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CHAPTER 2 – MACH EFFECT THEORY

————————————————————————————————————

GRAVITATIONAL ABSORBER THEORY & THE MACH EFFECT

H. Fearn
Physics Dept. CSU Fullerton,
800 N. State College Blvd.
Fullerton CA 92834, USA

The origins of mass can be described in terms of Mach’s principle, which states that the mass
of a body is determined by its interaction with the rest of the mass-energy in the universe.
However, if a body undergoes a sudden acceleration, you may ask, “How can the universe respond
immediately in a way to conserve momentum?” In order to explain this, we introduce the concept
of advanced waves, which have been used successfully in both classical and quantum physics for
the last 70+ years.

1. INTRODUCTION

The work of Hoyle and Narlikar (HN) is a “masterpiece” in general relativity (GR) theory because it is fully
covariant and incorporates fully the idea of Mach’s principle. It is what Einstein dearly wanted to do, but
didn’t think he quite managed with standard general relativity. But perhaps he did? This paper shows that
the results of HN, or what I would prefer to call gravitational absorber theory (GAT) can be obtained from
Einstein’s GR with the addition of a mass fluctuation in time. In Section 2, I show that adding m(t) is
all that is needed. I have renamed the theory to emphasise that I am not interested in the static universe
model; I do not include the HN mass creation (C)-field. I am only interested in the Machian development
of the theory through the use of retarded and advanced waves.
The local field around a mass particle can still be thought of as the overlapping of the many retarded and

advaced waves, which themselves carry energy and momentum. This field will have a potential anywhere
in space-time and constitutes the background vacuum. The mass particle transfers energy and momentum
with the “field” here and now, which is basically th vacuum. However, when the particle accelerates the
universe as a whole reacts to the acceleration, causing changes in the local field, which can be transmitted
to the particle conserving mometum on a universal scale.
Einstein began his work on general relativity by seeking a concordance with Mach’s principle. That is,

to explain inertia of a test mass in terms of other masses in the universe. Sciama, Nordtvedt, and others
have shown that masses in motion exert non-radial gravitational forces on nearby masses (frame dragging).
In particular, Sciama showed that just this frame-dragging e↵ect from the rest of the universe can account
for inertia. Woodward has exploited the result of Sciama to design a propellantless propulsion device that
depends on such forces.
In spite of its prediction of frame-dragging, and apparent ability to account for inertia, some researchers feel

that general ralativity does not provide a fully self-consistent Machian picture. While Sciama and Nordtvedt
can calculate the inertial force on an accelerated object due to the rest of the mass in the universe, we feel
that general relativity does not account for the e↵ect of the accelerated mass back on the rest of the universe.
To properly account for the e↵ect of the accelerated mass back on the rest of the universe, we employ the

concept of advanced waves, made famous by Wheeler and Feynman. Hoyle and Narlikar developed a theory
of general relativity that incorporated advanced waves. While Hoyle and Narlikar are well-known for their
steady-state cosmology work, and they use HN theory in that work, we feel their theory stands as a fine
extension to general relativity, ignoring the parts regarding mass creation.
The beauty of gravitational absorber theory (GAT) is that it allows one to think of a mass, here and

now, being influenced by the rest of the matter in the universe via gravitational signals travelling at speed
c and does not rely on some (old fashioned Newtonian) notion of “action-at-a-distance” or faster than light
propagation of signals. Real gravitational signals travelling at speed c carry information from every part of
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the universe to a mass here and now. The only trick is, to have mass react instantaneously, you must invoke
the advanced wave solution to the relativistic wave equation. This advanced wave travels backward in time
from the distant reaches of the universe, to convey momentum to the here and now, allowing back reaction
to appear instantaneous.
The reason that HN theory did not catch on in the 1960’s is twofold.

1. Hoyle was looking for a static universe cosmology theory. He introduced the “C” field as a creation
field to keep the mass density constant as the universe expanded. This C field can be removed without
loss of the underlying theory.

2. Hawking raised an objection to the HN theory in 1965 which basically put the last nail on the co�n. He
suggested that by integrating out into the distant future, the advanced wave integrals would diverge.
That is correct. However, since the universe is not only expanding but accelerating in that expansion,
there is a cosmic horizon beyond which you cannot integrate. That cuto↵ prevents the advanced wave
integrals from diverging and therefore re-establishes the HN theory as a good working theory.

3. Now is the time to look at gravitational absorber theory in a new light. Forget the static cosmology
and move forward.

Standard GR has the problem that masses are treated as static. That is in general not the case. The
background gravitational potential can be nonzero even in a flat spacetime. The GAT allows for a dynamic
communication of signals from every part of the universe to the here and now to conserve momentum.
Furthermore, and this is conjecture, the superposition of retarded and advanced waves throughout the universe
could be a mechanism to understand dark energy and matter. For example, dark matter might just be the
manifestation of the gravitational potential at a location in space where the retarded and advanced waves do
not perfectly overlap. For example at the location of an accelerating mass. As an electromagnetic analogy,
consider photons appearing near an accelerating mirror in the dynamic Casimir e↵ect or equivalently Unruh
radiation.
There is su�cient reason to reconsider the gravitational absorber theory of Hoyle and Narlikar. In section

2, we allow for a mass fluctation in the Einstein equation of motion (geodesic) and obtain the HN equation
of motion, which is a new result. In section 3, we give a very brief history of the HN paper sequence and
rewrite their notation to assist the reader. In section 4, we compare the Einstein action and field equation
with the HN field equation. In section 5, we show that the mass fluctuation frmula calculated by Woodward
from the precepts of general relativity can also be obtained from HN theory. This is the main result of the
paper.
Advanced waves were introduced by Dirac in 1938 to describe radiation reaction. His radiation reaction

force equation is still in use today and can be found in most standard electrodynamics text books. The
advanced wave concept was given a physical interpretation by Wheeler and Feynman in 1945 [1]. The idea
has since been used successfully in quantum mechanics by John Cramer and later in the theory of gravitation
by Hogarth 1962 [2] and Hoyle and Narlikar 1964 [3,4] whose work we will summarize for convenience below.

