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The problem of two interacting masses is investigated within the framework 
of geometrodynamics. It is assumed that the space-time continuum is free of 
all real sources of mass or charge; particles are identified with multiply con- 
nected regions of empty space. Particular attention is focused on an asymp- 
totically flat space containing a “handle” or “wormhole.” When the two 
“mouths” of the wormhole are well separated, they seem to appear as two cen- 
ters of gravitational attraction of equal mass. To simplify the problem, it is 
assumed that the metric is invariant under rotations about the axis of sym- 
metry, and symmetric with respect to the time t = 0 of maximum separation 
of the two mouths. Analytic initial value data for this case have been ob- 
tained by Misner; these contain two arbitrary parameters, which are uniquely 
determined when the mass of the two mouths and their initial separation have 
been specified. We treat a particular case in which the ratio of mass to initial 
separation is approximately one-half. To determine a unique solution of the 
remaining (dynamic) field equations, the coordinate conditions go- = -& are 
imposed; then the set of second order equations is transformed into a quasi- 
linear first order system and the difference scheme of Friedrichs used to ob- 
tain a numerical solution. Its behavior agrees qualitatively with that of the 
one-body problem, and can be interpreted as a mutual attraction and pinching- 
off of the two mouths of the wormhole. 

I. INTRODUCTION 

Wheeler (1, 2) has used the term “geometrodynamics” to characterize those 
solutions of the field equations for gravitation and electromagnetism’ 

41 = R,v - ?4 g& = 2(F,,FP - Pi gj,.F,sF=B) (l.la) 

FPu;v = 0 (l.lb) 

1 Throughout this paper Greek subscripts and superscripts range from 0 to 3 and Latin 
ones from 1 to 3. Also, units are chosen so that G (universal gravitation constant) = c = 1. 
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which are free of singularities and of external sources. He pointed out that many 
of the properties one normally associates with classical ponderable bodies (e.g., 
mass and charge) can also be defined on a manifold which contains an everywhere 
continuous Lorentzian metric gPY and electromagnetic field tensor F,, . In this 
view, particles are identified with multiply connected topologies in “empty” space; 
the space-time continuum is regarded, not as an arena populated with extraneous 
objects, but as a complete description of a classical physical system.’ 

Among the problems which can be treated from the point of view of geometro- 
dynamics, one of the most interesting is the interaction between two concentra- 
tions of mass-energy: this situation provides a representation of the two-body 
problem in general relativity. In all attacks on this difficult and important prob- 
lem made up to now, the representation of the particles themselves has posed 
severe difficulties. One either chose to work with the source-free field equations, 
in which case the metric became singular at two points in space, or else intro- 
duced “real” sources of mass whose complete description lay outside the scope 
of general relativity. Fortunately, the precise specification of the masses makes 
little difference as long as the two interacting regions are separated by a distance 
large in comparison with GM/c2 (the distance at which the space surrounding the 
particles becomes strongly curved). Then the well-known approximation method 
of Einstein, Infeld, and Hoffmann (3,4) allows one to compute the equations of 
motion of the two mass centers. Such approximation techniques have provided 
considerable information on the behavior of two masses in the post-Newtonian 
approximation.3 Since the extreme weakness of the gravitational interaction 
makes even the first correction term almost negligible, we may regard the two- 
body problem as essentially solved for all cases likely to be observed. 

As a matter of principle, however, the solution to the two-body problem pro- 
vided by these approximation methods cannot be deemed complete. Any com- 
plete solution would give a detailed description of the time evolution of t.he 
metric tensor in the immediate vicinity of the two mass centers, a description 

? One must make a clear distinction between charge and mass as they occur in the real 
world (with a specifically quantum character) and concentrations of charge or mass so large 
that they can be treated on a purely classical level. Only the latter are legitimate objec.ts of 
investigation within the framework of classical general relativity, and only t.he lat.ter will 
be considered in this paper. 

3 The earliest attempts to solve the two-body problem in general relativity were made by 
de Sitter (5), using perturbation theory, and by Levi-Civita (6), using the linearized form 
of the field equations. 

A subsequent, more careful treatment by Robertson (7), starting with the sixth order 
equations of motion obtained from the Einstein, Infeld, and HolIman approximation, showed 
that the only nonperiodic relativistic effect to this order was the well-known procession of 
the perihelion. This result has been extended, and rederived using other methods, by several 
authors; recent developments are described in the books by Fock (8) and by Infeld and 
Plebanski (9), and in an article by Goldberg (10). 
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FIG. 1. A two-dimensional analogue of the Einstein-Rosen manifold for a single particle 
is shown imbedded in flat 3-space to suggest its curvature and topology. The sheets at the 
top and bottom of the funnel continue to infinity and represent the two asymptotically flat 
regions of the manifold. 

which must necessarily depend on the particular model assumed for the structure 
of the masses. The guiding principles of geometrodynamics provide a natural 
definition of “mass centers” for such a deepseated analysis; here the field equa- 
tions are given full reign to predict the subsequent evolution of the system. 

Even within the framework of geometrodynamics the description of the masses 
is not unique. One can construct several different 3-manifolds, with different 
topologies, all of which can reasonably be interpreted as universes containing 
two “particles.” 

The starting point for each construction is the familiar one-body metric of 
Schwarzschild (expressed in “isotropic” coordinates) : 

da2 = -(1 $(l +$it* 
(I.% 

+ 
( ) 

1 + E * (dr’ + 1.” dt?’ + r2 sin% dp*) 

Einsteirl and Rosen (11) suggested that this metric could be interpreted most 
naturally on a two-sheeted space* joined at the Schwarzschild radius r = m/2 
(see Fig. 1). One is thus led to consider manifolds with two such Einstein-Rosen 
bridges as models for the two-body problem. Three possible candidates are 
illustrated in Fig. 2. The last of these describes an asymptotically flat 3-space 
containing two Einstein-Rosen bridges whose “mouths” are joined smoothly 
together; it has the topology of a Euclidean 3-space containing a “handle,” This 

4 Kruskal (12) has shown that one is led inevitably to this two-sheeted description when 
seeking the maximal analytic extension of (1.2) through its (removable) singularity at t.he 
Schwarzschild radius. 
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I / \ , 

(a) (b) 

(C) 

