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A supermassive black hole moving through a field of stars will gravitationally scatter the stars,
inducing a backreaction force on the black hole known as dynamical friction. In Newtonian gravity,
the axisymmetry of the system about the black hole’s velocity v implies that the dynamical friction
must be anti-parallel to v. However, in general relativity the black hole’s spin S need not be parallel
to v, breaking the axisymmetry of the system and generating a new component of dynamical friction
similar to the Lorentz force F = qv×B experienced by a particle with charge q moving in a magnetic
field B. We call this new force gravitomagnetic dynamical friction and calculate its magnitude for a
spinning black hole moving through a field of stars with Maxwellian velocity dispersion σ, assuming
that both v and σ are much less than the speed of light c. We use post-Newtonian equations of
motion accurate to O(v3/c3) needed to capture the effect of spin-orbit coupling and also include
direct stellar capture by the black hole’s event horizon. Gravitomagnetic dynamical friction will
cause a black hole with uniform speed to spiral about the direction of its spin, similar to a charged
particle spiraling about a magnetic field line, and will exert a torque on a supermassive black hole
orbiting a galactic center, causing the angular momentum of this orbit to slowly precess about the
black-hole spin. As this effect is suppressed by a factor (σ/c)2 in nonrelativistic systems, we expect
it to be negligible in most astrophysical contexts but provide this calculation for its theoretical
interest and potential application to relativistic systems.

PACS numbers: 98.10+z, 04.70.Bw, 04.25.Nx

I. INTRODUCTION

Chandrasekhar was the first to recognize that a mas-
sive perturber moving through a stellar background
would scatter stars, resulting in a net deceleration in the
direction of its motion known as dynamical friction [1].
Dynamical friction is responsible for many astrophysical
phenomena [2] including satellite galaxies inspiraling to-
wards the centers of their host galaxies [3–5], mass segre-
gation of heavy objects in globular clusters [6, 7], the dis-
tribution of galaxies within clusters [8, 9], and the migra-
tion of planetesimals in protoplanetary disks [10–12]. It
also causes supermassive black holes to sink towards the
galactic center following a galaxy merger [13–16], helping
them to reach sub-parsec separations at which gravita-
tional radiation is effective in promoting black-hole merg-
ers. Dynamical friction also damps out the oscillations of
supermassive black holes that have been displaced from
the centers of their host galaxies following a gravitational
recoil [17–19] produced during a black-hole merger [20].

Dynamical friction can also be interpreted as the grav-
itational drag force exerted by the effective wake of stars
created behind a massive perturber by its gravitational
scattering [21–23]. If the stellar background is homoge-
neous and isotropic in its rest frame, and the perturber
is treated as a Newtonian point mass, the system is ax-
isymmetric about the velocity v of the perturber and
the wake produced will be axisymmetric as well. How-
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ever, if the perturber is a black hole, it can have a spin
S [24] that need not be parallel to v, breaking the ax-
isymmetry of the system. Like a paddle dipped over the
side of a canoe, the spin will disturb the wake of the
black hole and cause it to deviate from a straight path
through the stellar background. As the relative veloci-
ties v between supermassive black holes and the stars in
their host galaxies are usually much less than the speed
of light c, and the distances r between the black holes
and these stars is much greater than the gravitational
radius rg ≡ GM/c2 of a black hole of mass M , we will
work in the post-Newtonian (PN) approximation [25] in
which the equations of motion are expanded in powers of
the small parameters (v/c)2 and rg/r. We will show that
the lowest-order spin-dependent terms in the scattering
of stars by a supermassive black hole induce a dynam-
ical backreaction force on the black hole in the direc-
tion given by v × S. In an analogy with the Lorentz
force qv×B experienced by a charge q moving through a
magnetic field B, we dub this force gravitomagnetic dy-
namical friction. Although there has been extensive work
on the spin-dependent two-body problem in general rel-
ativity [26–28] as well as some studies of dynamical fric-
tion on bodies moving at relativistic speeds [29–32], to
our knowledge this paper provides the first calculation of
dynamical friction in which gravitomagnetic effects are
taken into account. Although the magnitude of the grav-
itomagnetic contribution to dynamical friction is strongly
suppressed compared to the Newtonian one for super-
massive black holes in realistic host galaxies, we present
this calculation for its theoretical interest and potential
applicability to relativistic systems.

