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Abstract Historically, the existence of dark matter has
been postulated to resolve discrepancies between astrophys-
ical observations and accepted theories of gravity. In partic-
ular, the measured rotation curve of galaxies provided much
experimental support to the dark matter concept. However,
most theories used to explain the rotation curve have been
restricted to the Newtonian potential framework, disregard-
ing the general relativistic corrections associated with mass
currents. In this paper it is shown that the gravitomagnetic
field produced by the currents modifies the galactic rota-
tion curve, notably at large distances. The coupling between
the Newtonian potential and the gravitomagnetic flux func-
tion results in a nonlinear differential equation that relates
the rotation velocity to the mass density. The solution of
this equation reproduces the galactic rotation curve without
recourse to obscure dark matter components, as exempli-
fied by three characteristic cases. A bi-dimensional model is
developed that allows to estimate the total mass, the central
mass density, and the overall shape of the galaxies, while fit-
ting the measured luminosity and rotation curves. The effects
attributed to dark matter can be simply explained by the grav-
itomagnetic field produced by the mass currents.

1 Introduction

Mostly following the extensive work of Rubin et al. [1],
measurements of the rotation of galaxies have shown that
the rotation curves are essentially flat, with an initial steep
increase and possible small velocity fluctuations related to
spiral structures. The attempts to explain these observations
used theoretical models derived on previous rotation studies
of nebulae and galaxies. A summary of earlier work in this
area has been given by de Vaucouleurs [2]. The first model
for a spiral nebula was developed by Burbidge et al. [3] con-
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sisting in a series of concentric spheroidal shells of matter.
In this way they obtained integral relations between the mass
density and the rotational velocity. The system of shells was
flattened by Brandt [4] to represent spiral galaxies as disk-
like configurations, and improved by Brandt and Belton [5]
to obtain the mass distribution in the form of a surface den-
sity. This method of calculation involves a double integral, so
that it was further improved by Toomre [6] using alternative
solutions based on Bessel functions, suited to the cylindri-
cal geometry. Nordsiek [7] discussed the application of both
the spheroid and disk methods in the analysis of rotation-
curves, proposing simple mathematical models. Many of the
previous spheroidal and disk models were reproduced by the
Miyamoto–Nagai [8] potential-density pair, which provides
a simple analytic solution to Poisson’s equation. One should
mention that later Schorr [9] obtained an exact solution to
the integral relating the mass distribution to the rotational
velocity in the spheroid method.

Using different assumptions for the mass distribution and
possible combinations of spheroids and disks, the above theo-
retical models failed to convincingly reproduce the observed
flat rotation curves. The discrepancy between models and
observations was more evident in the measurements of the
rotation curve using the Doppler shifted 21 cm neutral hydro-
gen line (HI) outside the galactic central portion. Most of the
visible mass is located in this central region. The only way
to eliminate the discrepancy using the existent models was
by the introduction of a halo of non-observable matter (dark
matter) concentrated in the outer region of spiral galaxies.
The role of this dark matter component was detailed by van
Albada et al. [10] using improved HI data obtained by Bege-
man [11] for the extended rotation curve of NGC 3198. The
main conclusion was that “the amount of dark matter inside
the last point of the rotation curve, at 30 kpc, is at least 4 times
larger than the amount of visible matter”. Subsequently, the
methods of analysis became more sophisticated, but invari-
ably introducing the dark matter component as detailed, for

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-08967-3&domain=pdf
http://orcid.org/0000-0003-3035-5796
mailto:gerson.ludwig@inpe.br


  186 Page 2 of 25 Eur. Phys. J. C           (2021) 81:186 

example, by Sofue et al. [12], Eadie and Harris [13], Sofue
[14] and so many others. A detailed presentation of gravi-
tational potential theory applied to several geometrical con-
figurations of a large collection of stars, including the dark
halo contribution, can be found in the book by Binney and
Tremaine [15]. More recent models were advanced by Coop-
erstock and Tieu [16], Balasin and Grumiller [17], and Crosta
et al. [18] considering general relativistic effects to describe
the galactic dynamics. The relation between these papers and
the present one is discussed later in this Introduction.

The motion of either stars or dust particles in a galaxy is
determined by the gravitational interaction between masses
only. The galactic system formed by a very large number
of stars plus the surrounding gas can be approximated by a
continuous mass distribution. This continuous fluid is essen-
tially collisionless since binary encounters between stars are
very rare (although long range encounters between passing
stars determine the evolution of the system towards thermo-
dynamic equilibrium on a very long time scale). Without
binary encounters the interaction is described by collective
Vlasov fields. Assuming steady-state the basic assumptions
are established to describe the distributions of matter and of
fluid velocity in a typical galaxy.

Now, most theories so far have been restricted to the New-
tonian formulation or ad hoc modifications. They neglect
relativistic corrections, which can significantly modify the
rotation curve. Actually, at large distances the Lorentz force
due to the gravitomagnetic field effectively controls the mass
equilibrium balance in view of the decaying centrifugal force.
The field produced by the large disk of mass currents basi-
cally acts as a gravitomagnetic brake against the gravitational
attraction. Moreover, Newtonian theory leads to the condition
that the centrifugal acceleration exactly balances the gravita-
tional attraction in a circular orbit. But this condition can be
strictly satisfied only for infinitesimally thin disks if pressure
is neglected. As a further limitation, the thin disk approxi-
mation avoids the free boundary problem of galaxy equilib-
rium, when the shape of the galaxy is defined by a matching
between the potential inside the fluid and the potential in
vacuum.

Although filled with controversy, the studies of the galac-
tic rotation via general relativity [16–18] reach the same
basic conclusion of the present paper. Namely, the dragging
effect of a gravitomagnetic component (time-space compo-
nent of the metric) explains the flat rotation curve at large
distances, without the recourse to dark matter. The main prob-
lem with the general relativistic models is the very limited
number of exact solutions of the Einstein field equations.
In particular, the study of galactic rotation relies in the use
of the Kerr metric or suitable modifications, and its asso-
ciated frame-dragging. In this context, it is very difficult to
find self-consistent solutions relating the rotation velocity to
the interior mass density distribution. This is illustrated by

the fact that the general relativistic solutions reproduce, so
far, the rotation curves in the distant region of a Kerr met-
ric, without relating the derived mass density to the mea-
sured mass distributions, particularly near the axis of rota-
tion where most of the mass is concentrated. This connection
between rotation velocity, mass density and related bright-
ness profiles is required by observational astronomy. The
calculated motion in the general relativistic approach corre-
sponds to the free-fall of test particles in the assumed metric,
without consistently considering the effect of the large galac-
tic mass density distribution on the metric. Actually, this is
the same objection that can be made to the classical approach.
Moreover, the free-boundary problem of the galactic shape
also becomes highly intractable in general relativity. Inter-
estingly, one should point out that the Gaia Collaboration
effort [18,19] allows to determine the motion in the weak
local gravitational field resulting from the contribution of
many relatively near mass concentrations. Fluid models, as
used in the present paper, consider the mean motion of par-
ticles in the Vlasov-like collective gravitational field. The
gravitoelectromagnetic weak field approximation to general
relativity, used in the present paper, leads to a tractable self-
consistent solution of the galactic rotation problem.

In summary, practically all the galactic rotation models so
far are based on potential theory and the circular orbit con-
cept in the Newtonian framework. Potential theory is entirely
adequate when solving the Poisson equation for the gravita-
tional potential. The problem arises when the circular veloc-
ity is estimated by a simple balance between the gravitational
and centrifugal forces. A self-consistent calculation of the
rotation velocity must take into account the gravitomagnetic
field produced by the mass currents. In fact, the results of
self-consistent calculations indicate a necessary change in
the potential theory – circular orbit paradigm.

In the present article a new model for the rotation curve
of galaxies is developed including the effects associated with
mass currents. A set of equations that govern the motion of
a weakly relativistic perfect fluid is introduced in Sect. 2.
These equations are applied in Sect. 3 to the gravitational
equilibrium of a pressureless, rotating fluid of dust in a form
appropriate to the study of galaxies in steady-state. It is shown
that the inclusion of the gravitomagnetic field clarifies some
inconsistencies of the standard potential theory. Then, in
Sect. 4, the equation that relates the velocity of rotation to the
mass density distribution in equilibrium is developed. This
equation is applied in Sect. 5 to the equilibrium of a compact
object using the Miyamoto–Nagai [8] potential-density pair
as solution of the Poisson equation. However, this solution is
inadequate to describe the equilibrium of disk-like distribu-
tions, although illustrating the effects of the gravitomagnetic
field. Therefore, an approximate bi-dimensional solution of
Poisson’s equation is developed in Sect. 6 to describe the
gravitational potential along the equatorial plane of disks of
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dust. This model is used in Sects. 7, 8 and 9 to adjust both
the luminosity profiles and the rotation curves of galaxies
NGC 1560, NGC 3198 and NGC 3115, respectively. Finally,
Sect. 10 gives the conclusions. Appendix A demonstrates
an important gravitomagnetic Cauchy invariant for a rotat-
ing fluid. Appendices B and C present details of the thin
galactic disk model development. Appendix D describes the
procedure to estimate the mass density in a galaxy from its
surface-brightness profile.

2 Fluid equations of motion in a gravitational field

The flow of a weakly relativistic perfect fluid of mass density
ρ = nm, velocity v and pressure p in a self-consistent grav-
itoelectromagnetic (GEM) field is governed by the equation
of continuity

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

by the momentum conservation (acceleration) equation

dv

dt
= −∇p

ρ
+ E + v × B, (2.2)

and by the GEM Maxwell’s equations for the field variables
E and B:

∇ · E = −4πGρ (GE Gauss’s law),

∇ × B = −4πG

c2 ρv + 1

c2

∂E
∂t

(Ampère’s law),
(2.3)

where G is the gravitational constant and c denotes the veloc-
ity of light. In the present form the Lorentz force in the
momentum conservation equation is limited to the linear
velocity term, in accordance with the original gravitomag-
netic theory developed by Thirring [20] and reviewed by
Pfister [21]. The formulation of gravitoelectromagnetism and
its effects were reviewed by Ruggiero and Tartaglia [22] and
by Mashoon [23]. The linear approach to gravitoelectromag-
netism is extensively adopted in the literature [24,25]. An
extended gravitoelectromagnetic theory was recently devel-
oped by the author of the present paper, describing the
dynamics of a fully-relativistic perfect fluid in flat space
in accordance with special relativity [26]. The connection
between this extended theory and general relativity in its
weak formulation was also accomplished [27]. Higher order
terms in the velocity (higher then first order), are needed to
describe many known general relativistic effects, such as the
relativistic correction to the planetary precession of the per-
ihelion and the production of gravitational waves. However,
these effects are not important in the present context and the
higher order terms can be safely disregarded. The paper is
intended to develop a self-consistent model linking the New-
tonian gravitational potential to the gravitomagnetic field.
This link is obtained solving the equation of motion, coupled

to Gauss’s law for the gravitational potential and Ampère’s
law for the gravitomagnetic field. Ampère’s law has been
used, for example, in the calculation of the Lense–Thirring
effect, although not in a self-consistent form. The Lense–
Thirring result, which was confirmed by measurements taken
by Ciufolini and Pavlis [28] and later by the Gravity Probe B
space experiment, as reported by Everitt et al. [29], is similar
to calculating the magnetic field associated with a given cur-
rent source (the rotating Earth in the Gravity Probe B case).
However, the self-consistent solution must also consider how
the mass currents are affected by the gravitomagnetic field.
Note also that the orbit-orbit interactions entering the galactic
equilibrium are much stronger than the spin-orbit interactions
of the Lense–Thirring effect.