FIG. 2. Three models for the two-body problems are displayed as two-dimensional sur- 

faces imbedded in flat a-space. The first, (a), a direct generalization of Fig. 1, shows a pair 
of Einstein-Rosen bridges whose upper sheets are joined together. In (b) their lower sheets 
have been joined as well, to form a multiply connected space whose upper and lower sheets 
are equivalent (i.e. isometric). If the two masses represented by the two mouths are equal, 
the figure will also be symmetric under reflections in a vertical plane midway between them. 
These symmetries then allow one to identify corresponding points on the two sheets. and 
also to identify corresponding points at the two mout,hs; the space which results is shown 
in (c). 

model was first proposed by Wheeler (1) and later called by him a “wormhole” 
manifold (2). In order that the two mouths shall match up sufficiently smoothly 
(i.e., analytically), they must be identical; thus this model describes a universe 
containing two particles of equal mass.5 

While there is no compelling reason for preferring one model over another, we 
have focused attention exclusively on the wormhole picture. As far as the purely 

6 The present investigation has been restricted to the case of pure gravitation, for which 
the appropriate field equations are those given in Eq. (l.la) with the right-hand side set 
equal to zero (i.e., with F,, = 0). One can, however, also investigate solutions to the corn 
plete set of equations (1.1) on this manifold. In this more general approach it is also possible 
to trap electric lines of force in the “wormhole,” giving the appearance of two particles with 
equal mass and equal but opposite charge. The time-symmetric initial value problem for this 
case has been solved by Lindquist (13). 
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mathematical problems of solving the field equations are concerned, the chief 
obstacles arise from the nonlinearity of the equations, and would be present 
regardless of the model used to represent the masses. Furthermore, one can 
expect the general behavior of the solution to be relatively insensitive to the 
particular model chosen, at least far from the regions of high curvature. Our 
analysis of the wormhole model should thus serve to illustrate many of the 
features common to all of them. 

II. WORMHOLE INITIAL DATA 

CONSTRUCTION OF WORMHOLE MANIFOLD 

One can construct a wormhole manifold W out of Euclidean 3-space by the 
following procedure: take a sample of Euclidean space, cut out two noninter- 
secting spheres S and S’ (each of radius R), throw away their interiors, and sew 
the two boundaries smoothly together (i.e., identify corresponding points on the 
surfaces of the two spheres). One must check that the resulting space is in fact a 
manifold, and this requires that one specify a family of open sets covering W, 
each of which is homeomorphic to a Euclidean 3-cell. It is clear from this con- 
struction that the only difficulty lies in specifying a family of neighborhoods in 
W for points on the spheres S and S’ (all other points have neighborhoods in E3 
lying in the complement of S u S’, which can be carried over directly to W). 

Such a construction is most easily performed in some special coordinate sys- 
tem, and for this purpose the so-called “bispherical coordinates” are particularly 
appropriate. These are related to a set of standard Cartesian coordinates in E3 
through the transformation equations 

coth ~ = x2 + y2 + z2 + a2 
2az 

cot 7) = 
x2 + y2 + x2 - a2 

2a(x* + y2)‘j2 

(2.la) 

(2.lb) 

cot $0 = ; (2.lc) 

a being a parameter with dimension of a length which serves to fix the scale of 
the coordinate system. One checks readily that the surface p = const. ( = ~0 , 
say) is a sphere, with its center on the z-axis at z = a coth MO and with radius 
R = a csch ~0 . If one chooses the spheres S and S’ to be given by 

P=+PO and P= -PO (2.2) 

then the points in E3 outside these spheres have coordinate values lying within 
the ranges 

-fJo<cL<~o Ojq$?r, osp<27r (2.3) 
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It is clear from (2.1) that both q and ‘p are to be interpreted as angular co- 
ordinates (with period 27) ; if one also demands that p be a periodic coordinate, 
with period 2pcthat is, if one identifies the points (p, v, cp) and (p + 2nm , 71, ~1 
for all integers n-one achieves the desired match-up of S and S’, and at the 
same time defines a suitable topology on W. 

Figure 3 shows a two-dimensional cross section of the wormhole manifold 
(obtained by setting p = const.) imbedded in 3-space. It should be noted that 
the point with coordinates p = 77 = 0 actually corresponds to the point at in- 
finity in a standard Cartesian system, and is thus not properly a part of the 
manifold. 

TIME-SYMMETRIC INITIAL VALUE DATA 

Four of the ten Einstein field equations (l.la) for a purely gravitational field: 

GO, s R: - 4$ so,R = 0 (2.4) 

do not contain second time derivatives of the gpv ; hence they impose necessary 
conditions on the values of grv and ag,,/at on the initial hypersurface Z : t = 0. 
If one requires that this be a hypersurface of time-symmetry6: 

agap __ = 
at t=U 0 (2.5a) 

goi ILO = 0 (2.51,) 

then these “initial value equations” reduce to 

3R = 0 (2.6) 

'R being the curvature scalar computed from the three-dimensional metric 
d.st on the initial surface 2. 

The conservation conditions 

GBa;@ = 0 (2.7) 

which can be derived from the Bianchi identities, assure that the solution of the 
remaining six field equations 

Gij = Rij - 45 gtjR = 0 (2.8) 

will satisfy the initial value equations (2.4) for all times. It follows that, once 

6 See, e.g., Brill (la), Weber and Wheeler (15). It is necessary to invoke time symmetry 
in the present work to obtain explicit formulas for the initial data. This is a fundamental 
limitation, since it restricts us to the problem of two particles with zero angular moment,um. 
In addition, it implies that no outgoing gravitational waves are present on the initial hy- 
persurface. (While a symmetric mixture of incoming and outgoing waves would still be 
possible, the part,icular solution of the initial value equations which we adopt is free of such 
waves also. Cf. Srnowitt, Deser, andslisner (16) .) 
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FIG. 3. Coordinate curves p = const. and q = const. are drawn on a two-dimensional FIG. 3. Coordinate curves p = const. and q = const. are drawn on a two-dimensional 
section of the wormhole manifold (cf. Fig. 2(c)). At large distances these coordinate curves section of the wormhole manifold (cf. Fig. 2(c)). At large distances these coordinate curves 
become arcs of circles. become arcs of circles. 

appropriate initial data have been chosen, one has only to solve Eq. (2.8), or 
equivalently 

Rij = 0 (2.9) 

while Eq. (2.4) can be used for checking purposes. 
Equation (2.6) is a single nonlinear elliptic equation connecting the metric 

components gij on 2. If one assumes that 

ds: = +b4 ds2 (2.10) 

with d? some suitably chosen base metric, Eq. (2.6) becomes a linear elliptic 
equation for #: 

iii) - pi R# = 0 (2.11) 

where 2 and & are the Laplacian and scalar curvature, respectively, computed 
from ds2. 

