M aval: 6 *2 n+1, wo . n+l
iy*V, — ;ﬁ Y'Yy " i —m g = 0. (11.3.7)

The fact that the coupling’ of Dirac’s Lagrangian n-form to the Einstein—Cartan the-
ory produces a quartic self-interaction, in contrast to the purely Riemannian (“met-
ric”) theory, was discovered by WEYL.

In a strict sense, Weyl noticed this occurrence of the conceptually important
intrinsic nonlinearity of the Dirac fields in an embryonic form in his famous work
of 1929 (note his additional term m’; WEYL 1929b, p. 329). Only a little later, it
was IVANENKO (1938, 1957) who, for quantum-theoretic reasons, pointed out the
possibility of nonlinear self-interactions.

Facing the permanently expanding spectrum of experimentally observed excited
states of hadrons and leptons, Heisenberg and Pauli felt seriously compelled to think
of a universal nonlinear equation to describe the basic structure of matter. This equa-
tion is constructed on spinors and is meant to do justice to the fundamental symme-
tries that are given by the Lorentz transformations, the dilations, the combined space
reflection and charge conjugation PC, and the time reflection 7. To be added is the
nearly exact independence of the nuclear forces from the charge. In order to repre-
sent at least the proton and the neutron in his isospin formalism (HEISENBERG 1932),
charge independence necessitates the invariance concerning an additional “internal”
SU(2) group. In order to obtain a nontrivial mass spectrum as well out of a single
fundamental equation for the isotopic doublet ¢ :=

YN

be of an essentially nonlinear character: all these postulates lead to an equation of
(11.3.7)-type but possibly without a mass term (HEISENBERG 1957).

The initial geometric arguments for an introduction of a fundamental nonlinearity
into the Dirac equation that were put forward by Weyl have been taken up and
refined by quite a number of scientists, including GURSEY (1957), RODICHEV (1961),
FINKELSTEIN (1960), FINKELSTEIN & RAMSAY (1962), PERES (1962), BRAUNSS
(1964, 1965), HEHL & DATTA (1971), DATTA (1971), DURR (1973) and lastly
HEHL (1974). The proposition of “internal” symmetries of the particles implies the
transition to multicomponent bispinor fields; and nonlinear coupled spinor models of
this kind have been investigated, apart from HEISENBERG (1967) in his unified field
theory of elementary particles, by FINKELSTEIN (1961a, b); TAKAHASHI (1979a) and
RANADA & RANADA (1983). More generally, it can be shown that an extension of the
“internal” local SU(f) symmetry, taken together with the “external” Lorentz gauge
group SL(2, C) of Weyl to a gauge theory with G = SL(2f, C) as a structure group,
results in a G-invariant nonlinear Heisenberg—Pauli-Weyl spinor equation (MIELKE
1977b, 1981a). The nonlinear coupling of the single spinor fields is thereby induced
by a generalized “isotorsion” of the total space. And yet it is still a highly speculative

Vi ), this equation had to

7At an earlier stage, this was described as a “mixed” theory, since the affine connection and the
tetrad field occur as independent variables in the variation procedure.
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question whether the fundamental Dirac fields that occur can be identified either
with the proton and the neutron, as in Heisenberg’s isospin formalism, or with the
hypothetical, additionally “color’-carrying quarks—see, for instance, TAKAHASHI
(1979a), RANADA & RANADA (1984)—or with the absolutely stable fermions, such
as proton, electron, or neutrino, as was proposed, for instance, by BARUT (1980).

11.4 Solitons

As it is, the physical description of nature rests throughout on linear mathematical
models that have been developed along with the historical evolution of mathematics
and philosophy of science. However, it has to be admitted that the assumption of a
basic linearity is nothing but a model-like approximation if we are ready to accept
that the world of phenomena is in general of a nonlinear character. Exempted from
this rule seems to be quantum mechanics, since the principle of linear superposition
of the state functions necessarily belongs to the axiomatic foundation of the theory.

In the physics of the continuum, which is to be described by means of wave equa-
tions, an initially localizable wave packet is known to dissociate in a weakly dissipa-
tive medium due to the supposition of linearity. A substantially different effect, how-
ever, commonly occurs in the solution manifold of nonlinear wave equations: solitary
waves maintain the shape they are in, and this not only in the case of disturbances but
even after collisions. More than 150 years ago, this phenomenon was observed empir-
ically by SCOTT-RUSSEL (1844) concerning one-dimensional waves propagating in
a channel. Theoretically, the existence of such soliton solutions was first asserted
by KORTEWEG & DE VRIES in 1895. They drew this conclusion while reflecting on
the equations of hydrodynamics. The dispersion of these solitons “proper,” which
occur only in a 2-dimensional spacetime® with this absolute stability, is prevented by
topological conservation laws. Roughly speaking, the theoretical explanation for this
phenomenon is comparable with that which explains why a knot in a closed ribbon
is unknottable (in this context see also FINKELSTEIN & RUBINSTEIN 1968).