1.1 Electron Radiation Reaction in Electrodynamics

Dirac [5] first introduced the idea of advanced waves in electromagnetism in order to derive the radiation
reaction of an accelerating electron.
The idea is as follows. Consider a single electron undergoing acceleration. The field surrounding the

electron can be thought of in two parts, the outgoing and incoming. The actual field surrounding the
electron is the usual retarded Lienard-Wiechert potentials and any incident field on the electron.

Fµ⌫
act = Fµ⌫

ret + Fµ⌫

in (1)

Furthermore, the Maxwell 4-potential wave equation allows for advanced solutions, which are the same
form as retarded, only they go backward in time. The advanced solutions also satisfy the wave equation in
Lorentz gauge (below, with c = 1):

⇤Aµ = 4⇡jµ (2)

@Aµ

@xµ
= 0

(3)
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We could equally well describe the actual field surrounding the electron by

Fµ⌫
act = Fµ⌫

adv + Fµ⌫
out (4)

where the Fµ⌫
out is the total field leaving the electron. The di↵erence between the outgoing waves and the

incoming waves is the radiation produced by the electron due to its acceleration.

Fµ⌫

rad = Fµ⌫
out � Fµ⌫

in = Fµ⌫
ret � Fµ⌫

adv (5)

In the appendix of Dirac’s paper, it is shown that this equation gives exactly the well known relativistic
result for radiation reaction which can be found in standard text books on electromagnetism, for example
Jackson [6].

1.2 Wheeler & Feynman: Absorber Theory

Wheeler and Feynman [1] accept Dirac’s result but wish to give a physical explanation as to where the
advanced electromagnetic field comes from. They resort to a suggestion made by Tetrode [7] and later by
Lewis [8] which was to abandon the concept of electromagnetic radiation as a self interaction and instead
interpret it as a consequence of an interaction between the source accelerating charge and a distant absorber.
The absorber idea has the four following basic assumptions, which we quote directly from Wheeler-Feynman
[1],

(1) An accelerated point charge in otherwise charge-free space does not radiate electromagnetic energy.

(2) The fields which act on a given particle arise only from other particles.

(3) These fields are represented by 1/2 the retarded plus 1/2 the advanced Lienard-Wiechert solutions

of Maxwell’s equations. This force is symmetric with respect to past and future.

(4) Su�ciently many particles are present to absorb completely the radiation given o↵ by the source.

Now, Wheeler-Feynman considered an accelerated charge located within the absorbing medium. A dis-
turbance travels outward from the source. The absorber particles react to this disturbance and themselves
generate a field half advanced and half retarded waves. The sum of the advanced and retarded e↵ects of all
the charged particles of the absorber, evaluated near the source charge, give an electromagnetic field with
the following properties [1]:

(1) It is independent of the properties of the absorbing medium.

(2) It is completely determined by the motion of the source.

(3) It exerts on the source a force which is finite, is simultaneous with the moment of acceleration, and

is just su�cient in magnitude and direction to take away from the source the energy which later shows

up in the surrounding particles.

(4) It is equal in magnitude to 1/2 the retarded field minus 1/2 the advanced field generated by the

accelerated charge. In other words, the absorber is the physical origin of Dirac’s radiation field

(5) This field combines with the 1/2 retarded, 1/2 advanced field of the source to give for the total

disturbance the full retarded field which accords with experience.

The Wheeler-Feynman paper presents four derivations of the relativistic radiation reaction of an accelerated
charge, each successive derivation increasing in generality. The first three derivations proceed by adding up
all the electromagnetic fields due to the absorber particles. The fourth is the most general derivation, which
only assumes that the medium is a complete absorber and so outside the medium the sum of all the retarded
and advanced waves is zero. Each yields the well-known relativistic radiation reaction as given in text books
[6].
So far, we have shown that the advanced wave idea has been used successfully in classical physics. Now

we proceed to show that it can also be advantageously used within quantum mechanics. The transactional
interpretation of quantum mechanics was written by John Cramer [9,10] in the 1980’s. It is a way to view
quantum mechanics which is very intuitive and easily accounts for all the well known paradoxes, EPR,
which-way detection and quantum eraser experiments. We refer the reader to his paper, which is a very
interesting read. All the usual quantum results hold, and it is simply an alternative point of view from the
Copenhagen interpretation and collapsing-wave-function way of thinking.
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Hoyle-Narlikar (HN) theory is a kind of absorber theory (with advanced waves) for gravitation rather than
electrodynamics. HN theory agrees with Einstein’s theory of gravitation in the limit of a smooth fluid mass
density distribution in the rest frame of the fluid. All of the tests of Einstein’s gravitation still apply to HN
theory.

2. DERIVATION OF THE EINSTEIN GEODESIC EQUATION

One method used to derive the geodesic equation, also known as the equation of motion of a particle,
is extremizing (minimizing) the line element. This will give us the shortest distance between two points.
Taking the general line-element,

ds2 = gµ⌫dx
µdx⌫ (6)

varying both sides (a similar derivation can be found in Dirac [11] p16), we get

2ds�(ds) = dxµdx⌫�(gµ⌫) + gµ⌫dx
µ�(dx⌫) + gµ⌫dx

⌫�(dxµ)

= dxµdx⌫gµ⌫,�(�x
�) + 2gµ�dx

µ�(dx�)

�(dx�) = d(�x�)

dxµ =

✓
dxµ

ds

◆
ds = vµds (7)

In order to extremize the action
R
�(mds), treat mass as a constant. Then we consider the following,

Z
�(ds) =

Z 
1

2

dxµ

ds

dx⌫

ds
gµ⌫,��x

� + gµ�
dxµ

ds

d

ds
(�x�)

�
ds

=

Z 
1

2
gµ⌫,�v

µv⌫(�x�) + gµ⌫v
µ d

ds
(�x�)

�
ds (8)

