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Abstract

Classical anti-commuting spinor fields and their dynamics are derived from the geometry of the Clifford bundle over space-
time via the BRST formulation. In conjunction with Kaluza-Klein theory, this results in a geometric description of all the fields
and dynamics of the standard model coupled to gravity and provides the starting point for a new approach to quantum gravity.

1 Introduction

In most approaches to the classical and quantum dynamics of spinor fields the fields and their properties are postulated ad-
hoc, without any geometric motivation as to why they should exist, but only the rationale that they are necessary to represent
fermions. The desired mathematical structures, such as complex valued matrix columns and the necessity that the field com-
ponents anti-commute, are put in by hand along with the equations of motion, without any geometric justification. It is the
purpose of this paper to propose a new geometric foundation and justification for the existence and dynamics of spinor fields.
In so doing, all the fields and dynamics of the standard model may be derived from pure geometry.

The key to this construction is to begin with the Clifford algebra bundle (or the associated matrix bundle) as the fundamental
geometric framework. This fibre bundle has a connection and curvature, and a frame provides a bundle map to the cotangent
bundle and gives the metric on the pseudo-Riemannian base manifold. The dynamics of the Clifford connection and frame is
given by extremizing the total scalar Clifford bundle curvature, the gravitational action [1]. The curvature is invariant under
adjoint automorphisms of the Clifford bundle, and this gauge symmetry, when properly restricted using the BRST formulation
[2], results in the appearance and familiar dynamics of a pair of anti-commuting, Clifford valued spinor fields. The result is the
coupled system of gravitational and spinor fields. A Kaluza-Klein decomposition of the vielbein then provides the vector gauge
fields, completing the picture.

2 Geometric framework

To describe the geometry of the physical universe, ann dimensional, pseudo-Riemannian differential manifold isused as the
base space for the Clifford algebra fibre bundle. Then basis vector elements,{γα}, for the Clifford bundle provide a local
trivialization,∂iγα = ∂

∂xi γ
α = 0, and satisfy, under the symmetric product,

γα • γβ =
1

2

(

γαγβ + γβγα
)

= ηαβ (1)

The Clifford algebra,Cl, has a faithful representation in the complex matrices,GL(2[n/2], C), with the Clifford product iso-
morphic to matrix multiplication, and it is possible and sometimes helpful, although not necessary, to write and manipulate
Clifford elements as matrices, using (Dirac) matrices for the basis.

The fundamental Clifford algebra equation (1) is invariantunder the Clifford group,Cl⋆ =
{

S ∈ Cl | ∃S−1
}

, adjoint
automorphism (similarity transformation),γα 7→ γ′α = SγαS−1, which may well change the grade of the Clifford basis ele-
ments. Through this automorphism theCl⋆ elements serve as the transition functions for the Cliffordbundle. For infinitesimal
transformations,S ≃ 1 + 1

2C, C ∈ Cl, this automorphism is

γ′α = SγαS−1 ≃ γα + C × γα (2)

with the anti-symmetric (cross) product defined asA×B = [A,B] = 1
2 (AB −BA).
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In general, the Clifford product may be written asAB = A •B +A×B and, sinceγαγβ = ηαβ + γα × γβ, any Clifford
element may be written out with real, anti-symmetric coefficients times anti-symmetric collections of the basis elements,

C = Cs + Cαγ
α + Cαβ

[

γα, γβ
]

+ Cαβδ

[

γα, γβ, γδ
]

+ ...+ Cpγ

where the anti-symmetric bracket operator is, for example,

[A,B,C] = 1
3! (ABC +BCA+ CAB −ACB − CBA−BAC)

Cαβδ = C[αβδ] =
1
3! (Cαβδ + Cβδα + Cδαβ − Cαδβ − Cδβα − Cβαδ)

Note that, since the basis elements can change grade under the adjoint automorphism, the grade of a Clifford element, except
for the invariant scalar part (grade0 part, trace), is only a meaningful concept with respect to the local specification of the basis
elements. The· (dot) and∧ (wedge) products familiar to disciples of Clifford algebrahave grade dependent definitions and
are therefore not used here, though they are equivalent to• and× for vector elements and useful within the context of a local
vector basis.

The connection for theCl bundle takes values in the Lie algebra of the transitions andis thus a Clifford element acting via
the cross product, allowing the covariant derivative of thebasis elements to be written as

∇iγ
α = Ωi × γα

giving, for any Clifford element,∇iC = ∂iC +Ωi × C. Under an adjoint automorphism (2) this connection transforms as

Ωi 7→ Ω′

i = 2S∂iS
−1 + SΩiS

−1 = 2S /∇iS
−1 ≃ Ωi −∇iC (3)

in which the Dirac derivative operator is introduced as/∇i = ∂i +
1
2Ωi.