Such an absolute stability of localized solutions of a nonlinear wave equation is
no longer guaranteed, however, in systems that are physically more realistic and not
completely integrable, lacking conservation laws originating from global topology
(MAKHANKOV 1978). However, the spontaneous dispersion of such “solitons” may
possibly be prevented by a quantization of the total charge (KUMAR et al. 1979). It
has already been suggested, in 1951 by FINKELSTEIN et al., to amplify the stability of
spinor solitons by means of charge quantization. With reference to a classical spinor
model for the confinement of quarks, this idea was again resumed by FRIEDBERG &
LEE (1977).

8The Heisenberg—Pauli-Weyl spinor equation within two dimensions serves as the starting point for
the quantum-field-theoretic THIRRING model (1958). This equation has solutions not only exhibiting
quark confinement (CHANG et al. 1975; HORTACSU 1977), but also with particle characteristics
(YAMAMOTO 1977; RANADA & RANADA 1984).
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Facing the structural richness of the nonlinear models, it is not astonishing that
there have been considerations concerning the construction of a classical model
of extended particles at very early stages in time. The main concern of these early
investigations was the construction of a model that made it possible to concentrate the
energy, the charge, and other essential physical characteristics of extended particles in
a spacelike domain without having the notorious field singularities of linear theories.

First attempts concerning such “unitarian” field theories are closely connected
with the work of MIE (1912, 1913). By giving up the linearity of Maxwell’s equations,
the door was open not only for a forthcoming field theory of the electron but also for
that of matter. Thus it was possible for Weyl to answer the question, “What is matter?”’
as follows: matter is an energy knot'” of the (electromagnetic) field with quantized
physical properties. “Concerning the energy or the inertial mass of a compounded
body ...” Weyl sees in the latter the reason “why we have to put the insoluble energy
of its finally material elementary parts and the soluble energy of their mutual binding
as opposites.”!!

Mie’s concept of electrodynamics, however, had the decisive disadvantage that
it was not gauge-invariant. This deficiency was coped with by BORN (1934) and
BORN & INFELD (1934, 1935), while they were developing a nonlinear concept
of electrodynamics that does full justice to the demands of an up-to-date standard
concerning gauge invariance, if one proceeds on to a nonabelian structure group. In
a specific model, the electric field strength is determined by the nonsingular function

—1/2

4
1
E = Jarl|1+ (i) ~ Ja— (11.4.1)
To r
and thus replaces Coulomb’s 1/r2-dependence on the distance r := |;(> | from the cen-

ter of the charge. This result implies the germ of the soliton concept in its relativistic,
4-dimensional shape.

Under these aspects, nonlinear coupled scalar fields were investigated by ROSEN
(1939), MENIUS JR & ROSEN (1942)and ROSE & FURRY (1961),G. ROSEN (1965).
However, the issue of stability of localized solutions remains an open problem despite
the work of DERRICK & KAY-KONG (1968). The existence of stable particle-like
solutions has been proved for a specific model (ANDERSON 1971), which results
formally from “squaring” the Heisenberg—Pauli—-Weyl spinor equation (11.3.7); cf.
VAZQUEZ (1977), DEPPERT & MIELKE (1979). As for particle physics, spinor mod-
els are of basic relevance as well with respect to the possible construction of bosons

9 As far as we know, this term occurs for the first time in KALUZA (1921), although in a differing
context. Theoretically, it was coined by BORN & INFELD (1934, 1935) and, as far as a quantum-
theoretic model is concerned, by FINKELSTEIN (1949).

10 According to the highly speculative notions of JEHLE (1977, 1981), this should be asserted almost
literally.

I ferner der Grund, warum wir an der Energie oder triigen Masse eines zusammengesetzten Kor-
pers die nicht auflosbare Energie seiner letzten materiellen Elementarbestandteile der auflosbaren
Energie ihrer wechselseitigen Bindung gegeniiberstellen.” (WEYL 1924, p. 592).
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out of fermions. For a class of nonlinear spinor theories comprising (11.3.7), local-
ized solutions not only have been constructed by means of numerical methods but
also have been scrutinized for their physical interpretation by FINKELSTEIN et al.
in 1951 and 1956. The stability of such particle-like solutions is still much under
debate; cf. ALVAREZ & SOLER (1983), MATHIEU & MORRIS (1985).