Integrating the second term by parts we find

Z
�(ds) =

Z 
1

2
gµ⌫,�v

µv⌫ � d

ds
(gµ�v

µ)

�
(�x�)ds = 0 (9)

For this to be true for any variation �x� we find that the term inside the square bracket must be zero hence,

d

ds
(gµ�v

µ)� 1

2
gµ⌫,�v

µv⌫ = 0 (10)

Furthermore

d

ds
(gµ�v

µ) = gµ�
dvµ

ds
+ gµ�,⌫v

µv⌫

= gµ�
dvµ

ds
+

1

2
(gµ�,⌫ + g�⌫,µ)v

µv⌫ (11)

By substitution of Eq. (11) into Eq. (10) we find

gµ�
dvµ

ds
+

1

2
(g�µ,⌫ + g�⌫,µ � gµ⌫,�)v

µv⌫ = 0

1

2
(g�µ,⌫ + g�⌫,µ � gµ⌫,�) = ��µ,⌫

dv�

ds
+ ��

µ⌫v
µv⌫ = 0 (12)

where the last equation, which is the usual geodesic equation, follows when you multiply throughout by g��.
We did not start with a true particle Lagrangian, only a line element. The Lagrangian includes a mass of
the particle. Note that we have left the mass entirely out of the variation since at present it is treated as a
constant.
Let us compare this with what happens when you vary the rest mass of the particle.
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2.1 Allow the Mass to change in Equation of Motion derivation

To see how similar the HN equation of motion is to the Einstein Geodesic, simply repeat the above
calculation but allow the mass to change. The result is the Equation of Motion for the HN-theory. It is a
little unclear as to why the usual Einstein geodesic does not contain the same mass variation. Is it because
the mass is held constant in the Einstein case? If so why is the mass held constant?
Starting from the line element,

ds2 = gµ⌫dx
µdx⌫

2ds�(ds) = �gµ⌫dx
µdx⌫ + 2gµ⌫dx

µ�(dx⌫)

�(ds) =


1

2
�gµ⌫ ẋ

µẋ⌫ + gµ⌫ ẋ
µ d

ds
(�x⌫)

�
ds (13)

Now, the action for mass m at position x can be simply written as,

I = �
Z

mds

�I = �
Z

[�(m)ds+m�(ds)]

= �
Z 

@m

@x�
�x� +

m

2
�gµ⌫ ẋ

µẋ⌫ +mgµ⌫ ẋ
µ d

ds
(�x⌫)

�
ds (14)

Integrate the last term by parts and switch dummy variable ⌫ ! � we get,

�I = �
Z 

@m

@x�
�x� +

m

2

@gµ⌫
@x�

ẋµẋ⌫�x� � d

ds
(mgµ�ẋ

µ)�x�

�
ds

= �
Z 

@m

@x�
+

m

2

@gµ⌫
@x�

ẋµẋ⌫ � d

ds
(mgµ�ẋ

µ)

�
�x�ds = 0 (15)

For this integral to be zero for any arbitrary �x� then the term in the square brackets must be zero, hence

d

ds
(mgµ�ẋ

µ) =
m

2

@gµ⌫
@x�

ẋµẋ⌫ +
@m

@x�

dm

ds
gµ�ẋ

µ +m

✓
gµ�

dẋµ

ds
+ gµ�,⌫ ẋ

µẋ⌫

◆
=

m

2
gµ⌫,�ẋ

µẋ⌫ +
@m

@x�
(16)

where we may make the gµ�,⌫ term symmetric in µ, ⌫ as follows,

gµ�
d

ds
(mẋµ) =

m

2
(gµ⌫,� � gµ�,⌫ � g⌫�,µ)ẋ

µẋ⌫ +
@m

@x�
(17)

Then using the definition for the Christo↵el symbol ��µ,⌫ and multiplying throughout by g�� we get,

d

ds
(mẋ�) +m(g����µ,⌫)ẋ

µẋ⌫ � g��
@m

@x�
= 0

d

ds
(mẋ�) +m��

µ⌫ ẋ
µẋ⌫ � g��

@m

@x�
= 0 (18)

Written for mass ma at position xa the equation of motion becomes,

d

d⌧

✓
ma

dxµ
a

d⌧

◆
+ma�

µ
⌫�

dx⌫
a

d⌧

dx�
a

d⌧
� gµ⌫

@ma

@x⌫
a

= ea
X

b 6=a

F (b)µ
⌫

dx⌫
a

d⌧
(19)

where the Lorentz force has been included on the right for completeness. The world-lines of particles are
not in general geodesics in the new theory. This equation agrees with the HN result in their book [12] p125
Eq.(138). In the HN book this equation of motion was derived directly from the gravitational field equation.
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3. HOYLE-NARLIKAR THEORY DEVELOPMENT

There is some motivation for looking into the HN-theory in detail. We begin from the first of the Hoyle-
Narlikar papers, through to the writing of their book. The notation they use is very unfortunate and di�cult
to read. There are too many similar letters being used for di↵erent parameters. Here we attempt to rewrite
the theory in a more familiar notation, using Greek letters for 0,1,2,3 and Roman letters only to distinguish
particle “a” from particle “b”. We do not use their European style of 4-vector 1,2,3,4. Rather we use the
0,1,2,3 numbering which has become fairly standard throughout the world. The flat metric will be taken as
⌘µ⌫ = diag(1,�1,�1,�1). Where ever possible we leave c not equal to unity which helps with dimensional
analysis. We tackle the papers in order starting with the first published.
Paper 1: The first paper in the sequence, in 1962, [13] was entitled “Mach’s Principle and the creation of
matter”. The main point of the paper was to argue that although Einstein was very much influenced by
Mach’s ideas, he did not quite manage to get the full spirit of Mach’s main idea embedded into the field
equations... mass depends on interaction with the rest of the mass-energy in the universe.
We would argue that Mach’s principle has several definitions and several of those are in fact already

contained in Einstein’s general relativity theory.
According to HN, they take the Einstein field equations, written as,

