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Einsteinian geometrodynamics is the only (time-reversible) canonical representation 
of the set of generators of deformations of a spacelike hypersurface embedded in a 
Riemannian spacetime, if the intrinsic metric of that hypersurface and a conjugate 
momentum are the sole canonical variables. 

at our great Feast 
1 went into the Temple, there to hear 
The Teachers of our Law, and to propose 
What might improve my knowledge or thir own; 

John Milton: Paradise Regain’d 

And, without question, all those different planes, upon which Time, since I had 
regained it at this reception, had exhibited my life, by reminding me that in a book which 
gave the history of one, it would be necessary to make use of a sort of spatial psychology 
as opposed to the usual flat psychology, added a new beauty to the resurrections my 
memory was operating during my solitary reflections in the library, since memory, by 
introducing the past into the present without modifications, as though it were the 
present, eliminates precisely that great Time-dimension in accordance with which life 
is realized. 

Marcel Proust: Time Regained 

INTRODUCTION 

Formal schemes have their own life. Geometrodynamics was originally derived 
by a laborious rearrangement of Hilbert’s action principle as a preliminary to the 
canonical quantization of gravity. If such a program is ever completed, spacetime 
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dies and quantum geometrodynamics becomes its heir. Thus one would like to 

understand why geometrodynamics has the structure it does from its own con- 
ceptual framework. 

Wre start by looking back instead of forward-looking back on how Einstein’s 
law of gravitation was discovered and then placed on a pedestal of “first principles” 

(Section 1) and Iooking back on how geometrodynamics was derived from the 
Einstein law of gravitation in the late fifties (Section 2). After that we build a new 
pedestal. Its base is the set of deformations of a spacelike hypersurface embedded 
in an arbitrary Riemannian spacetime (Section 3). or rather a set of vector fields 
that generate those deformations. This set has a structure and the structure is 

mirrored by geometrodynamics. Strictly speaking, we find a set of vector fields on 
hyperspace (the space of all spacelike hypersurfaces) which generate the deforma- 
tions. These vector fields have definite commutation relations. We represent the 
vector fields by canonical generators (called super-Hamiltonian and supermomen- 
turn) in such a way that the Poisson brackets of the canonical generators mirror the 
commutation relations of the vector fields on hyperspace. In this sense, we view 
geometrodynamics, pure or driven by sources, as providing different canonical 
representations of the generators of deformations (Section 4). The geometro- 
dynamical data cannot be freely specified, but must be restricted by constraints; 
otherwise, the geometrodynamical evolution would not be path-independent 
(Section 5). To simplify further derivations, we investigate how to express the 

time-reversibility of Einstein spacetimes in the geometrodynamical language 
(Section 6). Then, finally, we put geometrodynamics on the new pedestal. The 
geometrodynamical supermomentum is regained because we know that its only 
function is to reshufne the data given on a hypersurface (Section 7). The geometro- 
dynamical super-Hamiltonian is regained as the unique canonical generator which 
satisfies the commutation relations and depends only on the intrinsic geometry 
of the hypersurface and a conjugate momentum (Section 8). At the end of our way, 
we look back at its turns and compare it with the spacetime route to Einstein’s law 
of gravitation (Section 9). 

We have tried to answer the question that we have heard so many times from 
John Wheeler [0]: “If one did not know the Einstein-Hamilton-Jacobi equation, 
how might one hope to derive it straight off from plausible first principles, without 
ever going through the formulation of the Einstein field equations themselves?” 
We know, of course, that John Wheeler will never be happy with our answer. He 
will either tell us that our first principles are actually second principles, or he will 
accept them as the first principles, but immediately start asking what the zeroth 
principles are. To honor his firm belief that not only people, but Nature herself 
must start from the beginning, we have started our numberings from 0. 
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1. EINSTEIN'S LAW OF GRAVITATION 

In 1913, Einstein in collaboration with Grossman [l] finally found the correct 
mathematical expression of the principle of equivalence which, in its intuitive 

form, has been around since the 1907 Einstein review article iiber das Relativitats- 
prinzip un die aus demselben gezogenen Folgerungen [2]. The idea, which is a part 
of common knowledge today, was to describe the gravitational field by IO com- 
ponents of the spacetime metric tensor and cast all physical laws into a form 
invariant with respect to general transformations of spacetime coordinates. In the 
1913 paper, however, Einstein did not succeed in finding a generally covariant law 
of gravitation. “We must stress that we do not have any basis for the general 
covariance of the equations of gravity,” he admits. The search for such a law was 
perhaps the most painstaking part of the evolution of the general theory of rela- 
tivity. At one stage Einstein believed that a generally covariant law of gravitation 

does not exist [3]: “It thus seems necessary that the differential equations for 
“g,,” also be generally coL>ariant. We will show, however, that this assumption must 
be slightly restricted, if we want to satisfy fully the principle of causality. Namely, 
we shall prove that the laws determining the flow of events in the gravitational 
field cannot be generally covariant.” It was only after more than 2 years of 

unsuccessful attempts that Einstein finally discovered in 1915 the correct form of 
the law according to which gravitation is produced by matter, 

4R Lx = KU-,, - $T “g,,), K = 8rrGc-4, 

or, as we prefer to write it today, 

4Ruc - 4 4R “g,, = KT,, . U-1) 

“This completes the construction of the general theory of relativity as a logical 
scheme. The postulate of relativity in its most general form which deprives the 
spacetime coordinates of any physical meaning, leads with iron necessity to a 
completely definite theory of gravitation, explaining the motion of the perihelion 
of Mercury,” Einstein concluded. In his final summary of the 9 years of work 
leading to the general theory of relativity, however, Die Grundlage der allgemeinen 
Relativitatstheorie [5], which has since become a classic, Einstein explicitly men- 
tions another assumption which points toward the law of gravitation (1.1): “The 
strongest argument in favor of the given equations is, however, that the conserva- 
tion equations for the energy and momentum components of the total energy 
tensor follow from them.” 

Several people apparently felt at the same time that Einstein’s derivation of the 
law of gravitation should be presented in a logically more compelling way. One of 
them was Cartan [6], who proved in 1922 that the most general second rank tensor: 
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(a) constructed in a coordinate-independent way from the metric tensor and 

its first and second partial derivatives, 

(b) having a vanishing divergence, 

cc> and linear in the second derivatives, 

is a linear combination of Einstein’s tensor 4R,, - 3 *R “g,, and of the metric tensor 
4gLK itself, 

G,, = K-~(~& - $ 4R ',yLK) + K-lx “g,, , 

(1.2) 
K = COnSt., h = const. 

Essentially the same statement appears in an Appendix to the fourth edition of 

Weyl’s book “Space, Time, Matter” which, in its German version [7], was published 
in 1921. Weyl quotes Vermeil [S] as the source of his theorems. He prefers, how- 
ever, to base his derivation of Einstein’s law on a variational principle. 
Max von Laue, who mentions the 1921 edition of Weyl’s book in the introduction 
to his own 1922 book on the general theory of relativity [9], proves essentially the 
same theorem as Cartan and uses it directly for the derivation of Einstein’s law. 
Asking for the law of gravitation G,, = T,, with the left-hand side G,, satisfying 
assumptions (a), (b), and (c), he is led uniquely to the Einstein law with the cos- 
mological term ;\ “gb, included, 

4R,, - 4 4R "g,, + x 4gLK = KT&~. (1.3) 

Requirement (a) is motivated by the “general principle of relativity” or “the 
principle of general covariance,” as different people prefer to call it (others care- 
fully avoiding the term at all). Requirement (b) formalizes Einstein’s statement 
that the laws of conservation of energy and momentum should follow from the 
field equations. In comparison with these natural requirements, assumption (c) 
seems rather ad hoc. Trying to make it plausible, one usually evokes the 
correspondence of Einstein’s law with the Poisson equation of the Newtonian 
theory of gravitation. It took almost 50 years to prove that assumption (c) is in 
fact unnecessary. Lovelock [lo] has recently found all second rank tensors G,, 
having properties (a) and (b). Curiously enough, the result depends on the dimen- 
sion n of space. For n = 4, which is the case of spacetime, Lovelock proved that 
the tensors G,, form exactly the two-parameter family (1.2). The same result follows 
also for n = 3; we shall have the opportunity to use it later. 

Thus, we may summarize the assumptions that lead to the derivation of Einstein’s 
law of gravitation: 

(1) The gravitational field is fully described by the spacetime metric tensor 
4gLK with signature (-, +, +, +). 
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(2) The source of the gravitational field is the symmetrical energy-momentum 
tensor T,, of all matter and nongravitational fields present in space. By the prin- 
ciple of equivalence, it satisfies the conservation law 

PK.. = 0. .h ( 1.4) 

(3) In any system of coordinates, the gravitational field is produced by the 
energy-momentum tensor T,, according to the second-order field equations 

Here, G,, is a tensor constructed entirely from the metric tensor 4g,, and its first and 
second derivatives in a way that does not depend on the system of coordinates. 

(4) The divergence of G,, vanishes identically so that the energy-momentum 
conservation (1.4) follows from the field equations (1.5). 

Assumptions (l)-(4) are very plausible, but they are by no means necessary. 
Modifying them, one gets alternative theories of gravitation [I 11. First of all, one 
can question whether the gravitational field is described by the symmetrical metric 
tensor and produced by the symmetrical energy-momentum tensor. Moving in one 
direction, one may think that more complicated objects are necessary. Some 
theories of gravitation assume that the basic gravitational variables are the tetrad 
vectors, which are produced by the generally asymmetrical canonical energy- 

momentum tensor and the spin tensor [ 121, or, as in the Jordan-Thiry-Brans-Dicke 
theory, one may think that a scalar in addition to the symmetrical tensor is needed 
to describe the gravitational field [13], or one may try to build a two-tensor theory 
of gravitation [14]. Another variation on this theme is the unified field theories [15]. 
The unified field is described by a sufficiently rich geometrical object (e.g., by a 
nonsymmetrical metric tensor plus a nonsymmetrical affine connection), the 
components of which are identified with the gravitational and electromagnetic 
variables. The unified field equations do not have an external source, but they may 
be cast into the form in which the electromagnetic variables are the source of the 
gravitational variables and the gravitational variables influence the behavior of 
the electromagnetic variables. 

Moving in an opposite direction, one may think that a less complicated object 
than the full symmetrical metric tensor is sufficient to describe gravity. An example 
is the Nordstriim theory [16], in which the gravitational field is described by a 
scalar and produced by the trace of the energy-momentum tensor. Einstein and 
Fokker [17] pointed out that by reducing the 10 components of the metric tensor 
to one independent component of a conformally flat metric tensor, Nordstrom’s 
theory may be interpreted both geometrically and physically within the framework 
of the general theory of relativity. 
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Even if one assumes that the components of the symmetrical metric tensor 

describe gravity and the components of the symmetrical energy-momentum tensor 
its source. one may still ask whether the law of gravitation must have the general 
form (1.5). 

At the very outset, one can imagine that the field-source relationship may be 
nonlocal. The Newtonian theory of gravitation started as a theory of action at a 
distance. Attempts to base electrodynamics on a similar basis made by Amp&e, 
Gauss. and Weber, actually preceded the Faraday-Maxwell electrodynamics. 
Action at a distance may be reconciled with the theory of relativity if one introduces 
retardation. Maxwell’s electrodynamics was reformulated as a theory of retarded 
action at a distance by Fokker [18] and Wheeler and Feynman [19]. The emission 

electrodynamics of Ritz [20] was also formulated as a theory of retarded action at 
a distance, with retardation depending on the velocity of the source. In the same 
spirit, relativistic theories of retarded gravitational interaction were proposed by 

PoincarC [21] and Whitehead [22]. In particular, Whitehead’s theory describes the 
gravitational field by a symmetrical tensor produced by the symmetrical energy- 
momentum tensor. 

If one accepts a local field-source relationship, one can still ask how local it 
should be. Ordinary fields in flat spacetime are governed by equations of at most 
second differential order. The order of the equations depends, however, on the 
choice of variables. Maxwell’s equations are of the first order in the field strengths, 

but of the second order in the electromagnetic potentials. Higher-order field 
equations were considered in electrodynamics by Podolski [23]. A similar situation 
exists in the theory of the gravitational field. The order of the equations depends 
on the choice of variables. For example, using both the metric tensor and the 
affine connection as independent variables (Palatini’s method), one casts Einstein’s 

law of gravitation into a set of first-order equations in the new variables, A higher- 
order law of gravitation for the metric tensor only is also conceivable. A long time 
ago, Eddington [24] investigated some fourth-order equations G,, = T,, for the 
metric field with the left-hand side still satisfying the identity GLKtK = 0. Many 
people paid attention to such laws afterwards [25]. The Schwarzschild solution, on 
which the standard experimental tests of Einstein’s law are based, satisfies 
Eddington’s equations. Similarly, the field equations of the Rainich-Misner- 
Wheeler already unified field theory [26] (which are equivalent to the Einstein- 
Maxwell equations reexpressed exclusively by means of the metric) contain an 
equation of the fourth differential order. 