11.4.1 Soliton-Type Solutions of the Nonlinear
Dirac Equation

Within the framework of our more geometrically oriented notions, a possible role
of gravitation!? in the physics of particles should not be discarded. This is why we
resume these studies here, however with a consideration of the spacetime curvature
(MIELKE 1981b). It is our intention to analyze a spinor system that is bound by a non-
linear self-interaction in a static spherically symmetric curved background, in order
to demonstrate the main semiclassical properties of such spinor solitons. Although
mathematically more complicated, we are going to consider the dynamical model
thatis given by (11.3.7) exclusively in the physically(!) relevant case of n = 4 dimen-
sions. If the spinors are identical ones, the following equivalent representation for
the self-interaction (11.3.5) between the axial vector currents is valid (FINKELSTEIN
et al. 1956): . . . .
Wiy v Wiy y" ) = Gy @y ¥)

_ — (11.4.2)
=@ )’ =Wy y
It is therefore justified to choose the nonlinear Dirac equation
. 3¢ , — —
[ZV"VIE} + g COV —aly*yy’) —m iy =0 (11.4.3)

with an algebraically simplified self-interaction, instead of (11.3.7), as a basis for
the following analysis. On the other hand, the constants ¢ = +1, £, and a are to be
understood as arbitrary ones in the nonlinear term.

Within the framework of the following explicit calculations, we shall therefore
concentrate on a one-particle system. The spinor fields within this system are bound
by a static spherically symmetric external field exactly as is assumed in the case of the

2Hermann Wey!’s still valid admonitory statement is to be remembered here:

The formulation of Dirac’s theory of the electron in the frame of general relativity has to its
credit one feature that should be appreciated even by the atomic physicist who feels safe in
ignoring the role of gravitation in the building up of the elementary particles: its explanation
of the quantum-mechanical principle of “gauge invariance” that connects Dirac’s 1 with the
electromagnetic potentials

(WEYL 1950).
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hydrogen atom (BJORKEN & DRELL 1964). A spherically symmetric gravitational
field occurs here, possibly even a very strong one, instead of the Coulomb potential.
As is well known, such a metric background can be described in isotropic coordinates
by the line element

ds*> = gkldxk R dx’'

1144
= ¢'dt* — e"(dr® + r’d¥? + r’sin’ ¥d¢?). ( )

Concerning static spinor fields, the functions v = v(p) and ;& = u(p) depend only
on the dimensionless radial coordinate

p = —r, (11.4.5)

and the metric becomes static itself. Thereby the spherical coordinates r := |;|, 7,

and ¢ are related to the Cartesian coordinates X in the familiar manner. The search for
explicit solutions of the generally covariant Dirac equation on this metric background
can be simplified by conformally relating the components gy, of the metric with those
of a different one by means of

8 < g =€"gu- (11.4.6)
For the tetrads, the corresponding relation
EY, <« E$ = "?E, (11.4.7)

can be asserted. Concerning the change of metric (11.4.6), the Christoffel symbols
are related by

o o 1 o o o
[kl]=<kl]+§(5kaz+s,ak—gkla ) (11.4.8)

(see, for instance, MIELKE 1977a). Moreover, if we are considering the relation
between the Christoffel symbols and the torsion-free rotation coefficients FK” B the
local components of the spinor connection (11.1.33) assume the form

— 1
I =T — Za,ﬁ“aﬁlu%ﬂ. (11.4.9)

As an interesting interim result, one can write down the nonlinear Dirac equation
(11.4.3) in a conformally related (pseudo-) Riemannian spacetime as
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— 3
[i?"(ak + il + 3 0)
3 (11.4.10)
£ — —
+§z2e“/2(w Y —ayy yyd) —ePmiy =0,

As a noteworthy example, we may apply this result to the de Sitter space with radius
R,. For this purpose, the de Sitter space is to be covered with the so-called horospher-
ical coordinate system (A, y). Concerning these coordinates, the line element of the
de Sitter space reads

1

ds* = = (R2d2\* — o;;dy’ ®, dy) . (11.4.11)
The linear Dirac equation
ko — — o _ml, g (11.4.12)
Y Ok ZRO)LV 3 =0, 4.

which results from (11.4.10) by dropping cubic terms, is completely identical to the
spinor equation that emerges from the method of the induced representation of the
de Sitter group SO,(1, 4) (see MIELKE (1977c), Egs. (1.23) and (4.5) in the case of
higher spins). Quantum-field-theoretic aspects of nonlinear Dirac equations within
such spaces of maximum symmetry have been analyzed by BORNER & DURR (1970).

For the sake of completeness, the conformally related component Ty of the spinor
connection is given for the general background space (11.4.4). A comparison with
the results that have been obtained in a similar case by BRILL & WHEELER (1957,
Eq. (30)) indicates that

I
Ty= Ze(”"‘)/za,(v — Wyon

T,=0, T»= %yzyl (11.4.13)

i
I's = E(Sln Dysy1 +cosysyn)

is valid. If this is inserted in (11.4.10), then

[iyoao — 2 [i)_; 0 +iy', (% + 2)}
(11.4.14)

+3§8526”/2(W¢ —ayy yy’) - ev/zfﬂ] ¥ =0

follows. For the construction of solutions, it is rather convenient to think of the flat