The appropriate solution of (2.11) for the wormhole manifold has been ob- 
tained by Misner (17). He chooses the base metric d.? to have the form 

dS2 = dp2 + dq2 + sin27 dp2 (2.12) 

and then gets for (2.11) 

1 d? 
+ ___ - 

sin? f dp2 
(2.13) 

To formulate suitable boundary conditions for #, he compares (2.12) with the 
flat-space metric tensor expressed in bispherical coordinates: 
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c&F2 = a’(cosh p - cos VJ)-~(&.L’ + di’ + sin27 dq2) (2.11) 

and requires that dso2 be asymptotically flat, i.e., that it approach dsF2 as p and 11 
tend to 0: 

(2.15) 

In order that dsoZ = #4 d$” shall be an acceptable metric on W, #(F, 7, P) must 
be analytic throughout the region --p. S ~1 5 p. , 0 5 q 5 u, 0 6 cp < 2a, except 
for a pole at P = 0, 7 = 0 of the form (2.15), and must also be periodic in each 
of its arguments (with periods 2~~ , 2n, and 2?r, respectively). Furthermore, since 
the manifold possesses rotational symmetry about the x-axis (the axis joining the 
centers of the two spheres p = &PO), one must have 

a+/a(p = 0 (2.ltia) 

while front the condition that the two masses be identical (mirror symmetry 
in the plane x = 0) it follows that 

e-k 1>9) = 1c/(cc, 1,9) (2.16b I 

As Misner shows, the (unique) solution of Eq. (2.13) satisfying all the above 
conditions is 

The parameters ~0 and (I can be related to the total mass 171 of the system and 
to the length LO of the minimal closed 3-geodesic connecting the two mouths 
through the formulas’ 

cc 

Al = 4a c csch n/& 
n=l 

(2.18) 

For the individual mass ~1 associated with each mouth separately one finds’ 
m 

m = 8a x n csch ‘nKo 
n=l 

(2.20) 

7 See Misner (f7). Analogous formulas for the case of a charged wormhole were founcl 
by Lindquiat (13). Note that IJo gives an invariant. chara.eterixation trf the disknce of separ:~- 
tion between the two masses; it is defined as the length of the curve (on Z) 

‘1 = =a Cp=O i-p? s /.L d lli!). 

8 The total nlass M is not twice the mass of each particle, but rather the sum cbf their 
masses and their (negative) gravitational interaction energy. See T,indquist’ (13) and :dso 
&ill and Lindquist (18). 
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III. TIME DEPENDENT SYSTEM 

COORDINATE AND BOUNDARY CONDITIONS 

To determine the ten terms of the metric tensor for all times only the six 
equations (2.9) are available. Four of these components, namely goa , can be 
arbitrarily prescribed, provided that they have continuous second derivatives and 
maintain the proper signature. 

The simplest possible choice for the three mixed components is 

goi = 0 (3.1) 

(Note that this is an extension of the initial condition (2.5b) for all times t.) 
Any set of coordinates in which Eq. (3.1) is satisfied will be called normal. These 
coordinates have the property that the timelike curves xi = const. are every- 
where orthogonal to the spacelike surfaces 1 = const. Furthermore if the space 
coordinates are periodic on the initial surface (for example, IL, 17, cp on the worm- 
hole manifold), they will remain periodic, with the same period, on any later 
hypersurface as well. 

One can always choose the orientation of the t = const. hypersurfaces in such 
a way that the orthogonal trajectories are geodesics. From the geodesic equations 
it follows that 

agoo/axi = 0, 

so that go0 = f(t). By a proper choice of the parameter t, the function f can always 
be set to - 1. This special coordinate frame is called normal Gaussian (or geodesic 
normal) ; it is thus described by the four conditions 

goa = -60, (3.2) 

These coordinates admit a direct physical interpretation: the curves xi = const. 
describe the path of a set of freely falling observers, with t the proper time meas- 
ured by each observer along his world line. Since Eq. (3.2) imposes a set of 
atgebraic conditions on the arbitrary functions goa (in contrast to the so-called 
De Donder or “harmonic” coordinates (8), also frequently used, for which the 
gOa satisfy a system of first order diferential equations), they are particularly 
suitable for numerical work. 

To complete the specification of coordinates, we use the bispherical system 
[p, I], ‘p] already introduced on the initial hypersurface t = 0; thus, the point 
(p, 7, up, t) in space-time lies on the geodesic orthogonal to t = 0 and passing 
through (P, TJ, cp, 0), and is located at proper distance t from the latter point. 
Since this construction preserves the periodicity in the coordinate variables 
p, 7, (o, the three-dimensional metric gii on any later hypersurface t = const. will 
obey the same periodicity conditions as the initial value function #: 
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as well as the condition of mirror symmetry (analogous to Eq. (2.16b)) : 

dS2(P, 9,cp, t> = ds2(--l*, r), cp, t> (3.4a) 

Also, 

dS2(P, 7, ‘p, t> = dS2(P, -9, P, t) (3.4bj 

Moreover, the condition of rotational symmetry about the z-axis implies 

agij/ap = 0 (3.5a) 

g13 = g23 = 0 (3.5h) 

Equation (3.5s) allows the elimination of cp as an independent variable; Eq. 
(3.5b) then implies 

R13 = 0 R23 = 0 (X.6) 

Thus, both the number of field equations and dependent variables are reduced to 
four. 

Because of Eqs. (3.3) and (3.4) it is sufficient to work within the domain 

0 5 P 5 PO, 01051 

with the following boundary conditions : 

$712 /P=o40 = 0, 
agii 
_ 
d/J lA=oJQ 

= 0 (no summations) 

g12I+J,x = 07 
@ii 
x rl=o = 0 

a= 

Finally, by analogy with spherical coordinates, we demand that 

linl g22 sin2 7 lim g22 sin2 rl -x7 -= 1 
ri+o 93 9-n gas 

if the metric is to remain regular on the polar axis (i.e., on .r = VJ = 0). 