In Sec. II, we review how spinning supermassive black
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holes scatter stars on hyperbolic orbits in general relativ-
ity. In Sec. III, we describe how these results can be used
to perform a Monte Carlo calculation of the gravitomag-
netic contribution to the coefficient of dynamical friction.
In Sec. IV, we present the results of this calculation and
explore the how the coefficient depends on the black-hole
velocity and spin. A brief summary and discussion of the
potential astrophysical applications of gravitomagnetic
dynamical friction are provided in Sec. V.

II. POST-NEWTONIAN ORBITAL
PRECESSION

The equations of motion for two Newtonian point par-
ticles with masses m1 and m2 and separation r can be
converted into an effective one-body equation of motion
with acceleration

aN = −M
r2

r̂ , (1)

where M ≡ m1 +m2 is the total mass and we use units
where G = c = 1. In the PN approximation, this New-
tonian acceleration is supplemented by higher-order cor-
rections [33]

a = aN + a1PN + aSO + . . . (2)

where

a1PN = −M
r2

{
r̂

[
(1 + 3η)v2 − 2(2 + η)

M

r
− 3

2
ηṙ2
]

− 2(2− η)ṙv

}
(3)

and

aSO =
1

r3

{
6r̂

[
(r̂× v) ·

(
2S +

δm

M
∆

)]
−
[
v ×

(
7S + 3

δm

M
∆

)]
+ 3ṙ

[
r̂×

(
3S +

δm

M
∆

)]}
(4)

where v is the relative velocity, η ≡ m1m2/M
2 is the

symmetric mass ratio, S ≡ S1+S2 is the total spin, δm ≡
m1 − m2 is the mass difference, and ∆ ≡ M(S2/m2 −
S1/m1). These expressions simplify in the limit that the
supermassive black hole is much more massive than the
stars it scatters (m1 � m2) in which case η → 0, S→ S1,
δm/M → 1, ∆→ −S, and (with the help of some vector
identites)

aSO → −
2M2

r3
v × [−χ + 3(r̂ · χ)r̂] (5)

where χ ≡ S1/m
2
1 is the dimensionless spin of the black

hole.

FIG. 1. A Keplerian orbit in three dimensions, showing the
angles that define its orientation in space: the inclination i,
the argument of periapsis ω, and the longitude of ascending
node Ω. The true anomaly f specifies the position of a star
on its orbit with f = 0 at pericenter.

Dynamical friction is caused by the gravitational scat-
tering of stars by the black hole as it moves through the
stellar background. These stars are gravitationally un-
bound to the black hole; they approach from large dis-
tances, reach orbital pericenter, and then return to infin-
ity. Well before and after each scattering event, the PN
accelerations given by Eqs. (3) and (4) are highly sub-
dominant compared to the Newtonian acceleration aN
and the stellar orbits are well described by Keplerian hy-
perbolae. In addition to its semi-major axis a and eccen-
tricity e, a hyperbolic orbit is specified by its inclination i,
argument of periapsis ω, and longitude of ascending node
Ω as shown in Fig. 1. We choose the reference plane to
correspond to the equatorial plane perpendicular to the
spin of the black hole implying that the inclination i is
the angle between the orbital angular momentum of the
star and the spin of the black hole.

Although the five orbital elements a, e, i, ω, and Ω are
conserved by the Newtonian acceleration aN , in the Kerr
geometry of a spinning black hole, conservation of the en-
ergy E, z-component of the angular momentum Lz, and
Carter constant Q [34] only require that the first three or-
bital elements remain unchanged by the scattering event.
The 1PN acceleration a1PN given by Eq. (3) causes the
argument of periapsis for a star on a parabolic orbit with
specific orbital angular momentum L to precess by an
amount

∆ω1PN = 6π

(
M

L

)2

(6)

as was famously shown by Einstein to account for the
anomalous precession of Mercury’s orbit [25]. Although
this pericenter precession should induce a small correc-
tion to non-relativistic calculations of dynamical friction,
it does not depend on the black-hole spin and thus can-
not generate the gravitomagnetic dynamical friction that
is our concern in this paper.