Rµ⌫ � 1

2
gµ⌫R+ �gµ⌫ = �Tµ⌫ (20)

and plug in the well known Robertson Walker line element,

ds2 = c2dt2 � S2(t)


dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

�
(21)

where k = 0,±1 and where r can be chosen for an observer attached to any particular particle. For the
stress-energy tensor, they assume

Tµ⌫ =

✓
⇢+ P +

4

3
u

◆
dxµ

ds

dx⌫

ds
�
⇣
P +

u

3

⌘
gµ⌫ (22)

where ⇢ is the matter density, P is the gas pressure and u is the radiation density. Hoyle and Narlikar
set out, in a series of papers, to formulate a gravitational theory (which encompasses Einstein’s equations)
which included Mach’s principle from the start. This theory would have both retarded and advanced waves.
Essentially this would be the gravitational equivalent of Wheeler-Feynman absorber theory for electrody-
namics.
Paper 2: In 1963 [14], we see HN play around with the Einstein action and add in their C-field, to add
matter to the universe in an attempt to preserve the density as the universe expands. This is not really of
interest for our work. Sciama [15] publishes work in the same journal on Wheeler-Feynman absorber theory
and mentions Hogarth’s work [2].
Paper 3: In January 1964 we see the first attempt at something new. The paper is entitled, “Time
symmetric electrodynamics and the arrow of time in cosmology”, [16]. Here we see the first introduction
of the Fokker-Schwarzschild-Tetrode action (FST action) [17,18,7], a discussion of the Wheeler–Feynman
absorber theory [1], and reworking time-symmetric electrodynamics in a flat and Riemannian space-time.
Here we rewrite these familiar equations for convenience since it will set up the new notation for their later
work.
We start with a summary of the first few HN equations which we then “translate” into better notation

below. We quote directly from the paper [16]:
.. we consider space-time to be given by the co-ordinates xi and by the line-element

ds2 = ⌘ikdx
idxk (23)

where ⌘ik = diag(�1,�1,�1,+1). The charges are labelled by letters a, b, c.... The ath particle has co-
ordinates ai, mass ma, charge ea and proper time a given by

da2 = ⌘ikda
idak (24)

We have chosen the velocity of light to be unity so that the time units are the same as the space units. The
Schwarzschild-Tetrode-Fokker action function is then defined by

J = �
X

a

ma

Z
da�

X

a

X

b 6=a

1

2
eaeb

Z Z
�(abiab

i)⌘lmdaldam (25)
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where

�(abiab
i) = ⌘ik(a

i � bi)(ak � bk) (26)

The equations of motion can be obtained from (25) by requiring that J be stationary with respect to variations
of the world lines of particles. If we define the 4-potential of b at a point x by the function

A(b)
m (x) =

Z
eb�(xbixb

i)⌘mkdb
k (27)

the equations of motion take the form

ma
d2ak

da2
= ea

X

b 6=a

F
k(b)
l

dal

da
(28)

where

F
(b)
kl =

@A
(b)
l (x)

@xk
�

@A
(b)
k (x)

@xl
(29)

represents the ‘field’ of charge b at point x.

Note that a better notation of the FST action and derivations for the potential and Maxwell’s equations,
can be found at the very end of the book by Barut on electrodynamics [19]. Our notation is similar to
Barut’s only we use x instead of z. Also we use a and b to distinguish particles rather than ↵ and � since
these could easily be mistaken for summation variables. We start by rewriting the above notation as follows:
For flat space-time.
Define the metric as ⌘µ⌫ = diag(+1,�1,�1,�1). The charges are labelled by a, b, c as before. The ath

particle has coordinates xµ
a , mass ma, charge ea, and proper time ⌧ given by the line element as

ds2 = c2d⌧2 = dxµ
adxaµ , (30)

with c = 1 we get,

d⌧2 = ⌘µ⌫dx
µ
adx

⌫
a

d⌧ ! ⌘µ⌫ ẋ
µ
a ẋ

⌫
ad⌧ . (31)

where di↵erentiation w.r.t ⌧ is represented by the dot above the symbol. The action can be written as,

I = �
X

a

Z
1

2
ma(ẋ

⌫
a)

2d⌧ �
X

a

X

b 6=a

ea

Z
A(b)

µ (x⌫
a)ẋ

µ
ad⌧ (32)

A(b)
µ (x⌫

a) =

Z
ebD(xa � xb)⌘µ⌫dx

⌫
b ⌘

Z
ebD(xa � xb)⌘µ⌫ ẋ

⌫
bd⌧

0 (33)

D(xa � xb) =
h
⌘↵�(x

↵
a � x↵

b )(x
�
a � x�

b )
i

Note that the 4-potential of particle b (A(b)
µ ) is evaluated at the location of particle a. The proper time for

particle b is given by ⌧ 0 and ẋb = dxb/d⌧
0. The Lagrangian can be written as

I =
X

a

Z
L(x⌫

a, ẋ
⌫
a)d⌧ (34)

L(x⌫
a, ẋ

⌫
a) = �1

2
ma(ẋ

⌫
a)

2 � ea
X

b 6=a

A(b)
µ (x⌫

a)ẋ
µ
a (35)

with equation of motion given by

@L

@x⌫
a

� d

d⌧

✓
@L

@ẋ⌫
a

◆
= 0 . (36)
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Di↵erentiating the Lagrangian we get

@L

@x⌫
a

= �
X

b 6=a

ea
@A

(b)
µ

@x⌫
a

ẋµ
a

@L

@ẋ⌫
a

= �maẋ
⌫
a �

X

b 6=a

eaA
(b)
⌫

d

d⌧

✓
@L

@ẋ⌫
a

◆
= � d

d⌧
(maẋ

⌫
a)� ea

@A
(b)
⌫

@xµ
a

dxµ
a

d⌧

maẍ
⌫
a = eaẋ

µ
a

X

b 6=a

F (b)
⌫µ (x

⌫
a) (37)

where the last equation is the equation of motion of particle a. The mass ma is taken to be constant. Finally
we define the electromagnetic field tensor as

F (b)
⌫µ (x

⌫
a) =

 
@A

(b)
µ

@x⌫
a

� @A
(b)
⌫

@xµ
a

!