The total or convective derivative

d

dt
≡ ∂

∂t
+ v · ∇ (2.4)

gives the rate of change of a quantity moving instantaneously
with the velocity v. It describes the advection by fluid motion.
The gravitoelectromagnetic field variables are related to the
scalar potential φ and the vector potential A by

E = −∇φ − ∂A
∂t

,

B = ∇ × A,
(2.5)

leading to the consistency relations:

∇ × E = −∂B
∂t

(Faraday’s law),

∇ · B = 0 (GM Gauss’ law).
(2.6)

Note that the vector potential A has been introduced without
the factor 1/2 frequently used in gravitoelectromagnetism
(the present definition simplifies the comparison with elec-
tromagnetic theory). The pressure p is related to the tempera-
ture T according to the isentropic flow condition ds/dt = 0,
which leads to the equation of state for a perfect fluid. Recall
that the number density n is related to the temperature T by
the perfect gas law p = nkBT . The pressure term is here
included for completeness, since it will be neglected from
Sect. 3 onwards. In terms of the potentials the momentum
conservation equation can be written as

d

dt
(v + A) = −∇p

ρ
− ∇φ + (∇A) · v. (2.7)

In this Clebsch form the momentum conservation equa-
tion describes the evolution of the canonical momentum
m (v + A) of a fluid element.

Note that Faraday’s law becomes entirely consistent in
the gravitoelectromagnetic context if terms of higher
order in the velocity of light are included, such as pro-
vided by a post-Minkowski theory [26,27]. However,
terms other than the first order term in the fluid veloc-
ity are needed in the Lorentz force only to obtain, for
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example, the relativistic correction to the perihelion
precession, which is outside the scope of the present
paper. This does not discard low-frequency inductive
effects associated with Faraday’s law. The static field
constraint in gravitomagnetism arises from imposing
a total of four gauge-conditions on the metric ten-
sor. Actually, only two conditions are allowed in an
extended theory which includes gravitational waves.
Moreover, in equilibrium the inductive or radiative
effects related to Faraday’s law are irrelevant, so that in
the present paper there is no need for higher order cor-
rections in the equation of motion than the linear term
provided by Thirring’s formulation in his third 1918
paper [20].
Note also that the electromagnetic field theory gives
a result identical to the gravitoelectromagnetic field
equations with the following analogies [30]

Eem → E, Bem → B,

φem → φ, Aem → A,

ε0 → − 1

4πG
, μ0 → −4πG

c2 ,

(2.8)

where Eem and Bem are the electromagnetic fields,
φem and Aem are the corresponding potentials, and the
charge q in the Lorentz force is replaced by the mass
m. With these analogies, the conservation equations
describing the exchange of energy between the gravito-
electromagnetic field and matter can be obtained from
a variational principle exactly in the same form as for
the electromagnetic field.

3 Gravitational equilibrium of dust

Consider the equilibrium (∂/∂t ≡ 0) of a gravitationally con-
fined dust configuration in rotation with negligible pressure
(p ∼= 0). Using the vector relation

v · ∇A = (∇A) · v − v × (∇ × A) (3.1)

the equilibrium is governed by the momentum conservation
equation

v · ∇v = −∇φ + v × (∇ × A) , (3.2)

and by the gravitoelectromagnetic laws of Gauss and Ampère,
respectively,

∇2φ = 4πGρ,

∇ × (∇ × A) = −4πG

c2 ρv.
(3.3)

In this way the equilibrium is described by eight variables
formed by ρ, v, φ and A. Note that Ampère’s law automati-
cally satisfies the continuity equation in equilibrium

∇ · (ρv) = 0. (3.4)

Since there are only seven equations one of the equilibrium
profiles must be specified. In general, it is convenient to take
the mass density distribution ρ as the independent variable.

Now, using the vector identity

v· ∇v = 1

2
∇ (v · v) − v × (∇ × v) (3.5)

the momentum conservation equation in equilibrium becomes

∇
(

φ + v2

2

)
= v × (ω + B) , (3.6)

where ω = ∇×v denotes the fluid vorticity. The scalar and
vector products of the equilibrium equation with v give

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v · ∇
(

φ + v2

2

)
= 0

v × ∇
(

φ + v2

2

)
= v × [v × (ω + B)]

(3.7)

Thus, in the direction of fluid motion the advection of spe-
cific kinetic energy is balanced by the Newtonian or gravi-
toelectric (GE) potential φ. In the direction perpendicular to
v the changes in the gravitoelectric potential and in the spe-
cific kinetic energy are balanced by both the fluid vorticity
and the gravitomagnetic (GM) field B. If both vorticity ω

and the field B are neglected the above equations become
a simple statement of the conservation of energy, leading to
a singular irrotational vortex solution with finite velocity on
axis. This solution is not acceptable, meaning that the flow
is rotational (ω �= 0). But this raises the question of estab-
lishing rotational flow in an inviscid fluid. It turns out that
the B field automatically leads to a rotational flow solution
taking into account the Cauchy invariance of (ω + B) /ρ (cf.
Appendix A). In the absence of the gravitomagnetic field a
fluid element that is initially in irrotational motion remains
in this condition throughout the flow. But this condition is
modified by the presence of the gravitomagnetic field. In this
way a gravitomagnetic field introduces vorticity in an other-
wise irrotational motion in an inviscid fluid, affecting mass
accretion. The self-consistent B field constitutes a relativistic
correction according to Ampère’s law.

As a further simplification, consider an equilibrium with
fluid velocity in the azimuthal direction only, that is, v= vϕ̂.
Thus

ω = v∇ × ϕ̂ − ϕ̂ × ∇v (3.8)

and

B = Aϕ∇ × ϕ̂ − ϕ̂ × ∇Aϕ, (3.9)
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so that the momentum conservation equations in equilibrium
become
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ̂ · ∇
(

φ + v2

2

)
= 0

ϕ̂ × ∇
(

φ + v2

2

)
= ϕ̂ ×

(
1

2
∇v2 + v∇Aϕ

)

−v
(
v + Aϕ

)∇ × ϕ̂

(3.10)

The gravitoelectric force is balanced by the fluid stress in
the azimuthal direction, while the centrifugal and gravito-
magnetic forces balance the gravitoelectric one in merid-
ional planes. Note that the right-hand side of the meridional
(poloidal) equilibrium equation shows the full dependence
both on the vorticity and on the gravitomagnetic field. The
first term on the right-hand side exactly cancels the second
term on the left-hand side, indicating, as previously dis-
cussed, quite different solutions if vorticity and the gravit-
omagnetic field are or not taken into account. Furthermore,
the gravitomagnetic field decreases the gravitational attrac-
tion in the latitudinal planes, provides the necessary equilib-
rium in the direction perpendicular to the equatorial plane,
and confers vorticity to the fluid.

It follows that, in the case of a weakly relativistic rotational
flow, that is, for ω �= 0 and B �= 0 the equilibrium equations
for a disk of dust in azimuthal motion are
⎧⎨
⎩

ϕ̂ · ∇
(

φ + v2

2

)
= 0

ϕ̂ × ∇φ = vϕ̂ × ∇Aϕ − v
(
v + Aϕ

)∇ × ϕ̂

(3.11)

The first equation above is automatically satisfied for an
axisymmetric equilibrium. In this case the fluid equilibrium
problem reduces to the two equations relating φ, v and Aϕ in
the meridional plane. The set of equations is complete with
the equations of Gauss and Ampère, which relate the gravi-
toelectric and gravitomagnetic potentials to the mass density
and to the fluid velocity:

∇2φ = 4πGρ, ∇ × (∇ × A)|ϕ = −4πG

c2 ρv. (3.12)

In axisymmetric cylindrical coordinates (R, ϕ, Z) with

ϕ̂ × ∇φ = −̂z
∂φ

∂R
+ r̂

∂φ

∂Z
and ∇ × ϕ̂ = ẑ

R
,

(3.13)

the poloidal equilibrium equations become

⎧⎪⎪⎨
⎪⎪⎩

∂φ

∂R
− v

∂Aϕ

∂R
= v2

R
+ vAϕ

R
(radial balance)

∂φ

∂Z
− v

∂Aϕ

∂Z
= 0 (axial balance)

(3.14)

and, in terms of the gravitomagnetic flux function ψ = RAϕ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂R
− v2

R
= v

R

∂ψ

∂R
(radial balance)

∂φ

∂Z
= v

R

∂ψ

∂Z
(axial balance)

1

R

∂

∂R

(
R

∂φ

∂R

)
+ ∂2φ

∂Z2 = 4πGρ (Gauss’s law)

R
∂

∂R

(
1

R

∂ψ

∂R

)
+ ∂2ψ

∂Z2 = 4πG

c2 ρvR (Grad-Shafranov equation)

(3.15)

The Ampère equation is in the form of the Grad–Shafranov
equation for ψ . The poloidal flux function ψ can be elim-
inated using the equilibrium equations, so that the two-
dimensional equilibrium problem reduces to a system of two
second order differential equations relating φ, ρ and v (the
modified Grad–Shafranov equation involving φ, ρ and v is
manifestly nonlinear):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

R

∂

∂R

(
R

∂φ

∂R

)
+ ∂2φ

∂Z2 = 4πGρ

∂

∂R

(
1

v

∂φ

∂R
− v

R

)
+ ∂

∂Z

(
1

v

∂φ

∂Z

)
= 4πG

c2 ρv

(3.16)

This shows that, although φ is linearly related to ρ, the mass
density can not be represented by a simple superposition of
velocity components, and vice versa. Neglecting the effect of
the gravitomagnetic mass currents in the right-hand side of
the modified Grad–Shafranov equation (c → ∞), the solu-
tion of the one-dimensional model gives the balance condi-
tion between centrifugal and gravitational forces (neglect-
ing ψ automatically leads to the one-dimensional constraint
∂/∂Z ≡ 0)

v2 ∼= R
dφ

dR
. (3.17)

This circular solution has been used in the galactic rotation
curve analyzes so far, but is clearly inadequate in the light of
relativistic effects.

Now, in the vacuum region (outside the volume V occu-
pied by the galactic mass distribution) the gravitoelectric
Newtonian potential is governed by Laplace’s equation

∇2φ = 0 (outside V ), (3.18)

whose solution must satisfy the boundary condition at the
surface S bounding the volume V . Since φ is a solution of
Laplace’s equation, φ and ∇φ may not be independently
specified over a given surface. It suffices to specify the Neu-
mann condition on the surface S [31]:

φ (r) = −G
∮
S

σ
(
r ′)

|r − r ′|d
2r ′ (outside V ), (3.19)
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where σ denotes an equivalent surface mass distribution
defined by

σ (r) = − 1

4πG
∇φ (r) · n̂. (3.20)

Note that n̂ is the normal to the surface, which points inward
in the internal region and outwards in the external one. The
gravitoelectric potential is continuous across the surface mass
layer but the normal component of the gravitoelectric field
suffers an increment:

〈φ〉 = 0 , n̂ · 〈E〉 = 4πGσ. (3.21)

Alternatively, the gravitoelectric potential in the vacuum
region can be determined by the Dirichlet boundary condi-
tion specified by the value of φ at the surface of the mass
density distribution. This is true only if the surface S is
known. In general, the unknown shape is determined by the
Cauchy boundary condition (both Neumann and Dirichlet
conditions). Inside the dust distribution φ satisfies Poisson’s
equation

∇2φ = 4πGρ (inside V ). (3.22)

Furthermore, φ and ρ must satisfy the momentum equilib-
rium equation combined with Ampère’s equation (Grad–
Shafranov equation) with v inside the fluid dust. The two-
dimensional equilibrium constitutes a highly nonlinear free
boundary problem defining the shape of the galactic disk.