The 1.5PN spin-orbit correction to the acceleration
aSO causes both the argument of periapsis and the lon-
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FIG. 2. Gravitomagnetic dynamical friction caused by spin-
dependent precession of the argument of periapsis ∆ωSO. A
black hole with velocity directed towards the top of the page
(yellow arrow) will encounter more stars with relative veloci-
ties directed towards the bottom of the page as indicated by
the downwards black arrows on both orbits. The black-hole
spin is directed out of the page. Eq. (7a) implies that stars
on prograde orbits (cos i > 0, solid blue curve) will experi-
ence negative spin-dependent pericenter precession and thus
a smaller deflection than stars on retrograde orbits (cos i < 0,
dashed red curve). The vector sum of the two outwards di-
rected arrows on these orbits has a component directed to the
right side of the page yielding a net backreaction force on the
black hole directed to the left (leftwards green arrow).

gitude of ascending node to precess by [35]

∆ωSO = −12πχ cos i

(
M

L

)3

, (7a)

∆ΩSO = 4πχ

(
M

L

)3

. (7b)

These two changes to the orbital elements during a scat-
tering event each contribute to gravitomagnetic dynam-
ical friction. Let us first consider the effects of spin-
dependent pericenter precession as illustrated in Fig. 2
where the velocity of the black hole is directed towards
the top of the page and the black-hole spin is directed out
of the page. The negative sign in Eq. (7a) implies that
stars passing on the left side of the black hole (prograde
orbits with cos i > 0) will be scattered by smaller angles
than those passing on the right side (retrograde orbits
with cos i < 0). The black hole will therefore preferen-
tially scatter stars towards the right side of the page and
experience a backreaction force to the left. This force
is anti-aligned with v × S allowing us to identify it as
gravitomagnetic dynamical friction.

Let us next consider the effects of precession of the
longitude of ascending node as illustrated in Fig. 3. The
velocity of the black hole is again directed towards the
top of the page, but the black-hole spin is now directed to
the left side of the page. This choice allows the plane of
the page to correspond to the initial orbital plane of polar
orbits. The solid blue and dashed red orbits have angular
momenta directed out of and into the page respectively,

FIG. 3. Gravitomagnetic dynamical friction caused by preces-
sion of the longitude of ascending node ∆ΩSO. The black-hole
velocity (yellow arrow) is directed towards the top of the page
as in Fig. 2, but the black-hole spin (black arrow) is now di-
rected towards the left of the page making the solid blue and
dashed red curves correspond to polar orbits with orbital an-
gular momenta directed out of and into the page respectively.
Precession of the longitude of ascending node causes the or-
bital angular momenta to precess about the black-hole spin,
deflecting stars on both orbits into the page as indicated by
the ⊗ symbols on these orbits as they recede from the black
hole. The backreaction force on the black hole is directed out
of the page as shown by the green � symbol.

which according to Eq. (7b) will precess about the black-
hole spin as stars are scattered. In both cases, the final
orbital plane will dip into the top of the page causing
stars to be preferentially scattered below the plane of
the page. This induces a backreaction force on the black
hole out of the page in the direction of v×S as expected
for a gravitomagnetic force. As this contribution to the
gravitomagnetic dynamical friction has the opposite sign
of that from the spin-dependent pericenter precession as
shown in Fig. 2, a quantitative calculation is needed to
determine which effect predominates. We will provide
such a calculation in Sec. III.