=
spacelike Dirac operator i)_/) - 0 as being written again in Cartesian coordinates.
It is remarkable that the curved metric background occurs in the conformal spinor
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Eq.(11.4.14) only in a multiplicative way except for the third term, whose contri-
bution, however, can be absorbed by the additional implementation of the factor
exp(—u/2 — v/4), as stated, into the separation ansatz

iH(p) x'

402 12 A
ot ( nm) o2 v A—iomt o . (11.4.15)
A F(p) ZExr

=
[x]

Following the notation of ROSE (1961), the spin-weighted spherical harmonics "
of parity P = (—1) are given by

m 1 . — = m—m m
X! =7Z C\l5dsm —m,m | Y@, ¢)x". (11.4.16)
m==x1/2
Here the parameter « is related to the quantum numbers j and / of the total angular
momentum and the orbital angular momentum, respectively, by

.1 1
k=F(+5) for j=I+. (11.4.17)

Here C(/ % j; m-m, m) denote the Clebsch—Gordan coefficients of the rotation group
SU(2), and Y} (¥, ¢) are the spherical harmonics. Concerning the operators J and

>
L of the total spin and the orbital angular momentum, these spinors satisfy the
eigenvalue equations

Jxt=jG+ Dy (11.4.18)
and .
o-Ly" =—(k+1)x" (11.4.19)

The helicity acts as a projection operator

— X = —x" (11.4.20)

onto these states. The action of the spacelike part of the Dirac operator on the bispinor
is also known:

CLTiHe T 22, 2 IN[IF® xn
iy%y -9 = (a,— )

— . (11.421)
—F(p) x" | x|

" H(p) x"
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What remains is the determination of the explicit shape of the self-interaction after

the enactment of the ansatz (11.4.15). Similarly as in FINKELSTEIN et al. (1951, 1956),
the formulas

3,
gﬁwf = 4ame " (H? —

)|yl o, ¢)‘ (11.4.22)

lic|—

and
3 ,— 2 g
ge%//yﬂ/f = 4nme_“_”/2§HF ’Yl'fl':l‘ (@, ¢)’ (11.4.23)

come into existence. In order to make possible the separation of the partial differential
equations (11.4.14) into angularly and radially dependent parts, it is necessary that
the self-interaction “potentials” (11.4.22) and (11.4.23) are spherically symmetric. It
follows from the properties of the spherical harmonics that this is the case for |« | = 1
only. It has to be considered, however, that then the quantum numbers for the total spin
and the orbital angular momentum, like that of the magnetic moment, are restricted
to the values j = %, I=0,1,and m = :t%, respectively. States of higher quantum
numbers would occur if the ansatz (11.4.15) were directly inserted into the action
functional | Ly belonging to (11.4.3). After integrating over the angular variables
(FINKELSTEIN et al. 1956), only the radially dependent Euler-Lagrange equation
remains to be solved. This averaging procedure over the angular distribution of the
soliton solutions would make it possible to activate states of higher excitations. Since
both procedures lead only to equivalent results for [k | = 1, we restrict ourselves here
to the investigation of the “ground state” of a soliton with spin.

If the separation ansatz (11.4.15) is inserted into the nonlinear Dirac equation,
the following system of first-order partial differential equations for both of the radial
functions is generated:

1 1 2
9 H + ﬂe(”_”)/zH = E |:a)+e”/2 — se_“(H2 — F?— 531—12)] F,
0

(11.4.24)

— 1 2
Ke(”_“)/zF = E |:—a) +e"? — ese_“(H2 —F*+ gan):| H.

(11.4.25)

Although it is not absolutely necessary in our case, it is frequently convenient to
proceed to the tortoise coordinate of WHEELER (1955), which is implicitly defined
by the Pfaffian form

dp* = e 2gp. (11.4.26)

Concerning background metrics with horizons as given, for instance, by the Schwarz-
schild solution, an utmost slow tending of p* to the “coordinate singularity” is
achieved. It is then to be considered as being displaced to negative infinity. In our
calculations, the contributions of the “naked” fermion mass m to the so-called Planck
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mass M™* of the (possibly “strong”) gravitational field is absorbed in the coefficients

M* V8mh
B = , M* = i .
2m cl*

(11.4.27)

Already in the case of flat spacetime, a computer-guided analysis is necessary. To
some extent, this has already been done, not only by FINKELSTEIN et al. (1951, 1956),
but as well by SOLER (1970), RANADA (1978), TAKAHASHI (1979a, b), and RANADA
& RANADA (1984). And it has resulted in very interesting findings.