It is instructive to write the equilibrium equations in terms
of the vorticity and of the gravitoelectric and gravitomagnetic
fields, respectively:⎧⎨
⎩

ω = v∇ × ϕ̂ − ϕ̂ × ∇v

E = −∇φ

B = Aϕ∇ × ϕ̂ − ϕ̂ × ∇Aϕ

(3.23)

In cylindrical coordinates⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω = −r̂
∂v

∂Z
+ ẑ

(
∂v

∂R
+ v

R

)

E = −r̂
∂φ

∂R
− ẑ

∂φ

∂Z
= r̂ER + ẑEZ

B = − r̂
R

∂ψ

∂Z
+ ẑ

R

∂ψ

∂R
= r̂BR + ẑBZ

(3.24)

The poloidal equilibrium equations for rotational motion
become⎧⎨
⎩ ER = −v2

R
− vBZ (radial balance)

EZ = vBR (axial balance)
(3.25)

clearly showing the role of the gravitomagnetic field in the
confinement along the width of the disk of dust (axial bal-
ance). Along the radial direction the centrifugal force and
the Lorentz force, which is associated to the gravitomagnetic
field, balance the gravitoelectric attraction. Besides radial
balance, the gravitomagnetic field is important in providing

equilibrium along the direction perpendicular to the equato-
rial plane in a pressureless fluid, and in establishing a rota-
tional flow. As will be shown from Sect. 5 onwards, it sig-
nificantly modifies the rotation curve equilibrium solution,
but first it is necessary to derive a workable equation which
describes the velocity of rotation of dust in equilibrium.

4 Velocity of rotation of dust in equilibrium

The system of two differential equations (3.16) can be com-
bined in the form

(
v + R

∂v

∂R

)
∂φ

∂R
+ R

∂v

∂Z

∂φ

∂Z

= v

R

[(
v − R

∂v

∂R

)
v + 4πGρR2

(
1 − v2

c2

)]
, (4.1)

which depends only on the radial and vertical gradients of
the gravitational potential. In general, the potential φ (R, Z)

is given in terms of the mass density distribution by inverting
Gauss’s law (cf. Appendix B)

φ (R, Z) = −4G
∫ ∞
−∞

dZ ′
∫ ∞

0
ρ
(
R′, Z ′) R′

√
m

RR′ K (m) dR′,

(4.2)

where K (m) denotes the complete elliptic integral of the first
kind and m is the squared modulus

m = 4RR′

(R + R′)2 + (Z − Z ′)2
. (4.3)

The radial and vertical gradients of φ (R, Z) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂R
= G

∫ ∞

−∞
dZ ′

∫ ∞

0
ρ
(
R′, Z ′) R′

R

√
m

RR′

×
[
K (m) + 1

2

(
R

R′ − 2 − m

m

)
mE (m)

1 − m

]
dR′,

∂φ

∂Z
= G

2

∫ ∞

−∞
dZ ′

∫ ∞

0
ρ
(
R′, Z ′) ( Z − Z ′

R

)

×
√

m

RR′
mE (m)

1 − m
dR′,

(4.4)

where E (m) denotes the complete elliptic integral of the
second kind. Replacing these gradients in equation (4.1) one
obtains a nonlinear, first-order partial differential equation
for v (R, Z) in terms of the mass density ρ (R, Z) and its
volume integrals. Since the rotation velocity is systematically
measured along the galactic equatorial plane, one can take
Z = 0 so that, for a symmetric density profile,
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(
β + R

∂β

∂R

)
∂φ (R, 0)

∂R

= c2β

R

[(
β − R

∂β

∂R

)
β + 4πG

c2 ρ (R, 0) R2
(

1 − β2
)]

,

(4.5)

where β = v (R, 0) /c is the rotation velocity normalized
to the velocity of light. Introducing the normalization radial
distance R0 = 1 kpc, one can define the normalized variables
r = R/R0 and z = Z/R0. The mass density � = ρ/ρ0 is
normalized with respect to the mass density at the origin
ρ0 = ρ (0, 0), and the gravitational potential ϕ = φ/c2 is
normalized by the velocity of light squared. Therefore,

(
β + r

∂β

∂r

)
∂ϕ (r, 0)

∂r

= β

r

[(
β − r

∂β

∂r

)
β+4πGR2

0ρ0

c2 � (r, 0) r2
(

1−β2
)]

,

(4.6)

where

∂ϕ (r, 0)

∂r
= 2GR2

0ρ0

c2

∫ ∞

0
dz′
∫ ∞

0
�
(
r ′, z′

) r ′

r

√
m

rr ′

×
[
K (m) + 1

2

(
r

r ′ − 2 − m

m

)
mE (m)

1 − m

]
dr ′

(4.7)

and the squared modulus of the elliptic functions is

m = 4rr ′

(r + r ′)2 + z′2
. (4.8)

At this point it is convenient to introduce two dimension-
less parameters (cf. Appendix C):

⎧⎪⎪⎨
⎪⎪⎩
rs = 2GM

c2R0
normalized Schwarzschild radius of the mass distribution

λ = 4πR3
0ρ0

3M
strength of the central mass density

(4.9)

The parameter λ gives the ratio between the mass of a sphere
of radius R0 and uniform density ρ0, and the total mass M
of the disk of dust. The equation for β2 becomes

(
β2 + r

2

∂β2

∂r

)
∂ϕ (r, 0)

∂r

= β2

r

[(
β2− r

2

∂β2

∂r

)
+
(

3λ

2
rs

)
� (r, 0) r2

(
1 − β2

)]
,

(4.10)

where

∂ϕ (r, 0)

∂r

=
(

3λ

2
rs

)
1

2π

∫ ∞

0
dz′
∫ ∞

0
�
(
r ′, z′

) r ′

r

√
m

rr ′

×
[
K (m) + 1

2

(
r

r ′ − 2 − m

m

)
mE (m)

1 − m

]
dr ′.

(4.11)

Defining the two functions of the mass density and its integral⎧⎪⎨
⎪⎩

f (r) =
(

3λ

2
rs

)
� (r, 0) r2

g (r) = r
∂ϕ (r, 0)

∂r

(4.12)

the equation

[
β2 + g (r)

]
r
∂β2

∂r
= 2 [1 − f (r)] β4

+2 [ f (r) − g (r)] β2 (4.13)

can be identified as an Abel equation of the second kind for
β2 (the solution is obviously independent of the direction of
rotation). This equation has no simple solution by quadra-
ture, but can be easily solved by numerical methods. Since
the origin is a singular point (β|0 = 0 and ∂β/∂r |0 = 0),
the integration must be carried out towards the origin for a
given distant initial condition (similar to the Lane-Emden
equation). The usual circular velocity assumption

β2 = r
∂ϕ (r, 0)

∂r
= g (r) (4.14)

leads to a constraint on the mass distribution along the equa-
torial plane

r
∂β2

∂r
= f (r)

(
1 − β2

)
,

∴ β (r)2 = exp

(
−
∫ r

0

f
(
r ′)
r ′ dr ′

)

×
∫ r

0
exp

(∫ r ′′

0

f
(
r ′)
r ′ dr ′

)
f
(
r ′′)
r ′′ dr ′′.

(4.15)

The mass distribution � (r, 0) forming f (r) must also sat-
isfy equation (4.11) with ∂ϕ (r, 0) /∂r = β (r)2 /r and
ϕ (r, 0) ∼ ln r if β ∼ constant at large distances. This implies
a singular one-dimensional solution with small (negligible)
relativistic corrections. Removal of this singularity presum-
ably leads to the introduction of dark matter for flat veloc-
ity profiles according to the standard (inadequate) circular
velocity model.

5 Gravitational equilibrium of a compact spheroid

The solution of the equation for the rotational velocity
β (r, 0) = β (r) in the equatorial plane (equivalent to Abel’s
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equation (4.13))(
β + r

∂β

∂r

)
g (r)=β

[(
β − r

∂β

∂r

)
β+ f (r)

(
1 − β2

)]
,

(5.1)

will be considered in this section for a spheroidal object
described by the exact Miyamoto–Nagai [8] solution of Pois-
son’s equation (cf. Appendix C):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ (r, z) = − rs

2

[
r2 +

(
a +

√
b2 + z2

)2
]1/2

� (r, z) =
b2
[
ar2 +

(
a + 3

√
b2 + z2

) (
a +

√
b2 + z2

)2
]

3λ

[
r2 +

(
a +

√
b2 + z2

)2
]5/2 (

b2 + z2
)3/2

(5.2)

Inserting the expressions of g (r) = r∂ϕ (r, 0) /∂r and
f (r) = (3λrs/2) � (r, 0) r2, the equilibrium equation for
the rotation velocity becomes, after some rearrangement,

(
β2 + rsr2

2
[
r2 + (a + b)2]3/2

)
r
∂β

∂r

=
⎡
⎣
⎛
⎝1 −

rsr2
[
ar2 + (a + 3b) (a + b)2

]

2b
[
r2 + (a + b)2]5/2

⎞
⎠β2

+ rsr2

2
[
r2 + (a + b)2]3/2

(
ar2 + (a + 3b) (a + b)2

b
[
r2 + (a + b)2] − 1

)]
β.

(5.3)

The rotation velocity profile varies as a function of the nor-
malized semi-axes a and b of the spheroid, and of the normal-
ized Schwarzschild radius rs . Since the origin is a singular
point, as pointed out in the previous section, the initial value
β
(
lβ
) = βl must be specified at some distant position lβ

along the radial direction.
Figure 1 shows the result of fitting a compact object to

the observed rotation curve of the dwarf galaxy NGC 1560.
[32,33] The fitted parameters are: a = 373 pc, b = 300 pc
and rs = 0.00701 pc, for lβ = 8.29 kpc as the last point in
the rotation curve data, where βl 
 0.000267 corresponds
to v 
 80 km/s. Note that the fitted (relatively large) nor-
malized Schwarzschild radius corresponds to a total mass
M 
 7.3 × 1010M� (M� = 1.9891 × 1030 kg is the solar
mass). The fitted semi-axes correspond to a massive, small,
slightly oblate spheroidal object. Figure 1 also shows the nor-
malized mass density and gravitational potentials described
by the Miyamoto–Nagai solution. Figure 2 shows a com-
parison between the fitted solution and the velocity curve
obtained from the potential according to the standard cir-
cular velocity definition. The circular velocity rises to large
values in the transition region of the potential, but drops as
expected by Kepler’s model in the low density region. On
the contrary, the actual rotation velocity keeps rising well

into the low density region, as described by the gravitomag-
netic Abel equation. The gravitomagnetic field reduces the
gravitational attraction and acts as a brake in the initial veloc-
ity rise (similarly, the relativistic correction to the planetary
perihelion shift results from a balance between the gravito-
electric and gravitomagnetic forces). Although the compact
object gives a reasonable fit to the rotation curve, it fails to
reproduce the luminosity profile of NGC 1560, also shown
in Fig. 2. The compact solution does not describe the equi-
librium of large, disk-like objects, failing to reproduce its
mass distribution and total mass. This failure arises because
the Miyamoto–Nagai potential-density pair extends to infin-
ity, without defining a galactic boundary. Unfortunately, the
exact full solution of the gravitational potential of a disk
of dust involves a complex two-dimensional free boundary
problem as described in Sect. 3. Therefore, an approximate
solution to the equilibrium of galactic disks will be developed
in the next section.