We conclude this section by briefly considering rela-
tivistic corrections beyond 1.5 PN order. Black-hole spin
induces a mass-quadrupole moment [36, 37] which in turn
generates precession of the pericenter and longitude of
ascending node at 2PN order [35]

∆ωQ = −3πχ2

2
(1− 5 cos2 i)

(
M

L

)4

, (8a)

∆ΩQ = 3πχ2 cos i

(
M

L

)4

. (8b)

These terms have the opposite parity under reflection
through the equatorial plane (cos i → − cos i) of the 1.5
PN terms given by Eq. (7) implying that, like the 1PN
term of Eq. (6), they will not give rise to gravitomagnetic
dynamical friction. We have confirmed this result by
showing that including these terms does not affect our
subsequent numerical calculations.
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III. COEFFICIENT OF GRAVITOMAGNETIC
DYNAMICAL FRICTION

In this section, we calculate the component of the co-
efficient 〈∆v〉 responsible for gravitomagnetic dynamical
friction. This coefficient specifies the time rate of change
of the black hole’s velocity, i.e. its acceleration. Fol-
lowing Chandrasekhar’s original treatment of dynamical
friction [1], we assume that the stellar distribution func-
tion far from the black hole is spatially homogeneous and
has a Maxwellian velocity distribution

f(x,v′) =
n

(2πσ2)3/2
e−v

′2/2σ2

, (9)

where n is the stellar number density and σ is the one-
dimensional velocity dispersion. If the black hole has
a velocity v′BH in this mean stellar rest frame, we can
perform a change of variables v ≡ v′ − v′BH to find a
star’s velocity in the black-hole rest frame. In this frame,
we can express the Cartesian components of the stellar
velocity v as

vx = vr sin θ cosφ− L

r
(cosφv sinφ+ sinφv cos θ cosφ)

(10a)

vy = vr sin θ sinφ+
L

r
(cosφv cosφ− sinφv cos θ sinφ)

(10b)

vz = vr cos θ +
L

r
sinφv sin θ (10c)

where (θ, φ) is the star’s angular position defined such
that v′BH is along the z axis, vr is the radial velocity, L
is the magnitude of the orbital angular momentum, and
φv is an azimuthal angle about the radial direction de-
fined such that the tangential component of v is purely
azimuthal for φv = 0. These new variables, the distribu-
tion function (9), and the additional definition µ ≡ cos θ
allow the differential flux of stars entering a sphere of
radius r � GM/σ2 to be expressed as

d5F

dµdφdvrdLdφv
=

nLvr
(2πσ2)3/2

e−|v+v′
BH |2/2σ2

. (11)

If a star with mass m∗ scattered by a black hole of mass
M experiences a velocity change ∆v∗(µ, φ, vr, L, φv),
conservation of linear momentum implies that the ve-
locity of the black hole will be changed by an amount

∆vBH = −(m∗/M)∆v∗ . (12)

Eq. (11) then indicates that the coefficient of dynamical
friction 〈∆v〉 will be

〈∆v〉 =

∫
∆vBH

d5F

dµdφdvrdLdφv
dµ dφ dvr dLdφv

= − m∗n

M(2πσ2)3/2
e−v

′2
BH/2σ

2

∫
∆v∗Lvr

× e−(v
2
r+2vrv

′
BHµ)/2σ

2

dµ dφ dvr dLdφv (13)

where the limits of integration are −1 < µ < +1, 0 <
φ < 2π, vr < 0, L > 0, and 0 < φv < 2π.

To evaluate this integral, we must first derive an ex-
pression for the change in stellar velocity ∆v∗. Qual-
itatively, there are two possibilities: either the star is
directly captured by the black hole’s event horizon or it
is scattered by the black hole and returns to infinity. Let
us first consider direct capture by the black hole. If the
stellar velocity is given by Eq. (10), the star’s specific
orbital angular momentum L = r× v will be

Lx = L(sinφv sinφ− cosφv cos θ cosφ) (14a)

Ly = −L(sinφv cosφ+ cosφv cos θ sinφ) (14b)

Lz = L cosφv sin θ . (14c)

If we choose without loss of generality for the black-hole
spin direction Ŝ to lie in the xz plane at an angle θS with
respect to the z axis, the inclination will be

cos i = L̂ · Ŝ
= cos θS cosφv sin θ

+ sin θS(sinφv sinφ− cosφv cos θ cosφ) . (15)