QUASI-LINEAR FIRST ORDER SYSTEM 

To solve the four remaining equations 

Ru = RI2 = Rzz = Rz3 = 0 

13.7a 1 

(3.7h) 

(X.8 1 

(3.9) 

numerically, we make use of Friedrichs’ difference scheme (19) for first order 
systems. The first step is to convert the second order system (3.9) into one of 
first order, by introducing new dependent variables. A natural choice for such new 
variables are the Christoff el symbols : 

(3.10) 
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The normal Gaussian coordinate conditions (3.2) cause seven of the forty 
Christoffel symbols to vanish: 

r,” = 0 r:, = 0 (3.11a) 

and nine others to be expressible as linear combinations of the rest : 

rfi = gjk& (3.11b) 

Furthermore, due to condition (3.5b), one has 

r,9 = 0 (a, i # 3) (3.12a) 

r:j = 0 (i, j # 3) (3.12b) 
3 b3 = 0 (3.12~) 

(i, j # 3) (3.12d) 

These four equations eliminate twelve more Christoffel symbols, leaving twelve 
to be determined.g 

In terms of the new dependent variables the four field equations can be written 
as 

The eight additional equations necessary to complete the system can be ob- 
tained by differentiating the defining equations (3.10) for I’!j with respect to 
time : 

(3.14) 

REMOVAL OF SINGULARITIES 

Before the system (3.13)) (3.14) is converted into a set of difference equations, 
further changes must be made. The metric has a singularity at the point p = 0, 

9 Note that the remaining r,$ split naturally into two groups: (1) eight Christoffel sym- 
bols r$j , which involve only the metric components gij and their space derivatives, and 
which are thus completely determined by the geometry on a given spacelike hypersurface 
t = const.; (2) the four components rfi , which describe the curvature of this hypersurface 
as seen in the full four-dimensional manifold in which it is imbedded. These are related to 
the second fundamental form k’<j of classical differential geometry (see, e.g., Eisenhart 
(20)); indeed, in our coordinate system I$i = -K<i . The advantages of using the com- 
ponents of the second fundamental form as dependent variables (rather than, say, the time 
derivatives agij/at, to which they are related) have been pointed out by Arnowitt, Deser, 
and Misner (16). 
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77 = 0, of the form 

(cash /J - cos 77)-2 = 4($ + $)-‘. 

To avoid excessive errors in the difference approximation close to this point, it is 
advisable to factor out the singularity explicitly from each metric component, 
and it is convenient to use the periodic singular function g2 E c, defined by 
Eq. (2.17), for this purpose.” In addition, the boundary condition (3.8) sug- 
gests the factoring out of sin2 7 from g33 . Thus we set 

gij = u’fij p 
gij = a-2fj (i, j # 3) (3.15a) 

g33 = (u sin T)yz3, g33 = (g sin q)-y (3Xb) 

Let TPj , rlj be the Christoffel symbols formed from the fij ; then 

l?lj = U’yfj (i, j # 3)~ I$ = (u sin TJ)~Y& (3.1 (ia) 

(i, j, k, I # 3) (3.16b) 

rz3 3 = yz3 3 + cot 
1 du 

7 + - - 
0 a7 

Next put 

, 

- [Y%j + fij(fl”Ytm - fk1Y:3 - f”” Cot T)]$) (i,j,m. # 3) 

The four equations (3.13), when expressed in terms of the new variables, beconle 

a& 3 0 
!g! + a$ - a$ 

at 
- [Tll + il 

C 

1 
(X18a) + (M + I)&:2 + (YL’)‘? + cy;3Y 

a-2, _ 
at 

_ &+; 
[ 

L!?h+!!h+~ 

1 
(3.1%;) + YLYL + YhL + r%r:2 + A) + Y;3(Yi3 + cot ?I) 

10 The introduction of c = @ instead of + reduces the nurnher of terms in later rqu:ttions. 
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a$2 -= U,2+f at 

1 
(3.18~) 

+ (&212 + 2Yf2d2 + hi2)2 + &(y;B + 2 cot q) 

&3 f33 -=- 
at u2 [( 

fij r;jY;3 + +;3yj33 
> 

+ (2fi2y;3 -fijrfj) cot q - f22 1 
(3.18d) 

(f”j& - 2f ik& - 2f k2 cot q) gk 1 
On the other hand, Eq. (3.14) remains unchanged in form: 

(3.19) 

Initial values for the new dependent variables, in accordance with Eqs. (2.10)) 
(2.12) and (2.17), are 

fij It=0 = fii l&O = 6ij (3.20a) 

y:j [t=o = 0 (3.20b) 

The boundary conditions (3.7) require on ~1 = 0, ~0 the vanishing of 

f 12 7 Y?2 , r4i , d2 , 

and on q = 0, ?r the vanishing of 

f 12 7 ri2 , YL j  75i ) 

au ahi a-G2 a& a& aA a& a-2, - -7 -9 -1 ---7 &' x' ap ' ap ap aq aq atl( no summations). 

Furthermore, from Eq. (3.8)) 

f22 = f33 , $2 = $3 , 742 = $3 at q = 0, ?r (3.21) 

On the boundaries q = 0, ‘or, Eq. (3.19) remains unchanged, while Eqs. (3.18) 
have apparent singularities, which can be removed by applying L’Hospital’s rule. 
Using the identities 

afij - = -((fiQ + fi$fl) 
axk (3.22) 
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one gets from Eq. (3.17) 

(3.23) 

- f&j + fij(f’“4L - jz14h + j114t2 + f224iL)l $ 
) 

(i, j, m f 3) 

Equations (3.18) are then modified in the following way: 

(3.24a) 

$ Ir)=o,* = 0 (3.24b) 

a* jl=cp = u22 jq=O,a + k2 [-g + a$ + 3 $ - 1 + 2&L] (3.24~) 

Note that, by Eqs. (3.2413) and (3.24d), the boundary conditions r$ = 0, 
yiz = y& (on 7 = 0, R) are preserved in time. 