The Clifford basis is related to the metric via the fundamental frame (frame, soldering form, bundle map),

ê = γα (eα)
i ~∂i = γαêα = γi~∂i

e = dxi
−→

(

e−1
i

)α
γα

(4)

which gives the metric through the relation for the orthonormal basis (vielbein, tetrad, ONB),gij =
(

e−1
i

)α
ηαβ

(

e−1
j

)β
.

3 Dynamics

The curvature of the Clifford bundle, giving the parallel transport of Clifford elements around infinitesimal loops, istheCl
valued2-form,

R−→−→
= dxi

−→ dxj
−→

1
2Rij = d−→ Ω−→+ 1

2 Ω−→× Ω−→ = d−→ Ω−→+ 1
2 Ω−→ Ω−→ = /∇

−→
Ω−→

Rij = ∂iΩj − ∂jΩi +Ωi × Ωj

(5)

The scalar curvature of the Clifford bundle may be defined, using the frame (4), as

R =

〈

R−→−→
êê

〉

=
〈

Rij (eα)
i
(eβ)

j
γαγβ

〉

(6)

with 〈A〉 giving the scalar part (trace) of a Clifford element.
The action for the Clifford bundle is

S =

∫

dnx−−→|e|R =

∫

dnx−−→|e|

〈

2

(

∂iΩj +
1

2
ΩiΩj

)

(eα)
i
(eβ)

j (
γα × γβ

)

〉

(7)

with volume scale|e| = det
(

e−1
i

)α
. Varying the vielbein and requiring the variation of this action to vanish gives Einstein’s

equation,

0 = Gi
α =

〈(

∂[iΩ j] +
1

2
Ω[iΩ j]

)

(eβ)
j (

γα × γβ
)

〉

+
1

2

(

e−1
i

)α
R

and varying the Clifford connection gives a relationship with derivatives of the vielbein
[

∂i |e| (eα)
i
(eβ)

j
]

(

γα × γβ
)

= |e| (eα)
i
(eβ)

j (
γα × γβ

)

× Ωi

which holds if and only if the Clifford connection is equal tothe torsionless spin connection bivector,

Ωi = Ωiαβ

[

γα, γβ
]

, Ωiαβ = ωiαβ

satisfying Cartan’s structure equation,d−→ eα = ω−→β
αeβ , equivalent to∂[i

(

e−1
j]

)α
= ω[i β

α
(

e−1
j]

)β
.
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4 BRST

The curvature scalar, and thus the action (7), is invariant under adjoint automorphisms of the frame,

ê 7→ ê′ = SêS−1 ≃ ê+ C × ê
Ω−→ 7→ Ω′

−→ = 2S /∇
−→
S−1 ≃ Ω−→− ∇−→C ⇒ R 7→ R′ = R

Via the BRST formulation, new “gauge ghost” fields, with real, anti-commuting coefficients (Grassmann number1, satisfying
ab = −ba and(ab)∗ = −b∗a∗ = −ba), are introduced to properly restrict and account for this symmetry. The new variables are
the anti-commutingCl element fields,{C,B}, which have real coefficients with Grassmann number1, and another ghost field,
A, with Grassmann number0. The infinitesimal BRST transformation corresponding to the Clifford group adjoint operation is

δΛê = C × ê = 1
2Cê − 1

2 êC
δΛΩ−→ = −∇−→C = −dxi

−→

(

∂iC + 1
2ΩiC − 1

2CΩi

)

δΛC = 1
2C × C = 1

2CC
δΛB = iA
δΛA = 0

The nilpotence of the BRST operator,δΛδΛ = 0, which has Grassmann number1, is confirmed by calculation,

δΛδΛê = 1
2

[

1
2CC

]

ê− 1
2C

[

1
2Cê− 1

2 êC
]

− 1
2

[

1
2Cê− 1

2 êC
]

C − 1
2 ê

[

1
2CC

]

= 0
δΛδΛΩ−→ = −dxi

−→

(

∂i
[

1
2CC

]

− 1
2 [∂iC + Ωi × C]C + 1

2Ωi

[

1
2CC

]

− 1
2

[

1
2CC

]

Ωi −
1
2C [∂iC +Ωi × C]

)

= 0

δΛδΛC = 1
2

[

1
2CC

]

C − 1
2C

[

1
2CC

]

= 0

The dynamics of the gauge and ghost degrees of freedom are determined by the choice of a BRST potential; a good choice is

Ψ =

∫

dnx−−→|e|
〈

BêΩ−→

〉

which gives the new action,

S′ = S − iδΛΨ =

∫

dnx
−−→

|e|
{

R
[

ê, Ω
−→

]

+
〈

AêΩ
−→

〉

− i
〈

B
[

γα (eα)
i ∂iC +

(

êΩ
−→

)

× C
]〉}

The ghost fieldA appears in this action as a Lagrange multiplier, constraining the connection to satisfŷeΩ′

−→ = 0. With this

restricted connection the effective action for the remaining fields,
{

ê,Ω′

−→, C,B
}

, is

Seff =

∫

dnx
−−→

|e|
{

R
[

ê,Ω′

−→

]

− i
〈

Bγα (eα)
i ∂iC

〉}

(8)

an Einstein-Weyl-like action for anti-commuting spinor field, anti-field, vielbein, and restricted connection. Note that the
constraint on the connection, a result of the choice of BRST potential, insures that the connection vanishes from the Dirac
operator.