The values Lmb±(χ) of the orbital angular momentum
below which stars on parabolic orbits in the equatorial
plane of the black hole are captured by the black hole
can be found from the geodesic equations; the approxi-
mation of strictly parabolic orbits (specific energy E = 1)
for both capture and scattering is valid since the star’s
velocities at infinity v ∼ σ � c are highly nonrelativistic.
For non-spinning black holes (χ = 0), Lmb± = 4M since
the inclination is undefined, while for maximally spin-
ning black holes (χ = 1), Lmb+ = 2M for prograde orbits

(cos i = +1) while Lmb− = 2(1 +
√

2)M for retrograde
orbits (cos i = −1) [38]. We can calculate Lmb for non-
equatorial orbits by finding the value of L for which there
is an unstable circular geodesic with E = 1, Lz = L cos i,
and Q = (L sin i)2; Lmb is a monotonically increasing
function of the inclination i with Lmb+ ≤ Lmb ≤ Lmb−.
When a star is captured, all of its linear momentum is
transferred to the black hole and ∆v∗ = −v. Since
all stars with L < Lmb+ are captured, the net linear
momentum they contribute to the black hole must be
anti-aligned with v′BH and thus cannot contribute to
the gravitomagnetic dynamical friction. The prograde
marginally bound orbital angular momentum Lmb+ can
thus serve as an effective lower limit for the integral in
Eq. (13).

The second possible fate of the star is that it is scat-
tered by the black hole and returns to infinity. The much
larger mass of the black hole (M � m∗) implies that the
star’s speed is nearly conserved (vi ' vf ). In Newtonian
gravity, a star with specific energy E and specific angular
momentum L will have eccentricity

e =

[
1 + 2E

(
L

GM

)2
]1/2

(16)
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and be scattered by an angle

δ = 2 cos−1(−e−1)− π , (17)

where we have temporarily restored the factors of G and
c for clarity of presentation. Stars described by the dis-
tribution function of Eq. (9) have E ∼ σ2, and if they are
to experience significant spin-orbit coupling according to
Eq. (7) must have L & GM/c. This implies eccentrici-
ties e − 1 ' (σ/c)2 � 1 and deflections δ ' π. We can
therefore approximate that in the absence of precession,
scattering will change a star’s velocity by ∆v∗ = −2v.

Precession will change the direction of the final stellar
velocity vf so that it is no longer anti-aligned with the
initial velocity v and thus ∆v∗ = vf − v 6= −2v. To
determine ∆v∗(µ, φ, vr, L, φv), we begin by calculating v
and L from Eqs. (10) and (14) in the limit r →∞ appro-
priate for the initial quantities at large separations. To
determine the components of these vectors in the ”spin
frame” in which the equatorial plane perpendicular to
the black-hole spin serves as the reference plane shown
in Fig. 1, we rotate them by an angle −θS about the y
axis. The stellar inclination i (which remains unchanged
by precession) is given by Eq. (15). The unit vector

n̂ = (Ŝ× L̂)/ sin i points along the line of ascending node
and its azimuthal angle in spherical coordinates of the
spin frame is the initial longitude of ascending node Ω.
Since the initial stellar velocity v points towards pericen-
ter for parabolic (e = 1) orbits, the argument of periapsis
ω will be the azimuthal angle of v in a frame with n̂ along
the x axis and L̂ along the z axis as shown in Fig. 1.

Once we have determined the initial orbital elements
Ω, i, and ω in the spin frame, the final orbital elements
are

Ωf = Ω + ∆ΩSO , (18a)

if = i , (18b)

ωf = ω + ∆ωSO , (18c)

where ∆ωSO and ∆ΩSO are given by Eq. (7). The final
stellar velocity vf in the spin frame is found by succes-
sively rotating −vx̂ by the three Euler angles given in
Eq. (18): we rotate first by Ωf about the black-hole spin
S, next by if about the line of ascending node n̂, and fi-
nally by ωf about the orbital angular momentum L. We
then calculate the change in stellar velocity ∆v∗ = vf−v
and rotate by an angle θS about the y axis to transform
back from the spin frame to the black-hole rest frame.
We use this ∆v∗ in Eq. (13) and Monte Carlo methods
to perform the required integration, allowing us to calcu-
late the coefficient of dynamical friction.