REHAVIOR AT THE ORIGIN 

Since the metric components become singular at I( = 0, q = 0, fil and fz2 can- 
not be computed there. (Of course, jiz(O, 0, t) = 0 andjs3(0, 0, t) = j32(0, 0, t) 
from the boundary conditions.) One would expect jij(O, 0, t) = 6ij, in order 
that space-time remain flat at infinity, but it is necessary to check that this 
choice is consistent with the field equations. 

From (3.23), (3.24a), and (3.24~) it follows that 

(3.25a) 

If one divides through by jil in Eq. (3.25a) and by fiz in Eq. (3.25b), and ex- 
presses the -rii in terms of the fii , one finds 

; log fil + 2 z$ logfz2 (i # 3) (3.26) 
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On setting 

; log fil(O, 0, 0 = u(t), f logf22(0,0, 1) = do, 

one obtains a first order system of ordinary differential equations 

u’ = -x u(u + 20) (3.27a) 

?I’= -45v(u+2v) (3.2713) 

whose solution is 

2(s - 1) 1 
u= 

c1t + c2 

v=- 
Cll + Cn 

Here cl and c2 are independent of t. Since u(0) = 0 and v(O) = 0 by (3.20a), c2 
must be infinite and thus u(t) = 0 and v(t) = 0. It follows that, for all times, 

fij Ilr=114 = const. = 6ij -yTj Ip=t14 = const. = 0 (3.29) 

IV. NUMERICAL SOLUTION 

FRIEDRICHS’ DIFFERENCE SCHEME 

The first order system (3.18), (3.19) can be written in vector form as 

where y is the column vector with the twelve components yyj , A1 and A2 are 
12 X 12 matrices depending only on u and fi’, and B is a vector with twelve 
components depending on u, j”‘, and r:j , but not on derivatives of r:j . 

One way to convert the system (4.1) into a set of difference equations is to 
apply Friedrichs’ method (19). In this procedure one replaces space derivatives 
by centered differences 

arP,, YTj (Z + hk) - YFj(Xk - hk) 

axk 2hk 
(k = 1,2> (4.2a) 

where hk is the mesh length in the xk-direction, and time derivatives by forward 
differences, using an average of the four neighboring points for the lower time 
level : 

a* ~ yTj(Xk, t + At) - x CL1 rFj(xk f hk 7 t> 
at At 

(4.2b) 

(The sum over k includes terms with both the + and the - sign.) Employing 
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these differences one obtains for Eq. (4.1) 

Friedrichs’ stability condition stipulates that the coefficient matrices 

(8% = 1,2) (4.4‘) 

be nonnegative, i.e., that their eigenvalues, denoted by h, be nonnegative: 

x(c,) = ; f 2 X(Ak) 1 0 
k 

(k = 1, 2) (4.5) 

This yields the following requirement for At: 

The eigenvalues of AI, for the system (4.1) are 0 (with multiplicity 10) and 
f (f”“/~)““; hence 

Since maxk f”” increases with time, At will decrease. 
To solve the problem numerically, the values of the -yt;(zk, t + At) are first 

determined from ryj(z”, t) and fi’(zk, t); next fij(zk, t + At) is computed front 

(4.8 1 

using simple forward time differences” 

fij(t + At) = fij(t) + 2At rPj(t) (4.9) 

11 An alternative approach would be to use 

Although this does not violate stability, its error t,erm, as seen from its Taylor series ex- 
pansion, is 

O(Atz) + oh’) + O(h?). 

whereas that of (4.9) is only O(At*). 
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Finally, the inverse elements f”’ are calculated from the fij , and the next time 
increment At is determined from Eq. (4.7). 

The numerical calculations were carried out on an IBM 7090 electronic com- 
puter. The parameters a and ~0 were both set equal to unity; the mesh lengths 
were assigned the values hl = 0.02, hz = n/150 NN 0.021, yielding a 51 X 151 
mesh. The calculations of all unknown functions, including a great number of 
input-output operations and some built-in checking procedures, took approxi- 
mately four minutes per time step. Different check routines indicated that 
results close to the point P = 0, 77 = 0 lost accuracy fairly quickly. Since these 
would, in the long run, influence meshpoints further away, the computations were 
stopped after the 50th time step, when the total time elapsed was approximately 
1.8. Some of the results are shown in Table I. 

CHECKING PROCEDURES 

Friedrichs has proved (19) that the difference scheme used above is stable and 
convergent for first order linear symmetric hyperbolic systems with Lipschitz 
continuous coefficients, while Lax (21) has established convergence and sta- 
bility for all first order hyperbolic systems with constant coefficients. Equation 
(4.1) does not fall in either category: it is quasi-linear, and the matrices A1 , Az 
are nonsymmetric. Unfortunately, no rigorous proof of stability and convergence 
has yet been found for a system of this generality. The scheme used, however, 
seems to indicate stability since the values obtained remain fairly monotonic, 
even after fifty time steps. The three different methods which were used to check 
the solution, and which are described below, suggest that the results in the asymp- 
totic region (i.e., in the neighborhood of IJ = 0, q = 0) are the least accurate. 
This behavior can be accounted for by examining the truncation error. 

We first write down a truncated Taylor series for the gij in powers of t. Since 
the metric is time-symmetric, 

gijw = &j(O) +g ILO t” + 0(t4) 
From the field equations it follows that 

2 It-0 = -2 3Rij(0) 

(4.10) 

(4.11) 

hence 

gij(t) = gCj(O) - 3Rij(0)tZ + O(t*) (4.12) 

In terms of the singularity-free variables defined in (3.15), this equation can be 
written as 

fij(t) = 6ij + hii( + O(t”) (4.13) 

where the hii are functions of v and its partial derivatives. In particular, near 
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P = 0, 7 = 0, Eq. (4.13) becomes approximately 

.fij(t> M 6i.i + aij(P, S)(G + T2)l”t2 + O(t”) 

where aij(p, 7) is homogeneous in p and q of degree 2. 
Rewriting formula (4.2a) in more detail, one gets 

321 

(4.14) 

aTfj _ rfj(Xk + hk) - rtj(Xk - hk) h; a3yfj 
___ 

ad 2hk 
__ + .*. 