6 Gravitational potential of disks of dust

A simplified, thin disk axisymmetric model for the gravita-
tional potential will be derived in this section. In general,
the gravitational potential is given in terms of the mass den-
sity distribution by means of a Green’s function (cf. equation
(4.2) and Appendix B)

φ (R, Z) = −4G
∫ ∞

−∞
dZ ′

∫ ∞

0

ρ
(
R′, Z ′) R′√

(R + R′)2 + (Z − Z ′) 2

×K

(
4RR′

(R + R′)2 + (Z − Z ′) 2

)
dR′,

(6.1)

where K (m) denotes the complete elliptic integral of the first
kind. Now, the integration over Z ′ can be calculated using
Laplace’s method for a thin disk mass density distribution of
the form

ρ (R, Z) 
 ρ (R, 0) exp

(
− Z2

2(R)2

)

small (R) is assumed (6.2)

Hence, the gravitational potential φ (R, 0) along the equato-
rial plane is given in terms of the mass density ρ (R, 0) by
the integration over R′:

φ (R, 0) 
 −4
√

2πG
∫ ∞

0

R′
(
R′) ρ (R′, 0

)
R + R′

×K

(
4RR′

R + R′

)
dR′. (6.3)

In terms of the normalized variables r = R/R0, z = Z/R0,
δ = /R0,� = ρ/ρ0 andϕ = φ/c2, the previous expression
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Mass density and potentialRotation velocity of a spheroid

Fig. 1 The left-hand side graphic shows the rotation curve of a com-
pact spheroid fitted to the measured values for NGC 1560 (dots) as
listed by Broeils [32]. The right-hand side graphic shows the normal-

ized mass density and gravitational potential of the spheroid as given
by the Miyamoto–Nagai [8] solution

Fig. 2 The left-hand side graphic shows a comparison between the
fitted rotation curve and the standard definition of the circular veloc-
ity of a compact spheroid. The right-hand side graphic shows that the
Miyamoto–Nagai solution fails to reproduce the luminosity profile of

NGC 1560, as listed by Broeils [32] and represented by dots. The mea-
sured luminosity profile extends to the maximum radial distance 5.13
kpc

becomes

ϕ (r, 0) 
 −3

2

(
2GM

c2R0

)(
4πR3

0ρ0

3M

)

×
√

2

π

∫ ∞

0

r ′δ (r) �
(
r ′, 0

)
r + r ′ K

(
4rr ′

r + r ′

)
dr ′.

(6.4)

The coefficient in front of the integral is expressed in terms
of the dimensionless parameters already defined in Sect. 4:

⎧⎪⎪⎨
⎪⎪⎩
rs = 2GM

c2R0
normalized Schwarzschild radius of the disk

λ = 4πR3
0ρ0

3M
strength of the central mass density

(6.5)

The singularity for r = r ′ in the integration over r ′ can
be circumvented by a change of variables from r ′ to m (cf.
Appendix B):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r ′ =
(

2 − m − 2
√

1 − m

m

)
r first integration branch (bulge)

r ′ =
(

2 − m + 2
√

1 − m

m

)
r second integration branch (disk)

(6.6)

In the first integration branch, the integration variable 0 ≤
m ≤ 1 runs from the origin (r ′ = 0) to the transition region
m � 1 between the bulge and disk regions of the mass dis-
tribution. In the second integration branch, the integration
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variable 1 ≥ m ≥ 0 runs along the disk region to infinity
(r ′ → ∞). The disk of dust has a maximum extension rmax

defined by � (r, 0) 
 0. To this maximum radial distance cor-
responds a minimum value mmin of the integration variable
in the second integration branch:

mmin = 4rrmax

(r + rmax)
2 < 1. (6.7)

Therefore, the full integration over m can be divided along
the two branches as follows:

ϕ (r, 0)


 −
(

3

2
λrs

)√
2

π
r
∫ 1

0
dm

K (m)

2
√
m (1 − m)

×
(

2 − m − 2
√

1 − m

m

)3/2

×δ

(
2−m−2

√
1−m

m
r

)
�

(
2−m−2

√
1−m

m
r, 0

)

−
(

3

2
λrs

)√
2

π
r
∫ 1

mmin

dm
K (m)

2
√
m (1 − m)

×
(

2 − m + 2
√

1 − m

m

)3/2

×δ

(
2−m+2

√
1−m

m
r

)
�

(
2−m+2

√
1−m

m
r, 0

)
.

(6.8)

The singularity r ′ = r is restricted to the upper limit m = 1
of the integrals, and can be avoided by taking m = 1 − ε,
where ε is as small as required by the integration precision.
The normalized radial gradient of the gravitational potential
along the equatorial plane, ∂ϕ (r, 0) /∂r , is given by a similar
expression presented in the Appendices B and C.

The simplified expressions of ϕ (r, 0) and ∂ϕ (r, 0) /∂r
can be used to define g (r) = r∂ϕ (r, 0) /∂r in the left-hand
side of equation (5.1). The mass density profile �(r, 0) can
be estimated from the measured luminosity profile of the
galactic disk. This same mass density defines the function
f (r) = (3λrs/2) � (r, 0) r2 in the right-hand side of equa-
tion (5.1). It remains to introduce a model for the galactic
width δ(r). This model is based on constant density con-
tours of the Miyamoto–Nagai solution, as explained in the
Appendix C, and amounts to solve the algebraic-integral
equation for δ(r):

b2
[
ar2 +

(
a + 3

√
b2 + δ (r)2

) (
a +

√
b2 + δ (r)2

)2
]

3

[
r2 +

(
a +

√
b2 + δ (r)2

)2
]5/2 (

b2 + δ (r)2)3/2

= λ (�, a, b) exp

(
−�2

2

)
, (6.9)

whereλ = λ (�, a, b) is a normalizing coefficient (eigenvalue
of the nonlinear algebraic-integral equation) calculated by

λ (�, a, b) =
(

3

√
π

2

∫ rmax

0
δ (r) � (r, 0) r dr

)−1

, (6.10)

and the maximum radius of the disk is calculated by

ar2
max + (a + 3b) (a + b)2

3b
[
r2

max + (a + b)2]5/2
= λ (�, a, b) exp

(
−�2

2

)
.

(6.11)

The normalized geometrical parameters a and b correspond
to the semi-axes of the Miyamoto–Nagai expression for the
mass density, and the pre-defined range parameter � labels the
density contours described by δ (r). The width δ (r) defines
the galactic shape and circumscribes a region containing a
certain mass amount. Since the Miyamoto–Nagai solution
extends to infinity, a value of � 
 3 ∼ 4 should contain prac-
tically all the total galactic mass M . The coefficient λ (�, a, b)
can be calculated by an iterative procedure described in the
Appendix C. It must be evaluated for each set of values �,
a and b while solving the Abel equation for β (r). It turns
out that the velocity profile is a function of the three free
parameters a, b and rs (assuming given �). These parameters
can be varied so that β (r) fits the observed galactic rotation
curve, following the same procedure adopted in Sect. 5 for a
spheroidal object, now constrained by a given mass density
distribution along the equatorial plane. The nonlinear fitting
procedure is quite demanding but produces the galactic shape
δ (r) as well as estimated values of the galactic mass M (given
by rs) and of the central density ρ0 (given by λ). The solution
of the algebraic-integral equation for δ (r) corresponds to an
approximate solution of the free-boundary galactic equilib-
rium problem. The luminosity profile is automatically fitted,
since it serves as input for the mass density profile ρ (r, 0)

along the equatorial plane. If the potential-density pair with
a definite boundary is known, the fitting procedure is carried
out as exemplified in Sect. 5 for a spheroid, but with definite
integration limits. In the next sections the case of NGC 1560
will be revaluated using the approximate thin disk model,
followed by NGC 3198 and NGC 3115.

7 Rotation curve of NGC 1560

The rotation curve of the dwarf galaxy NGC 1560 will be
analyzed in this section, using the thin disk model devel-
oped in Sect. 6. The mass density is estimated from the
surface-brightness profile measured by observational astron-
omy using an improved fitting procedure described in the
Appendix D. Accordingly, Fig. 3 shows the luminosity and
the Sérsic index profiles of NGC 1560 fitted by two series up
to the fourth power in the bulge and disk regions. The adjusted
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Fig. 3 The line in the left-hand side graphic shows the adjusted lumi-
nosity profile of NGC 1560, and the dots correspond to the values listed
by Broeils [32]. The right-hand side graphic shows the correspond-
ing variable Sérsic index profile. The vertical lines in both graphics

correspond to the effective half-angle αeff ∼= 116.5 arcsec and to the
transition point α0 ∼= 140.3 arcsec between the bulge and disk regions
(reff ∼= 1.69 kpc and r0 ∼= 2.04 kpc). The profiles extend to the last
measurement taken at lρ = 5.13 kpc

Fig. 4 The line in the left-hand side graphic shows the mass density
profile fitted to the observed luminosity profile of NGC 1560, repre-
sented by dots. The line in the right-hand side shows the rotation curve
fitted to the experimental values listed by Broeils [32]. The thick vertical

lines correspond to the effective half-radius reff ∼= 1.69 kpc and to the
transition point r0 ∼= 2.04 kpc between the bulge and disk regions. The
mass density at the radial position reff is equal to 1/e times the density
at the origin

numerical coefficients are (cf. Appendix D): μ0 = 22.27,
αeff = 116.5 (reff = 1.69 kpc), α0 = 140.3 (r0 = 2.04
kpc), s0 = 0.360, b2 = 0.0000344, b3 = −1.41 × 10−7,
b4 = −4.05 × 10−10, d3 = −1.11 × 10−9, and d4 =
5.73 × 10−11 (αe = 353.0, se = 0.874, b1 = 0.00245,
and d2 = −3.22 × 10−6). Using the variable Sérsic index
profile, the calculated value of the absolute magnitude is
Ms = −15.3, the total luminosity is Ls = 1.02 × 108L�
and the apparent magnitude is md = 12.1. The total lumi-
nosity is calculated up to the maximum galactic radius
rmax = 12.2 kpc that is estimated by the rotation velocity
model described in the next paragraph. This value of the
luminosity improves upon the value of the total luminosity
given in the Appendix D, which is obtained assuming a lumi-

nosity profile with constant Sérsic index extending to infinity,
according to the standard equation (D5).

The left-hand graphic in Fig. 4 shows the normalized mass
density profile � (r, 0) obtained for NGC 1560 (the infor-
mation in this figure is the same as displayed in Fig. 3).
Now, � (r, 0) can be substituted in the equation (C18) for
∂ϕ (r, 0) /∂r and used to determine both the functions f (r)
and g (r) in Abel’s equation (5.1). The solution of Abel’s
equation depends on four parameters: the pre-defined range
parameter �, the normalized Schwarzschild radius rs , and
the semi-axes parameters a and b. These parameters can be
varied adjusting the solution of Abel’s equation to the mea-
sured rotation curve of NGC 1560, as shown in the right-hand
side graphic of Fig. 4. The adjusted result is quite satisfac-

123



  186 Page 12 of 25 Eur. Phys. J. C           (2021) 81:186 

Fig. 5 The left-hand side graphic shows the calculated width of NGC
1560, and the right-hand side the normalized gravitational potential
and its radial derivative along the equatorial plane. The thick vertical

lines correspond to the effective half-radius reff ∼= 1.69 kpc and to the
transition point r0 ∼= 2.04 kpc between the bulge and disk regions

tory, although a model with few parameters cannot reproduce
the small oscillations in the rotation curve, which should be
associated to oscillations in the density profile (this topic will
be addressed in Sect. 8). Note that the mass density profile
presents short range oscillations around 0.5 kpc and between
about 4 and 5 kpc. The final set of adjusted parameters is:
� = 3, rs = 1.46 × 10−6 kpc, a = 7.19 kpc and b = 0.567
kpc. The range parameter � = 3 labels a constant density
contour that contains approximately 1 − exp(�2/2) = 0.989
of the total galactic mass M . This contour is shown in the
left-hand graphic of Fig. 5 extending to a maximum radius
rmax = 12.2 kpc. Note that this corresponds to a very low
density region according to the extended Sérsic profile, but
large rotation velocity beyond the last point of measurement,
at lβ = 8.29 kpc. Figure 5 also shows the calculated grav-
itational potential. Finally, the total galactic mass estimated
from the Schwarzschild radius is M 
 1.52 × 1010M� and
the calculated coefficient λ = 0.134 gives a central mass
density ρ0 
 3.31 × 10−20 kg/m3. The total mass-to-light
ratio is ϒ = 150ϒ� and the total integration range, from
the Schwarzschild radius to the maximum galactic extend,
covers seven orders of magnitude.