IV. RESULTS

In Fig. 4, we show the coefficient of gravitomagnetic
dynamical friction 〈∆v⊥〉 as a function of Lmax, the
upper limit of the integral over L in Eq. (13). We

FIG. 4. The component of the coefficient of dynamical fric-
tion 〈∆v⊥〉 perpendicular to the black-hole velocity v′BH as a
function of Lmax, the upper limit of the integral over the or-
bital angular momentum L in Eq. (13). The black hole has a
maximal spin (χ = 1) perpendicular to its velocity (θs = π/2).
The speed of the black hole is equal to the 1D stellar velocity
dispersion (v′BH = σ) and all other parameters are fixed at
the fiducial values listed in the text. The solid yellow curve
in the range 2M < L < 7M shows the total contribution to
the gravitomagnetic dynamical friction using the exact Euler
rotations to relate the stellar orbits before and after scatter-
ing. For L > 7M we linearize in the precession angles ∆ωSO

and ∆ΩSO given by Eq. (7) allowing us to show their sepa-
rate contributions with the dot-dashed blue and dotted orange
curves respectively. The dashed purple curve shows the total
contribution which converges for Lmax & 30M .

use fiducial parameters n = 106 pc−3, M = 106M�,
m∗ = M�, and σ = 100 km/s typical of a supermas-
sive black hole moving in a galactic nuclear star cluster.
We measure this acceleration using the unusual units of
km/s/Gyr as galactic speeds and dynamical times are
typically measured in km/s and Gyr respectively. All
stars with L ≤ Lmb+ = 2M are directly captured by
the black hole implying by symmetry that they provide
zero net contribution to the gravitomagnetic dynamical
friction. As Lmax increases from Lmb+ to Lmb−, stars
on orbits with increasing inclination manage to escape
to infinity and exert a net transverse force on the su-
permassive black hole as indicated by the dashed pur-
ple curve in Fig. 4. This curve reaches a maximum
at Lmax ' 4.875 quite close to the maximum orbital
angular momentum for capture from retrograde orbits
Lmb− = 2(1 +

√
2). The precession angles ∆ω and ∆Ω

diverge for true marginally bound Kerr geodesics, unlike
the 1.5PN results given by Eq. (7), but greater preces-
sion would not necessarily lead to larger gravitomagnetic
dynamical friction. The effect would be eliminated if ωf
and Ωf were fully randomized. As it would be compu-
tationally prohibitive to solve the geodesic equations for
each star in our Monte Carlo simulation, we rely on the
1.5PN results which should provide a reasonable approx-
imation for values of L modestly above the marginally
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FIG. 5. The coefficient of gravitomagnetic dynamical friction
〈v⊥〉 as a function of the ratio v′BH/σ between the speed of the
black-hole and the stellar velocity dispersion. Three different
values of the angle θS between the black-hole spin and veloc-
ity are shown: π/2 (solid yellow curve), π/4 (dashed orange
curve), and π/6 (dot-dashed blue curve).

bound values. For Lmb+ < L < Llin = 7M , we use the
exact rotations specified by the Euler angles of Eq. (7)
to calculate the velocity change ∆v∗ of each star, but
for higher values of L where the precession angles are
smaller we linearize in these angles to remove the dom-
inant Newtonian contribution to dynamical friction and
speed up the convergence of our Monte Carlo integration.
This linearization allows us to separate the contributions
from apsidal and nodal precession which partially cancel
as anticipated by Figs. 2 and 3. Our results converge for
Lmax & 30M because the spin-orbit acceleration given
by Eq. (4) falls off more rapidly than the inverse-square
law.