Here it may be sufficient to work out only some of the characteristic properties of
localized and regular solutions. For a soliton with total spin j = %, ie., forx = —1,
let us therefore consider the asymptotic solutions for the flat Minkowski space in a
neighborhood of spacelike infinity. For such solutions, the quadratic terms can be
neglected, and we get asymptotically the following linear system:

, 14w
H >~ ——F, (11.4.28)
B
, 2 l-—w
F'+—-F~—H. (11.4.29)
P p

Out of both equations, in which the derivative has to be taken with respect to p,
results the differential equation

F,,+2F, 2FN1—a)2
o o* B

F (11.4.30)

with a regular singularity at the origin. The method of Frobenius allows to seek

I
FrColzt+=)e? (11.4.31)
o P

Tol -
H~ Cooy| 5 J_Fzge*f) (11.4.32)

as approximate solutions. For the sake of convenience, we have introduced

and

1
pi= 1—wp (11.4.33)

as our new radial variable.

For a soliton with total spin j = % and ¥k = —1, the radial functions H (p) in the
ansatz (11.4.15) account for a spherically symmetric distribution with [ = 0, while
according to (11.4.17), the quantum number [ = 1 of angular momentum can be
ascribed to F(p). Let us compare this with the situation in a nonlocal version of the
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|¢|®-model of ROSEN (1965). With reference to an expansion in terms of spherical
harmonics Y" (¢, ¢), the occurring exact radial solutions

flip) =p'Q +&"tH)~12 (11.4.34)
(MIELKE 1978, 1979) also depend on the quantum number [/ of orbital angular

momentum. A comparison with (11.4.31) and (11.4.32) suggests that we consider
the combinations

1
F(p) ~ Cof'(p)—— (11.4.35)
coshp
and
l+o 1
H(p) ~ Cy ') —— (11.4.36)
1l—-w coshp

as fit accommodations to the asymptotic solutions of the radial Dirac equation, the
more so, since these functions are a satisfactory approximation of the system even
at the origin, provided that the initial increase of F'(p) is determined to be

-2
Co=((1—-w) m (11.4.37)

The qualitative concordance of our approximations with the solutions of minimum
energy (RANADA 1978; see also GARCIA & RANADA 1980), which were obtained
by numerical methods, is clearly documented in Fig. 11.1. Our trial functions could

Fig. 11.1 Approximate
radial solutions of a
nonlinear Dirac equation




250 11 Spinor Bundles

serve as a point of departure for a determination of the “energy eigenvalues,” i.e.,
the minima of the field energy of a spinor soliton, according to the Ritz proce-
dure of approximation (FLUGGE 1971). The obligatory exponential decrease of the
radial functions is sufficient for the localization of the resulting spinor solitons. This
is clearly shown in the case that the parameter w appearing in the phase of the
ansatz (11.4.15) satisfies |w| < 1. On the other hand, it is known (VAZQUEZ 1977)
that bounded and square-integrable radial solutions do not exist for |w| > 1.

For stationary configurations with a localized field distribution centered at the
origin, it seems to be sensible to define the effective soliton radius by

2
o= (xR = (%) . (11.4.38)
H3

Concerning multisoliton systems, it is possible to equate the nonlinear superposition
of two such solitons in its effect on the physical action of a Yukawa-type potential
|| ~ e~"" between the centers of charge of the solitons. This is the case if the
mutual distance of these centers is larger than the sum of both radii, which is to be
calculated according to (11.4.38); cf. ROSEN & ROSENSTOCK (1952). This appears
to be a very interesting property of the classical nonlinear field theory, since the
occurrence of such potentials is usually considered as a “virtual” exchange of -
mesons in particle physics. In our case, their mass would have to be related via

me =1 —aw? m (11.4.39)

to the “bare” fermion mass m and the parameter w. With SALAM (1977), this can be
explained with the immersion of the “naked” spinor waves into the self-interacting
phase within the solitons, and this in the sense of an “Archimedes-type” effect.

The total mass my of a spinor soliton is obtained by the integration

1
my = — / > (11.4.40)
C JH3

of the canonical energy momentum current X, over a spacelike hypersurface H>.
Here the term that is dependent on the Lagrangian 4-form L can be omitted if ¢ is a
solution of the Dirac equation (JOST 1965; BRILL & WHEELER 1957). Nevertheless,
the definition (11.4.40) indirectly contains contributions of nonlinear self-interacting
potentials for a spinor soliton. Due to (11.4.15), it is typical that the soliton mass
(11.4.40) is inversely proportional to the “fundamental” length £* and that m; would
diverge for a vanishing coupling constant of the self-interaction.
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11.4.2 Mass Spectrum

Following the preceding studies of FINKELSTEIN et al. (1951, 1956) and SOLER
(1970), which were mainly concerned with a model (11.4.3) with a = 0, RANADA
(1978) focused his interest on the “mass spectrum” of the Heisenberg—Pauli—Weyl
equation (11.3.7), i.e., on the Eq.(11.4.3) with ¢ = 1 but with the opposite
sign ¢ = +1. For solitons corresponding to an S /-bound state with normalized
charge QO = e, only nodeless radial solutions whose total rest mass shows an
infinite spectrum of local minima have been found. Most interesting is the fact
that the three lowest “eigenvalues” can be related rather well to the rest masses
of exited nucleon states if a corresponding scaling has been carried out in advance.
GARCIA & RARNADA (1980), while considering an additional coupling to a
pseudoscalar meson field, worked out these findings to a classical model of nucleons
that accounts approximately for their empirically provable properties such as charge,
spin, magnetic moment, and the electric or magnetic acting radii.