8 Rotation curve of NGC 3198

The analysis of the spiral galaxy NGC 3198 [11,34,35] fol-
lows the same procedure established for NGC 1560, as pre-
sented in Sect. 7 and in the Appendix D. The observed bright-
ness profile of NGC 3198 has a sharp peak near the ori-
gin, which decays to a not clearly defined disk region with
large scale oscillations associated to the spiral structure. The
main oscillations can be reasonably reproduced using a min-
imum of sixth order polynomials for sb and sd in Eq. (D17).

The left-hand graphic in Fig. 6 shows a very good fit to the
observed luminosity profile of NGC 3198, listed by Kent
[34], using eighth order polynomials. The right-hand graphic
shows the corresponding variable Sérsic index profile. The
adjusted numerical coefficients are: μ0 = 19.49, αeff = 22.4
(reff = 1.00 kpc), α0 = 154.0 (r0 = 6.87 kpc), s0 = 0.586,
b2 = −0.000433, b3 = 5.86 × 10−8, b4 = 3.29 × 10−9,
b5 = −1.06×10−11, b6 = 1.52×10−13, b7 = 2.90×10−15,
b8 = −1.75×10−17, d3 = −4.96×10−7, d4 = 1.85×10−9,
d5 = 1.07×10−11, d6 = 2.04×10−14, d7 = −1.75×10−16,
and d8 = −1.20 × 10−18 (αe = 316.8, se = 1.49,
b1 = 0.0499, and d2 = 0.0000181). Note that the matching
point occurs after the main peak in the Sérsic profile. The cal-
culated absolute magnitude considering the maximum radius
rmax = 30.7 kpc is Ms = −21.0, the total luminosity is
Ls = 1.93×1010L� and the apparent magnitude at d = 9.2
Mpc is md = 8.85.

The large scale oscillations in the luminosity profile are
insufficient to fully describe the corresponding oscillations in
the rotation velocity profile. These oscillations can be taken
into account by the introduction of a population of high mass-
to-light ratio spiral arms (at the intersections of the spiral
arms). This population is tentatively represented by a func-
tion Y defined by a sum of n + 1 Lorentzian (Cauchy) dis-
tributions

Y (r) = 1 +
n∑

i=0

yiγi/π

(r − ri )2 + γ 2
i

, (8.1)

where ri denotes the center of each Lorentzian and γi is the
full width at half maximum. The center points are distributed
according to a logarithmic spiral

ri = rspiral exp
(
2π ikspiral

)
, (8.2)
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Fig. 6 The left-hand side graphic shows the luminosity profile of NGC
3198 adjusted along the major galactic radius. The line in the graphic
corresponds to the adjusted luminosity and the dots to the values listed
by Kent [34]. The right-hand side graphic shows the adjustment obtained
using two eighth-order polynomial approximations for the Sérsic index,

as described in the text. The vertical lines in both graphics correspond to
the effective half-angle αeff = 22.4 arcsec and to the transition position
α0 = 154.0 arcsec. The profiles extend to the last measurement taken
at lρ = 14.1 kpc

Fig. 7 The thin line in the left-hand side graphic shows the mass den-
sity profile fitted to the observed luminosity profile of NGC 3198, listed
by Kent [34] and represented by dots. The thick continuous line shows
the mass density corrected for the high mass-to-light ratio population.
The line in the right-hand side shows the rotation curve fitted to the

experimental values listed by Begeman [11], represented by dots. The
vertical lines in both graphics indicate the central positions of the spiral
arms. The mass density profile extends to the last measurement taken
at lρ = 14.1 kpc. The last measured value of the rotation velocity lies
at lβ = 29.4 kpc

where rspiral is the initial radius. The amplitude of each
Lorentzian component grows by a factor yi distributed
according to (taking y0 = 0 gives an uniform mass-to-light
distribution Y = 1)

yi = y0 exp
(
2π ikspiral

)ν
. (8.3)

The amplitudes yi correspond to the area of each Lorentzian
distribution (one should point out that a distribution for non-
negative variable, such as a the Lévy distribution, could give
better results near the origin). The high mass-to-light ratio
population is normalized so that Y →

r→∞ 1. In the case of

NGC 3198 the peaks can be approximately fitted by taking an
initial radius rspiral = 4.0 kpc, a growth factor kspiral = 0.1,
which corresponds to a polar slope angle θ = arctan kspiral =

5.71◦, a constant width γi = γ0 = 0.95 kpc, and an initial
peak y0 = 8.0 with ν = 1.4. The values of rspiral, kspiral and
γ0 can be estimated by visual inspection of the fluctuations in
the luminosity and rotation profiles. The values of y0 andν are
obtained by fitting the rotation velocity profile, as described
next.

The normalized mass density is given by the product of the
high mass-to-light ratio population and the density obtained
from the surface brightness distribution

� (r, 0) =Y (r) 10− 2
5 [μ(r)−μ0]=Y (r) exp

[
−
(

r

reff

)1/s(r)
]

,

(8.4)

where s (r) is the Sérsic profile adjusted to the luminosity:
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Fig. 8 The left-hand side graphic shows the calculated shape of NGC
3198, and the right-hand side the normalized gravitational potential and
its radial derivative along the equatorial plane. The vertical lines in both

graphics correspond to the effective half-radius reff = 1.00 kpc and to
the transition position r0 = 6.87 kpc

s (r) =
⎧⎨
⎩
sb (r) 0 ≤ r ≤ r0

sd (r) r0 < r ≤ re
se r > re

(8.5)

The equilibrium solution shown in Figs. 7 and 8 corre-
sponds to a normalized Schwarzschild radius rs = 1.20 ×
10−5 kpc, a major radius of the bulge a = 9.10 kpc, a minor
radius b = 2.64 kpc, a range parameter � = 3.0, a coefficient
λ = 0.00323 and a maximum radius rmax = 30.7 kpc. The
calculated total mass of the galaxy is M = 1.25 × 1011M�,
the central density is ρ0 = 6.54×10−21 kg/m3, and the total
mass-to-light ratio is ϒ = 6.50ϒ�. The large mass-to-light
ratio ring currents associated with the spiral arms, and their
gravitomagnetic field contributions, help to define the equi-
librium and the fluctuations in the rotation curve. Without
the ring currents the velocity profile is flat at large distance,
but peaks near the origin. The additional gravitomagnetic
field produced by the ring currents opposes the attractive
Newtonian potential and introduces a dragging effect. Pre-
sumably, the relatively rapid rise of the calculated velocity
curve is reduced by dispersion effects near the central posi-
tion (this topic will be addressed again in Sect. 9). The inte-
grated effect of short range oscillations near the origin can be
simulated by the introduction of an equivalent pressure term
in the equilibrium equation, but this requires further work.
One must also take into account that NGC 3198 constitutes
an elliptical spiral, so that the balance between the gravito-
electric force and the fluid stress in the azimuthal direction
should be included in a detailed three-dimensional model.
Nevertheless, the mass currents and associated gravitomag-
netic fields are essential in establishing an equilibrium as
described by Abel’s equation in two dimensions. The cir-
cular velocity approximation, if applied to the gravitational
potential shown in Fig. 8, gives a strongly oscillating velocity

distribution, peaked at r 
 5 kpc and decaying afterwards
according to the Keplerian picture.

A reexamination of the NGC 1560 equilibrium indicates
that the fit to the velocity curve can be slightly improved rep-
resenting the small amplitude oscillations by a distributed
high mass-to-light population with a broad maximum near
r = 4 kpc, but this addition obviously does not reproduce
the short range velocity oscillations. The nonlinear Abel’s
equation has two source functions depending on the mass
density distribution: f (r) is directly proportional to �(r) and
g(r) depends on the integral of �(r), so that these two con-
tributions are not in phase and impact differently the rota-
tion velocity. A consistent solution must include a detailed
representation of the short and long range oscillations in
the luminosity profile, including possible high mass-to-light
ratio rings populations.

9 Rotation curve of NGC 3115

In this section the analysis of the lenticular (S0) galaxy NGC
3115 will be carried out [36–40]. The observed brightness
has a very peaked profile near the origin, rapidly approaching
an extended disk profile. The left-hand side of Fig. 9 shows
the brightness profile of NGC 3115, which can be fitted by
eighth- and seventh-order polynomials in the bulge and disk
regions, respectively, as described in Sect. 7. The adjusted
numerical coefficients are: μ0 = 15.21, αeff = 1.88 (reff =
0.0911 kpc), α0 = 18.24 (r0 = 0.884 kpc), s0 = 0.845,
b2 = −0.00291, b3 = −5.37 × 10−6, b4 = −1.13 × 10−8,
b5 = 2.84 × 10−10, b6 = 5.38 × 10−12, b7 = 7.62 × 10−15,
b8 = −1.07 × 10−16, d3 = 8.94 × 10−9, d4 = −1.42 ×
10−11, d5 = −4.82 × 10−16, d6 = 2.04 × 10−17, and d7 =
−1.31 × 10−20 (αe = 983.45, se = 2.43, b1 = 0.116, and
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d2 = −2.21 × 10−6). The calculated absolute magnitude
considering the maximum radius rmax = 54.5 kpc is Ms =
−21.9, the total luminosity is Ls = 4.63 × 1010L� and the
apparent magnitude at d = 10.0 Mpc is md = 8.08.

The equilibrium is maintained in part by two ring currents
whose positions are barely indicated in the mass density and
rotation curve profiles. These current rings can be represented
taking two terms (i = 0, 1) in Eq. (8.1). The currents are
located near the central region, at the inner edge of the disk
region. Assuming kspiral = 0.16, rspiral = 1.0 kpc, γ0 = 0.4
kpc, y0 = 0.4 and ν = 0.3, the mass density is obtained mul-
tiplying the high mass-to-light ratio population Y (r) by the
normalized mass density taken from the surface brightness
distribution (initially assuming uniform mass-to-light ratio)

� (r, 0) = Y (r)10− 2
5 [μ(r)−μ0]

= Y (r)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
−
(
r

r0

)1/sb(r)
]

0 ≤ r ≤ r0

exp

[
−
(
r

r0

)1/sd (r)
]

r > r0

(9.1)

The equilibrium solution shown in Figs. 10 and 11 cor-
responds to a Schwarzschild radius rs = 6.97 × 10−6 kpc,
a major radius of the bulge a = 5.83 kpc, a minor radius
b = 0.282 kpc, a range parameter � = 4.3, a coefficient
λ = 0.432 and a maximum radius rmax = 54.5 kpc. The
large range parameter must be chosen in order to accommo-
date the very low mass densities at the maximum radius. The
calculated total mass of the galaxy is M = 7.28 × 1010M�,
the central density is ρ0 = 5.09 × 10−19 kg/m3 and the
total mass-to-light ratio is ϒ = 1.57ϒ�. The fit to the rota-
tion curve is quite satisfactory, taking into account the dis-
persion of the data, excepting the rapid rise of the calcu-
lated values near the origin. It turns out that the improved
kinematic data reported by Kormendy et al. [39], for NGC
3115, exhibits the same behavior displayed by the calcu-
lated rotation curve. According to Kormendy et al. [39], the
rotation curve rises to approximately 165 km/s at 2 arcsec
(r = 0.0970 kpc), within a region of high dispersion. There
is a plateau that extends towards the disk region, reaching
182 km/s at 7 arcsec (r = 0.339 kpc). The central value of
295 km/s is attained at less than 20 arcsec (r = 0.970 kpc).
Figure 10 shows the same radial variation with a somewhat
higher value of the velocity at the plateau. The calculated
values are β ∼= 0.00067 in the plateau and β ∼= 0.00090 in
the disk region. Nevertheless, the calculated values can be
considered as effective velocity values in an essentially one-
dimensional motion. The effective value veff is related to the
average value v by

veff = v
√

1 + σ 2, (9.2)

so that the discrepancy between the calculated and measured
velocities in the plateau can be accounted by a dispersion
σ ∼= 0.89 at 2 arcsec and σ ∼= 0.67 at 7 arcsec, well within
the dispersion values estimated from the measurements taken
by Kormendy et al. [39]. The calculations also indicate that
there is no need for a central black hole to explain the mass
density peak and velocity dispersion near the origin.