Finally, let us mention why the clause “in a way that does not depend on the 
system of coordinates” is inserted into condition (3). If this condition is valid 
only in one system of coordinates (chosen either arbitrarily or by means of some 
coordinate conditions), one may, introducing supplementary variables charac- 
terizing this system of coordinates. obtain the form that the law of gravitation 
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assumes in any system of coordinates. Such a form, of course, contains the supple- 
mentary variables in addition to the metric tensor (some two-tensor theories may 

be constructed in this way). The clause is thus designed to prevent additional 
variables from entering the gravitational law by the back door. 

Granted assumptions (l)-(3), assumption (4) is necessary for the physical 
consistency of the theory. Otherwise, matter could produce the gravitational field 
according to the law G,, = T,, only if it was distributed uniformly in space with a 
density unchanging in time [ 111. 

One thus sees that Einstein’s original statement about the “iron necessity” with 
which the law of gravitation follows from the general principle of relativity must 
be taken with a pinch of salt. One must actually complement the general principle 
of relativity by other, more specific, assumptions, before Einstein’s law uniquely 
follows. Among these, the simultaneous restriction of the type and number of the 
gravitational variables and of the differential order of the field equations in these 

variables is vital. Playing with additional variables, one can reduce the order of the 
field equations, and, increasing the order of field equations, one can eliminate some 
of the variables. Finally, introducing a sufficient number of supplementary varia- 
bles, one can bring almost any theory into harmony with the general principle of 
relativity-a point first made by Kretschmann [27] and more recently raised 
against the general principle of relativity by Fock [28]. In any proof of the in- 
evitability of Einstein’s law, one must thus appeal at some stage to people’s 
conceptions about correct gravitational variables and about the differential order 
that the field equations are allowed to have. We have discussed this point in such 
detail to safeguard our own method of derivation of Einstein’s law against possible 

objections. In it, as well as in more traditional methods, a limitation of the basic 
gravitational variables is necessary. The differential order of the equations, however, 
is limited in our method only indirectly, through the requirement that geometro- 
dynamics be Hamiltonian. One can persuade the reader that he should accept such 
limitations only by appealing to his own beliefs, the method carrying the name 
argumenturn ad hominem. 

Einstein’s law (1.3) also may be derived from the principle of least action, 

8s’~’ = 0, 
(1.6) 

s”’ = s + stM’ = (2K)-1 j d4x (4R + 2x)(--g)l/2 + s dJX p(M). 

Variation of the gravitational action S with respect to 4gLK yields the left-hand side 
of Einstein’s law (1.3), whereas the variation of the matter part S”) of the total 
action So’) with respect to 4gLK yields the energy-momentum tensor. The Lagrangian 
density 9c”) depends, of course, on the matter field variables in addition to the 
metric tensor, and variation of these leads to the field equations for the sources. 
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The gravitational action was first written down by Hilbert [29]. Instead of 

arguing about the uniqueness of the left-hand side of Einstein’s law, one can argue 
about the uniqueness of the gravitational action. As we have already noted, this 
was done by Weyl in the fourth edition of his book [30]. In the preface he writes 
that “there are a number of small changes and additions, the most important of 
which are: . . . (2) We show that the reason that Einstein arrives necessarily at 
uniquely determined gravitational equations is that the scalar of curvature is the 

only invariant having a certain character in Riemann’s space.” The title of Appen- 
dix II of his book then explains what this certain character means: “Proof of the 
theorem that, in Riemann’s space, 4R is the sole invariant that contains the deriva- 
tives of the “gL, only to the second order, and those of the second order only 

linearly.” Nowadays, using the Lovelock theorem, we may drop the assumption 
that 4R depends linearly on the second-order derivatives of 4gLK. Though not as 
immediately intuitive as showing the plausibility of the structure of Einstein’s law 
itself, the argument about the uniqueness of the gravitational action amounts 
essentially to the same thing. 

Since the early days of Einstein, Cartan, and Weyl, many different ways of 
introducing Einstein’s law were presented. We refer an interested reader to Box 17.2, 
Six Routes to Einstein’s Geometrodynamic Law, in “Gravitation” by Misner, 
Thorne, and Wheeler [31]. The importance of alternate foundations of a basic 
physical theory cannot be overexaggerated. The conceptual reformulation of a 
theory may open a new path to its development or even lead to its modification. 
Thus, Feynman’s path-integral approach to quantum field theory led to the imple- 

mentation of powerful approximation techniques, and Faraday’s reformulation of 
action-at-a-distance stationary electrodynamics in terms of the field concept 
developed into Maxwell’s electrodynamics. In this spirit, believing in the potential 
fruitfulness of the canonical variational-differential approach to the general 
theory of relativity, we have undertaken the study of a Seventh Route to Einstein’s 
law in this paper. 

2. GEOMETRODYNAMICS REVIEWED 

Einstein’s law determines the spacetime geometry as a single entity. In itself, the 
spacetime geometry is as timeless as the Platonic world of ideas. It actually 
represents a complete and unabridged history of the gravitational field given all at 
once in a single volume. To see the history of the gravitational field unraveling, one 
must read this volume in one way or another. 

Such a dynamical viewpoint is important for the quantum theory of gravitation, 
where one would like to let only the dynamical degrees of freedom of the gravita- 
tional field be quantized. The historical route to quantization of a dynamical 
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system went along the line of the Hamiltonian formalism. In it, time plays a 
privileged role. To describe a field evolving in spacetime in Hamiltonian language, 
one should slice the spacetime by a spacelike hypersurface and observe how the 
canonical coordinates and momenta of the field change if we push the hypersurface 
forward or backward in time. To span the whole spacetime, it is sufficient to pick 
up a one-parameter family of hypersurfaces cutting spacetime like a loaf of bread 

into slices. Due to the arbitrariness of the spacetime coordinates, one may pick the 
time coordinate t so that each slice becomes a surface of a constant t. The question 
is: What are the canonical coordinates and momenta of the gravitational field? 

An answer to this question was proposed almost simultaneously by Dirac [32] 
and Arnowitt, Deser, and Misner [33]. ADM split the spacetime metric tensor 
“g,, into the spatial metric tensor gi, of the hypersurfaces of constant t, the lapse 
function N, and the shift functions Ni according to the scheme 

Here, gili is the inverse of the matrix gi, . It is used to raise the Latin 

indices throughout this paper. Then, discarding certain divergences, ADM brought 
the Hilbert gravitational action (1.6) into the form 

S = (2K)-1 [ dt 1 d3x Ngl”(KijKij - K2 + R - 2x). (2.2) 

Here, Kij is the extrinsic curvature of the slices t = const, 

Kij = &N-‘(-gij,o + Nilj + Njli). (2.3) 

The action (2.2) does not contain the time derivatives of the lapse and shift func- 
tions N and Ni ; such variables may be ignored when performing the Legendre 
transformation [34]. One passes from the Lagrangian form (2.2) of the action to 
the Hamiltonian form paying attention only to the remaining variables gii . At 
first, the momentum conjugate to the metric gii is introduced, 

__ = --(&-I gl/z(Kii - Kgij), 

and then the action (2.2) is transformed into 

S = s dt s d3.u (+jgij,o - NSF - Nix.). 

(2.4) 

(2.5) 
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The gravitational Hamiltonian is determined by the expressions A? and Zi, which 
are constructed solely from the canonical variables gij , +j, 

.# = Gijkl+j# - (2K)-1 g’/‘(R - 2h), (2.6) 

Giikl = 2K . ,t(gikgjl + gilgjk - gijgkllt (2.7) 

iq = -2??ijij. WY 

One calls 2 the super-Hamiltonian and Xi the supermomentum of the gravita- 
tional field. The supermomentum is linear in the canonical momentum +j. The 
super-Hamiltonian has a “potential term” -(km1 g1/2(R - 2h), which depends 

only on the canonical coordinates gij , and a “kinetic term,” which is a quadratic 
form of the canonical momentum. The coefficients Gij,r of this quadratic form may 
be interpreted as a normal hyperbolic metric in the space Riem (A’) of all (positive 
definite) Riemannian metrics [35]. They have the appropriate symmetries 

Gijkl = Gjikl = Gift, = Gpl;j . (2.9) 

We shall use the term “supermetric” for Gijrr . 
The matter action Pf) is also easily cast into the general form (2.5) if the matter 

Lagrangian P(l\f) does not depend on the derivatives of the metric tensor 4gLK . 
This holds, e.g., for the scalar or the electromagnetic fields. The canonical for- 
malism for fields with derivative gravitational coupling deserves a closer investiga- 
tion which we plan to undertake in the future. We are not considering such fields 
in the present paper. For the fields with nonderivative coupling, 

S'M' = ’ 
J s 

dt d7s (v&A,0 - N$pM’ - Ni&w’j), (2.10) 

where p are the field variables and nA their conjugate momenta. The super- 

Hamiltonian Xc”) and the supermomentum X(“)Z of matter depend only on the 
field variables CA, 7r,, and the spatial metric tensor. For example, the scalar field 
described by the standard Lagrangian 

2(&f) = -;(4gkK+,L$,K + &p)(-4g)V" 

leads to the super-Hamiltonian 

(2.11) 

(2.12) 

and the supermomentum 

2PM)i = Tr,$+*i. (2.13) 

Note that the supermomentum (2.13) does not depend on the metric. This is not 
accidental, but holds for an arbitrary matter field. 
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The total action ScT) is the sum of the gravitational action S and the matter 
action S(lf), 

with 

s(T) = 
r i’ 

dt d3.y (#jgfj,o + rA+A,O - N%(T) - IVS+?(T)~), (2.14) 
. 

&Q’T) = 2 + &%w, (2.15) 

&@mi = Xi + &%wj . (2.16) 

The action (1.6) is to be varied with respect to the spacetime metric “gL, and the 
matter field variables. When the spacetime metric tensor is split according to 
Eq. (2.1) and the canonical momenta n ij and rrA conjugate to the spatial metric 

tensor gij and to the field variables #+ are introduced, we must vary the modified 
action (2.14) with respect to the lapse and shift functions N, Ni, the spatial metric 

gij , its conjugate momentum i+, and the conjugate field variables p and nTTA . 
Varying with respect to the field variables, we recover the field equations of the 
source. Varying with respect to the geometrical variables gij , &j, N, Ni , we recover 
the Einstein law of gravitation in the canonical form. 

To eliminate an arbitrary t-labeling, we introduce the labeling-independent 
quantities 

sg,j = gij,O sr, &.ij = &j ,o 64 

SN = N St, SN’ = Ni St, (2.17) 

sp = +“,. St, s?r, = 7TA,0 St. 

Also, we condense our notation by extending the summation convention to con- 

tinuous spatial lables: whenever .X is written as an index, the integration over a 
repeated x is implied. For example, 

Xi, SNi.” = J d3s Xi(xj) SNi(.S). 

With this understanding, the Hamilton equations take the form 

Sg,(x) = [g,,(x), s~Y)~,] SN”’ + [g,,(x), TW’~~*] SNI’“‘, (2.18) 

S+j(x) = [+(x), z-W),/] SN”’ + [d(x), s’V’~~,] SN”“‘, (2.19) 

S+A(x) = [p(x), A-,,] SN”’ + [p(x), AYkz,] SNkz’, (2.20) 

ST,~(X) = [vrA(x), c~?“~)~,] SN”’ + [r,(x), e%f’*‘k,/] SNkz’. (2.21) 

Evaluating the Poisson brackets (2.18), (2.19), we may, of course, restrict 
ourselves to the gravitational variables gij ,7~ ij, treating the field variables +A, rA as 
given functions of x. Similarly, in the Poisson brackets (2.20) (2.21), we may treat 
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the gravitational variables g,j , +j as given functions of x. Also, because Z(lLI) and 
Z(“Ji do not depend on the gravitional momentum, we may replace ~5~) and 
Z’tTji in Eq. (2.18) by X and & . We may conveniently summarize the content 
of Eqs. (2.18)-(2.21) by saying that the change of an arbitrary functional F of the 
canonical variables gij , +j, $“, z-A from one slice to another is given by the formula 

SF = [F, ~YP”~] 6iV” $ [F, s-P-‘~~] &V”. (2.22) 

We must still vary the action (2.14) with respect to the lapse and shift functions 
N, Ni. Doing so, we obtain constraints on the variables gij, &j, c$“, rA , 

gym q = 0, Z’TJi = 0. (2.23) 

The constraints (2.23) must be preserved from one slice to another by the 
Hamilton equations of motion (2.18)-(2.21). Due to the arbitrariness of 6N and 
6Ni, this is possible only if the Poisson brackets of the constraints (2.23) are 
expressible as some combinations of the original constraints themselves. To see 
what this combination is, one may at first evaluate the Poisson brackets of the 

gravitational super-Hamiltonian (2.6) and supermomentum (2.8) by brute force, 
getting [36] 

[2?(x), X(x’)] = P(x) 6,,(x, s’) - S(x’) s,f(x’, x), (2.24) 

L%(x), Wx’)] = X(x) 6*i(X, x’), (2.25) 

[&(X), ZJ(S’)] = s(X’) 6,j(Xg X’) + *j(X) 6,i(X, X’). (2.26) 

One may then argue that the matter super-Hamiltonian and supermomentum 
should follow suit, leading to exactly the same Poisson bracket relations (2.24)- 
(2.26) for the total quantities. To see how the argument works, let us first consider 
the Poisson bracket of two super-Hamiltonians, 

[sv)(x), .7w’(x’)] = pqx), &?(x’)] -I- [2w”(x), X(x’)] 

+ [iqx), 3P”(X’)] $- [s@““(x), TP’)(x’)]. 