According to today’s generally accepted notions, however, hadrons are thought to
be built up by more fundamental pointlike fermions, the so-called quarks
(GELL- MANN & NE’EMAN 1964; cf. KOKKEDEE 1969). Since up to now, these
hypothetical construction elements have never occurred as free particles, it is nec-
essary for an acceptable theory of strong interactions to guarantee their permanent
confinement in hadrons. In quantum chromodynamics (QCD, MARCIANO & PAGELS
1978; Joos 1979), this is thought to be achieved by a confining phase, i.e., as if the
quarks were enclosed by a “bag” (CHODOS et al. 1974). Most remarkably, the under-
lying geometric ideas refer back to EINSTEIN (1919) and DIRAC (1962). Another
solution of this problem can be obtained within the framework of nonlinear spinor
theories if one starts off from several coupled Dirac fields. Let us assume that each
of these fields represents one quark. It is to be expected, then, due to the nonlinear
interactions of each with itself and among one another, that as a “ground state,” a
bound state of a multisoliton system comes into existence, which then could be con-
sidered a semiclassical model of a hadron. This possibility has been analyzed for a
related scalar case (DEPPERT & MIELKE 1979). For nonlinear spinor fields, such a
binding occurs only for two or three quarks if one follows the results of RANADA &
RANADA (1984). It remains to be seen whether such a mechanism is really sufficient
to bind quarks permanently in hadrons. This again ought to be dependent as well on
the precise form of the nonlinear interaction (WERLE 1977).

Following the preparatory work of MIELKE (1978, 1980) on scalar models, a first
but important attempt (MIELKE 1981b) was carried out to construct exact solutions
of a nonlinear Dirac equation in curved spacetime. The self-interacting potential in
(11.4.3) is chosen such that a = 0, resulting in a radial system of equations. In order
to solve this in closed form, we are postulating a rather special spherically symmetric
shape for the metric background (11.4.4), which, unfortunately, does not satisfy the
field equations of Einstein.

For a self-consistent procedure, it would have been necessary to take into con-
sideration the back-coupling of the spinor field onto the metric background via the
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canonical energy—momentum current. In the end, such a procedure would necessitate
the study of the spinorial versions (BRILL & WHEELER 1957) of those geon construc-
tions that were carried out for the coupled Einstein—-Maxwell system by WHEELER
(1955, 1962). In the model case of a nonlinear scalar field, such gravitational solitons
have been constructed with numerical methods (MIELKE & SCHERZER 1981); see
also SCHUNCK & MIELKE (2003) and the references therein.

An axially symmetric background metric of Kerr—Newman type (KERR 1963;
NEWMAN et al. 1965) seems to be more appropriate in general, and this on account
of the nonvanishing intrinsic angular momentum and the charge of the spinor soliton.
But it is already in the linear case that the separation of the Dirac equation in terms of
the variables of the Kerr metric turns out to be a tedious undertaking; see TEUKOLSKY
(1972, 1973); CHANDRASEKHAR (1976) and also JOUTEI & CHAKRABARTI (1979),
which leads to explicit solutions only in particular cases (EINSTEIN & FINKELSTEIN
1977). Thus the consideration of torsion-induced nonlinearities within the Dirac
equation (INOMATA 1978) as well as that of the back-coupling of the spinor fields
onto the Riemann(—Cartan) spacetime (BRILL & WHEELER 1957; HAMILTON &
DAS 1977) is a rather ambitious mathematical program. In addition, it may pave the
way to a better understanding not only of the instanton and monopole solutions of
nonabelian gauge theories (JOUTEI & CHAKRABARTI 1979) but also of the “internal”
structure of the fermions and consequently of matter as a whole.

11.5 Quantum-Theoretic Meaning of Nonlinear Classical
Field Theories?

There is no way to ascribe a direct physical meaning to the unquantized “free” Dirac
field, since its field energy (11.4.40) is not bounded from below. Without imposing
a second quantization, this would mean an instability resulting in the rapid decay of
all matter (JOST 1965, p. 39). Under these circumstances, it is of interest to define
the quantum meaning of the soliton solutions of nonlinear spinor theories.