Last, Fig. 12 shows the result of increasing the Schwarzschild
radius by a small amount, from rs = 6.97 × 10−6 kpc
in Fig. 10 to rs = 7.00 × 10−6 kpc. Although there is
an imperceptible increase in the root-mean-square fitting
error at the low velocity range, between the calculated val-
ues and the average values of the Rubin et al. [37] mea-
surements, the new rotation curve has a slight minimum at
α ∼ 5 arcsec, exactly as suggested by the high-resolution
data of Kormendy et al. [39]. These results show the pre-
dictive power of the Abel equation for the rotation veloc-
ity, and the need of very accurate measurements of both the
luminosity and the rotation velocity. With the small increase
in the Schwarzschild radius, the calculated total mass of
the galaxy is M = 7.31 × 1010M�, the central density is
ρ0 = 5.11 × 10−19 kg/m3 and the total mass-to-light ratio
is ϒ = 1.58ϒ�. The modeling of galactic rotation curves
will not be pursued further, since the main objective of the
present paper is to show the importance of the gravitomag-
netic field in explaining the rotation profile without recourse
to dark matter.

10 Comments and conclusions

A gravitomagnetic model was developed to calculate the rota-
tion curve of galaxies without having recourse to dark matter
components. One may say that the gravitomagnetic forces
replace the dark matter effects. The self-consistent calcula-
tion of the rotation velocity takes into account relativistic
corrections associated with the mass currents. The gravito-
magnetic field produced by the currents plays four important
roles in the self-consistent solution: (1) the Lorentz force
associated to the gravitomagnetic field balances the New-
tonian attractive force in the direction perpendicular to the
equatorial plane in a pressureless equilibrium; (2) the gravit-
omagnetic field effects flow vorticity in an otherwise irrota-
tional motion in an inviscid fluid; (3) the nonlinear coupling
between the gravitomagnetic and Newtonian fields provides
the mechanism for the transition between the rigid rotation
flow near the origin and the constant speed flow near the
edge; (4) at large distances the nearly constant gravitomag-
netic Lorentz force added to the decaying centrifugal force
balances the equally decaying gravitational attraction.

The balance between gravitoelectric, centrifugal, and
gravitomagnetic forces in the moving fluid defines the mass
distribution and affects the shape of the galactic disk. The
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Fig. 9 The line in the left-hand graphics shows the adjusted luminos-
ity profile of NGC 3115, and the dots correspond to the values listed
by Capaccioli [38]. The right-hand side graphic shows the adjustment
obtained using eighth- and seventh-order polynomial approximations
for the Sérsic index in the bulge and disk regions, respectively. The

vertical lines in both graphics correspond to the effective half-angle
αeff = 1.88 arcsec and to the transition position α0 = 18.24 arcsec
(reff = 0.0911 kpc and r0 = 0.884 kpc). The profiles extend to the last
measurement taken at lρ = 47.7 kpc

Fig. 10 The thin line in the left-hand side graphic shows the mass den-
sity profile fitted to the observed luminosity profile of NGC 3115, listed
by Capaccioli [38] and represented by dots. The thick continuous line
shows the mass density corrected for the high mass-to-light ratio popu-
lation. The line in the right-hand side shows the rotation curve fitted to
the experimental values listed by Rubin et al. [37], represented by dots

(the points correspond to the north following and the circles to the south
preceding sides of the galaxy nucleus, respectively). The vertical lines
in both graphics indicate the center positions of the two ring currents
located near the inner edge of the disk region. The last measurement of
the rotation curve is taken at lβ = 4.64 kpc

actual shape is determined by the boundary condition match-
ing the gravitoelectric potential and its gradient at the fluid-
vacuum interface. Inside the dust equilibrium the gravito-
magnetic field provides rotational flow in the absence of
viscous forces. The Cauchy invariant demonstrated in the
Appendix A indicates how the flow vorticity, gravitomag-
netic field and mass density should distribute inside the galac-
tic dust configuration during the time evolution.

The coupling between the gravitoelectric Newtonian
potential and the gravitomagnetic flux function leads to a
nonlinear relation between the rotation velocity and the mass
density. The rotation velocity along the equatorial plane is

governed by an Abel equation of the second kind, which
reproduces the observations. Near the origin, where the
gravitational field did not build up yet, the rotation curve
shows a linear rise. Farther away from the origin the rota-
tion speed shows a transition to a nearly constant value.
At large distances the gravitomagnetic field is sufficiently
intense to balance the decaying gravitational and centrifu-
gal forces. Although the relativistic effects are weak (with a
beta ratio of the order of 1/2000), the nonlinear coupling pro-
vides the mechanism that drives the transition in the rotation
profile. This is similar to a soft phase transition, driven by
weak perturbations, between asymptotic states. This transi-
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Fig. 11 The left-hand side graphic shows the calculated shape of NGC
3115, and the right-hand side the normalized gravitational potential and
its radial derivative along the equatorial plane. The vertical lines in both

graphics correspond to the effective half-radius reff = 0.0912 kpc and
to the transition position r0 = 0.884 kpc

Fig. 12 This figure corresponds to the information introduced in Fig. 10, the only difference being a small increase in the Schwarzschild radius,
from rs = 6.97 × 10−6 kpc to rs = 7.00 × 10−6 kpc. Note the slight minimum in the rotation curve near 5 arcsec (r = 0.24 kpc)

tion between states should occur during the initial stages of
formation of the galaxy, when the density rises at the origin
and the potential well deepens. Near equilibrium the galaxy
has been squeezed to its nearly disk-like shape bulging at
the origin. This time evolution is a complex problem that
requires much further study.

An approximate solution of the two-dimensional free
boundary problem was developed based on constant den-
sity profiles defined by the Miyamoto–Nagai solution of the
Poisson equation. This approximate solution was applied to
three characteristic galaxies, showing that the observed rota-
tion velocities can be reasonably reproduced while using the
mass density profile, derived from the observed luminos-
ity profiles, as input of the nonlinear Abel equation for the
velocity. In this way, the rotation curves of NGC 1560, NGC
3198 and NGC 3115 were satisfactorily reproduced. In gen-
eral, the additional contribution of high mass-to-light ring
currents, and the associated gravitomagnetic field, is impor-

tant in establishing equilibrium, notably in the case of spiral
galaxies.

In conclusion, the galactic rotation curves were repro-
duced simply including the relativistic effects described by
the gravitomagnetic field, without obscure dark matter com-
ponents. The widely used one-dimensional circular-velocity
thin disk model is clearly inadequate to find the galactic mass
distribution. Possibly all calculations performed up-to-date
using the thin disk circular velocity model must be reexam-
ined, and the dark matter concept questioned, at least con-
cerning the galactic rotation curves.
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Appendix A: A gravitomagnetic Cauchy invariant

The gravitomagnetic Cauchy invariant implies that the
canonical vorticity divided by the mass density is the con-
served quantity in a rotating fluid. In the weak relativistic
limit the momentum conservation gives (the fully relativistic
Cauchy invariant is demonstrated in reference [26])

dv

dt
= −∇p

ρ
+ E + v × B. (A1)

This equation can be written in the form of a diffusion equa-
tion for the vorticity. Making use of the vector relation

v · ∇v = (∇ × v)︸ ︷︷ ︸
ω

× v + 1

2
∇ (v · v) , (A2)

the acceleration becomes

dv

dt
= ∂v

∂t
+ v · ∇v = ∂v

∂t
+ ω × v + 1

2
∇ (v · v) (A3)

and the curl gives, using the continuity equation,

∇ × dv

dt
= ∂ω

∂t
+ ∇ × (ω × v) = dω

dt
− ω

ρ

dρ

dt
− ω · ∇v.

(A4)

This leads to the vorticity diffusion equation

d

dt

(
ω

ρ

)
= ω

ρ
· ∇v + 1

ρ
∇ × dv

dt
. (A5)

Now, assuming barotropic flow (in which the pressure p and
the density ρ are directly related) the equation of motion
gives, with the help of the gravitoelectromagnetic Faraday’s
law,

d

dt

(
ω

ρ

)
= ω

ρ
· ∇v − 1

ρ

∂B
∂t

+ 1

ρ
∇ × (v × B)

= ω

ρ
· ∇v − 1

ρ

dB
dt

− B
ρ

∇ · v + B
ρ

· ∇v.

(A6)

It follows that the quantity (ω + B) /ρ satisfies a modified
vorticity equation

d

dt

(
ω + B

ρ

)
=
(

ω + B
ρ

)
· ∇v. (A7)

Introducing a change in the dependent variables as proposed
by Serrin [41],

ω + B
ρ

= C · ∇0r, (A8)

the vorticity equation becomes

d

dt
(C · ∇0r) = (C · ∇0r) · ∇v. (A9)

Here ∇0r = |∂ r/∂ r0| = J is the Jacobian dyadic of the
transformation r = r (r0, t) from the Lagrangian r0 to the

Eulerian r coordinates (
∣∣∣J
∣∣∣ �= 0 and ∇0 ≡ J · ∇). The

transformation r = r (r0, t) specifies the trajectory of a fluid
element (or material particle). For fixed t , it determines the
transformation of the fluid element from the initial position
r0 to the position r at time t . Since

d

dt
(C · ∇0r) = dC

dt
· ∇0r + C · ∇0v

= dC
dt

· ∇0r + C · J · ∇v

= dC
dt

· ∇0r + (C · ∇0r) · ∇v

(A10)

the vorticity equation reduces to

dC
dt

· ∇0r = 0 �⇒ dC
dt

= 0 �⇒ C = C (r0) (A11)

so that

ω + B
ρ

= C (r0) · ∇0r. (A12)

Setting t = 0

ω + B
ρ

= ω0 + B0

ρ0
· ∇0r. (A13)

This result was obtained, for an incompressible fluid and
without the gravitomagnetic field, by Cauchy [42] in 1815
and reviewed by Frisch and Villone [43]. In the absence of
the gravitomagnetic field, this shows that a fluid element that
is initially in irrotational motion remains in this condition
throughout the flow. However, the modified vorticity equa-
tion shows that the gravitomagnetic field affects the vorticity
distribution.
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Appendix B: Green’s function for a thin galactic disk

In cylindrical coordinates with azimuthal symmetry, Pois-
son’s equation for the gravitational potential φ takes the form

1

R

∂

∂R

(
R

∂φ

∂R

)
+ ∂2φ

∂Z2 = 4πGρ, (B1)

where ρ is the mass density distribution. The solution can be
written in terms of the Green’s function G(R, Z; R′, Z ′) =
1/
∣∣r − r ′∣∣:

φ (R, Z) = −2πG
∫ ∞

−∞
dZ ′

×
∫ ∞

0
dR′R′G(R, Z; R′, Z ′)ρ

(
R′, Z ′) . (B2)

The Green’s function can be expressed in terms either of a
toroidal function Q−1/2 (χ) (Legendre function of the second
kind, degree −1/2, order zero and type three) or a complete
elliptic integral of the first kind K (m) [44–46]

1

|r − r ′| = 1

π
√
RR′ Q−1/2 (χ)

= 1

π
√
RR′

√
2

1 + χ
K

(
2

1 + χ

)
, (B3)

where the argument 1 ≤ χ < ∞ of the toroidal function is

χ
(
R, Z; R′, Z ′) = R2 + R′2 + (Z − Z ′)2

2RR′ , (B4)

and the squared modulus 0 ≤ m ≤ 1 of the elliptic function
is

m
(
R, Z; R′, Z ′) = 4RR′

(R + R′)2 + (Z − Z ′)2
, (B5)

so that

m = 2

1 + χ
and χ = 2 − m

m
. (B6)

In terms of the elliptic integral

G(R, Z; R′, Z ′) = 2

π
√

(R + R′)2 + (Z − Z ′)2

×K

(
4RR′

(R + R′)2 + (Z − Z ′)2

)
. (B7)

The radial and axial gradients of the Green’s function are
given by

∂G(R, Z; R′, Z ′)
∂R

= − 1

2πR

√
m

RR′ [K (m)

+1

2

(
R

R′ − 2 − m

m

)
mE (m)

1 − m

]
,

∂G(R, Z; R′, Z ′)
∂Z

= − 1

4π

( m

RR′
)3/2 E (m)

1 − m

(
Z − Z ′) ,

(B8)

where E (m) denotes the complete elliptic integral of the
second kind.