We can obtain a crude estimate for the coefficient of
gravitomagnetic dynamical friction 〈∆v⊥〉 by assuming
that it is comparable to the contribution to the Newto-
nian coefficient of dynamical friction 〈∆v‖〉 from stars
with orbital angular momenta L . Lmax ∼ M at which
the spin-orbit precession of Eq. (7) is significant. In the
limit that v′BH , σ � c, we estimate (using Eq. (5.20) of
Merritt [35]) that

〈∆v⊥〉 ' −
2πG2nMm∗

c2

(
Lmax

M

)
K

(
v′BH√

2σ

)
' −1.3 km/s/Gyr

(
n

106 pc−3

)(
M

106 M�

)
×
(
m∗
M�

)(
Lmax

M

)
K

(
v′BH√

2σ

)
, (19)

where

K(x) ≡ (2x2 − 1)erf(x) + x erf ′(x)

2x2
, (20)

and erf and erf′ are the error function and its first deriva-
tive. This function has the limiting behavior K(x) '
4x/(3

√
π) for x � 1 and K(x) ' 1 for x � 1. We

show the coefficient of gravitomagnetic dynamical fric-
tion 〈v⊥〉 as a function of the ratio v′BH/σ in Fig. 5. Our
estimate (19) provides the correct order of magnitude for
Lmax ∼ M . Furthermore, 〈v⊥〉 depends linearly on the
black-hole velocity for v′BH � σ and asymptotes to a
constant value for v′BH � σ as predicted by Eq. (20).

We can compare gravitomagnetic dynamical friction to
Newtonian dynamical friction for the same stellar distri-
bution function

〈∆v‖〉 = −4πG2nMm∗ ln Λ

σ2
H

(
v′BH√

2σ

)
= −2.4× 107 km/s/Gyr

(
n

106 pc−3

)(
M

106 M�

)
×
(
m∗
M�

)(
σ

100 km/s

)−2
ln Λ H

(
v′BH√

2σ

)
,

(21)

where the Coulomb logarithm ln Λ ∼ 10 and

H(x) ≡ erf(x)− x erf ′(x)

2x2
(22)

has the limiting behavior H(x) ' 2x/(3
√
π) for x � 1

and H(x) ' 1/(2x2) for x � 1 [35]. Taking the ratio of
Eqs. (19) and (21), we find

〈∆v⊥〉
〈∆v‖〉

' K

2H ln Λ

(
Lmax

M

)(σ
c

)2
(23)

which has the limiting behavior

lim
v′BH→0

〈∆v⊥〉
〈∆v‖〉

=
1

ln Λ

(
Lmax

M

)(σ
c

)2
, (24a)

lim
v′BH→c

〈∆v⊥〉
〈∆v‖〉

=
1

2 ln Λ

(
Lmax

M

)(
v′BH
c

)2

. (24b)

Although gravitomagnetic dynamical friction is sup-
pressed by a factor (σ/c)2 � 1 compared to Newto-
nian dynamical friction in the nonrelativistic limit, as the
black-hole velocity approaches the speed of light these
two effects become comparable.

We show how the coefficient of gravitomagnetic dy-
namical friction 〈∆v⊥〉 depends on the black-hole spin
in Figs. 6 and 7. Fig. 6 shows the dependence on the
dimensionless spin magnitude χ which appears approxi-
mately linear for χ . 0.7 but then grows more steeply as
one approaches the maximal spin limit χ = 1. Although
the precession angles given by Eq. (7) are linear in the
dimensionless spin χ, this linearity is only preserved for
contributions to 〈∆v⊥〉 with L > Llin for which we lin-
earize the Euler rotations in these angles. The nonlin-
earity in both these rotations and the spin dependence
of the limits Lmb on marginally bound orbits account
for the steepening slopes of the curves 〈∆v⊥〉(χ) seen in
Fig. 6 for χ & 0.7.
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FIG. 6. The coefficient of dynamical friction 〈∆v⊥〉 as a func-
tion of the dimensionless black-hole spin χ for θS = π/2
and our fiducial parameters n = 106 pc−3, m∗ = M�, and
M = 106 M�. The three curves show three different choices
for the ratio between the black-hole velocity and stellar veloc-
ity dispersion: v′BH/σ = 5 (solid yellow curve), v′BH/σ = 3
(dashed red curve), and v′BH/σ = 1 (dot-dashed blue curve).