F (b)
⌫µ =

1

2

�
F (b)ret
⌫µ + F (b)adv

⌫µ

�
. (38)

Now we follow the paper but write only in the new notation. Using Dirac’s identity,

⌘µ⌫
@2

@xµ@x⌫
D(x� xb) = �4⇡�(x0 � x0

b)(x
1 � x1

b)(x
2 � x2

b)(x
3 � x3

b)

= �4⇡�4(x� xb) . (39)

The 4-potential satisfies [19],

⇤2A(b)µ(x) =
X

b 6=a

eb

Z
ẋµ
b (⌧

0)⇤2D(x� xb)d⌧
0

= �4⇡
X

b 6=a

eb

Z
ẋµ
b �

4(x� xb)d⌧
0 (40)

which is the same as writing,

⇤2A(b)µ(x) = ⌘µ⌫
@2

@xµ@x⌫
A(b)

� (x) = �4⇡j(b)� (x) (41)

where the current density j
(b)
� (x) is given by

j(b)� (x) = eb

Z 1

�1
⌘��ẋ

�
b �

4(x� xb)d⌧
0 (42)

It can be shown that [19], the 4-potential satisfies the gauge condition

@A(b)µ

@xµ
=
X

b 6=a

eb

Z
ẋµ
b

@

@xµ
D(x� xb)d⌧

0

= �D(x� xb) |+1
⌧ 0=�1= 0 . (43)

We may derive the following:

@F
(b)µ
⌫

@xµ
= �4⇡j(b)⌫ (x) , (44)

which are Maxwell’s inhomogeneous equations.
Formally, all Maxwell’s equations and the Lorentz force equation are derivable from the action principle,

except radiation reaction terms (self force terms). The radiation reaction becomes a force due to advanced
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waves coming from the absorbing universe mass-energy. The time symmetry is emphasized by rewriting the
4-potential as a sum of retarded and advanced parts.

A(b)
µ =

1

2

�
A(b)Ret

µ +A(b)Adv
µ

�

A(b)Ret
µ = eb

⌘µ⌫ ẋ
⌫
b

⌘↵�(x↵ � x↵
b )ẋ

�
(45)

An alternative approach to the first term in the Lagrangian is to is to vary it directly and derive the
equations of motion from scratch rather than using the Euler-Lagrange formula. The notation has now been
introduced so we will not continue with the Riemannian Space-time summary.
Paper 4 & 5: These two papers [20,21] are referring entirely to the C-field, which was an addition of
matter in order that the mass-density of the universe ⇢ remain constant as the universe expands. We are
not interested in the C-field, since we do not require a static universe, and wish to treat the universe as not
only expanding but accelerating in that expansion. We skip these two papers.
Paper 6, 7, & 8: Now we jump ahead to the full HN-theory and the fully Machian action, or in their
words, the full action. The first of these [222] is a short paper including the C-field. This is not of so much
interest. The next two papers [3,4] are the main papers with the theory we wish to use. These two papers
should be read together. The HN-theory is given in A new theory of gravitation 1964 [3] with extra details
in the 1966 paper [4] entitled A conformal theory of gravitation.
A summary of the new theory [3] follows with reference also to the extra detail in [4]. Particle interactions

are propagated along null geodesics (at no distance in a 4 dimensional or light-like sense). According to HN
the action developed thus far is of the form

I =
1

16⇡G

Z
R
p
(�g)d4x�

X

a

ma

Z
d⌧ �

X

a

X

b 6=a

4⇡eaeb

Z Z
G↵�dx

↵
adx

�
b (46)

the first two terms looking very di↵erent that the direct particle interaction representing the electromagnetic
last term. The term in ma is derived from Galileo’s concept of inertia and has been present since before
Newton. Einstein retained this traditional term. Neither of the first two terms is correct, the first being a
field or energy density the second being attributed to matter only. Only terms of the form using a double
integral should be present. The first two terms have been artificially separated by traditional thinking. In
what follows we construct a purely gravitational theory with the first and second terms combined into a
single mass-energy term. It may also be possible to combine the electromagnetic term into the same term
but we leave that for a later discussion. In order to convert the line integral

R
mad⌧ into a sum of double

line integrals we make the following assumptions:
(1) The mass ma = m(xa) (mass at position xa) must become a direct particle field, it must arise from all
the other mass in the universe.
(2) Since mass is scalar we expect it to arise through a scalar Greens function.
(3) The action must be symmetric between any pairs of particles, [3].

Let each particle b give rise to a mass-field (spherical monopole type g-waves). Denote this field at a
general point x by m(b)(x). At any point xa on the path of particle a, we have m(b)(xa) as the contribution
of particle b to the mass of particle a at the position xa. Summing for all b particles ,

m(xa) = ma =
X

b

m(b)(xa) (47)

this gives the mass at point xa due to all particles including those at position xa. For electromagnetism
we avoided positions where xa = xb but for gravity we need not do this, [12] p109 Eq(46). The non-
electromagnetic part of the action Imat for many particles a,b... can be written in the form,

Imat = �1

2

X

a

Z
m(xa)d⌧ = �

X

a

X

b

Z
m(b)(xa)d⌧ (48)

In order that (48) be symmetric for any particle pair a,b we must have m(b)(xa) in the form

m(b)(xa) =

Z
G(xa, xb)d⌧

0 (49)
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so that
Z

m(b)(xa)d⌧ =

Z Z
G(xa, xb)d⌧d⌧

0 (50)

where G(xa, xb) = G(xb, xa) is a scalar Greens function. The mass function at a point x due to the world-line
of particle a, at position xa, is defined by

m(a)(x) =

Z
G(x, xa)d⌧ . (51)

The mass function varies from point to point. Before we plunge into the depths of HN-theory, let us first
have a brief aside on the development of the field equations for the Einstein action, which is considerably
easier!