Consider the value of the potential along the equatorial
plane (Z = 0) for a vertically symmetric equilibrium

φ (R, 0) = −8G
∫ ∞

0
dZ ′

∫ ∞

0

ρ
(
R′, Z ′) R′√

(R + R′)2 + Z ′2

×K

(
4RR′

(R + R′)2 + Z ′2

)
dR′. (B9)

The potential at the field position (R, 0) must be calculated
by integration along the source position

(
R′, Z ′). Chang-

ing variables, the integration along R′ can be divided in two
branches along m:

R′ =
(

2 − m −
√

4 (1 − m) − m2n2

m

)
R first integration branch

R′ =
(

2 − m +
√

4 (1 − m) − m2n2

m

)
R second integration branch

(B10)

where n = Z ′/R. Note that

∂R′

∂m
= ±2R

m2

(
2 − m ∓√4 (1 − m) − m2n2√

4 (1 − m) − m2n2

)
, (B11)

where the upper and lower signs correspond to the first and
second integration branches, respectively. In the first integra-
tion branch the variable 0 ≤ m � 1 runs from zero to one in
the radial range R′/R � 1 (for Z ′ 
 0) corresponding to the
bulge of the density profile. In the second integration branch
1 � m > 0 the radial range R′/R � 1 corresponds to the
disk region with R′ extending to infinity. The transformed
integral becomes

φ (R, 0) = −8GR
∫ ∞

0
dZ ′

∫ 2
(√

1+n2−1
)
/n2

0
dm

× K (m)

m2
√

4 (1 − m) − m2n2

×
[
ρ

(
2 − m −√4 (1 − m) − m2n2

m
R, nR

)

×
(

2 − m −√4 (1 − m) − m2n2

m

)3/2

+ρ

(
2 − m +√4 (1 − m) − m2n2

m
R, nR

)

×
(

2 − m +√4 (1 − m) − m2n2

m

)3/2
⎤
⎦ .

(B12)
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The upper limit in the integration over m has the limiting
value (n = Z ′/R)

lim
n→0

⎛
⎝2
(√

1 + n2
)

− 1

n2

⎞
⎠ = 1. (B13)

The above transformed integral expression of φ (R, 0) is
exact. Now, for a thin disk the mass density distribution can
be assumed of the form

ρ (R, Z) 
 ρ (R, 0) exp

(
− Z2

2(R)2

)
. (B14)

In this approximation all cross-sections of the disk have the
same form, but the characteristic width (R) varies with R.
For small values of (R) the dominant term of the integra-
tion over Z ′ is given by the Laplace approximation

φ (R, 0) 
 −4
√

2πGR
∫ 1

0
dm

K (m)

2
√
m (1 − m)

×
⎡
⎣
(

2 − m − 2
√

1 − m

m

)3/2



(
2 − m − 2

√
1 − m

m
R

)

×ρ

(
2 − m − 2

√
1 − m

m
R, 0

)

+
(

2 − m + 2
√

1 − m

m

)3/2



(
2 − m + 2

√
1 − m

m
R

)

× ρ

(
2 − m + 2

√
1 − m

m
R, 0

)]
. (B15)

In the original integration over R′ the thin disk approximation
gives the simpler expression

φ (R, 0) 
 −4
√

2πG
∫ ∞

0

R′
(
R′) ρ (R′, 0

)
R + R′

×K

(
4RR′

(R + R′)2

)
dR′, (B16)

but the transformed integration removes the Green’s function
singularity by replacing the upper limit in the m integration
by 1−ε, where ε can be taken as small as required by the pre-
cision of the calculation (the lower limit can also be replaced
by ε in order to avoid the divergence in the integrand for
m → 0).

In general, the integration along the disk branch ends at

mmin = 4RRmax(
1 + n2

)
R2 + 2RRmax + R2

max
< 1, (B17)

where Rmax corresponds to the maximum extension of the
disk defined by ρ

(
Rmax, Z ′) 
 0. Along the equatorial plane

the integration path is defined by Z ′ = 0 and

mmin = 4RRmax

(R + Rmax)
2 < 1 for Z ′ = 0. (B18)

Therefore, for a thin disk the full integration over m can be
divided along the two branches as follows

φ (R, 0)


 −4
√

2πGR
∫ 1−ε

ε
dm

K (m)

2
√
m (1 − m)

×
(

2 − m − 2
√

1 − m

m

)3/2

×

(
2 − m − 2

√
1 − m

m
R

)
ρ

(
2 − m − 2

√
1 − m

m
R, 0

)

−4
√

2πGR
∫ 1−ε

mmin

dm
K (m)

2
√
m (1 − m)

×
(

2 − m + 2
√

1 − m

m

)3/2

×

(
2 − m + 2

√
1 − m

m
R

)
ρ

(
2 − m + 2

√
1 − m

m
R, 0

)
,

(B19)

with the cut-off at the radial position along the equatorial
plane ρ

(
R′, 0

) 
 0 explicitly taken into account. Similarly,
the radial gradient of the gravitational potential is

∂φ (R, 0)

∂R


 2
√

2πG
∫ 1−ε

ε
dm

(
2 − m − 2

√
1 − m

m

)2

×

(
2 − m − 2

√
1 − m

m
R

)
ρ

(
2 − m − 2

√
1 − m

m
R, 0

)

×
(

K (m)

2
√

1 − m
(
1 − √

1 − m
)

− E (m)

2
√

1 − m
(
1 − m − √

1 − m
)
)

+2
√

2πG
∫ 1−ε

mmin

dm

(
2 − m + 2

√
1 − m

m

)2

×

(
2 − m + 2

√
1 − m

m
R

)
ρ

(
2 − m + 2

√
1 − m

m
R, 0

)

×
(

K (m)

2
√

1 − m
(
1 + √

1 − m
)

− E (m)

2
√

1 − m
(
1 − m + √

1 − m
)
)

. (B20)

Appendix C: A model for the galactic width

The mass density distribution ρ
(
R′, 0

)
in the above inte-

gral expression of φ (R, 0) can be taken from the luminosity
profile of the galaxy under consideration. However, a suit-
able model for the galactic width 

(
R′) must be developed

to complete the description. This can be done considering
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the constant density contours defined by the Miyamoto and
Nagai solution [8]

ρ (R, Z) = MB2

4π

AR2 +
(
A + 3

√
B2 + Z2

) (
A +

√
B2 + Z2

)2

[
R2 +

(
A +

√
B2 + Z2

)2
]5/2 (

B2 + Z2
)3/2

,(C1)

where A and B are the semi-axes of a spheroid of revolution.
An exact solution of the Poisson equation gives the gravita-
tional potential

φ (R, Z) = − GM[
R2 +

(
A + √

B2 + Z2
)2
]1/2 , (C2)

where M is the total mass given by

M = 2π

∫ ∞

0

∫ ∞

−∞
ρ (R, Z) R dR dZ . (C3)

Introducing the normalization radial distance R0 = 1 kpc,
the Miyamoto and Nagai profile solution becomes

� (r, z) =
(

3M

4πR3
0ρ0

) b2
[
ar2 +

(
a + 3

√
b2 + z2

) (
a +

√
b2 + z2

)2
]

3

[
r2 +

(
a +

√
b2 + z2

)2
]5/2 (

b2 + z2
)3/2

,

(C4)

where all distances are normalized by R0 and the density � =
ρ/ρ0 is normalized by the value ρ0 = ρ (0, 0) at the center.
One may introduce in the above expression a coefficient

λ = 4πR3
0ρ0

3M
, (C5)

which gives the ratio between the mass of a sphere of radius
R0 and uniform density ρ0, and the total mass M of the
spheroidal distribution (λ measures the strength of the central
density ρ0). Hence,

λ−1 = 3

2

∫ ∞

0

∫ ∞

−∞
� (r, z) r dr dz. (C6)

The normalized potential ϕ = φ/c2 becomes

ϕ (r, z) = − rs

2

[
r2 +

(
a + √

b2 + z2
)2
]1/2 , (C7)

where

rs = 2GM

c2R0
(C8)

is the normalized Schwarzschild radius of the spheroidal
mass.

Although the Miyamoto and Nagai density profile extends
to infinity, a galactic edge can be defined taking a con-
stant density contour along the profile. According to the thin
disk approximation (B14), one can define an edge such that

� (0, δ (0)) on the vertical axis decreases by � characteristic
widths with respect to the central density � (0, 0) = 1. In this
way, the galactic shape is defined by δ (r) along the profile
and calculated by a root of the equation

b2
[
ar2 +

(
a + 3

√
b2 + δ (r)2

) (
a +

√
b2 + δ (r)2

)2
]

3

[
r2 +

(
a +

√
b2 + δ (r)2

)2
]5/2 (

b2 + δ (r)2)3/2

= λ exp

(
−�2

2

)
, (C9)

where a is the major semi-axis in the radial direction and b
the minor semi-axis in the vertical direction. According to
the thin disk approximation it is assumed that a > 3b (in
general a � b). Exact analytic solution of this equation for√
b2 + δ (r)2 is very difficult to achieve. It involves combi-

nation of roots 2, 4, 6 and 8 of a sixteenth order polynomial
(roots 1, 3, 5 and 7 are negative and the remaining roots
are complex). It is possible to obtain an approximate cubic
solution for δ (r) in Eq. (C9), but the numerical root-finding
procedure can be easily implemented. Numerical calculation
of δ (r) as a function of r is straightforward for appropriate
ranges of initial values a, b and λ exp

(−�2/2
)
. The range of

possible values of λ is

0 < λ exp

(
−�2

2

)
≤ a + 3b

3b (a + b)3 , (C10)

so that r = 0 and δ (r) = 0 at the upper value in the range.
Taking δ (r) = 0, a given value of λ less than the upper limit
defines the maximum value of the disk radius r = rmax on
the equatorial plane (rmax → ∞ for λ → 0):

ar2
max + (a + 3b) (a + b)2

3b
[
r2

max + (a + b)2]5/2
= λ exp

(
−�2

2

)
. (C11)

Assuming b � a, this equation gives an estimate for the
maximum radius of the galactic disk as a function of the
relevant geometrical and physical parameters

(
r2

max + a2
)3/2 ∼ a2

3b

(
3M

4πR3
0ρ0

)
exp

(
�2

2

)
. (C12)

This expression indicates that � can be identified as a range
parameter. One would expect that a region described by the
width δ (r) calculated using equation (C9) contains approx-
imately 39.3%, 86.5% and 98.9% of the total galactic mass
for � = 1, 2 and 3, respectively. A region defined by � = 4
contains practically all the total mass M (large values of �

are required for very large disks containing a dim dust dis-
tribution at large distances).