Besides the difficult but physically most important question concerning the stabil-
ity of these four-dimensional “solitons,” it is important to affirm that the properties
of classical fields entering decisively not only in the Wentzel-Kramers—Brillouin
(WKB) approximation methods but also in Feynman’s method of quantization via
path integrals. There is a crucial difference according to whether one starts from the
vacuum or from a soliton configuration as a ground state, since the classical solutions
are always regarded as approximations of zeroth order to the fully quantized theory. It
appears to be impossible to reach the “soliton sector” of the quantized theory, which
corresponds to a large coupling constant, by means of perturbation theory (JACKIW
1977; CALLAN & GROSS 1975), since the classical soliton configuration is typically
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singular for a vanishing coupling constant of the self-interaction.'? The application
of quantum field theory, in which v is quantized by means of local anticommutation
relations, would cause divergences in the theory due to the singular commutator func-
tions and this apart from the fact that such distribution-valued spinor operators have
no classical limit at all. It is for this reason that FINKELSTEIN et al. (1951) proposed
to quantize the total charge of a spinor soliton by the requirement

Q:=ie| Y*yy=ke, k=0,1,2,.... (11.5.1)

H3

At first sight, this procedure seems to be rather unsophisticated. However, it has
to be acknowledged that it is equivalent to the old Bohr—Sommerfeld quantization
condition concerning field theories with an infinite number of degrees of freedom
and that it is even exactly equivalent to the canonical formalism in many cases; cf.
JACKIw (1977).

Attention is still focused on the semiclassical nonlinear Dirac fields for another
reason. Usually, it is taken for granted that their temporal evolution violates one of the
most fundamental principles in particle physics, namely the Pauli principle. Under the
condition, however, that the solitary wave packets, which are thought to represent
fermions, are normalized to the quantum of charge Q = e and that their Cauchy
initial conditions satisfy the Pauli principle at the beginning of the observation,
the orthogonality of the fields is guaranteed until the end, since the scalar product
(11.2.8) is an invariant under temporal evolution (RANADA 1986). Spinor solitons
that are constructed in the described way as well as the charged scalar solitons of
MORRIS (1980) represent semiclassical fermions and are, in a sense, akin to DIRAC’s
model of the extended electrons of 1962. Tempted by these ideas, the author of the
present study felt motivated to conceive a nonlinear relativistic quantum theory of
extended particles (MIELKE 1981c) influenced by DE BROGLIE’s theory of the double
solutions (1960).

For the time being, we have explained the occurrence of nonlinear self-interactions
within Dirac’s theory in a very fundamental way while tracing it back onto the contor-
tion of the spacetime geometry. But it was IVANENKO (1958), in his profound essay,
who pointed out that these “primordial” nonlinearities in quantum field theory are on
par with the self-couplings of the fields that are “induced” by vacuum fluctuations. A
known example of the latter mechanism is given by the quantum-theoretic treatment
(HEISENBERG & EULER 1936) of the theory of pair creation. The quantum-theoretic
generation of “virtual” electron—positron pairs can thereby be completely absorbed
by classical electrodynamics if only the dynamics are modified by an effective non-
linear Lagrangian 4-form of BORN-INFELD type (1934). Another example is to be
seen in quantum electrodynamics itself (BJORKEN & DRELL 1964). The coupled
Maxwell-Dirac system leads to the nonlinear and nonlocal Dirac equation

13This parameter appears as fundamental length £ in both (11.4.3) and the Ansatz (11.4.15).
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iy Ay (x) + € / YOYY WDy —x) A"y (x) =my(x)n  (11.5.2)

yeM

after the elimination of the photon field (BARUT & KRAUS 1977) while the ampli-
tudes are not yet subjected to field (“second”) quantization. Here Dgr(x) denotes
the causal Green’s function of the electromagnetic field. In the limiting case of an
infinite heavy photon (vector bosons), the above nonlocal interaction of action-at-
a-distance type (FINKELSTEIN et al. 1956) would again change into the spin—spin
contact interaction of Fermi type that is induced by the torsion of the spacetime.

A further reason for IVANENKO (1957, 1958) to consider the necessity of nonlin-
earities in the field equations was the related possibility of introducing a “smallest”
fundamental length ¢ into the theory. This was meant to cope with the problem of
divergences in quantum field theory. VAN DER MERWE (1979) found a modified
behavior of the two-point function at short interaction distances of the field operators
in a more recent and interesting study. It cannot be excluded therefore, corresponding
to the choice of the quantization or regularization method, that the length that occurs
in (11.3.7) as a coupling constant increases its “bare” value of the Planck length
£* = 8.1 x 10733 ¢m to the far larger amount of the Compton wavelength ¢ = 1073
cm of the proton, and this by way of renormalization. This would mean that the non-
linearity that is induced by gravity nevertheless provides physically relevant, if not
even dominant, contributions to a fully quantized theory, and this despite its small
amount, which is characterized by £*. It is for this reason that HEISENBERG’s unified
field theory (1967), which starts from £ = 103 cm, can refrain from using a “bare”
mass term occurring in (11.3.7) without renouncing the possibility of deducing a
spectrum of field energies that is of the scale of observable hadron masses. In order
to evade the veto of the perturbation-theoretic nonrenormalizability as the theoretical
correlate of the occurring four-fermion interactions, Heisenberg developed quantiza-
tions rules in Hilbert spaces with an indefinite metric. Since these are problematic in
their nature, STUMPF (1980, 1981) prefers functional quantization methods instead,
and this also with reference to the confinement problem of the hypothetical quarks.