- S a(2")3 
(4.15) 

By differentiating (4.14) one finds that, for xk w hk , 

which, when substituted in Eq. (4.15)) yields 

yfj(X” + hk) - Yfj(X” - hk) 
2hk Izk,hk + O(h) (4.16) 

Thus the truncation error in evaluating ayij/axk is increased from O(h,“) t’o 
G( hk) close to the origin. 

1. Direct Evaluation of rfj 

The simplest and most straightforward method for checking is to compute 
rfj from fij , using a difference form of Eq. (3.10), and to compare the results 
with those obtained from the Friedrichs scheme. As one might expect, the differ- 
ences between the two sets of numbers increase with time, and are largest close 
to the origin. In particular, at the fifth time step these differences range from 
1 X 10e6 to 7 X 10P6 near p = 0, 7 = 0; at the fiftieth time step they vary 
between 1 X 10L3 and 3 X 10e3 close to the origin, and between 1 X 10U4 and 
8 X 10e4 further away. 

2. Initial Value Equatzons 

The second approach makes use of the initial value equations (2.4), which 
may be written as 

(4.17a) 

G; E gj” 2 
> 

= 0 (4.17b 

The formula for Gi , when combined with 

R E SijRij E 3R +. sij ?$b + gk’(I$jrL - 21%r~l) 1 = 0 (4.18 ) 
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yields a simpler expression for checking purposes : 

(4.19) 

a,” , Gi , and Gi were computed at each time step and at selected meshpoints: 
their magnitude was a measure of the accumulated error. Some representative 
values are listed in Table I. 

Note that Gi remains rather uniform over the entire mesh, and seldom exceeds 
0.0001, while values of Gi and Gi close to the origin are greater than those far 
away by a factor of 103. (The largest single error invariably occurred in G! , at 
the point ~1 = 0.02, 7 = 0; it amounted to 0.04 at the fiftieth time step.) This 
extreme variation in the GP can be traced to the fact that they, unlike Gi , involve 
space derivatives of the Christoffel symbols, and thus their difference approxima- 
tion includes errors of the order shown in Eq. (4.16). 

3. Power Series in t 

Comparing the numerical results with the truncated power series (4.13) affords 
the most precise check, at least for small values of t. However, there is an obvious 
discrepancy between the numbers obtained in these two different approaches, 
even for small time values, since the solution of the difference equations satisfies 
the initial conditions 

f;j(At~> = fij(O> = 6ij (4.20) 

Better agreement between the two methods can be achieved by setting 

fij(tn+d = fij(tn> + f:j(~n)Atnt.~ + 48f~~(~n>(A~,,>” (4.21) 

and using 

fij(&) = 2hijtn fyj(tn) = 2kj (4.22) 

to derive an appropriate difference approximation to Eq. (4.13). One finds 

(4.23) 

as may be verified by induction.12 

I2 If the time steps were constant (= At), Eq. (4.23) would reduce to 

fij(tn) = f&At) = fij + n(n - I)(At)%&). 

The replacement of t2 in the exact solution by the factor n(n - 1) (At)2 is a common feature 
of numerical solutions to second order equations when an explicit forward difference scheme 
is used. Even though the time steps are not constant in the present problem, their change 
is so slight that the above formula is a fairly good approximation. 
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Up to the twenty-fifth time step (t z 0.894) the discrepancy between the 
computed solution and the power series approximation (4.23) amounted to 
0.0001 at most. Even at the fiftieth time step (t z 1.798) the difference was 
surprisingly small; it ranged from 0.0001 to 0.0019 (the maximum occurring in 
the value of fil , at the point k = 1, r] = ?r). Rough estimates of the t” term in 
Eq. (4.13) suggest that most of the discrepancy arises from the neglect of this 
term. 

V. DESCRIPTION OF RESULTS 

An examination of the results in Table I shows that the metric changes most 
rapidly along the curves P = +.L,, , 0 5 q 5 a and I] = ?r, -PO s P 5 PO . These 
form, respectively, the “throat” and the “spine” of the wormhole (cf. Fig. 3). 
Along these curves the component jil appears to diverge (fix > 1) , while both 
fiz and fs3 approach zero (& , fs3 < 1). This behavior is to be expected; indeed, as 
has been pointed out by Landau, Raychaudhuri (22)) Komar (as), and more 
recently by Khalatnikov and Lifshitz (%J), in any curved space-time satisfying 
the Einstein equations the normal geodesics will ultimately intersect, thus giving 
rise to an apparent singularity whenever normal Gaussian coordinates are 
employed. We argue that in the present, very specialized problem, this singularity 
is almost certainly real, and corresponds to the real singularity of the Schwarz- 
schild metric, at which the throat shrinks to zero circumference. 

COLLAPSE OF THROAT 

The collapse of the throat of the wormhole can be illustrated very simply by 
computing its area at various times: 

li A(f) = 2T 
J 

U%J , rl>[f22(~1 , rl, f)f33(~(0 , 7, t)1”2 sin 7 drl (5.1) 
0 

Values of A(t) at selected time steps are listed in Table II. Figure 4 compares 
the dimensionless ratio A(t)/m2 in the present case with that for the Schwarz- 
schild solution, also expressed in normal Gaussian coordinates. Here m, the mass 
associated with each individual “particle,” is given by Eq. (2.20) ; with the choice 
of parameters a = 1, ~0 = 1 it has approximately the value 3.9348. One sees that 
the agreement between the two solutions is remarkably close over the entire 
range of time steps taken, and it is not unreasonable to assume that this close 
agreement should persist for later times as well. Thus one would expect the two- 
body solution to develop a real singularity at the throat M = fpO after a time 
comparable to that for the Schwarzschild-Kruskal metric, namely 

&xi+, w rrn M 12.362. 

