Gravomagnetism in special relativity
H. Kolbenstvedt

Department of Physics, University of Trondheim, Dragvoll N-7055, Norway

(Received 30 March 1987; accepted for publication 1 September 1987)

The existence of a gravomagnetic field from a uniformly moving mass is predicted from special
relativity and gravitational time dilation. Except for a factor of one-half, the field is identical to the
field following from the linearized theory of gravitation.

I. INTRODUCTION

The Maxwellian features of the Einstein equations in the
linear weak field approximation are demonstrated in sever-
al textbooks on general relativity. As a consequence, it is
possible to introduce the analog of the magnetic field, the
gravomagnetic field. This field provides a simple way for
the discussion of many interesting effects, like geodesic de-
viation of spinning particles, precession of gyroscopes or-
biting the Earth, and “dragging” of inertial frames by ro-
tating masses, by leaning on well-known effects from
classical electromagnetism and atomic physics involving
spin—orbit and spin-spin coupling. These applications of
the gravomagnetic field are rarely discussed in the litera-
ture; an exception is Rindler’s book,' but even here there is
only a short final paragraph in the chapter on general rela-
tivity.

For the benefit of undergraduate students, or students
not taking courses in general relativity, Bedford and
Krumm? have demonstrated the existence of the gravo-
magnetic field from a moving infinite line of constant mass
density, using arguments from special relativity only, in
close analogy to the derivation of the magnetic field from a
straight current found in several recent textbooks on elec-
tromagnetism. With the same audience in mind, we here
“derive” the gravomagnetic field from a point mass mov-
ing with a constant linear velocity much smaller than the
velocity of light, using arguments mainly from special rela-
tivity. In contrast to the infinite line field, this point-mass
field can by superposition give the field from, e.g., an ex-
tended rotating body (star), and is thus of considerable
practical interest.

I1. THE FIELDS

To perform our derivation, we need one piece of extra
information. A clock situated in a weak gravitational po-
tential ¢ <1 is slowed down (¢ is assumed negative) by a
factor of

S=1+4¢, (N

compared to a clock situated where ¢ =0 (we use units
where the velocity of light is unity). This effect of gravita-
tional time dilation is usually considered to be an effect of
general relativity, but can be derived from a falling elevator
thought experiment and requires only the principle of
equivalence combined with the Doppler formula.’

We also make the assumption that the slowing down of
clocks is the only effect of the gravitational potential. This
assumption cannot be justified from special relativity and is
really part of the basic postulate of general relativity
(where the potential modifies measuring rods as well).

Consider an object of mass M moving with a constant
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velocity V<1 along the positive x axis of the laboratory
frame of reference, its position at time ¢ being V.

A small test particle of mass m is moving under the influ-
ence of the gravitational field from M.

In the rest frame of the source particle M, the motion of
the test particle is determined by the variation principle

éf(—mds)zéffodt(,:O, (2)

where ds is the four-dimensional line element and indices
“0” indicate the rest frame.
The integrand is given by

FLodty= —m[(1+2¢,)dty —dry]"? 3)

and is, apart from the factor of ( — m), just the free particle
line element modified by Eq. (1) to account for the effect of
the potential

¢0::—GM/ro. (4)

We now perform a Lorentz transformation to the labora-
tory frame. Disregarding terms of relative order V2, the
transformation equations are

Xo=x—Vt, o=y, 2zo=2z, ty=t—Vx. 5

Special relativity cannot predict the transformation prop-
erties of ¢ but, whether it transforms as a scalar, a compo-
nent of a four vector, or as a tensor, we assume that it is at
least approximately invariant under the low-velocity trans-
formation (5). The line element ds, however, is invariant,
and the transformed Eq. (3) becomes (when ¢ <1):

Ldt= —m[(1 +2¢)(dt — Vdx)? — (dx — Vdt)*
—dy* — d?]'?, (6)
where now, of course, ¢ = ¢(x,y,2,¢). Neglecting terms
containing V"% and dividing by dt, we find the Lagrangian
L = —m[l —1? + 26 — 44Vv]V2, N

where v = dr/dt is the test particle velocity in the laborato-
ry frame.
From here on, we restrict ourselves to

V<v<l,
6~v’<1, (8)

i.e., the case where the source particle moves very slowly
compared to the now nonrelativistic test particle, and the
kinetic and potential energies of the test particle are of the
same orders of magnitude (common in bound systems).