The first Poisson bracket on the right is given by Eq. (2.21). The next two Poisson 
brackets cancel each other, because 

and X(x’) is local in &jJ” and Sfif)(x) is local in gijzp , so that the variational 
derivatives yield expressions proportional to &functions. Because ~5~~~) does not 
contain the gravitational momentum &j, the only chance to make the Poisson 
bracket [SF)(X), X(~)(s’)] proportional to ?Ycr) or s?‘(‘)~ is that s?(~~)‘s satisfy 
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exactly the same relation (2.24) as X’s do. This can be, of course, checked for any 
particular source, as, e.g., for the scalar field (2.11), (2.12). 

The same argument may be applied to the closing relation (2.26), the mixed 

Poisson brackets [Si(x), S’““j(X’)] vanishing because s’?~(x) contains only the 

gravitational and Z(“)j(~‘) only the field variables. The situation is somewhat 
more complicated for the closing relation (2.25) as [&(x), sV’~)(.Y’)] = -2 
(S~(“)(x’)iSgij(x)),~ does not vanish due to the dependence of S”)(Y) on the 
metric. However, one may still argue that 

[&Q’“‘i(x), 2’~‘(Xl)] = 2 ( sT;;;y )li i a-%) S,i(X, x’> (2.27) 

in order that the Poisson bracket [sF)~(x), S@‘(~)(Y)] yields a combination of the 
total expressions SC)(x), #(T),i(~). 

To compare Eqs. (2.18) (2.19), and (2.23) with the Einstein law in the spacetime 
notation (1.3), one uses at first Eq. (2.18) to express the gravitational momentum 

+j in terms of the “velocity” gij,, and the lapse and shift functions N and Ni . In 
this way, one gets the same result as by using the formulas (2.3) and (2.4). When 
the expression for the momentum is substituted into the constraints (2.23) they 
become the L = 0, K = 0, k components of the law (1.3) and when it is substi- 
tuted into the second set (2.19) of Hamilton’s equations, these equations yield the 
remaining components L = i, K = k of the law (1.3). 

The Einstein law in the form (1.3) characterizes the spacetime geometry *gL,( as 
a single entity. On the other hand, the Hamilton equations (2.18), (2.19) tell us 
how the spatial metric g,j of a slice changes if we push the slice forward by the 
amount 6N and stretch it by the amount 6Ni. Exploring all different slices means 
exploring all different ways in which the original slice may be deformed. The 

momentum that carries a three-geometry of a slice into a three-geometry of a 
deformed slice is not arbitrary, but it is subject to the constraints (2.23). The 
spacetime geometry must be reconstructed from the spatial geometries g,, of the 
slices and their stacking SN, 6Ni, just as a movie is reconstructed from individual 
stills. The Hamilton equations (2.18) (2.19) however, represent not a single 
movie, but a many-track movie, because of the different ways in which the slice may 
be deformed. Regarding the single spacetime geometry as a many-track movie of 
spatial geometries is a viewpoint that John Wheeler called geometrodynamics. 

Geometrodynamics may be pure or driven by sources. Jn both cases, any 
functional of the canonical variables changes from one slice to another according to 
Eq. (2.22). In both cases, the super-Hamiltonian 8(r) and supermomentum 
L%‘(~)~ which generate such a change are afterwards constrained to vanish, Eq. (2.23). 
In both cases, the Poisson brackets of super-Hamiltonians and supermomenta 
close in the same way, (2.24)-(2.26). These equations provide the general rules 
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according to which dynamics proceeds, with or without sources. But next comes 

the actual structure of the super-Hamiltonian and supermomentum. For pure 
geometrodynamics without sources, the super-Hamiltonian and supermomentum 
are quite specific functions (2.6)-(2.8) of the geometrodynamical variables gij , +‘. 
Moreover, if we add a source that is coupled to the gravitational field in a non- 
derivative manner, the gravitational super-Hamiltonian and supermomentum do 
not change. Rather, the matter super-Hamiltonian and supermomentum describing 
the particular source are simply added to the gravitational super-Hamiltonian and 

supermomentum to yield the total expressions. Thus, one may conclude that the 
expressions (2.6)-(2.8) describe the gravitational field even in the presence of 
sources. The coupling comes only through the fact that the matter super-Ham% 
tonian contains the spatial metric g,? which lowers and raises the indices carried by 
the field variables so that XfM) 1s a scalar density with respect to the change of 

spatial coordinates on the slices. Giving the specific S-P(~) and Z(“)i constructed 
from specific field variables means giving a specific source of the gravitational field. 
For example, giving the expressions (2.12) and (2.13) constructed from 4 and n, as 
field variables means that the gravitational field is produced by a scalar field which 
is subject to the linear “wave equation.” 

One would like, however, not only to write down the basic geometrodynamical 
equations, but one would also like to understand intuitively their geometrical and 
physical meaning. Of course, Eqs. (2.18)-(2.21), (2.23), and (2.6))(2.8) are equiv- 
alent to Einstein’s law of gravitation and the field equations for the source. They 
thus stem from the same basic postulates (l)-(4) which determine the form of 
Einstein’s law. However, this way of deriving the geometrodynamical equations is 

long and tedious, some steps being carried more by force than by a feeling of 
purpose. The meaning of the original assumptions has thus been lost on the way. 

This raises the problem of deriving geometrodynamics directly from some first 
principles rather than by a formal rearrangement of Einstein’s law. This problem 
has been raised repeatedly by John Wheeler, who concentrated his attention on the 
gravitational super-Hamiltonian (which, as one can see, contains all pure geo- 
metrodynamics in a nutshell) and asked why this super-Hamiltonian has the 
structure that it actually has instead of some other structure. For example, what 
would happen if the super-Hamiltonian contained a potential term other than 
--(2~)-l gl/‘(R - 2A), say CLgl’“RijRij? If Einstein’s law is inevitable, such a 
modified potential must be excluded. But what natural requirement, formulated 
directly in the geometrodynamical language, does exclude it? 

A desire to have geometrodynamics derived from purely geometrodynamical 
principles is esthetical in its origin. There is, however, yet another motivation for 
undertaking such an enterprise. The language of geometrodynamics is much closer 
to the language of quantum dynamics than the original language of Einstein’s 
law ever was. One could foresee, e.g., that the equations (2.22) arise directly from 
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the quantum dynamics as the Heisenberg operator equations. Thus, one may hope 
that the first principles of geometrodynamics can be adapted more readily to the 
quantum theory and lead to a deeper understanding of how the macroscopic 
spacetime theory grows from the quantum geometrodynamical roots. 

The key to the direct derivation of geometrodynamics lies in the Poisson bracket 
relations (2.24)-(2.26) between the super-Hamiltonian and supermomentum. In 
the usual derivation of geometrodynamics from the Hilbert action principle, these 
relations are merely checked after the structure of the super-Hamiltonian and 

supermomentum in the canonical variables is already known. We would like to 
put the horse before the cart and argue that the gravitational super-Hamiltonian 
is what it is because it must satisfy the Poisson bracket relations (2.24)-(2.25). But 
why are these relations themselves “inevitable”? 

3. DEFORMATIONS OF A HYPERSURFACE 

The Poisson bracket relations (2.24)-(2.25) are inevitable because they express 
the fact that the dynamics inevitably takes place on spacelike hypersurfaces 
embedded in a Riemannian spacetime with signature (-, +, +, +). To follow 
how a field develops when we prescribe it on a spacelike hypersurface and then 
push and deform this hypersurface through spacetime is simply what dynamics is 
all about. It does not matter if we are following a field changing in spacetime 

with a prescribed geometry, or the dynamics of the geometry itself. or finally 
the dynamics of a field curving the geometry and propagating on this geometry 
and together with it towards a common future. In the last resort we are always 
studying some field variables, extrageometrical or geometrical, on all slices across 
a spacetime that was given in advance or arose during the dynamical process. 
The deformations of hypersurfaces in a Riemannian spacetime observe a simple 
geometrical pattern. Any dynamics taking place in a Riemannian spacetime must 
reflect the structure of this pattern. The best way to start studying u’yr~~nzics is to 
abstract from any particular dynamics and investigate the pattern of deformations 
of spacelike hypersurfaces in a Riemannian spacetime, i.e. the kinenzatics of 
spacelike slices. 

One of the questions we would like to answer is how the signature of spacetime 
is mirrored by this pattern of deformations. We thus treat both signatures, 
(-, +, +, +) and (+, +, +, +), of the spacetime metric “g,, at the same time, 
introducing the indicator E, which distinguishes between these two cases. 

The geometrical nature of the closing relations (2.24)-(2.26) of the super- 
Hamiltonian and supermomentum was anticipated by Dirac when he derived them 
for a parametrized field dynamics in a prescribed Minkowskian spacetime [37]. 
The geometrical construction underlying Dirac’s argument was recognized by 
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Teitelboim [38], who presented a general derivation of the closing relations (2.24)- 

(2.26) independent of Dirac’s assumptions that the background is Minkowskian 
and that the parametrized field theory super-Hamiltonian and supermomentum 
have a particular form. Kuchaf separated the geometrical construction from the 
language of Hamiltonian dynamics in which it was formulated and cast it [39] into 
a kinematical language borrowed from the theory of infinitely dimensional groups 
[40]. Our review follows the last method of presentation. For the figures illustrating 
the geometry of the closing relations, see the paper by Teitelboim [38]. 

A three-dimensional hypersurface embedded in a four-dimensional manifold is 
given when we know in which points 4g of the manifold the points V of the 

hypersurface lie, 4P = 4P(3g). Our hypersurface is thus a “marked hypersurface,” 
the points of which are individually identifiable. If it were a two-dimensional 
surface in a three-dimensional space, we could visualize it as a rubber membrane 
with points identified by pencil marks. If the membrane occupied the same position 
in space, but were differently stretched along this position, we would speak about 
two different surfaces. In other words, we use the word “hypersurface” to mean “an 
embedding of a three-dimensional manifold (space) in a four-dimensional manifold 
(spacetime)” [41]. Introducing an arbitrary system xi of intrinsic coordinates in the 
hypersurface, and an equally arbitrary system of coordinates XL in the embedding 
manifold, the hypersurface is specified by four functions of three coordinates, 

X’ = xfxi). (3.1) 

Equation (3.1) tells us that the point of the hypersurface carrying the intrinsic label 
xi is located in spacetime at the point carrying the spacetime label XL. 

Jn geometrodynamics, we limit our attention to spacelike hypersurfaces. We 

thus assume that the spacetime is equipped by a four-dimensional metric “gL,, 
given either a priori or developed by the dynamical process governed by the 
Einstein’s equations. The spacetime metric “gL, induces the spatial metric 

(3.2) 

on the hypersurface XA = Xyx). The hypersurface is spacelike if the metric (3.2) 
is positive definite. 

The set of all spacelike hypersurfaces is so important that it deserves to be given 

a name; we will call it hyperspace. A spacelike hypersurface is a single point in 
hyperspace and the four functions X(xi) of three coordinates xi in Eq. (3.1) limited 
by the condition that the metric (3.2) is positive definite are the coordinates of a 
point in hyperspace. In the following, “hypersurface” always means a spacelike 
hypersurface. 

We can displace a marked hypersurface in two different ways. We can either 
leave its overall position in the embedding spacetime unchanged, but stretch it 
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differently along the spacetime points which it occupies, or we can deform it into a 
new position. Is there a way of deciding whether such a deformation is a pure 
deformation without any unnecessary tangential stretching? Fortunately, the 
embedding spacetime has a Riemannian structure that helps us to distinguish (by 
definition) pure deformations from deformations plus stretchings. A deformation 

is pure if the marked point of the hypersurface moves along a geodesic of the 
embedding spacetime starting perpendicular to the original hypersurface (Fig. 1). 
Pure deformation is characterized by a single function: the proper time 7(xi) which 
the point xi of the hypersurface travels until it reaches its new position in spacetime. 

FIG. 1. Pure deformation. The pure deformation d[+)] takes the point xi of the initial 
hypersurface and displaces it by the proper time ~(9) along the geodesic (of the embedding space- 
time) which starts normally to the hypersurface. 