4. COMPARISON OF THE ACTIONS AND FIELD EQUATIONS.

4.1 The Einstein Action

For comparison we write down the basic Einstein Action, without the electromagnetic field,

IEinstein =
1

16⇡G

Z
R[�g]1/2d4x�

X

a

ma

Z
d⌧ . (52)

The field equations are derived by varying the action and setting the variation equal to zero, [12] p112. The
metric tensor will be varied according to gµ⌫ ! gµ⌫ + �gµ⌫ in a volume V with �gµ⌫ = 0 at the boundaries.
Varying the above action yields,

�IEinstein =
1

16⇡G

Z
�(R[�g]1/2)d4x�

X

a

ma

Z
�(d⌧)

=
1

16⇡G

Z
�(gµ⌫Rµ⌫ [�g]1/2)d4x�

X

a

ma

Z
�(d⌧) . (53)

Using

�
X

a

ma

Z
�(d⌧) =

1

2

Z
Tµ⌫�g

µ⌫ [�g]1/2d4x

�
⇣
[�g]1/2

⌘
= �1

2
gµ⌫�g

µ⌫ [�g]1/2 (54)

Next we expand out the first term with the Ricci tensor,

�IEinstein =
1

16⇡G

Z
�(gµ⌫Rµ⌫)[�g]1/2d4x� 1

16⇡G

Z
1

2
Rgµ⌫�g

µ⌫ [�g]1/2d4x

+
1

2

Z
Tµ⌫�g

µ⌫ [�g]1/2d4x

=
1

16⇡G

Z 
Rµ⌫ � 1

2
Rgµ⌫ + 8⇡GTµ⌫

�
�gµ⌫ [�g]1/2d4x

+
1

16⇡G

Z
gµ⌫�Rµ⌫ [�g]1/2d4x (55)

the last term is zero since the variation vanishes on the boundary. Hence by setting �IEinstein = 0 for any
arbitrary variation �gµ⌫ we obtain the Einstein’s field equations,

Rµ⌫ � 1

2
Rgµ⌫ = �8⇡GTµ⌫ (56)
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The familiar energy momentum tensor is easily derived, see Hoyle and Narlikar’s book [12] p112. This
follows from using d⌧2 = gµ⌫dx

µdx⌫ and thus �(d⌧) = �gµ⌫ ẋ
µẋ⌫d⌧ which leads to

�
X

a

Z
m(xa)�(d⌧) = �

X

a

Z
m(x)�gµ⌫ ẋ

µẋ⌫�4(x� xa)d⌧

= �
Z

V
Tµ⌫�gµ⌫ [�g]1/2d4x = +

Z

V
Tµ⌫�g

µ⌫ [�g]1/2d4x

where Tµ⌫ =
X

a

�4(x� xa)[�g]�1/2m(x)ẋµẋ⌫d⌧ . (57)

The energy-stress tensor Tµ⌫ is a sum over all the mass-energy in the universe, excluding the electromag-
netic field which is treated separately. This is exactly the same calculation that will appear in the HN-theory
later.

4.2 Quick note on scalar densities

Using J as the Jacobian (see Dirac’s book on gravitation [11] p37),

dxµ0
= dxµJ or d4x0 = Jd4x

J =
@xµ0

@x↵

g↵� =
@xµ0

@x↵
gµ0⌫0

@x⌫0

@x�
. (58)

The determinants satisfy,

g = Jg0J

g = J2g0

)
p
�g = J

p
�g0 (59)

since g = kg↵�k is negative. That makes
p
�g a positive quantity. Hence we may define the following

invariant quantity for any scalar density, for example H ! Tµ⌫�g
µ⌫ ,

Z

V
H
p
�gd4x =

Z

V
H
p

�g0Jd4x =

Z

V
H 0p�g0d4x0

hence

Z

V
Tµ⌫�g

µ⌫p�gd4x = invariant . (60)

4.3 The HN-Theory Action

Omitting the electromagnetic field for now, using the definitions (47) and (50), the action can be written,
following Hoyle-Narlikar “A New Theory of Gravitation”, [3], as:

I = �
X

a

1

2

Z
m(xa)d⌧ = �

X

a

X

b

Z Z
G(xa, xb)d⌧d⌧

0 (61)

There is just one term, a sum over all the masses in the universe. The energy is not separated out, because
of mass-energy equivalence. This requires that a “universe” consist of at least two particles for them to
interact and create a space-time between them. The factor 1/2 comes in because each G(xa, xb) is shared
by two particles a and b. This makes no di↵erence to the equations of motion. The paper has no factor of
1/2 in front of the double sum, whereas the HN book does have the factor of 1/2. The most general wave
equation is

gµ⌫G(x, xa);µ⌫ + µRG(x, xa) = �[�g]�1/2�4(x� xa) (62)
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in which R is the Ricci scalar and µ is a constant taken later to be 1/6 since the wave equation is then
conformally invariant [23]. The next step is to vary the geometry in a finite volume V, gµ⌫ ! gµ⌫ + �gµ⌫
with �gµ⌫ = 0 on the boundary. It will be shown that

�I =

Z
Pµ⌫�g

µ⌫ [�g]1/2d4x (63)

where Pµ⌫ is a symmetric tensor. The formalism becomes a theory when we assert that �I = 0 which requires

Pµ⌫ = 0 (64)

which are the field equations of the new theory.