Nevertheless, HEISENBERG (1974) remained convinced of the physically funda-
mental meaning of his nonlinear spinor model of matter till the end. He did so on
account of the surmised equivalences between the indefinite metric theories and the
definite but nonlocal field theories. Possibly this is based on a sound reason. Fol-
lowing considerations of EGUCHI (1977), nonlinear spinor theories are equivalent to
a renormalizable model in which the fermions interact with collective boson states,
according to perturbation theory. What is even more, an SU(f) gauge-invariant non-
linear spinor model (MIELKE 1977b, 1981a) would thus become equivalent to quan-
tum chromodynamics (QCD; MARCIANO & PAGELS 1978), today’s most prominent
theory of strong interactions.
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Chapter 12
Chiral Anomalies

Anomalies can be viewed as a breaking of some Noether symmetry through the
effects of the vacuum. In relativistic quantum field theory (QFT), such a (classical)
symmetry is broken by field quantization; cf. HOLSTEIN (1993, 2014), VAN HOLTEN
(2005) for rather recent reviews. This has important implications for such physical
processes as the decay of the neutral m-meson, cf. BELL & JACKIW (1969), and
induced instanton effects (NAPSUCIALE et al. 2002), and it underlies the postulation
of the axion in quantum chromodynamics (QCD).

12.1 Anomalies for Pedestrians

In quantum electrodynamics (QED), SCHWINGER (1951) demonstrated that the
charge current j can be conserved, i.e., (dj) = 0, whereas the conservation of the
axial current js is broken, (djs) # 0, in the most common convention.

In the FUIIKAWA (1979) approach, the right-hand side can be obtained from con-
sidering the point-split current js(x; &) := ¥ (x)y5*y ¥ (x + &), where ¢ is an infin-
itesimal four-vector in spacetime. Such an expression can be rendered invariant by
quantum-field-theoretically dressing it with a path-ordered exponential

x—+e
E(x)ys*yw(xww$<x)ys*yw<x+s>Pexp|i/ A]. (12.1.1)

The variation §/8A of the current js(x; &) is compensated by the variation of the
exponential. Since the parallel transport from x’ — x’ + &' along the infinitesimal
line element can be expanded perturbatively, it is clear that the net effect of this
approach is just the standard result

(djs(x)) = 2im(P) — (1/967>)F A F (12.1.2)
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for massive fermions, where P = yysy is the pseudoscalar current and F := d A
is the gauge field strength. Further details of the path integral formulation were
developed, e.g., in ALFARO et al. (1988, 1989), URRUTIA & VERGARA (1992) with
extension of the regularized Jacobian, as well as in the light-cone gauge (GAMBOA
et al. 1997) of the Schwinger model.

There is an intuitive physical interpretation of this result: the additional Chern—
Simons (CS) term C := A A d A corresponds to the spin or helicity of the photon,
with its spacelike part A - B known as magnetic helicity (JACKIW & P12000). Since
the axial current js is proportional to the spin of a fermion, the deformed current

Js = js + (1/9672)A A dA (12.1.3)

includes the spin of the photon, lacking, however, gauge invariance. The chiral anom-
aly can then be understood as the “conservation law”

(djs) =0, (12.1.4)

such that in QFT, “the flow of electronic spin drags some photon spin and vice versa”
(WIDOM & SRIVASTAVA 1988).

Anomalies were studied also in Yang—Mills-type gauge models of gravity with
Einsteinian instanton solutions (MIELKE & RINCON 2005). Then, the equivalence
principle requires a coupling of gravity not only to the energy—momentum current of
matter, but also to the spin current. Here we will focus on the intricate inter-relation
between the chiral anomaly and the spin or helicity of the gravitational gauge field
and extend it to post-Riemannian spacetimes with torsion.

12.2 Dirac Fields in Riemann—Cartan Spacetime

In our notation, a Dirac field is a bispinor-valued zero-form v for which v := vy,
denotes the Dirac adjoint. The minimal coupling to the gauge (electromagnetic)
potential A = A,;dx" is accounted for via & := D + i AA, where Dy :=dvy + I' A
Y is the exterior covariant derivative with respect to the Riemann—Cartan (RC) con-
nection one-form I'*? = I*Bdx!.

The Dirac Lagrangian is given by the manifestly Hermitian four-form

Lo = L. 29) = 5 {0y A9y + DU A'y g} =mPym. (122)

where y := y,9¢ is the Clifford-algebra-valued coframe.

The Dirac equation and its adjoint can be obtained by varying L, independently
with respect to ¥ and . Making use of the torsion @ := Dy and of the properties
of the Hodge dual, the Dirac equation assumes the form
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, i 1
z*