Similarly, pure stretching is characterized by three functions ,9(x9. It is the 

operation which takes a point xj of the hypersurface and displaces it along the 
hypersurface to a position which was previously occupied by a point Xi. Pure 
stretching is nothing else but a diffeomorphism in the three-dimensional manifold 
A3; the stretchings thus form an infinitely dimensional group, Diff(JZ3). 

Every deformation may be decomposed into a pure deformation and a pure 
stretching. This is especially easy for infinitesimal deformations 6X, 

6X‘ = 6N llL + &vi x;. (3.3) 

Here, the displacement vector &XL(x) connecting two points with the same intrinsic 
label x on two neighboring hypersurfaces is decomposed into normal and tangential 
components (Fig. 2), The three vectors Xi = XL,I are tangential to the hypersurface 
and IZ~ is the unit normal to the hypersurface, 

4gL,nLtf = c, 4g‘,n”X; = 0. (3.4) 
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FIG. 2. Decomposition of deformations. Every deformation may be decomposed into a pure 
deformation and a pure stretching. Such a decomposition is illustrated here for infinitesimal 
deformations. The displacement vector 8X6(x) connecting two points with the same intrinsic label 
x on two neighboring hypersurfaces is decomposed into a normal part 6N w and a tangential 
part SNiX:. 

The coordinates of the point on the first hypersurface from which the normal must 
be erected to pierce the point with the coordinate -yyi on the second hypersurface 
are xi + 6Ni, which gives the meaning to the “infinitesimal shift,” 6Ni. The proper 
time separation of the two hypersurfaces in the normal direction defines the 
“infinitesimal lapse,” SN. The infinitesimal lapse and shift as calculated from the 
decomposition formula (3.2) are 

6N = EII, 8X‘, 6Ni = 3-f 6X”. 

Each deformation is characterized by the functions Xi(xj) and I of the pure 
stretching s[Zi(xj)] and the pure deformation d[~(xj)] into which the original 
deformation D may be decomposed. It seems plausible that the deformations thus 
form an infinitely dimensional manifold, though we do not attempt to check this 
statement in its strictly technical sense. One would further hope that the law of 
composition of the two deformations 

Dtl) = D[X;,,(x'), q1)(x3)] and Dc2) = D[X";,,(?), T(~)(.Y~)] 

turns this manifold into a 4c03-dimensional Lie group. This expectation is not 
fulfilled; due to the fact that the pure deformation requires for its definition the 
metric structure 4gLK of spacetime, one cannot write the composition law in terms 
of the functions ?(xj), T(x~) alone, without reference to the hypersurfaces X(xi) 
on which the deformations act. 

One can define, however, the generators of infinitesimal deformations. To do 
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that, take an arbitrary functional F defined on hyperspace. To every hypersurface 
XL(xi), this functional assings a number 

F = F[Xfxi,]. 

We would like to know how this number changes if we deform the hypersurface 
by an amount SN(x) and stretch it by an amount &V’(x). Using the decomposition 

(3.2), we get 

F = (8Nx A$ + 6Nix c?&) F, (3.5) 

where we have introduced the operators 

Using the language of manifolds and diffeomorphisms, we call X(x) the generator 
of the pure deformation, and Zi(x) the generator of the stretching. 

To see how the generators act on a particular functional of the hypersurface, 

we take for F a component gik(x) of the intrinsic metric of this hypersurface at 
a point s, 

g&x) = Jg,,(XA(x)) x;(x) x;(s), (3.8) 

and apply to it the operator X(X’). We get 

= 1+(x’) gL&v(X)) X%(x) x;(x) 6(x, s’) 

+ n”(x’) g‘,(xa(x))(x;(x) 2$S,,(x, s’) + 8;xgx) 8,j(X, x’)). (3.9) 

Using Eq. (3.4) and the identity 

a(x’) 6,j(X, x’) b(x) = a(x’) 6,i(X, x’) b(d) - u(x) 8(x, x’) b,i(X), (3.10) 

which holds for arbitrary test functions a(x) and b(x), we cast Eq. (3.9) to the form 

X(X’) * g,,(X) = -2Kjj(X) 6(X, X’), (3.11) 

where Ktj is the extrinsic curvature of the hypersurface, 

(3.12) 
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Equation (3.11) will turn out to be important later, showing that the super- 

Hamiltonian must be a purely local function of the geometrodynamical momentum. 
The generators 3(.x> and G??(X) span the tangent space to hyperspace at each 

hypersurface XL(xi). However, unlike the coordinate-induced basis S/SX1(xi), 
the basis Z(x), &(.u) is a nonholonomic one. Therefore, the Lie brackets between 
the generators Z(x), C$(-u) do not vanish. We can easily evaluate these Lie brackets 
once we know how the normal of a hypersurface changes under the deformation 
of the hypersurface. 

6/Z” -e /?‘(XK + SX”) - nL(X”) 
(3.13) 

The geometrical meaning of formula (3.13) is discussed in [39]. There it is also 

shown in detail how to calculate the Lie brackets. Here, we shall simply write the 
final answer which is 

[X(x), MY] = +P(x) 8,,(x, x’) - Ayx’) 8,i(x’, s)), (3.14) 

[-w;.(x). iqx’)] = -3iq.u) 6,i(s, x’), (3.15) 

[2qx), &,(x’)] = 7$.(x’) 6,,,.(x, 2) - x;,.(x) 8,/(X, x’). (3.16) 

The nonholonomic basis A“(x), Zj(x) has an important advantage over the coordi- 
nate-induced basis 6/6X(xi): It does not depend on the choice of spacetime 
coordinates XL. Thus, geometrokinematics may be described in terms intrinsic 
to the hypersurfaces themselves. 

The spatial metric gij explicitly enters into the commutation relation (3.14), 

raising the index of the supermomentum. This once again reflects the fact that the 
generators Z(x), .Fi(x-) do not belong to a true group, as the corresponding 
“structure constants” are not constants, but depend through g” on the point in 
hyperspace on which the deformation acts. Eergmann and Komar [42] proceeded 
to close the algebra (3.14)-(3.16) and arrive thus at a true group. In our approach, 
however, the original unenlarged structure plays the central role. 

4. CANONICAL REPRESENTATIONS 

In Section 3, we confined our attention to the kinematics of deformations of 
a slice cut through a Riemannian spacetime. iVow we are ready to return to 
dvnamics again: Define a field on this slice and watch how it changes under pure 
deformations 6N and stretchings 6Ni. In Hamiltonian language, the field is 
described by a set of canonically conjugate variables. The dynamics of the field 
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is governed by a super-Hamiltonian Z’tT) and a supermomentum ZtTbi constructed 
from these variables. The dynamical rule is simple: The change 6F of an arbitrary 

functional F of the canonical field variables under the deformation 6N” and the 
stretching SNix of the slice is given by the Poisson brackets of F with %,. and .wji, , 

6F = [F, s’?‘~‘~] 6N” + [F, &‘(T)ia] aNi”. (4.1) 

The super-Hamiltonian sts’Jz and the supermomentum &?(T)iz push the field 
by means of the Poisson brackets (4.1) just as the generators (3.6) and (3.7) push 
the hypersurface XL(x) by means of the operator action (3.5). In order that the 
dynamics of the field be consistent with the kinematics of the slice deformations, 

the field pushers should combine their actions in the same manner as the generators 
do. This motivates the basic postulate that we make in this paper: The super- 
Hamiltonian &‘(=) and the supermomentum 8 lTJi should be constructed from the 
canonical field variables in such a way that their Poisson brackets close exactly 
as the commutators of the corresponding generators. In other words, thery should 
represent the generators of deformations. 

When we say “close exactly as,” we mean actually “close up to the sign as.” 
Indeed, one can see in Section 2 that the super-Hamiltonian and supermomentum 
close according to the relations (2.24)-(2.26), which differ in a “hyperbolic” 
spacetime (6 = -1) only by a sign from the commutation relations (3.14)-(3.16). 
The difference in sign is due to the convention that the generators act on the func- 

tionals of hypersurfaces from the left: Had we let them act from the right, the signs 
of the commutation relations and the closing relations would coincide. Under 
our convention, when the dynamical variable a represents the generator A, and 
the dynamical variable b represents the generator B, then the Poisson bracket 
[a, b] represents the commutator [B, A], not the commutator [A, B]. We thus see 
that the dynamical theories that we studied in Section 2 provide different canonical 
representations of the generators of deformations. 

To construct a permissible relativistic field theory from scratch, without taking 
recourse to spacetime Lagrangians, one starts by representing the commutation 
relations (3.14)-(3.16). Depending on what variables one allows as the canonical 

field variables of the theory, i.e., which cotagent bundle of which configuration 
manifold one selects as the carrier of the canonical representation, one gets several 
different types of canonical representations. We describe them as they naturally 
follow one after another. 

1. Field Theories on a Prescribed Spacetime Background 

At the start, let us take the spacetime as given. It does not matter if it is flat or 
curved: We simply prescribe its spacetime metric 4gLK(XA). Then we pick up a 
hypersurface (3.1) and calculate its intrinsic metric g&x) by Eq. (3.8). A field that 
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propagates on our given spacetime background is described on this hypersurface 
by its canonical variables p, rTTA . We try to build up GV(~~) and %t”Ji from these 
variables in such a way that the Poisson brackets between the ti“bf)‘s and between 
the z&‘(‘$‘)~‘s satisfy the closing relations (2.24), (2.26). The expression for &?f”) 
may explicitly depend on the metric g&x); in fact, ZtM) must depend on it, because 

otherwise the metric could not appear on the right-hand side of the closing relation 
(2.24). The spatial metric, however, is treated as a prescribed function of .X and not 
as a canonical variable when evaluating the Poisson brackets. This disturbs the 
remaining closing relation (2.25) when applied to Zen-I) and JF’~)~ alone. One 
cannot represent the original closing relations (2.24)-(2.26) while keeping the metric 
fixed. In fact, we have seen that Eq. (2.25) must be replaced in this case by 
Eq. (2.27). An example of Xthf) and &Qfji which satisfy the modified closing 
relations (2.4) (2.26), (2.27) was given in Section 2, where we have treated the 
scalar field super-Hamiltonian and supermomentum (2.1 I ) and (2.12). A systematic 
way of arriving at these expressions without referring to the spacetime Lagrangian 

is discussed in [43]. 
Once we possess @A~‘) and Z(,‘rJi , we may freely prescribe the field variables 

4’. r-4 on the hypersurface F = XL(s) and evolve them to a deformed hyper- 

surface by using equations (2.20), (2.21). The parameter equation of the deformed 
hypersurface is determined from Eq. (3.2) and the intrinsic metric of the deformed 
hypersurface again calculated from Eq. (3.8). Repeating this process step by step, 

we propagate the fields +“, rr.., to any hypersurface. 

11. Parametrized Field Theories on a Prescribed Backgroutld 

To obtaine a true representation of the original commutation relations (3.14)- 

(3.16), one should include the metric among the canonical coordinates in one way 
or another. In parametrized field theories, we do not introduce all six components 
of the spatial metric gij(-X) as canonical coordinates. Rather, we introduce the four 
hypersurface variables XL(x) as canonical coordinates, prescribe the spacetime 
metric “g,,(F), and express the spatial metric by means of XL(x) using Eq. (3.8). 
Conjugate to X‘(X) are four momenta 17,(x). Parametrized theories were discussed 
in the past only on the flat background [44]. It turns out that the expressions 

(4.2) 

constructed entirely from the hypersurface variables XL and IlrL satisfy the closing 
relations (2.24)-(2.26). Moreover, if we add to the expressions (4.2) the corre- 
sponding expressions constructed for a field propagating on the background (as 
discussed in Section 4.1), the resulting expressions still satisfy the closing relations 
(2.24)-(2.26). We shall study the parametrized field theories on a curved back- 
ground in another paper. 
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III. Pure Geometrodynamics 

The transition from the special theory of relativity (prescribed flat background) 
to the general theory of relativity is traditionally achieved by the “principle of 
equivalence.” In this transition, the spacetime metric 4gtK(Xh), which is treated 
as prescribed in the special theory of relativity, is suddenly “unfrozen” and turned 

into a field variable by the general theory of relativity [45]. The transition from 
a field theory on a prescribed background to geometrodynamics is accomplished 
in a similar way. 

Studying the commutation relations (3.14)-(3.16), one observes that the only 
quantity (except the super-Hamiltonian and supermomentum) that ever explicitly 
enters into them is the spatial metric tensor gjj(x). Despite the fact that the com- 
mutation relations were derived by drawing spacetime pictures, the full spacetinre 
metric drops out of them and the spatial metric is the only entity left over. When 
seeking the canonical representations of the commutation relations (3.14)-(3.16), 
a natural idea presents itself: Is it not possible to represent them by using the spatial 

metric gij(x) and a conjugate momentum as the sole canonical variables? In this 
sense, we are asking for a minimal representation, which would use as canonical 
coordinates only those variables that necessarily enter into the commutation 
relations. The conjugate momentum @(.x) is, of course, needed as a subsidiary 
quantity to build a canonical formalism. As this stage, however, we do not ascribe 
to it any geometrical meaning. It is introduced through the single property of 
being canonically conjugate to the metric gjj(x), which means that it satisfies the 
Poisson bracket relations 

[g&), ?7yu’)] = 6$(x, s’) = ;(s:s; + sps:, 6(x, s’). (4.3) 

The true geometrical meaning of the momentum z-~~(.x), namely, its relation (2.4) 
to the extrinsic curvature, automatically emerges after the minimal representation 
for the super-Hamiltonian and supermomentum is actually found. Let us note, 
however, that nxij(x) must be a tensor density of weight 1 in order that the form 
&jZ 6gijl, be labeling independent. 