A series expansion of the Lagrangian of Eq. (7) in the
small quantities of Eq. (8) gives

L =imv* — mé + 2mgVev, 9

where we have omitted a trivial constant term of ( — m)
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and neglected relativistic corrections to the standard non-
relativistic kinetic and potential energies.

We now compare this result with the familiar Lagran-
gian for a nonrelativistic particle of mass m and charge ¢
moving in an external electromagnetic field with potentials
Uand A.

L e =1imV" — qU + gAv . (10)
We see that Egs. (9) and (10) have exactly the same form
and that we have the formal correspondence

qUesmg ,

qA<->2meV ,
between the interaction terms.

The existence of an analog to the vector potential imme-

diately implies the gravitational analog of the magnetic
field

(11)

b=VX(24V) = —2VX(V9g) . (12)
Expressed by the potential ¢, we write the “gravielectric”
and “‘gravimagnetic” fields,

g= _v¢9

b=2(VXg). (13)

Since retardation effects are unimportant in our approxi-
mation, g takes the standard form
g= — (GM/rg)f, . (14)
We see that except for the factor of 2 in b, the fields from a
moving mass M are formally identical to the electromag-
netic fields from a moving charge of magnitude g = GM.
The equation of motion of the test particle becomes

iv—=g+ (vXb),
dt

(15)

where we have omitted an “induction” term (containing
V%) analogous to d A/Jdt in electromagnetism.

III. COMPARISON WITH GR

In the full linearized theory of gravitation, the rest sys-
tem Lagrangian is given by*

Lo= —m[(1+2¢5)dt] — (1 —2¢5)drz]""? (16)

differing from Eq. (3) by the space curvature factor of
(1 — 2¢,). Repeating our calculations with this Lagran-
gian, we find that the effects of space curvature and gravita-
tional time dilation contribute equally to the gravomagne-
tic field. The second part of Eq. (13) must be modified
accordingly to

b=4(VxXg). (17)

Since there is no reliable way of introducing the space
curvature from special relativity, the result (17) must
strictly be considered as a consequence of general relativi-
ty. However, special relativity, combined with the princi-
ple of equivalence, and extended by the postulate following
Eq. (1), can predict the existence and the qualitative fea-
tures of the gravomagnetic effect. The situation is, in this
sense, completely analogous to the case of light deflection
by a mass, where special relativity explains only one-half of
the deflection. ’

As mentioned in the introduction, the concept of the
gravomagnetic field provides an elementary method for a
qualitative discussion of many of the classical effects of
gravitation. One should also pay attention to the fact that
Eq. (9), modified by a factor of 2 in the last term, is the
starting point for recent speculations on quantization of
gravomagnetic flux and on the existence of so-called gravi-
topoles. The gravitopoles imply the quantization of mass,
much in the same way as their electromagnetic counter-
parts, the magnetic monopoles, imply quantization of
charge.*
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Quantitative experiments in spectrum analysis can be performed with a radio receiver and a
nonmonochromatic signal source. Construction details are given for a generator of interrupted
radio-frequency oscillations in a repeated sequence of N equally spaced bursts, where N =1, 2,
3, .... The resulting continuous spectrum is analogous to the spatial distribution of light in
Fraunhofer diffraction by an N-slit grating. Variation of the burst parameters illustrates the
frequency-time uncertainty relation AvAt=~1 (for N=1) and, more generally, the
correspondence between time-dependent signals and their Fourier transforms.

I. INTRODUCTION

The Fourier integral or transform, representing a super-
position of harmonic oscillations or waves, is a valuable
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tool in the study of linear systems, in quantum mechanics,
and in the analysis of acoustical and optical spectra. A
Fourier integral is interesting because it can reveal the
spectrum of a time-dependent signal, showing, for exam-
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