FIG. 7. The coefficient of dynamical friction 〈∆v⊥〉 as a func-
tion of the angle θS between the velocity v′BH and spin S
of the black hole for the same fiducial parameters listed in
the caption to Fig. 6. The three curves show three different
choices for the dimensionless spin magnitude: χ = 1 (solid
yellow curve), χ = 1/2 (dashed red curve), and χ = 1/4 (dot-
dashed blue curve).

Fig. 7 shows how the coefficient of gravitomagnetic dy-
namical friction 〈∆v⊥〉 depends on the angle θS between
the velocity v′BH and spin S of the black hole. The ax-
isymmetry of the system when v′BH and S are parallel
(θS = 0 or π) implies that the coefficient must vanish
for these values. The symmetry of geodesics reflected

through the equatorial plane perpendicular to the black-
hole spin implies that the coefficient must be symmetric
under reflection through this plane (θS → π/2−θS). The
combination of these two properties suggests that the di-
rection of the gravitomagnetic dynamical friction force is
parallel to v̂ × Ŝ like the Lorentz force law F = qv ×B,
even if it is not strictly linear in the magnitudes of v or
S as indicated by Figs. 5 and 6.

Gravitomagnetic friction described by the force law
F = Cv × S, where

C =
M〈∆v⊥〉
vS sin θS

, (25)

would cause a black hole to move on a helical orbit about
an axis parallel to its spin S, just as the Lorentz force law
causes a charged particle to move on a helix about the
magnetic field. The radius of this helix would be

R =
Mv sin θS

CS
=

(v sin θS)2

〈∆v⊥〉
. (26)

For v ' 100 km/s and 〈∆v⊥〉 given by Eq. (19), R '
10 Mpc, far larger than any stellar system with a den-
sity as high as n = 106 pc−3. A black hole moving on
a circular orbit with orbital angular momentum L will
experience an orbit-averaged torque

dL

dt
= − C

2M
S× L = Ωp × L (27)

implying that L will precess about S with a period τp =
2π/Ωp ' 100 Gyr for our fiducial parameters, far longer
than the dynamical-friction time [35]

Tdf =

∣∣∣∣ v

〈∆v‖〉

∣∣∣∣ =
3

8

√
2

π

σ3

G2Mnm∗ ln Λ

' 1.6× 103 yr (28)

for our fiducial parameters and v � σ.

V. DISCUSSION

This paper introduces the concept of gravitomagnetic
dynamical friction, a component of dynamical friction
perpendicular to both the velocity and spin of a su-
permassive black hole traveling through a stellar back-
ground. This force results from the spin-dependent gravi-
tational scattering of stars on hyperbolic orbits in general
relativity. We calculate the coefficient of gravitomagnetic
dynamical friction 〈∆v⊥〉 numerically using apsidal and
nodal precession at 1.5PN order given by Eq. (7) and
the exact spin-dependent angular-momentum threshold
for direct capture. We also provide a reasonable ana-
lytical estimate of this effect in Eq. (19) based on the
assumption supported by our Monte-Carlo simulations
that gravitomagnetic dynamical friction is produced by
scattering stars with L ∼ GM/c where relativistic ef-
fects are significant. This estimate suggests that our new
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coefficient 〈∆v⊥〉 is suppressed by a factor (σ/c)2 com-
pared to the Newtonian coefficient of dynamical friction
〈∆v‖〉 anti-aligned with the black-hole velocity v′BH .
This suppression implies that gravitomagnetic dynami-
cal friction will be negligible in galactic systems where
v′BH , σ ∼ 100 km/s and (σ/c)2 ∼ 10−7. However, the
limiting behavior of our estimate shown by Eq. (24) sug-
gests that as the black-hole velocity becomes relativis-
tic (v′BH → c), the two coefficients become comparable
and therefore our new effect could be relevant to a black
hole interacting with a photon background, circumbinary
disk, or relativistic plasma [30–32]. Even in the absence

of an immediate application to such a system, it is inter-
esting to consider this qualitatively new dynamical effect
introduced by black-hole spin interacting with a collision-
less many-body system in general relativity.
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