4.4 Field equation for HN-theory

Now for the field equations, [3]. Consider the change in G(xa, xb) due to an infinitesimal change �gµ⌫ in
gµ⌫ over a finite volume V, with �gµ⌫ = 0 on the boundary of V. By dividing throughout by [�g]�1/2, the
equation for the Greens function G(x, xa) can be written as,

@

@xµ


[�g]1/2gµ⌫

@G(x, xa)

@x⌫

�
+ µR[�g]1/2G(x, xa) = ��4(x� xa) (65)

The variation can be made by setting G ! G+ �G and gµ⌫ ! gµ⌫ + �gµ⌫ , and this becomes,

@

@xµ


[�g]1/2gµ⌫

@�G

@x⌫

�
+ µR[�g]1/2�G = � @

@xµ


�([�g]1/2gµ⌫)

@G

@x⌫

�
� µ�(R[�g]1/2)G (66)

This agrees with Eq (71) in the HN book, [12] p113-114. It appears that �G satisfies the same di↵erential
operator as G(x, xa) itself, but with a distributed source term, not a �-function at point xa. The solution
for �G can be written down as follows, (see [26] for first use of this solution on the scalar Greens function
p186)

�G(xa, xb) =

Z

V

@

@xµ


�([�g]1/2gµ⌫)

@G(xa, x)

@x⌫

�
G(xb, x)d

4x

+µ

Z

V
�(R[�g]1/2)G(xa, x)G(xb, x)d

4x

= �
Z

V
�([�g]1/2gµ⌫)

@G(xa, x)

@x⌫

@G(xb, x)

@xµ
d4x

+µ

Z

V
�(R[�g]1/2)G(xa, x)G(xb, x)d

4x (67)

where we have integrated the first term by parts and set �gµ⌫ = 0 at the boundary of the volume. This
agrees with Eq (12) in [3] (and Eq (72) in the HN book). The variation of the action then becomes

�I = �1

2

X

a

Z
m(xa)�(d⌧)�

1

2

X

a

Z
�m(xa)d⌧

= �1

2

X

a

Z
m(xa)�(d⌧)�

X

a

X

b

Z Z
�G(xa, xb)d⌧d⌧

0

= �1

2

X

a

Z
m(xa)�(d⌧)�

X

a

X

b

Z

V

Z Z
�([�g]1/2gµ⌫)

@G(xa, x)

@x⌫

@G(xb, x)

@xµ
d4xd⌧d⌧ 0

+µ
X

a

X

b

Z

V

Z Z
�(R[�g]1/2)G(xa, x)G(xb, x)d

4xd⌧d⌧ 0 (68)
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Using the earlier definitions of mass at point x due to the world-lines of particle a and particle b, Eq.(236),

m(a)(x) =

Z
G(xa, x)d⌧

m(b)(x) =

Z
G(xb, x)d⌧

0

we arrive at

�I = �1

2

X

a

Z
m(xa)�(d⌧)�

X

a

X

b

Z

V
�([�g]1/2gµ⌫)

@m(a)(x)

@x⌫

@m(b)(x)

@xµ
d4x

+ µ
X

a

X

b

Z

V
�(R[�g]1/2)m(a)(x)m(b)(x)d4x (69)

This agrees with Eq (13) in [3]. There are typos in the papers making these look like covariant derivatives
when they are only partial derivatives.
The first term in the variation of the action, Eq. (69) is the familiar energy momentum tensor for mass-

energy. This follows from using d⌧2 = gµ⌫dx
µdx⌫ :

�
X

a

Z
m(xa)�(d⌧) = �

X

a

Z
m(x)�gµ⌫ ẋ

µẋ⌫�4(x� xa)d⌧

= �
Z

V
Tµ⌫�gµ⌫ [�g]1/2d4x =

Z

V
Tµ⌫�g

µ⌫ [�g]1/2d4x

where Tµ⌫ =
X

a

�4(x� xa)[�g]�1/2m(x)ẋµẋ⌫d⌧ (70)

This is exactly the same as for the Einstein action treated earlier. This does not include the electromagnetic
fields which are treated separately.
At this point rather than follow the paper [3], it appeared quicker to follow the book [12]. We take up

the derivation there. In order to compare the older paper [3] with the more recent text book [12] we return
to the variation of the Greens function Eq (66). The book uses µ = 1/6 and has a factor of 1/2 in front of
the double sum, so the following terms will have a multiplicative factor 1/2 throughout. We may split the
Green function into advanced and retarded parts, [12] p114 Eq (73),

G(x, xb) =
1

2
[Gret(x, xb) +Gadv(x, xb)] . (71)

The retarded part gives the following contribution to �G(xa, xb), see earlier Eq (67),

�Gret(xa, xb) = �1

2

Z

V
Gret(xa, x)

@

@xµ


�([�g]1/2gµ⌫)

@Gret(x, xb)

@x⌫

�
d4x

� 1

12

Z

V
�(R[�g]1/2)Gret(xa, x)G

ret(x, xb)d
4x (72)

where Gret(xa, x) = Gadv(x, xa).

The equation for �Gret above, can be written more symmetrically by integrating the first term by parts,

�Gret =
1

2

Z

V
�([�g]1/2gµ⌫)

@Gadv(x, xa)

@xµ

@Gret(x, xb)

@x⌫
d4x

� 1

12

Z

V
�(R[�g]1/2)Gadv(x, xa)G

ret(x, xb)d
4x

(73)

This agrees with the book [12] p115, Eq. (77). The advanced part of �G is similar with the advanced and
retarded G’s switched

�Gadv =
1

2

Z

V
�([�g]1/2gµ⌫)

@Gret(x, xa)

@xµ

@Gadv(x, xb)

@x⌫
d4x

� 1

12

Z

V
�(R[�g]1/2)Gret(x, xa)G

adv(x, xb)d
4x

(74)
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The full expression for �G(xa, xb) is the sum of the advanced and retarded parts. The next step is to find
the variation of the action,

X

a

X

b

Z Z
�G(xa, xb)d⌧d⌧

0 . (75)

Here we introduce the mass field from p115 [112],

m(x) =
1

2
[m(ret)(x) +m(adv)(x)]

m(ret)(x) =
X

a

Z
G(ret)(x, xa)d⌧

m(adv)(x) =
X

a

Z
G(adv)(x, xa)d⌧

(76)

The variation of G becomes,
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(77)

Note that each term has one sum over a and one over b, so when we substitute in the mass fields all the
summations are used.
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(78)