The momentum +j(x), as a matter of fact, is not uniquely determined by the 
Poisson brackets (4.3) with gi,(.y). If the momentum rij(s) satisfies the relations 
(4.3), the new momentum 

(4.4) 

satisfies the same relations. Here, fl is an arbitrary scalar functional of the metric. 
In order that the canonical transformation (4.4) does not depend on the labeling, 
the functional/l itself should not depend on the labeling, i.e., it must be a functional 
of the spatial geometry 3Y only: fl = fl[“9]. It is well known that the canonical 
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transformation (4.4) is the only freedom that we have in picking up the momentum 
conjugate to gij . 

The main aim of our approach is the proof that the super-Hamiltonian (2.6), 
(2.7), and the supermomentum (2.8) of the Einsteinian geometrodynamics in 
vacuum provide the only representation up to the canonical transformation (4.4) 
of the generators of deformations of spacelike hypersurfaces embedded in a 
Riemannian spacetime by means of the spatial metric gij and a conjugate momen- 
tum nz” as the sole canonical variables [43, 461. 

IV. Driven Geometrodynamics 

Nobody can prevent us, however, from using more canonical variables than the 
metric gij(x) and a conjugate momentum +(x). In fact, once we possess #CM) 

and &+“ji constructed from the additional field variables @‘, rTTA (and the undiffer- 
entiated metric gij(x) treated as a prescribed function of x) and satisfying the 
modified closing relations (2.24). (2.25) (2.27), we may add them to the gravi- 
tational super-Hamiltonian (2.6) and supermomentum (2.8) and arrive thus at 
the total quantities that represent the commutation relations (3.14)-(3.16) when 
both g,j, rr’j and $A, nA are considered as canonical variables. Knowing how to 
generate systematically the super-Hamiltonians and supermomenta of various 
fields with nonderivative gravitational coupling propagating on a prescribed 
spacetime and representing the commutation relations (2.24) (2.26), (2.27), we 
know that adding them to the unique gravitational super-Hamiltonian and super- 

momentum, we switch these fields on as the sources of the metric field on which 
they propagate. We thus obtain geometrodynamics driven by these source-fields. 
The described process of constructing the field super-Hamiltonians and super- 
momenta on a prescribed background with a subsequent switching on mechanism 
working by the simple addition of Xcnr) and Znr)i to the purely geometro- 
dynamical expressions may be taken as a formulation of a “geometrodynamical 
principle of equivalence.” 

5. CONSTRAINTS 

Our requirement that the super-Hamiltonian and supermomentum represent 
the generators of deformations was motivated by the desire that they propagate 
the field consistently from an initial hypersurface and create thus the field in the 
whole spacetime. What is meant by a consistent propagation is best summarized 
by the principle of path independence: If the same final marked hypersurface is 
reached from an initial marked hypersurface by two different sequences of inter- 
mediate marked hypersurfaces (by two different paths), the final field calculated 
from the initial field by means of formula (4.1) along each of these two paths is 
the same. 

595/96/1-8 
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If deformations formed a true group, the representation requirement would be 
a straightforward formal expression of the principle of path-independence. But 
the generators S(x), Xi(x) do not form a true group, which is reflected by the 
fact the spatial metric explicitly enters into the commutation relation (3.14). 
The relation of the representation requirement to path-independence thus becomes 
more tricky. It depends vitally on our reluctance or willingness to include the 
spatial metric tensor among the dynamical variables. In field theories on a pre- 
scribed background, the path-independence of the field evolution is equivalent to 
the requirement that Xc”) and Xt”ji represent themodifiedcommutation relations. 
In pure or driven geometrodynamics, the representation requirement in itself 
does not ensure the path-independence of the geometrodynamical evolution. 
(This is true for parametrized field theories as well.) One must restrict the evolution 
to that submanifold (“reduced phase space”) of the full phase space on which 
the total super-Hamiltonian and supermomentum vanish, &‘cr) = 0, JY~)~ =T 0. 
Otherwise, the data cannot be propagated in a path-independent way. The fact 
that the generators of deformations do not form a true group and the “structure 
constants” are not true constants turns out to be really important in this context- 
it points toward the necessity of imposing the initial value constraints [38]. 

The logical interconnection among the representation requirement, the principle 
of the path independence, and the constraints, which we are going to prove, is 
the following: We assume that the representation requirement is fulfilled, namely, 
that the Poisson brackets between the super-Hamiltonians and the supermomenta 
close in the same way as the commutators (3.14)-(3.16) between the generators 
of the normal and tangential deformations of a hypersurface. Under this assump- 
tion, we prove that the geometrodynamical data gij , +j evolve in a path-inde- 
pendent way only if they satisfy the initial value constraints Z(r) = 0 = Zcrji . 
In the proof, we use the infinitesimal version of the path-independence principle, 
passing from the initial hypersurface to the final hypersurface along two different 
two-step paths, and evaluating the changes in gij , &j to the second order in the 
infinitesimal lapse function SN. 

In the proof, we concentrate on the commutation relation (3.14) which is the 
only one containing the metric. This commutation relation describes two 
elementary paths by which the same final marked hypersurface is reached from the 
initial hypersurface (Fig. 3). The first path is a sequence of two deformations: 
a normal deformation SNc,, followed by a normal deformation SNe, . The second 
path is built from the same normal deformations performed in the reversed order, 
6Nc,, first and i%Vc,, second, followed by the stretching 

The commutation relation (3.14) tells us that the stretching (5.1) is exactly what is 
needed to compensate for the reversed order of normal deformations and thus to 
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arrive (up to terms quadratic in SN) at the same final marked hypersurface. Indeed, 
multiplying the commutation relation (3.14) by SNf,,(x) 6N&x’) and integrating 
it over x and x’, we get the operator equations 

with 6N a’Z given by Eq. (5.1). Realize now that the operators 6Nx Z-, and 8Ni,C Ti, 
applied to special functionals F[XAJ of XA, namely, to XA themselves, yield the 
changes of XA under normal deformations and stretchings, respectively. Applying 
the operator equation (5.2) to XA thus leads immediately to our pictorial represen- 
tation of the commutation relation (3.14). Similar pictorial representations may 
be given for the other two commutation relations, (3.15) and (3.16). Actually, one 
may start from the composition pictures like Fig. 3 and, looking at their geometry, 
derive the commutation relations (3.14)-(3.16), as was done by Teitelbeim [38]. 

8Ni 
,* 

FIG. 3. Composition picture. The stretching SN’ = --Eg”(GN(,)SN~2),, - 6N(,)6N(l),j) is 
needed to compensate for the I.eversed order of the pure deformations d[SN(,)], d[SN(J and thus 
to arrive (up to terms quadratic in SN) to the same final marked hypersurface. 

Now take a field prescribed on the initial hypersurface and propagate it to the 
final hypersurface along each of these two paths. The change of an arbitrary 
functional F of the canonical field variables under each step is given by Eq. (4.1). 
Composing the individual steps and consistently keeping all terms up to the second 
order in 6N, we get 

SF = (SN;,, i SN;,)[F, XcT?J + j(SN;, SN;; + 2SN;, SN& + SN;, SN,“,;;) 

:.’ [[F, X(T’T], 3CO(T)2,] (5.3) 

for the change in F when going along the first path. Similarly, going along the 
second path, 

SF = expression (5.3) with SN,,, and SN(,) interchanged + SNi5[F, X(T)i3.]. (5.4) 
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The evolution is path independent if the changes (5.3) and (5.4) are equal. Using 
the Jacobi identity and the arbitrariness of SN(,,(x) and SN&s’), we get 

[F, [X(T)(X)j X(“(X’)]] = S,j(.Y, X’) gi’(.Y)[F, cF’T”i(X)] 

- S3j’(X’, X) gi’(X’)[F, cT’T’j(X’)J (5.5) 

as a condition for path-independence. Similar conditions follow from the other 
two commutation relations, (3.15) and (3.16). 

In Eq. (5.5) the metric gij stands outside the Poisson brackets. This is due to 
the fact that the displacements SNx and SW” stand outside the Poisson brackets in 
the propagation equation (4.1), so that SNi” given by Eq. (5.1) also appears outside 
the Poisson bracket in Eq. (5.4). This is a fundamental point in the argument and 

we will discuss it later in detail. 
In geometrodynamics, the metric is a canonical variable and cannot be taken 

inside the Poisson brackets without compensation. Even if the representation 
requirement is fulfilled, the geometrodynamical evolution is path-dependent unless 

S,j(X, x’)(Lw’i(x)[F, g”j(x)] + 2w’j(X’)[F, gij(x’)]) = 0 (5.6) 

for every F. Choosing for F the geometrodynamical momentum G(xn), we conclude 
from (5.6) that 

2P-‘i(x) = 0. (5.7) 

The same conclusion may be reached in parametrized field theories, where gij(x) 
is expressed through the hypersurface variables Xc(x) as canonical coordinates. 

It is sufficient then to take for F the conjugate momenta n,(x”). 
The constraint (5.7), of course, should hold on any hypersurface. It must there- 

fore be preserved under the pure deformation of the hypersurface, 

SsfW~(x) = [Z”ji(x), Af(T)z,] SN”’ = 0. (5.8) 

This forces on us another constraint, 

Tiyx) = 0, (5.9) 

through the closing relation (2.25). The path independence leads therefore in 
geometrodynamics and in parametrized field theories to the constraints (5.7) 

and (5.9). 
Return now to the fundamental point on which the whole argument rests, 

namely, that the infinitesimal lapse and shift should be written outside the Poisson 
brackets in the propagation equation (4.1). If they were written inside, no need 
for imposing the constraints would arise. Surely, life would be simple if the lapse 
and shift could be always considered as given functions of x. Unfortunately, they 
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cannot be considered as such in the path-independence argument, because the 
shift (5.1), which is necessary to close the path, depends on the metric, which is 
a canonical variable in geometrodynamics. Quite independent of that, one some- 
times wants to specify how to deform the hypersurface by looking at its geometrical 
features, the intrinsic geometry and extrinsic curvature. This often happens in 

the general theory of relativity when one imposes coordinate conditions. In cases 
like these, the lapse and shift functions depend on the canonical variables and one 
should know whether to put them inside or outside the Poisson brackets in the 
propagation equation (4.1). 

To make the decision, one should simply stick to the interpretation of this 
equation: It tells us how the functional F changes if we deform and stretch the 

hypersurface by the amounts 6N(x) and aNi( The only thing that matters when 
calculating such a change is clearly the numerical value of &V(x) and GW(x) at the 
point x and not a possible functional dependence of the lapse and shift on canonical 
variables. The functional F on the deformed and stretched hypersurface is what it 
is and does not care about whether we specify the hypersurface in a way that 
depends on the geometrical properties of the initial hypersurface or not. For 
example, the change of the metric gfj(x) under the stretching 6N’((x) should 
always be given by the Lie derivative 

even if the infinitesimal shift 6Nk depends on the metric, as in Eq. (5.1) or even if 
it is constructed entirely from the metric, e.g., 6Ni - gijR,, One can check 
directly that in such cases Eq. (5.10) follows from the evolution equation (4.1) 
with the supermomentum (2.8) only when 8Ni is written outside the Poisson 
brackets. 

Once the decision to write the lapse and shift outside the Poisson brackets 
is made, the constraints (5.8), (5.9) follow from our path-independence argument. 
And once the constraints are imposed, it does not actually matter if we put the 
lapse and shift outside or inside the Poisson brackets -the difference between these 
two options is automatically killed by the constraints. The whole formalism 
becomes nicely self-consistent. 

The line of our argument shows very clearly that for a parameterized field theory 

the constraints arise from the fact that the hypersurface variables XL (the many- 
fingered time) are included among the canonical variables. The constraints them- 
selves prove to be definitions of the energy and momentum densities IT, through 
the dynamical degrees of freedom $“, 7rA of the field which evolves in the given 
spacetime. In geometrodynamics, all six components gij of the metric tensor are 
taken as canonical variables on the same footing, no clear distinction being made 
between the four hypersurface variables and the two gravitational degrees of 
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freedom. In the constraints themselves, one does not know what the energy and 
momentum densities are. For an analysis of this hidden nature of time, see 
Kuchai [47]. 