Finally, note that λ cannot be specified independently,
since its value is defined by the integral (C6), which, in the
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thin disk approximation, becomes

λ−1 = 3

√
π

2

∫ rmax

0
δ (r) � (r, 0) r dr . (C13)

This constraint actually establishes the relation between a,
b and the arbitrary normalization distance R0. The value of
λ can be determined by an iteration procedure as follows:
(1) Take λ1 < 1 and determine δ (r) solving equation (C9)
for given values of �, a and b; (2) Calculate rmax solving
equation (C11 ) for the same values of �, a, b and λ1; (3)
Calculate a new value λ2 by the integral (C13); (4) Com-
pare the two values of λ2 and λ1 and stop the iteration if
the error |(λ2 − λ1) /λ1| is less than the required precision
(say 10−3); (5) Define the new value λ1 = (λ1 + λ2) /2
by the bisection method and repeat the iteration procedure
until the required precision. As a result of this iteration, λ is
determined as a function λ (�, a, b) of �, a and b. A simple
numerical procedure can be established so that λ (�, a, b) is
readily determined. In this way, one may consider the galac-
tic width δ (r) = δ (�, a, b, r) as given by a solution of (an
algebraic–integral equation for δ (r))

b2
[
ar2 +

(
a + 3

√
b2 + δ (r)2

) (
a +

√
b2 + δ (r)2

)2
]

3

[
r2 +

(
a +

√
b2 + δ (r)2

)2
]5/2 (

b2 + δ (r)2)3/2

= λ (�, a, b) exp

(
−�2

2

)
, (C14)

and the maximum radius rmax = rmax (�, a, b) of the disk by

ar2
max + (a + 3b) (a + b)2

3b
[
r2

max + (a + b)2]5/2
= λ (�, a, b) exp

(
−�2

2

)
.(C15)

Recall that the minimum value ofmmin = mmin (�, a, b, r),
which sets the radial extend in the disk region of the inte-
grals for φ (R, 0) and ∂φ (R, 0) /∂R defined in Appendix B,
is given by

mmin = 4rrmax (�, a, b)

[r + rmax (�, a, b)]2 < 1. (C16)

Introducing this lower (distant) limit, the normalized form
the integral expressions for the gravitational potential and its
radial gradient become:

ϕ (r, 0)


 −
√

2

π

(
3

2
λ (�, a, b) rs

)
r
∫ 1−ε

ε
dm

K (m)

2
√
m (1 − m)

×
(

2 − m − 2
√

1 − m

m

)3/2

×δ

(
2 − m − 2

√
1 − m

m
r

)
�

(
2 − m − 2

√
1 − m

m
r, 0

)

−
√

2

π

(
3

2
λ (�, a, b) rs

)
r
∫ 1−ε

mmin

dm
K (m)

2
√
m (1 − m)

×
(

2 − m + 2
√

1 − m

m

)3/2

×δ

(
2 − m + 2

√
1 − m

m
r

)
�

(
2 − m + 2

√
1 − m

m
r, 0

)
, (C17)

and

∂ϕ (r, 0)

∂r


 1√
2π

(
3

2
λ (�, a, b) rs

)∫ 1−ε

ε
dm

×
(

2 − m − 2
√

1 − m

m

)2

×δ

(
2 − m − 2

√
1 − m

m
r

)
�

(
2 − m − 2

√
1 − m

m
r, 0

)

×
(

K (m)

2
√

1 − m
(
1 − √

1 − m
)

− E (m)

2
√

1 − m
(
1 − m − √

1 − m
)
)

+ 1√
2π

(
3

2
λ (�, a, b) rs

)∫ 1−ε

mmin

dm

(
2 − m + 2

√
1 − m

m

)2

×δ

(
2 − m + 2

√
1 − m

m
r

)
�

(
2 − m + 2

√
1 − m

m
r, 0

)

×
(

K (m)

2
√

1 − m
(
1 + √

1 − m
)

− E (m)

2
√

1 − m
(
1 − m + √

1 − m
)
)

. (C18)

AppendixD:Massdensity estimate fromsurface-brightness
profile

This appendix gives a brief presentation of the expressions
used by observational astronomers to estimate the galactic
luminosity and mass density, and the limitations of these
simple definitions. In general, the mass density distribution
along the equatorial plane of the galaxy can be evaluated
from the measured surface-brightness profile, which can be
approximated by the Sérsic profile for the flux density (in
W/m2)

Fs (R) = F0 exp

[
−bs

(
R

Reff

)1/s
]

, (D1)

where s is the Sérsic index and Reff is the half-luminosity
radius, i.e., the radius that encloses half of the light, and
b−s
s Reff is the radius at which the central flux density F0

drops by e−1. The coefficient bs satisfies the relation

2� (2s, bs) = � (2s) , (D2)

where � (2s, bs) and � (2s) denote the incomplete and com-
plete gamma functions, respectively. The coefficient bs is
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given approximately by

bs 
 2s − 1

3
. (D3)

The partial radiant flux (in W) is given by

Ls (R) = 2π

∫ R

0
Fs
(
R′) R′ dR′

= 2πs

{
� (2s) − �

[
2s, bs

(
R

Reff

)1/s
]}

×bs (s)−2s R2
effF0, (D4)

so that the total radiant flux is (R → ∞)

Ls = 2πs� (2s) bs (s)−2s R2
effF0, (D5)

and the absolute magnitude is

Ms = −5

2
log10

Ls

L10
, (D6)

where L10 = 4π (10 pc)2 F10 = 3.0128 × 1028 W is the
standard radiant flux (luminosity) given in terms of the stan-
dard flux density F10 = 2.518021002×10−8 W/m2 (accord-
ing to IAU resolution B2, 2015). The distance independent
apparent magnitude is

μs (R) = μ0 + 5

2 ln 10

(
R

b−s
s Reff

)1/s

. (D7)

The brightness profile is usually expressed in terms of the
apparent magnitude in arcsec2

μ (α) = μ0 + 5

2 ln 10

(
α

αeff

)1/s

, (D8)

where αeff = (180 × 3600/π) b−s
s Reff/d is the effective

half-angle in arcsec and d is the distance to the galaxy. The
apparent magnitude of the galaxy seen from Earth is

md = Ms + 5 log10

(
d

10 pc

)
. (D9)

The de Vaucoulers’s profile for elliptical galaxies corre-
sponds to s = 4, while the simple exponential profile corre-
sponds to s = 1. Larger s gives light profiles concentrated in
the central part, and at the same time higher surface bright-
ness at large radial distances. These two profiles cannot be
applied singly to represent the mass density ρ(r, 0) because
they have singular derivatives at the origin. Nevertheless, it
is here proposed to construct a piecewise continuous profile
defined by the juxtaposition of two Sérsic profiles:

Fs (R)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F0 exp

[
−b (s1)

(
R

R1

)1/s1
]

0 ≤ R ≤ R0

F0 exp

[
−b (s1)

(
R0
R1

)1/s1
(

1 − s2
s1

+ s2
s1

(
R

R0

)1/s2
)]

R > R0

(D10)

This piecewise profile has continuous amplitude and deriva-
tive at R = R0 (not to be confounded with the normalization
radius introduced in Sect. 4), and finite values at the ori-
gin if 0 ≤ s1 < 1 (the derivative vanishes at the origin if
0 ≤ s1 < 1). The profile is flat for s1 � 0 and peaked for
s1 � 1 (s1 = 1/2 corresponds to a Gaussian profile near the
origin). The piecewise profile for the apparent magnitude in
arcsec2 becomes:

μ (α)

= μ0 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5

2 ln 10

(
α

α1

)1/s1
0 ≤ α ≤ α0

5

2 ln 10

(
α0
α1

)1/s1
(

1 − s2
s1

+ s2
s1

(
α

α0

)1/s2
)

α > α0

(D11)

As an example, the surface brightness μB of the dwarf
galaxy NGC 1560 analyzed in Sect. 7 can be adjusted to the
observed values listed by Broeils [32] by taking μ0 = 22.28,
α0 = 61.46 arcsec, s1 = 0.435, α1 = 99.05 arcsec and
s2 = 1.144 in the above expression. This approximation
indicates a transition from a nearly Gaussian to a nearly
exponential profile, and can be used to estimate the basic
galactic parameters. The projected distances along the equa-
torial plane are calculated in terms of the angles of observa-
tion by r = d (π/ (180 × 3600)) α. The calculated abso-
lute magnitude is Ms = −16.5, the total luminosity is
Ls = 3.06 × 108L� and, assuming a distance to the galaxy
d = 3.0 Mpc, the apparent magnitude is md = 10.9
(L� = 3.828 × 1026 W is the solar luminosity).

The normalized mass density profile can be obtained
directly from the adjusted luminosity profile by taking

� (r, 0) = 10− 2
5 [μ(r)−μ0]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
−
(

r

r1

)1/s1
]

0 ≤ r ≤ r0

exp

[
−
(
r0

r1

)1/s1
(

1 − s2
s1

+ s2
s1

(
r

r0

)1/s2
)]

r > r0

(D12)

where r0 = d (π/ (180 × 3600)) α0 and r1 =
d (π/ (180 × 3600)) α1. Assuming uniform mass-to-light
ratio Y , one can take Y = 1 without modifying the mass den-
sity profile. Although satisfactory for macroscopic estimates,
the piecewise continuous approximation of the mass density
is, in general, not satisfactory for detailed rotation velocity
calculations since the Sérsic index in the above representa-
tion makes a discontinuous transition from the constant value
s1 in the bulge region, 0 ≤ r ≤ r0, to the constant value s2 in
the disk region, r > r0. This limitation can be circumvented
adopting a piecewise continuous representation for the Sérsic
index instead

s (α) =
⎧⎨
⎩
sb (α) 0 ≤ α ≤ α0

sd (α) α0 < α ≤ αe

se α > αe

(D13)
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where sb (α) and sd (α) are power series defined separately
in the bulge and in the disk regions:

sb (α) =
n∑

i=0

biα
i and sd (α) =

m∑
j=0

d jα
j . (D14)

The coefficients bi and d j can be chosen so that sb (0) = s0

and sd (αe) = se, where s0 and se are the initial and final
values of the Sérsic index in the range of measured values.
Furthermore, the values and first derivatives of the index must
be continuous at the transition point α0 between the bulge and
the disk:

sb (α0) = sd (α0) and
dsb
dα

∣∣∣∣
α0

= dsd
dα

∣∣∣∣
α0

. (D15)

Finally, it is required that the radial derivative of the index
vanishes at the endpoint αe (this requirement is not essential,
but it is convenient to have a flat index in extending the index
beyond the last measurement point)

dsd
dα

∣∣∣∣
αe

= 0. (D16)

The final result can be written as follows:

sb (α) = s0 + b1α +
n∑

i=2

biα
i ,

sd (α) = se + d2 (αe − α)2 +
m∑
j=3

d j (αe − α) j ,

(D17)

where

b1 = 1

αe + α0

⎡
⎣2 (se − s0) −

n∑
i=2

[i (αe − α0) + 2α0] αi−1
0 bi

−
m∑
j=3

( j − 2) (αe − α0) j d j

⎤
⎦ ,

d2 = − 1

α2
e − α2

0

⎡
⎣se − s0 +

n∑
i=2

(i − 1) αi0bi

+
m∑
j=3

[αe + ( j − 1) α0] (αe − α0) j−1 d j

⎤
⎦ .

(D18)

According to Eq. (D8), the Sérsic index is given in terms
of the apparent magnitude μ (α) at the angular position α in
arcsec by

s (α) = ln (α/αeff)

ln

[
2 ln 10

5
(μ (α) − μ0)

] . (D19)

This provides a relation between the index se at the last mea-
sured angular position αe, and the effective half-angle

se = ln (αe/αeff)

ln

[
2 ln 10

5
(μ (αe) − μ0)

] . (D20)

Furthermore,

μ (αeff) = μ0 + 5

2 ln 10
. (D21)

In this way, the values of μ0, αeff, α0, s0 and the power
series coefficients bi and d j can be determined using a least
squares method to fit s (α) to the measured brightness pro-
file. It is convenient to specify the initial value μ0, based on
measurements, adjusting αeff, α0 and the power series coeffi-
cients independently. The relation (D21) can be used to verify
the consistency of the adjusted results. In terms of the radial
position r one can simply replace α by (180 × 3600/π) r/d.
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