The equations of motion from the new action,S′, or, after removingA and restricting toΩ′

i, fromSeff , are

G′

i
α = i

2 〈Bγα∂iC〉 − i
2

(

e−1
i

)α
〈

Bγβ (eβ)
j
∂jC

〉

= Ti
α

A = −2 (n−2)
(n−1) |e|ω

β
αβγ

α − 4 |e|ω[αβδ]

[

γα, γβ , γδ
]

Ω′

δ = (eδ)
i Ω′

i = Ω′

δαβ

[

γα, γβ
]

Ω′

δαβ = ωδαβ − ω[δαβ] +
2

(n−1)ηδ[αω
γ
β]γ

0 = γα∂i |e|B (eα)
i

0 = γα (eα)
i
∂iC

The restricted connection, satisfyingγαΩ′

α = 0, is hence a Clifford bivector with gauge degrees of freedom removed–the
coefficients constrained to have vanishing traceΩ′

δα
δ = 0 and vanishing fully anti-symmetric partΩ′

[δαβ] = 0. Note that if
one begins with an arbitrary connection, the restricted connection may be obtained by applying an adjoint transformation (3)
with anS such that0 = ê′Ω′

−→
= 2Sγα (eα)

i /∇iS
−1–so the geometric interpretation of a solution to the curvedspacetime Weyl

equation is that it provides a transformation to a restricted connection. The BRST formulation balances the gauge restriction

3



with theC andB fields and their (Weyl) equations of motion and stress energytensor. By using the equation for the restricted
Clifford connection in terms of the spin connection it is also possible to write the Clifford scalar curvature (6), and hence a new
effective action, purely in terms of derivatives of the vielbein,

R′ [ê] =
〈

2
(

∂iΩ
′

j +
1
2Ω

′

iΩ
′

j

)

(eα)
i (eβ)

j (γα × γβ
)

〉

= 1
3ωβαδω

αδβ − 1
3ωβαδω

βαδ + 1
(n−1)ω

δ
βδωγ

βγ

= − 2
3Fδ(βα)F

δ(βα) + 1
(n−1)F

δ
βδFγ

βγ

in which the field strength (anholonomy) for the vielbein is defined asFβγ
α = (eβ)

i
(eγ)

j
2∂[i

(

e−1
j]

)α
.

5 Conclusion

The existence and dynamics of anti-commuting spinor fields have been derived and given a firm geometric foundation by
starting with the Clifford algebra fibre bundle and curvature and applying the BRST formulation to the adjoint automorphism
gauge symmetry. The BRST construction was carried out in therelativistic Lagrangian framework, but may be carried through
to a Hamiltonian formulation as well.

The ultimate goal is to obtain all the fields and dynamics of the standard model of particle physics from this geometric
foundation. To do this, the methods of Kaluza-Klein theory may be employed by assuming the dimensions greater than the four
of spacetime are wrapped up in a spatial, highly symmetric, compact manifold. By using a vielbein of the form

(eα)
i
=

[

(

eSα
)i

AA
αξ

i
A

0 1
ρ

(

eKα
)i

]

in which ~ξA are Killing vector fields of the compact space,K, one obtains the Yang-Mills action and dynamics for the gauge
fields, A−→

A. By expanding these gauge and spinor fields in terms of resonant modes of the compact space one may get all the
fields and dynamics of the standard model along with gravity.The details of how these higher dimensional, Clifford element
spinor fields can be broken up into the familiar fermion multiplets is laid out in a beautiful exposition by Trayling [3]. Note that
the spinor fields derived here are not originally relegated to ideals of the algebra, but rather are “full” Clifford element (matrix)
spinors–the ideals (matrix columns) emerge only in the fermion multiplet decomposition.

It is important to note that not all the gauge symmetries of the system have yet been addressed. The other two symmetries,
transformations of the frame that leave the action invariant, are diffeomorphisms (coordinate changes) and local Lorentz ro-
tations of the vielbein. These symmetries may also be handled via the BRST formulation, resulting in an effective actionfor
a restricted vielbein. Used in conjunction with Kaluza-Klein theory, the BRST formulation for diffeomorphisms parallels and
reproduces the BRST formulation for Yang-Mills gauge theory, with the relevant diffeomorphism, producing the familiar gauge
field transformation, beingxi 7→ x′i = xi + ξiAφ

A (x).
The BRST formulation for Yang-Mills theory, and the appearance and utility of gauge ghosts, is familiar to researchers in

quantum field theory, where the ghosts play a crucial role in facilitating quantization and renormalization. It is hopedthat the
spinor ghost fields and dynamics introduced here (8) may playa similar role in the quantization of gravity.
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