6. GEOMETRODYNAMICS AND REVERSIBILITY 

Through Sections 6 to 8, we limit our attention to pure geometrodynamics. 
At the end, we would like to regain the super-Hamiltonian (2.6), (2.7) and the 
supermomentum (2.8) as canonical representation of the generators of deformations 
in terms of the metric gij(x) and a conjugate momentum 7+‘(x). Certain features of 
the gravitational super-Hamiltonian and supermomentum, however, may be 
conveniently discussed without knowing their exact structure in terms of gij 
and +. In this section, we shall study one such feature: The time-reversibility of 

the geometrodynamical evolution. 
Let us start by noting that if the functionals Z(.v)Cgij , +j] and ,X,(x)[ gij , +] 

satisfy the closing relations (2.24))(2.26), then the functionals 

2(x->[gij, +j] 2~ X(.x>[gij, -+I, 

z&(x)[g,j ) ,q 27 -x~(x)[gij ) - 7rq 
(6.1) 

also satisfy them. Thus, if we were to find a realization of the closing relations 
(2.24)-(2.26) that did not have a definite parity in the momentum, we would know 
that the realization of these closing relations is not unique. The barred functionals 
(6.1) would provide a different realization. 

In Section 2, we have seen how to split the spacetime metric “g,, into the spatial 
metric gi, and the lapse and shift functions. The splitting formula (2.1) tells us 
that time reversal 

t-t?= -t (6.2) 

leaves the spatial metric and the lapse unchanged, but reverses the sign of the shift. 
We can now clarify the meaning of the barred quantities 2 and g . Namely, 
when 2, -Y?‘~ generate the spacetime 

gij(~y3 t>, N(.Ut t)t Ni(X, t>, (6.3) 

then 2, 2: generate the time-reversed spacetime 

,itfj(X, f) E gij(X, t), 

rn(x, f) = N(x, t), 

F(x, t> = -W(x, t). 

(6.4) 
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To show this, we actually prove a slightly more elaborate statement which is: 
When 

g&G t>, 7+(x, t) (6.5) 

solve the Hamilton equations of motion 

f  g[j(.U) = [gjj(X), N”‘XJ.’ + Nk‘“‘Xk,‘], (6.6) 

4 7+(x) = [7+(x), N”‘Xx, + N7=‘cq,,] (6.7) 

generated by the super-Hamiltonian and supermomentum 

with the prescribed lapse and shift functions 

then 

Wx, t), Wx, t>, 

gjj(X, f) z gfj(Xy t), +(x, i) =: -&(x, t) 

solve the Hamilton equations of motion 

(6.9) 

(6.10) 

f  ,fjj(X) = [g’. &)) P’,& + iv~‘2gx:‘], (6.11) 

P’2&] (6.12) 

generated by the super-Hamiltonian and supermomentum 

2(X)[&j ) iiq = Z(x)[ gij ) Trq, 

z&(x)[& ) 7P-J = -3&(x)[gij ) z-q 
(6.13) 

with the lapse and shift functions 

m(x, i) = N(x, t), mi(x, i) = -Ni(x, t). (6.14) 

The proof itself is a simple check that the transformation of time (6.2) coupled 
with the transformations (6.10) of the canonical variables, the transformation (6.14) 
of the lapse and shift functions, and the change (6.13) of the super-Hamiltonian 
and supermomentum carry the Hamilton equations (6.6), (6.7) into the Hamilton 
equations (6.1 l), (6.12). 
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We say that geometrodynamics is reversible when the time reversed spacetime 
is generated by the same super-Hamiltonian and supermomentum as the original 
spacetime. Stirctly speaking, we could allow the two super-Hamiltonians and super- 
momenta to differ by a canonical transformation (4.4), but let us disregard this 
trivial complication. From Eqs. (6.1) we see that reversible geometrodynamics 
must be generated by a super-Hamiltonian which is an even and a supermomentum 
which is an odd functional of the momentum rrij. 

This helps us to understand why the ADM super-Hamiltonian (2.6) is quadratic, 
and the ADM supermomentum (2.8) is linear in the momentum &j. Conversely, 
if we believe strongly that geometrodynamics should be reversible, we may impose 
reversibility as an additional postulate and thereby simplify the arguments leading 
to the recovery of the ADM super-Hamiltonian. We shall follow this line in 
Section 9. However, it seems more open to doubt today than before the discovery 
of the C-P violation that geometrodynamics must a priori be reversible. It is 
thus comforting to learn [43] that the closing relations (2.24)-(2.25) themselves, 
without any additional assumption about reversibility, inevitably lead back again 
to Einsteinian geometrodynamics, which is time-reversible. Therefore, no irre- 

versible geometrodynamics exists! 

7. SUPERMOMENTUM REGAINED 

The first stage in recovering pure geometrodynamics is to find the gravitational 
supermomentum Zi that would satisfy the closing relations (2.26). The second stage 
then proceeds to the reconstruction of the super-Hamiltonian that would satisfy 
the closing relations (2.24) and (2.25). When it comes to the question of determining 
the super-Hamiltonian, the closing relations (2.24) and (2.25) themselves must do 
the job. On the other hand, we have a direct handle on the supermomentum. The 
difference is due to the fact that the super-Hamiltonian predicts what we shall find 
on a deformed hypersurface, and we have never before been on the deformed 
hypersurface to see what is there, whereas supermomentum merely reshuffles 
the data on the initial hypersurface, and we can easily foresee what data we shall 
find after the reshuffling. 

In Fig. 4, a marked hypersurface fixed in spacetime is displayed. At each space- 
time point along the hypersurface, a field variable grows, symbolized by a flower. 
The stretching of the marked hypersurface that takes the point carrying the label 
xi and displaces it to the point that previously carried the label xi + &Vi is 
accomplished by the operator S?P.%&. The field variable that one finds at the 
new position is the one that grew there before, but one refers it to the stretched 
system of original labels xi. In formal language. the variable F + SF, which is 
found after the stretching at the point carrying the label x differs from the variable F, 
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which was found before the stretching at the point carrying the same label x by 
the Lie derivative with respect to 6NL, 

SF = ,&+F. 

r 
F 

x xi 

I 

+gsNi 

s 8N [ 

(7.1) 

FIG. 4. Supermomentum regained. Field variables growing along a hypersurface are sym- 
boiired by flowers. The stretching s[SN&] takes an old point carrying the label xi into a new point 
which previously carried the label xi + SN’. The field variable F + SF found at the new point 
and referred to the stretched hypersurface differs by the Lie derivative EsNIF from the variable 
F found at the old point before the stretching. 

Equation (7.1) is a kinematical equation, which must hold for an arbitrary 
field F defined along the hypersurface. In a dynamical theory, the generator of the 
stretching is represented by the supermomentum and the same change in F may 
be calculated from the propagation equation (4.1) with i3N = 0. The comparison 
with (7.1) yields the condition 

&,+F == 6Np’“‘[F, s?‘(~‘~,~,]. (7.2) 

Equation (7.2) holds for a field @, z-A growing on a given spacetime background 
as well as for the geometrodynamical field gij , r+ itself. Here we apply it to the 
geometrodynamical variables gij , v ij. We already know that gij is a tensor and 
?F a tensor density of weight 1 and so we easily write down the appropriate Lie 
derivatives, 
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Because Eq. (7.2) holds for an arbitrary SNk(x), we extract from it the functional 
derivatives of Zk(x’) with respect to gij(x) and +(x): 

S3if&‘) 
-.- = -+j*~(x) 6(x, x’) - d’(x) S,,(s, s’) 
SgfLs) 

+ T&Y) s;.sJx, x’) + ny.u> S&(x, x’), (7.4) 

S=@7c(x’) m = gij,ktx) st X7 X’) + gik(X) S,j(X, X’> + gkj(-y> S,i(X, X'>. (7.5) 

Equations (7.4), (7.5) have a solution if their right-hand sides satisfy the 
integrability conditions following from the interchangeability of variational 

derivatives, 
S2Xk(X’) s2~k(x’) 

S7Fy.x~) Sg,,(s) = sgij(x) s7i”yxy . 

If they do, the solution sk(x’) is unique up to an “integration constant” h,(x) 
independent of gij(x) and &j(x). It is easy to check that the integrability conditions 

are identities in the S-functions, and it is equally easy to check that the solution 
of Eqs. (7.4)-(7.5) is 

%2(x) = --2&,(X) +mlm(X) -I- h,(x). (7.6) 

Finally, if expressions (7.6) are to satisfy the closing relations (2.26), we must put 
the function h,(x) equal to zero. This we would do anyway, because we do not 

want to introduce any new function (in addition to the canonical variables gij(X) 
and &j(x) themselves) into the theory. We have thus regained the gravitational 
supermomentum (2.8). 

8. SUPER-HAMILTONIAN REGAINED 

Here we finally come to the core of our derivation of Einsteinian geometro- 
dynamics. We have seen that certain basic kinematical relations are satisfied 
in an arbitrary Riemannian spacetime. In particular, the Lie brackets between 
the generators of the normal and tangential deformations of a hypersurface 
close in a definite way, Eqs. (2.24) and (2.25). These equations hold in hyper- 
space, the Lie bracket operations taking place between two vector fields in 
hyperspace. The representation requirement states that the Poisson brackets 
between the super-Hamiltonian A?(X) and the supermomentum Xi(x), which are 
considered as functionals defined over the geometrodynamical phase space 
{ gij(x), 7@(x)}, close in the same way as the Lie brackets between the corresponding 
generators in hyperspace. Further, we know that in an arbitrary Riemannian 
spacetime, the normal deformation of a hypersurface induces the change (3.11) 
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of the intrinsic metric g,j(x). We require that the intrinsic geometry gii(x), con- 
sidered now as a canonical coordinate in the geometrodynamical phase space 
{ gtj(.Y)) 7+(x)}, be changed through its Poisson bracket with the super-Hamiltonian 
according to the same equation, in which the extrinsic curvature is considered as 
some undetermined functional defined over the geometrodynamical phase space(the 
fucality repirement). We will prove that the only time-reversible super-Hamiltonian 
S(s)[ gij(.V), &j(x)] which satisfies the representation requirement and the locality 
requirement is the ADM super-Hamiltonian (2.6), (2.7). 

We start with the closing relation (2.25). Its meaning was deciphered a long time 

ago by Dirac [44]. If we multiply it by an arbitrary shift G/Vi(x) and integrate over x, 
we get 

[X(x’), yicz] SNix = (X(x’) &V(X’)),~, . 63.1) 

The left-hand side of Eq. (8.1) gives the change of X(x’) under the stretching 
&Vi”. The right-hand side of Eq. (8.1) is just the Lie derivative #&X’(x’) of a 
scalar density of weight I. Equation (8. I) tells us therefore that Z(x) must be 
constructed from the canonical variables gij , +j in such a way that it transforms 
like a scalar density of weight I under the relabeling of the hypersurface. 

Another important piece of information about the structure of X’(x) may be 
extracted from Eq. (3.11) which specifies the change of the metric gfj(.x) produced 
by the action of the generator 2(x’) of a pure deformation. In geometrodynamics, 
the metric becomes a canonical variable and the same change is produced by its 

Poisson bracket with the super-Hamiltonian. Equation (3.11) then reads 

SX(X’) 
____ = [gij(X), X(X’)] IZT -2Kij(X) 6(X, S’). 
W’(s) (8.2) 

The extrinsic curvature Kij(X) in the canonical theory becomes a functional of 
the canonical variables gij, +. At this stage we do not have the slightest idea 
what functional it might be. However, the S-function on the right-hand side of 
Eq. (‘8.2) tells us something important, that the super-Hamiltonian X(x’) must be 
a strictly local functional of the momentum &j(x), i.e., a fhzctiorz of +(x’) taken 
at the same point x’ at which the super-Hamiltonian 2(x’) is evaluated. This still 
does not mean that geometrodynamics must be a local theory, because 8(x’) 

may be nonlocal in the metric g,j(x’). Nevertheless, the pure locality of Z?(Y) 
in the momentum xi+?) substantially simplifies all further arguments. 

We are now finally prepared to analyze the last remaining closing relation, 
namely, that between two super-Hamiltonians (Eq. (2.24)). The first thing to 
observe is that this relation may determine r ij only up to the canonical trans- 
formation (4.4). This transformation does not change the supermomentum, 
because the variational derivative 6fl/6g,j(.X) of a labeling-independent functional 
fl[“F] is automatically divergence-free. The right-hand side of the closing relation 
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(2.24) thus remains untouched by the canonical transformation (4.3). On the other 
hand, any canonical transformation, by its very definition, leaves all Poisson 
brackets unchanged. Therefore, if a super-Hamiltonian X(X)[ gij , n’j] satisfies 
the closing relation (2.24), the new super-Hamiltonian obtained from it by the 
substitution &(,x) + T+(X) + 6fl[39]/6gij(x) also satisfies it. The substitution 
changes the functional form of the super-Hamiltonian, but leaves the physical 

content of the theory unaffected. What one ultimately wants to prove is that the 
canonical transformation (4.3) is the only freedom left to the super-Hamiltonian 
by the closing relation (2.24) with the supermomentum already fixed to the form 
(2.8) by the considerations of Section 7 [46]. 