As a measure of the distance of separation between the two “particles” one 
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TABLE II 

Time step Time elapsed Area of throat Distance of separation 

1 0 777.765 9.8696 
5 0.16334 777.597 9.8723 

10 0.34645 777.001 9.8818 
15 0.52907 776.008 9.8980 
20 0.71143 774.591 9.9210 
25 0.89352 772.761 9.9507 
30 1.07528 770.523 9.9872 
35 1.25667 767.881 10.0305 
40 1.43762 764.840 10.0805 
45 1.6184% 761.404 10.1374 
50 1.79798 757.581 10.2011 

might take the length of the 3-geodesic 71 = ?r, -p. 5 p 2 ~0 : 

(5.2) 

Only at t = 0 is this curve also a 4-geodesic (cf. Eq. (6.19)); its physical signifi- 
cance at other times, therefore, is questionable, especially since there exists no 
corresponding quantity in the Schwaraschild problem with which it can be com- 
pared. Table II shows that L(t) increases after the moment of time symmetry. 
This is hardly surprising, for the two mouths are collapsing while they are inter- 
acting gravitationally, and L(t) measures a sum of both effects. A more reasonable 
quantity to examine is the distance between centers, obtained by adding to L(t) 
a suitable average “radius” for each mouth, but even then it is not legitimate to 
compare the calculated distances with the predictions of Newtonian theory. The 
coordinate conditions we have employed are such that a family of observers, per- 
forming measurements on various t = eonst. hypersurfaces at fixed values of p 
and 7, are in a freely-falling, noninertial frame. The proper distance measured by 
these accelerating observers will be greater than the corresponding distance 
measured relative to a single inertial frame, and the discrepancy between the 
two sets of measurements will increase with time. Thus it does not seem un- 
reasonable that the separation between the two mouths, as computed in normal 
Gaussian coordinates, should appear to increase. 

INVESTIGATION WITH LIGHT RAYS 

One knows, from the analysis of the problem of motion by Einstein, Infeld, and 
Hoffman (3), that other coordinate conditions (for example, “harmonic” or 
De Dander coordinates) approximate inertial frames and do lead to agreement 
with Newtonian theory to first order. One could, therefore, transform to such 
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50.25 I I I I 

50.00 

49.50 

49.oc 

4*.505 
0 .I .i? .3 .4 .5 6 

FIG. 4. The dimensionless parameters A/m2 and t/m are plotted for both the one- and two- 
body solutions, when expressed in normal Gaussian coordinates. The one-body curve is 
given by the parametric equations 

A/m” = 16~~‘, t/m = 2u(l - 1~~)“~ + 2 cos-1 u, 

while the two-body curve has been drawn from the data in Table II (with m z 3.9348). 

coordinates and repeat the analysis. Alternatively, one could try to reformulate 
the problem in invariant terms. Plebanski (25) has discussed one such method, 
which uses light rays to perform scattering experiments on the system under 
investigation. A particular version of this approach, especially appropriate for 
the present problem, is to place a light source at the throat of the wormhole 
and aim a narrow beam out through each mouth to an observer far away. It is 
convenient to adjust the starting direction for both beams so that they are 
asymptotically parallel to the midplane of symmetry (the plane z = 0) ; then the 
distance between them is a direct measure of the separation between the two 
mouths. Since these measurements are performed in the asymptotic region, 
where space-time is flat, there can be no ambiguity about their interpretation. 

The paths of the light rays (null geodesics) are the solutions of the well-known 
equations 

(5Ra) 

with the first integral 

d.e’ d.c’ dt ’ 
Sii x x - 8 = 

0 

o 
(Ub) 
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(h being path parameter). One chooses initial values for dx’/dh arbitrarily (the 
initial value of dt/dh is then determined by (5.3b) ) and integrates Eqs. (5.3a) 
numerically until a point is reached where the metric is nearly static and 
Schwarzschildian, then matches the numerical solution to the analytic solution of 
these equations for the Schwarzschild metric. The latter curve has an asymptote 
which will not, in general, be parallel to the plane x = 0; if not, one chooses new 
initial data and repeats the calculation until the desired solution has been ob- 
tained. 

This method has a major drawback in that it requires a knowledge of the two- 
body metric well into the future-much further, in fact, than we have been able 
to get in fifty time steps of machine calculation. It is not possible, therefore, to 
analyze our limited data in this way. A rough description could be found by 
using instead the truncated power series (4.10); while the numerical values for 
the asymptotic separation so obtained would not be accurate, one might expect 
changes in this separation with time to be qualitatively similar to the exact 
solution. An even cruder, but simpler, approximation is to ignore time variations 
in gij completely, and to solve the geodesic equations for a static metric. One 
then repeats the calculation using for the gij their values at different times, and 
examines the changes in separation. (This approximation would not be too un- 
reasonable if the metric changed relatively slowly in the time required for a light 
ray to reach the asymptotic region.) We observe the expected behavior even for 
this extremely rough approach: the radius of each individual mouth shrinks from 
a maximum at the moment of time-symmetry, while the distance between centers 
decreases as t2. 

One might raise the objection that, in using the method of null geodesics, we 
have no a priori guarantee that a beam of light sent from the throat will ever 
reach the asymptotic region. This objection gains strong support when one ex- 
amines the corresponding behavior in the Schwarzschild problem.13 The analysis 
is most easily carried out using Kruskal’s coordinate system (IL?), in which the 
light rays are represented as straight lines of unit slope with respect to the co- 
ordinate axes. One sees readily that only those rays emitted from the throat be- 
tween the time t = --nm at which the throat is formed and the moment t = 0 
of time-symmetry can ever escape to infinity. (The null geodesics passing through 
the throat at t = 0 are asymptotic to the real singularity r = 0.) Similar be- 
havior can also be expected in the two-body problem, especially when the mass 
of either “particle” is much less than their initial separation (or equivalently, 
when pcco >> l), so that they behave like two isolated Schwarzschild solutions. 
This would not invalidate the method of light rays and asymptotic observers, 

13 See, in particular, Fuller and Wheeler (3%) f or a careful analysis of geodesics in the 
Schwarzschild-Kruskal metric, especially with regard to the problem of causality in multi- 
ply connected spaces. 
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but it would imply that these observers could only receive signals from the worm- 
hole which were emitted before the moment of time-symmetry. 

THE PROBLEM OF CAUSALITY 

Closely related to the above problem is the question whether one can send a 
light signal once around the wormhole and back to its starting point before the 
throat pinches off. Such a procedure, if possible, would appear to violate causality, 
since two observers near each mouth could convey information to each other 
through the wormhole much more quickly than they could send it across the 
intervening space between them. Fuller and Wheeler (26) have argued that for 
two well-separated masses ( pcLo >> 1) this is impossible. In the case of two strongly 
interacting masses (~0 5 l), however, it is readily shown from the approximate 
solution (4.10) that this can in fact be done. 