We may therefore simplify the �I to remove the summations. Here is a full summary so far:

�I = �1
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�(R[�g]1/2) [madvmret] d4x (79)

where we have replaced the first term with the familiar energy-stress tensor expression and flipped from
contravariant to covariant notation with a minus sign change. The second term in the above equation can
be expanded to give;
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(80)

where we have used the following useful identity [12] p 113, in the last step

�[�g]1/2 = �1

2
gµ⌫�g

µ⌫ [�g]1/2 (81)

The �(R[�g]1/2) term in �I can be expanded also as follows;
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using the Eq (81) again for the last term we find,
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hence the contribution to �I becomes
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(84)

We will treat the �Rµ⌫ term separately, it does not go to zero as in the Einstein case unfortunately!.
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The shorthand for �I then becomes,
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The field equations are then seen to be,

Tµ⌫ + ✓µ⌫ +
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@mret
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�
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(87)

What remains is to expand ✓µ⌫ in its full glory. See the Addendum for details.
After some trivial algebra, which is obvious to the most casual observer, and only takes a couple of pages of
calculation we get...

✓µ⌫ = �1

6

⇥
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⇤
(88)

where ⇤2 is the wave equation @µ@
µ.

5. DERIVATION OF WOODWARD’S MASS CHANGE FORMULA

5.1 Woodward’s Power Equation ! mass change formula

From Woodward’s book [24], page 73 Eq( 3.5), we find;
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where V is volume over the device, P is power to the device, and P = d"/dt. Energy is " = mc2 and mass
density ⇢0 = m0/V . This agrees with the dimensions of [G] = [FL2/M2].

5.2 HN-theory field equation ! mass change formula

Let’s define the HN-field equation (in a smooth fluid) as follows (which agrees with Eq.(16) in reference
[4]) by grouping terms together;
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Now we expand the terms out. Let us put back in c and not set it equal to one, which can be confusing.
The terms in µ, ⌫ mix the time and spatial derivatives in an unexpected way.
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Consider first the T00 and Tjj terms separately, using flat metric (+1,-1,-1,-1),
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where we treat the derivatives with respect to @/@xj as a 3 component gradient-like term.
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where j = 1, 2 or 3. Now take the trace of T↵↵ where ↵ = 0, 1, 2, 3 by adding the last two equations.
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where we assume we are summing over ↵ and j. This last expression should be compared with the previous
result Eq. (89) above. Note that there are also spatial terms here, which in previous papers I incorporated
into the time derivatives [28]. I now think that was a mistake and have written them out explicitly here.
This is the main result of the paper. Quoting from a paper [29] by R. Medina:

“Unlike the inertia of energy, which is well known, many physicists are not aware of the inertia of
pressure (stress). In many cases such an e↵ect is negligible, but for the case of the stress produced
by electrostatic interactions, it is comparable to the inertial e↵ects of the electromagnetic fields.
If the inertia of stress is neglected the calculations are inconsistent.”

The spatial and temporal terms may be related, in the sense that in The Mach e↵ect drive (or MEGA
drive), PZT (lead zirconate titanate) expands and contracts. In a di↵erent device, that may not be the case.
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6. CONCLUSIONS

The main result we wish to emphasize is the mass fluctuation, Eq. (93). Compare this with Woodward’s
result Eq. (89) from his book [24] p73, Eq. (3.5). The consequences of this mass fluctuation are astounding
as related to the Woodward e↵ect and propellant-less propulsion methods. A following paper in this chapter,
by Rodal, will describe how to calculate a force using the mass fluctuation calculated here. The calculated
force and resonant frequency predictions will be compared to experimental data.
Hoyle-Narlikar gravitation , or gravitational absorber theory (GAT), is a valid theory that is fully consistent

with Einstein’s GR. It is a fully Machian theory of gravitation, which means that the mass of a body depends
on its gravitational interaction with all the other masses in the universe. Text books on Einstein’s GR rarely
if ever mention advanced waves, yet the are necessary if interactions with distant matter are to be thought
of as instantaneous.
Around 1965 Hawking voiced an objection to HN-theory [27], but that objection is no longer valid due to the
accelerating expansion of the universe [28]. Hoyle-Narlikar theory is to gravitation what Wheeler-Feynman
absorber theory is to electromagnetism. Einstein’s General Relativity (GR) remains valid and all the tests
of Einstein’s GR also remain valid and carry over to the HN theory presented here. The real di↵erence is
in the highly symmetric and simplified Lagrangian, which treats a mass as being influenced by all the other
masses in the universe, and that is all. A real universe must therefore be made up of at least two masses.
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Addendum

For those of you who just can’t get enough algebra, here is the rest of the glorious details for the derivation
of ✓µ⌫ .

We need to expand out Eq. (85) and find the equation for ✓µ⌫ ;
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The term in the round bracket on the RHS of the equation can be written as, [12], p118 Eqs (98,99).
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where we have integrated by parts. This agrees with Eq (100) in Hoyle and Narlikar’s book [12]. Using the
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following identities, from their book p118, w� can be expanded.
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we will also be reusing the identity in Eq (81), which is also in reference [11] p50, Eq. (26.10).

Consider the following,
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Now we need to consider the separate parts of the equation for w� and rewrite it;
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where we have di↵erentiated the identities (96) above. Now we substitute these expression into the equation
for w� to obtain,
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Now we only need to substitute the following identities,
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to obtain the needed result for w�,
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which agrees with Eq (102) p118 [12]. Now at this point, this wonderful expression for w� must be placed
back inside the integral (276), because we need to find the result for ✓µ⌫ . The three terms involving Christof-
fel symbols cancel out. You can integrate by parts and use the divergence theorem. The only remaining
terms involve di↵erentiations on the mass functions only.
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Expand out the first term and substitute for the �[�g]1/2 = � 1
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Now we must substitute �g�↵ ! �gµ⌫ to match the LHS of the equation in the last term. Performing
contractions over ↵ on the first two terms, leads to,
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