The proof of this statement is naturally carried through in the Lagrangian 
version of geometrodynamics obtained from the Hamiltonian version by a 
functional Legendre transformation. The role of velocity is played there by the 
extrinsic curvature Kjj . In the transformed closing relation, the even and odd 
velocity parts of the geometrodynamical super-Lagrangian decouple and may be 
determined separately. The even velocity part corresponds to the ADM super- 
Hamiltonian (2.6). The odd velocity part leads to the gauge degree of freedom 
(4.3). In this paper, we stick to the Hamiltonian geometrodynamics and derive 

the ADM super-Hamiltonian (2.6) from the closing relation (2.24) under the 
simplifying assumption of time reversibility. This assumption automatically 
removes the odd momenta terms which couple with the even momenta terms in the 
Hamiltonian method and enables us to explore the structure of the super- 
Hamiltonian by a simple recursive procedure. We expand the super-Hamiltonian 
in (even) powers of the momenta v in and substitute this expansion into the closing 
relation (2.24). The comparison of the lowest order terms (those linear in the 
momenta) already fixes the super-Hamiltonian up to the quadratic term into its 
standard form (2.6) (2.7). Comparing the cubic and higher-order terms in the 
closing relation (2.24), we get a set of recursive equations for the coefficients of 
the quartic and higher-order terms in the expansion of 2. All of these equations 

have the same basic form and it is easy to prove by induction that the higher-order 
coefficients must actually vanish, which leaves us finally with the purely quadratic 
gravitational super-Hamiltonian. 

So, let us restrict ourselves to the time-reversible Hamiltonian geometro- 
dynamics. We know then that the super-Hamiltonian 2 must be, after a possible 
canonical transformation (4.3), an even functional of the momenta Gj. We have 
also just learned that it must be a function of the momenta rather than a functional. 
Therefore, if we take this function and expand it in terms of the momenta, only 
the even powers will survive, 



GEOMETRODYNAMICS REGAINED 123 

The coefficients (21f)G- 71Jlz2~2...iln~a,, are assumed to have the appropriate symmetries: 

with respect to an interchange of indices i, tf ,j,, within an i, j, pair, and with respect 
to an interchange i,,,j,, t+ ihjb of pairs. They are some unknown functionals of the 
metric g,, . The superscript (2~) indicates the order of the term; for most of this 
section, however, we shall simply omit it, as the order of the term is recognized 
by the number of indices which the coefficient carries. Because S(X) must be a 
scalar density of weight 1 and +(x) is a tensor density of weight 1, the coefficient 
(2n’G. ?l’lZzlz...iZnj2n must be a tensor density of weight 1 - 2~. 

Substitute the expansion (8.3) into the Poisson bracket 

[Gqx), Aqx’)] = $p ;$g - (x f+ x’), 
11.1 w 

(the symbol (x f--f a’) denotes “the same terms with the lables x and x’ inter- 

changed”) and evaluate it up to the terms cubic in &. This yields 

Write the right-hand side of the closing relation (2.24) in the form 

2 
i 

d3.u” 7P(x”)(S(x, Y) S,&, x’) - S(x’, x”) s,ky(x’, x)) 

and compare it with the terms linear in Gz m E q. (8.4). Introduce the abbreviation 

F&x, x’) = 
SG(X) 

~- Gijki(x’), 
sgij(x’) 

and get the equation 

F&x, x”) 6(x’, x”) - F&c’, x”) 6(x, x”) 

= 6(x, x”) S,,,(.r, x’) - 6(x’, x”) 6 ,g&‘, x). (8.6) 

When handling the a-functions and changing the partial derivatives into covariant 
derivatives with respect to the spatial metric, it is good to remember that 6(x, x’) 
is a scalar in the first and a scalar density of weight 1 in the second argument. 

Integrating Eq. (8.6) with respect to s, we can express F,J.r’, s”) in terms of 
the integrated function 

F,,(Y) -z [ d”s F,,(s, s’) (8.7) 
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and the &functions as follows: 

Fkl(X’, XC) = -sl&X”, x’) + FkL(X’) S(XI)) x). (8.8) 

Substituting the expression (8.8) back into the original equation (8.6), we get an 
identity. Equation (8.8) is thus the only conclusion we may draw from the closing 
relation (2.24) by comparing the terms linear in the momenta. 

Recalling the original meaning (8.5) of the function Fkl(x, x’), we can determine 
from Eq. (8.8) the variational derivative 6G(x)/6gi,(x’). To do that, define the 
inverse Gkzmn(x) of the supermetric G,&x) by the formula 

G&x) Gkzmn(x) = S;% = &(SyS; + S;Sy). (8.9) 

Such an inverse must exist in order that Eq. (8.2) can be used to calculate the 

geometrodynamical momentum # in terms of the extrinsic curvature Kij (which 
plays the role of the goemetrodynamical velocity). Notice that Gijk’l does not arise 
from Gijkl through raising of the indices by the contravariant metric tensor gii. 
In fact, we shall find it convenient to raise the symmetrical pairs of indices by this 
“covariant supermetric” according to the rule 

A,,,(x) --+ P(x) = Gkzmn(x) A,,(x). 

This we do in Eqs. (8.8), (8.5), writing them in the form 

(8.10) 

SW4 
sg,j(x?= - Gi’yx’) &‘(X’, x) $ Fyx) 6(x, I’), 

fW(*) E ’ - d3x’ G(x’). 
s&Tij(x> 

s 

(8.11) 

Equation (8.11) tells us that the functional G(x)[gJ is in fact a function of the 
metric gij(x) and its partial derivatives to the second order; if it depended on the 
higher-order derivatives of the metric. the variational derivative with respect 
to g&x’) would yield a higher derivative of the S-function than the second. Further, 
because the zero-order coefficient G(x) is a scalar density of weight 1 constructed 
in a form-invariant way from the metric tensor only, we may invoke the well 
known theorem of Riemannian geometry [9] and conclude that G(x) can depend 
on gij(x) and its derivatives only through the quantities gij(x) and R&x). Let 
us further simplify the calculations and use the fact that the physical space is 
three-dimensional. The Riemann tensor RijkL of a three-dimensional space is 
expressible by means of the Ricci tensor R,j and the metric gij , so that we may 
finally write 

G(X) = G(gtj(x), Rij(x))- (8.12) 
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The form of the potential G(x) may be completely determined from Eq. (8.11). 
Varying Eq. (8.12), we get 

SG(x) = @j(x) Sgij(x) + @““(x) SR,,(x), (8.13) 

where 

#j(x) = Wg&L &(x)) 
agdx) 

and (8.14) 

Q”“(x) = aG(g,,(x), &dd) 
a&, 

are symmetrical contravariant tensor densities of weight 1 constructed locally from 
g&x) and R,,(x). The variation of the Ricci tensor may be written in the form 

6R,, = Smni’kl 6g,jl,, + Smai’6gij. (8.15) 

The coefficients 

have the following symmetries: S,, iikz is symmetrical in m et II, i tj j, and k t) I, 
and symmetrical in the interchange of pairs ij t) kl, whereas Smnij is symmetrical 
in m t) n, and i ++ j. Substituting for 6R,, into Eq. (8.13), we get the variation 
of G, 

The coefficient of 6gij in Eq. (8.18) is symmetrical in i ~,j and, due to the sym- 
metries of the expression (8.16), the coefficient of agijlkl has all the symmetries of 
a supermetric: i t-) j, k f--f I, and ij tf kl. 

On the other hand, the variation of G may also be determined from Eq. (8.1 l), 

Wx) 

sG(x) = Sgija! 
__ Sgsjzt = -(GijkL Sgij),,, + Fij 6gij 

= (-@j”‘\ck + F”j) Sgij - 2Gi’“‘il Sgif/k - Gijkz Sgijikl . (8.19) 
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When comparing Eqs. (8.18) and (8.19) it is important to realize that, at a given 
point x, 6gij and 6gijll; are completely arbitrary. The antisymmetric part 6gjjl,, 

of 6g,jl,, , of course, depends on 6gij through 

The antisymmetric part of 8gijlkl is, however, automatically killed by the symmetry 
of the coefficients in Eqs. (8.18) and (8.19); this was our motivation for writing 
6R,,, in the form (8.15)-(X.17) rather than in other conceivable equivalent forms. 
It is vital that the symmetric part Sg,jl,, of 6gfjl,, does not depend on 6gij and 
6gijl, and may be chosen arbitrarily. Thisallows us to extract from the comparison 
of expressions (8.18) and (8.19) three sets of equations: 

Gij7.7,z = 0, (8.21) 

Equation (8.20) tells us that the supermetric G ijkz is determined by the potential G 

through the quantity @j = aG/aRij . According to the next equation, Eq. (8.21) 
the supermetric has a vanishing divergence. We show in a moment that this 
condition fixes aij and with it the potential G. The last equation, Eq. (8.22) then 

becomes an identity. 
Substituting the supermetric (8.20) into Eq. (8.21), we get the condition 

z@ijlk - @iklS _ @kli + 2gij@kZ,1 - gik@l,, - gif@,jZ,, = 0. (8.23) 

Equation (8.23) is equivalent to its antisymmetrized form in the inducesjk: 

@ijl7; _ @pik[j + gij@7:z,, _ gik@jz,z = 0. (8.24) 

Contracting Eq. (8.24) in the indices ij, we obtain the relation 

(W + Qg”“),, = 0. (8.25) 

Equation (8.25) tells us that the divergence of a certain tensor density constructed 
in an invariant way from the metric tensor and its first and second partial derivatives 
vanishes. We may thus apply Lovelock’s theorem [lo] and conclude that 

@7;2 + @,kZ = pgV(R”~ - 3Rgkl) - (&-I glPg’il, (8.26) 

K and p being some constants. 
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Determining sPkz from Eq. (8.26) and substituting it back into the original 

equation (8.24) we get the condition 

It is impossible to satisfy it for a general 3-geometry unless p = 0. Thus 

@kZ == -(&- gWgk2. (8.27) 

Recalling that @jkL = %G/%R,, , we easily integrate Eq. (8.27) and obtain G, 

G = -(2K)-lg1j2(R - 24, (8.28) 

picking up an integration constant h. Finally, substituting the expression (8.27) 
into Eq. (8.20), we recover the “covariant” supermetric 

Gijk? = (zK)-l &l/2(,,pgjZ + giZgj7~ _ '&ijgkZ). (8.29) 

Dewitt’s supermetric (2.7) is just the “contravariant” form of the supermetric 
(8.29) as one can easily check using the formula (8.9). 

Returning to Eq. (8.22) one sees that all terms containing the Riemann tensor 
cancel each other when the expression (8.27) for @j is used. One calculates Fij and 
@j from the potential (8.28) according to their definitions (8.11) and (8.14), 
and checks that Eq. (8.22) turns into an identity. 

The closing relation (2.24) taken to the terms linear in the momentum # thus 
ensures that the super-Hamiltonian has the standard form (2.6), (2.7) to the terms 
quadratic in the momentum. It remains to be proved that Gijkzn,npn and, in fact, 
all further expansion coefficients (2n)G, IZ 3 2, must vanish. Go back to the 
expression (8.4) and consider the terms cubic in &. Because we already know 
that the supermetric is purely local in the spatial metric gii(x), the cubic term con- 
taining Gijkz vanishes after the commutation of the lables x and x’. The remaining 
term has a famihar structure. Just as we have passed from the closing relation 
(2.24) in the first order to Eq. (8.6), we pass in the third order to the equation 

F ~<znm~~(x, x') 8(x', x") - Fklm&', x) 6(x, x") = 0, (8.30) 

with F. Lzn,ngn(~~, .x’) introduced as an abbreviation 

Integrating Eq. (8.30) with respect to s’, we conclude that the expression 
F. LzmnBQ(~, x’) is proportional to the a-function, 

F ~mnz&, x'> = &z,n&) Sk .Q 
(8.32) 

F klmnp*(X) = J d3x' FkZ,,D,n(X', -r>. 

595!96/I-9 
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On the other hand, substituting Eq. (8.11) into Eq. (8.31) we learn that the same 
expression contains the term 

with the second derivative of the &function. This term must therefore vanish, 
which means that, due to the invertibility of the supermetric, the coefficient 

Gijlih?lDU must vanish. 
Complete the proof by induction. Assume that the coefficients c4)G, @)G,..., (Zn-3)G 

already vanish. Calculate the term of the order 2n - I in the Poisson bracket 

[S(X), Z(Y)]. This term is equal to 

and it must vanish in order that the closing relation for the X’s be satisfied. By 
the same reasoning which led us to the equation t4)G = 0, we conclude that 
czn)G = 0 for n > 2. This shows that the Einsteinian geometrodynamics in vacuum 
is the only purely geometrical time-reversible representation of the generators 
of deformations of a spacelike hypersurface embedded in a Riemannian spacetime. 