One first notes that for PO 5 1 the initial value function (defined by Eq. 
(2.17) ) is very nearly constant over the curve 7 = ?r joining the two mouths; in 
particular,14 

Furthermore, Eq. (4.13) in this case yields 

fllb, T, t> m 1 + 2 ,F 
0 

4t’+ o(t”) 

Let us consider a light ray which is emitted from the throat (P = M , 17 = 7r) at 
t = 0, and which passes along this curve until it returns to its starting point 
(CL = --PO , 7 = 9r) at some later time t = tl . The equation for the null geodesic 
(fi.3b) becomes 

1 -= 
2 dg1db, 7r, t> = A4 ddfllG * 

Upon inserting the approximate values (5.4) and (5.5) and integrating, one 
obtains 

2 

$1 M & -$ sinh (v’!&~) 

1,I To prove this one first shows, using standard formulas, that 

(.5.6) 

where K is the complete elliptic function of the first kind, dn is a Jacobian elliptic functiou 
and the modulus k is related to $0 by pLg = PR(k)/K(dl - k*). For pu 5.1, k << 1 :mci. 
therefore, K(k) z 7r/2, dn(Kp/pO) x 1, from which (5.4) follows. 
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This time is to be compared with the time torit at which the throat collapses to 
zero circumference : 

terit W ?rm M 2$. 

We have used here a limiting form for Eq. (2.20), m m 7r2/2p:, which is valid 
for small ~0 . By choosing ~0 sufficiently small, one can evidently make the ratio 
tl/tcrit as small as one pleases. 

This rather surprising result does not contradict the analysis of Fuller and 
Wheeler, for it applies only to the case of strongly interacting masses. There are 
good reasons for regarding the latter system as a single composite particle with an 
internal structure”; violations of causality within this super-particle would not 
be at variance with commonly accepted physical principles. Instead one should 
ask whether one can send a light ray from the asymptotic region through the 
wormhole and back out to infinity without encountering a singularity in the 
metric. We believe this to be impossible, although we have not been able to prove 
it conclusively. 

In summary, the numerical solution of the Einstein field equations presents 
no insurmountable difficulties. Much still remains to be done, however, in the 
investigation both of stable difference schemes (a proof of stability being one of 
the outstanding unsolved problems) and of coordinate conditions that are well 
suited to numerical work. The practical impossibility of carrying the numerical 
solution sufficiently far into the future limits the conclusions which can be drawn 
about the dynamical behavior of the wormhole system. Nevertheless, one sees 
evidence for a gravitational collapse of each mouth, analogous to that of the 
Schwarzschild metric, together with an interaction between the two of them. 
These two effects can only be properly disentangled through measurements in 
the asymptotic region; with the limited data at our disposal, such an analysis 
has not been possible. 

ACKNOWLEDGMENTS 

We are grateful to Professor J. A. Wheeler and Professor C. W. Misner for many valuable 
discussions about the formulation of the problem and interpretation of the results, and to 
Professor R. 0. Friedrichs for much useful advice on the mathematical approach. We also 
thank Professor M. Ferentz for his assistance with the analysis and programming during 
the earlier stages of the work. 

RECEIVED: December 9, 1963. 

REFERENCES 

1. J. A. WHEELER, Phys. Rev. 97,511 (1955). 
2. C. W. MISNER AND J. A. WHEELER, Ann. Phys. (N.Y.) 2, 525 (1957). 

15 See, e.g., Brill and Lindquist (18). 



TWO-BODY PROBLEM IN GEOMETRODYNSMICS :131 

5. A. EINSTEIN, L. INFELD, AND B. HOFFMAN, Ann. Math. 39, 65 (1938). 
4. A. EINSTEIN AND L. INFELD, Bnn. Math. 41, 455 (1940). 
5. W. DE SITTER, Monthly Notices Roy. Astron. Sot. 77, 155 (1916). 
6. T. LEVI-CIVITA, Am. J. Math. 69, 225 (1937). 
7. H. P. ROBERTSON, Ann. Math. 39, 101 (1938). 
8. V. FOCK, “The Theory of Space, Time and Gravitation,” Appendix B. Pergamon Press, 

London, 1959. 
9. L. INFELD AND J. PLEBANSKI, “Motion and Relativity.” PWN, Warsaw, and Pergamen 

Press, New York, 1960. 
10. J. X. GOLDBERG, The equations of motion, in “Gravitation: An Introduction to Current 

Research,” L. Witten, ed. Wiley, New York, 1962. 
11. A. EINSTEIN AND N. ROSEN, Phys. Rev. 48, 73 (1935). 
12. M. I). KRUSKAL, Phys. Rev. 119, 1743 (1960). 
13. R. W. LINDQUIST, J. Math. Phys. 4, 938 (1963). 
14. D. R. BRILL, ,4nn. Phys. (N.Y.) 7, 466 (1959). 
15. J. WEBER AND J. A. WHEELER, Rev. Mod. Phys. 29,509 (1957). 
16. R. ARNOWITT. S. DESER, AND C. W. MISNER, Phys. Rev. 118, 1100 (1960); ibid. 120, 313 

(1960). 
17. C. W. MISNER, Phys. Rev. 118, 1110 (1960). 
18. D. R. BRILL AND R. W. LINDQUIST, Phys. Rev. 161, 471 (1963). 
19. K. 0. FRIEDRICHS, Commun. Pure Appl. Math. 7, 345 (1954). 
20. L. P. EISENHART, “Riemannian Geometry,” p. 146 ff. Princeton Univ. Press, Princeton, 

New Jersey, 1960. 
2’1. P. D. LAX, C’ommun. Pure Appl. Math. 11, 175 (1958). 
22. A. RATCHAUDHURI, Phys. Rev. 98, 1123 (1955); ibid. 106, 172 (1957). 
23. A. KOMAR, Phys. Rev. 104, 544 (1956). 
24. I. M. KHALATNIKOV AND E. M. LIFSHITZ, Advances i7~ Phys. 12, 185 (1963). 
25. J. PLEBANSICI, Phys. Rev. 118, 1396 (1960). 
$6. R. FULLER AND J. A. WHEELER, Phys. Rev. 128, 919 (1962). 