We have seen in Section 3 that the only difference between the indefinite and 
positive definite spacetimes is the indicator E on the right-hand side of the com- 

mutation relation (3.14). If we had repeated the argument of this section with 
E = + 1, we would have arrived at the same supermetric, but the potential term 
would reverse its sign, becoming 

+(2K)-1 g+‘(R - 2x). 

The signature of spacetime is thus reflected in the relative sign of the “kinetic” 
and “potential” terms in the super-Hamiltonian. This may be important for the 
proper identification of the internal time and energy variables. 

9. DISCUSSION 

We are now in a position to look back and see how our reconstruction of 
Einsteinian geometrodynamics proceeded. We summarize the basic postulates 
and compare their function within our scheme with the function of the Weyl- 
Cartan-Lovelock postulates. 

The leading idea of our approach is to carry certain structures defined over 
hyperspace into corresponding structures defined over the geometrodynamical 
phase space. Hyperspace is defined here as a collection of all spacelike hyper- 
surfaces considered as embeddings of space in a Riemannian spacetime. The 
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tangent space to hyperspace at a hypersurface is spanned by the generators of the 
normal and tangential deformations of the hypersurface (pure deformations and 
pure stretchings). These generators form a moving frames basis. The Lie brackets 
between the generators close in a characteristic way, Eqs. (2.24)-(2.26). Because 

of the normalization of the generator of pure deformation, the closing relation 
between the generators contains explicitly the intrinsic metric of the hypersurface. 
The differential geometry in hyperspace is discussed in detail in the separate 
paper [48]. 

While hyperspace is constructed over a given Riemannian spacetime, geometro- 
dynamics wants to generate this spacetime by an evolution of geometry in the 
goemetrodynamical phase space. The principles of evolution are summarized in the 

I. EVOLUTION RULE. Hamiltonian geometrodynamics describes how the geo- 
metrodytzamical cariablcs change when we deform the hypersurface by the amount 
6N(x) and stretch it by the amount 8NL(s). In pure geometrodlvzamics, the metric 
gi,(.u) and its conjugate momentum 4(x) are regarded as the sole canonical 

variables. There exists a super-Hamiltonian Z(x)[ gij , 3ri1] am1 a supermomentum 
Zk(x)[gij , +] constructed etrtirely from the canonical variables gij , &, which 
generate the change of an arbitrary> firnctio~lal F[ gij . 41 of the canonical variables 
according to the fornurla 

6F = [F, Z’] 6NL + IF, &.I 6N’“. (9.1) 

The super-Hamiltonian and supermomentum are functionals defined over the 
geometrodynamical phase space. We can then form their Poisson brackets. At 
this point, we are able to formulate the basic correspondence of structures defined 
over hyperspace and the geometrodynamical phase space. We require that there 
exists a one-to-one correspondence between the generators of the normal and 
tangential deformations in the tangent space to hyperspace on the one hand, and 
the super-Hamiltonian and supermomentum defined over the geometrodynamical 

phase space on the other hand, which brings the Lie brackets between the generator 
fields in hyperspace into the Poisson brackets between the super-Hamiltonian 
and supermomentum fields in the geometrodynamical phase space. In short, we 
impose the 

2. REPRESENTATION POSTULATE. The Poisson brackets between the super- 
Hamiltonian and the supermomentum close in the same wal’ as the commutators 
between the corresponding generators of the dqformations of a spacelike hyper- 
surface embedded in a Riemannian spacetime with the signature (-, +, +, +). 

The next two postulates inform us that geometrodynamics preserves certain 
kinematical relations, which are valid on arbitrary spacelike hypersurfaces in an 
arbitrary Riemannian spacetime: 
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3. INITJAL DATA RESHUFFLING. The change (9.1) of an arbitrary functional F 
of the canonical variables under the stretching aNi is given b-v the Lie derivative 
of F with respect to 6Ni. 

4. LOCALITY. In an aribitrary spacetime, the change of the metric gij under 
a normal deformation is purely local, Eq. (3.11). The dynamical rule (9.1) respects 
this kinematical property, Eq. (8.2). 

The two postulates that follow summarize the properties of reversibility and 
path-independence of the geometrodynamical evolution : 

5. REVERSIBILITY. The time-reversed spacetime is generated by the same super- 
Hamiltonian and supermomentum as the original spacetime. 

6. PATH INDEPENDENCE. If the same final marked hypersurface is reached from 
an initial marked hypersurface by two difSerent sequences of intermediate marked 
hypersurfaces (by two diflerent paths), the final geometrodynamical state calculated 
from a permissible initial state by means of the evolution rule (9.1) along each of 
these two paths should be the same. 

Finally. if we want to include the nongravitational fields as sources of geometry, 
we need a rule that tells us how to proceed in the geometrodynamical language. 

The situation for general tensor fields is complicated [49], so we confine ourselves 
to the fields with a nonderivative gratitational coupling: 

7. GEOMETRODYNAMICAL PRINCIPLE OF EQUIVALENCE. Simple fields (with a 
nonderivative gravitational coupling) may be included as sources of the gravitational 
field by a two-step process. First, a super-Hamiltonian JP~) and a supermomentum 
s‘P(~)~ are constructed which satisfy the modified closing relations (2.24), (2.26), 
(2.27) appropriate for a fixed geometrical background. Second, these expressions 
are added to the ADM super-Hamiltonian and supermomentum. 

Let us now discuss how these postulates function in building the Hamiltonian 
geometrodynamics. The evolution rule (1) explains the basic scheme of a many- 
fingered time Hamiltonian dynamics. It also limits the number and character 
of “purely geometrodynamical variables.” We have pointed out in Section 1 
that such a limitation is vital in any derivation of Einstein’s law. Through the 
requirement that the basic equation (9.1) has the form of Hamilton’s equation 
for the canonical variables g,j , 7~ ij, the “order” of equations is indirectly limited. 
Such a limitation is far from the straightforward limitation (3), Section 1, of the 
Weyl-Cartan-Lovelock method. There, the exact locality of G,, is explicitly 
stated: G,, depends on “gL, and its first and second partial derivatives at a given 
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point. On the other hand, the super-Hamiltonian 2 and the supermomentum Zi, 
which play in geometrodynamics a similar role to G,, in spacetime relativity, are 
not limited at this level at all. In principle, they may be arbitrary nonlocal func- 
tionals of the canonical variables g,j , +j. 

Restricting our configuration variables to the metric gij , we effectively exclude 
other alternative theories of gravitation which are in principle compatible with 
a Riemannian structure of spacetime. For example, the Jordan-Thiry-Brans-Dicke 
theory is excluded because its canonical formulation requires an enrichment of the 

configuration space by a scalar field variable. Similarly, the higher-order laws of 
gravitation [24, 251 for the single spacetime metric tensor ag,K are excluded, because 
their canonical formulation requires an introduction of supplementary variables 
which are, basically, new names for the higher order derivatives of 4gLK . The 
restriction of the configuration space thus represents an important input into 
our derivation of Einstein’s law and plays a similar role as the restriction to the 
spacetime metric does in the Weyl-Cartan-Lovelock argument. 

The next three postulates, (2))(4), are all in a broader sense “representation” 

postulates. They pick up certain “kinematical relations”-relations which are 

valid in an arbitrary Riemannian spacetime-and state that the evolution rule 
(9.1) must respect them. In (2) the kinematical relations are the commutation 
relations (3.14)-(3.16). In (3), we have the kinematical formula (7.1). In (4), the 
relation (3.11) between the intrinsic metric and the extrinsic curvature is kine- 
matical. On the dynamical level, the functionals of a hypersurface are replaced 
by the functionals of the canonical variables and the action of the generators is 

replaced by the Poisson brackets. The kinematical relations are thus translated 
into strong equations (in Dirac’s terminology) containing the Poisson brackets of 
the super-Hamiltonian and supermomentum among themselves or with the 
canonical variables gij, +j. These equations then determine both the locality 
and the detailed structure of the super-Hamiltonian and the supermomentum. 
The “order” of the geometrodynamical equations is thus fixed in a natural way 
rather than by decree. 

Among requirements (2)-(4), Eqs. (2.24) and (2.25) correspond to the contracted 
Bianchi identities [33]. These are exactly the equations which (apart from the 
locality requirement) fix the structure of the super-Hamiltonian. This links our 
derivation with the postulate (4) of the Weyl-Cartan-Lovelock method. 

The determination of the supermomentum, on the other hand, has nothing 
to do with the Bianchi identities. It follows from the reshuffling argument which 
specifies the behavior of the initial data under the relabeling of the hypersurface. 
The closing relation (2.26) plays an entirely passive role in our derivation and 
may be easily dropped off. 

After the structure of X and Zi is established, the path-independence leads 
to the necessity of imposing the constraints. Its relation to the representation 
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postulate (2) is rather subtle. While the representation postulate was imposed as 
a strong equation, the path-independence should hold only weakly, i.e., for the 
data restricted by the initial value constraints. In fact, we showed that when the 
representation equations hold strongly, the data must be restricted by the initial 
value constraints if they are to be propagated in a path-independent way. One 

would like, of course, to have a better reason why some equations are to be imposed 
as strong equations and other equations as weak equations. 

Our attention in this paper was concentrated on the reconstruction of pure 
geometrodynamics. Much work remains to be done before one learns how to 
build up all possible field equations on the geometrodynamical level and how 
to include the fields as sources of the gravitational field. Our discussion of the 
“geometrodynamical principle of equivalence” for the simple fields was meant 
as an illustration of a basic idea how to proceed in such cases and not as a final 
answer to the problem of sources. 

We did not attempt to reduce our “postulates” to the bare minimum and sweep 

away any possible redundancy in the system. The closing relation (2.26) was, 
of course, made redundant by the reshuffling postulate. The reversibility assumption 
(5) was added simply for convenience, enabling a simple derivation of the super- 
Hamiltonian within the Hamiltonian formalism. Its redundancy is shown in [43]. 
One may guess that the locality requirement (4) is also superfluous and that the 
closing relations (2.24), (2.25) themselves carry the necessary information about 
the locality in the momenta. We were, however, unable to extract this information 
from them. (For a possible line of attack, see Teitelboim’s thesis, quoted in [46].) 
More significantly, the exact relationship between the representation requirement 
and path-independence remains to be clarified, together with the role played by 
the strong and weak equations. One would also like to carry the derivation for any 

dimension II of the spacelike hypersurface, not only for IZ = 3. We have tried to 
work in this direction, but the simplification of the argument for n = 3 was too 
attractive to be resisted. We believe that our postulates conveniently summarize 
the spirit underlying the geometrodynamical foundations of geometrodynamics, 
even if their further reduction seems possible. 

Turn from the assumptions to the results. In the Lovelock version of the tradi- 
tional method one does not assume how the metric “g,, and its first and second 
derivatives enter into G,, . One gets as a result of the Lovelock theorem that the 
second derivatives enter linearly, with the coefficients which depend merely on the 
undifferentiated metric (quasilinearity of Einstein’s equations), and the first 
derivatives enter in quadratic combinations. Similarly, we do not assume that the 
super-Hamiltonian is quadratic in the momenta; it follows as a result, together 
with the fact that the supermetric is purely local in gjj . This is directly related to 
the quasilinearity of the dynamical Einstein’s equations. Also, we did not fix 
the potential term in the super-Hamiltonian in advance, but it turned out that this 
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term must be (apart from the cosmological constant) equal to the scalar curvature 

density, containing thus the proper combination of terms linear in the second 
spatial derivatives of the metric and terms quadratic in the first derivatives. This 
is related to the quasilinearity of the 00 component of Einstein’s law of gravitation. 
The locality of the supermetric may turn out to be very important in quantum 
geometrodynamics, especially for the factor ordering. It also expresses a tendency 
of the gravitational field to behave like any other field would behave on a prescribed 
geometrical background- a tendency that Misner dubbed “super-equivalence 
principle.” 

These features are, of course, only some details of the complete structure of Z 
and e. which we get as our final result. At the end, all the geometrodynamical 
elements neatly interlock into these projections of a single spacetime tensor: the 
Einstein tensor G,, . 

By and large, the same ingredients which went into the cooking of the Einstein 
law in the Weyl-Cartan-Lovelock pot-covariance, Bianchi identities, limitation 
of the basic variables, and the limitation of the order of equations-go into our 
derivation as well, though in a modified form and in a different context. We think, 
for example, that the limitation of the order of Einstein’s equations is achieved 
more naturally in geometrodynamics than in the spacetime approach. 

We believe that the new derivation is primarily important because the geometro- 
dynamical equations are closer to the quantum formalism and thus more likely 
to preserve their form in the quantum theory of gravitation. Classically, our 
assumptions ensure that a single spacetime may be built up by a geometrodynamical 

evolution of a three-geometry. Quantum mechanically, as stressed by John Wheeler 
[50], three-geometries cannot be stacked into a single spacetime. According to one 
witty definition, education is what remains when everything what one has been 
taught is forgotten. We hope that at least some of our assumptions convey what 
remains from spacetime when spacetime itself falls into oblivion by quantization. 
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