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Using four equations, a recently proposed classical field theory that geometrically couples 

electromagnetism to gravitation in a fundamentally new way is reviewed.  Maxwell’s field 

equations are a consequence of the new theory as are Einstein’s field equations augmented by a 

term that can replicate both dark matter and dark energy.  To emphasize the unification brought 

to electromagnetic and gravitational phenomena by the new theory specific solutions are 

investigated: a spherically-symmetric charged particle solution, a cosmological solution 

representing a homogeneous and isotropic universe, and solutions representing electromagnetic 

and gravitational waves.  A unique feature of the new theory is that both charge and mass density 

are treated as dynamic fields, this as opposed to their treatment in the classical Maxwell and 

Einstein field equations where they are introduced as external entities.  This feature suggests a 

procedure for quantizing the mass, charge and angular momentum that characterize particle-like 

solutions.  Finally, antimatter, which is naturally accommodated by the new theory, and its 

interaction with a gravitational field is investigated. 
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Introduction 

Electromagnetic and gravitational fields both have long range interactions characterized by 

speed of light propagation, similarities that suggest these fields should be coupled together at 

the classical physics level.  Although this coupling or unification is a well-worn problem with many 

potential solutions having been proposed, it is fair to say that there is still no generally accepted 

classical field theory that can explain both electromagnetism and gravitation in a coupled or 

unified framework.i  The existence of electromagnetic and gravitational fields are generally 

understood to be distinct and independent with electromagnetism being described by the 

Maxwell field equations which treat gravitational fields as an external entity when necessary, and 

gravitational fields being described by the Einstein field equations which treat electromagnetic 

fields as an external entity when necessary.  The purpose of this manuscript is to reassess the 

connection between electromagnetism and gravitation using an entirely new approach.  

Assuming the geometry of nature is Riemannian with four dimensions, the following four 

equations provide a description of classical physics at the level of the Maxwell and Einstein Field 

Equations (M&EFEs),ii but then go further by reconciling gravity and electromagnetism  

 ;F a Rλ
μν κ λκμν=  (1) 

 ca R uλ ν ν
λ ρ=   (2) 

 1u uλ λ = −   (3) 

 
;

1 0
4mu u F F g F Fμ ν μ ν λ μν ρσ

λ ρσ
ν

ρ + − = 
 

  (4) 

Both equations (1) and (2) are new, as is the vector field aλ  that appears in them and serves to 

couple gravity to electromagnetism.  Equation (1) couples the Maxwell tensorFμν  to the 

Riemann-Christoffel (R-C) tensor Rλκμν .  Equations (2) couples the Ricci Tensor R ν
λ  to the 

coulombic current density cu
νρ .  Supplementing these first two equations are equations (3) and 

(4), both of which are well known.  Equation (3) normalizes the four-velocity vector field uλ  that 
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describes the motion of both the charge density field cρ  and the mass density field mρ , which 

are assumed to be comoving.  Equation (4) describes the conservation of energy and momentum 

for a specific choice of energy-momentum tensor.  Much of the discussion that follows will be 

focused on describing solutions to these equations and demonstrating that such solutions are 

consistent with those of the classical M&EFEs, but then go further by unifying electromagnetic 

and gravitational phenomena.  Taken together, the four field equations are used to axiomatically 

build up a description of nature in terms of the six dynamic fields described in Table I. 

Table I.  Dynamic fields 

Field Description Number of components 

gμν Metric tensor 10 

Fμν Maxwell tensor 6 

uλ Four-velocity 4 

aλ 
Four-vector coupling electromagnetism to 

gravitation  
4 

ρc Charge density 1 

ρm Mass density 1 

Total number of independent field components 26 

 

An outline of the paper is as follows:  Using the four fundamental field equations and the 

properties of the R-C tensor, Maxwell’s equations are derived.  The classical field theory based 

on equations (1) through (4) is then shown to be consistent with the requirements of general 

covariance after taking full account of dependent or constraining equations.  Symmetries of the 

theory important for the treatment of antimatter and how it responds to a gravitational field are 

then reviewed.  A discussion of the Einstein field equations and how they fit into the framework 

defined by the fundamental field equations (1) through (4) is then given.  Next, a soliton solution 

of the field equations representing a spherically-symmetric charged particle is reviewed.  

Emphasized in this particle-like solution are the source terms of the electromagnetic and 

gravitational fields, cρ  and mρ , respectively, which are themselves treated as dynamic fields in 
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the theory; a development which opens the possibility of quantizing such solutions for charge, 

mass and angular momentum using a set of self-consistency equations that flow from the 

analysis.  Next a cosmological solution representing a homogenous and isotropic universe is 

analyzed, and the time dependence of the cosmic scale factor derived.  Two radiative solutions 

representing electromagnetic and gravitational waves are then developed with an emphasis on 

the unification that the theory brings to these phenomena.  Next is a discussion of antimatter, 

covering how it is accommodated by the new theory and how it interacts with a gravitational 

field.  Finally, to gain insight into the numerical solution of the fundamental field equations (1) 

through (4), an analysis of the Cauchy initial value problem as it applies to them is given in 

Appendix II. 

In this manuscript geometric units are used throughout and the metric tensor has signature 

[+,+,+,-].  Commas before tensor indices indicate ordinary derivatives while semicolons before 

tensor indices indicate covariant derivatives.  Spatial indices run from 1 to 3, with 4 the time 

index.  For the definitions of the R-C curvature tensor and the Ricci tensor, the conventions used 

by Weinberg are followed.iii 

 

Maxwell’s equations from λ
μν;κ λκμνF = a R  and =ν λ ν

c λρ u a R   

Equations (1) and (2) which relate the Maxwell tensor derivatives to the R-C tensor and the 

charge current density to the Ricci tensor, respectively, are the fundamental relationships from 

which all of Maxwell’s equations flow.  Maxwell’s homogenous equation is derived using the 

algebraic property of the R-C tensor  

 0R R Rλκμν λμνκ λνκμ+ + =  . (5) 

Contracting (5) withaλ  gives, 

 0a R a R a Rλ λ λ
λκμν λμνκ λνκμ+ + =  . (6) 

Using (1) to substitute ;Fμν κ  for a Rλ
λκμν  leads to  
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 ; ; ; 0F F Fμν κ νκ μ κμ ν+ + = , (7) 

which is Maxwell’s homogenous equation.  Maxwell’s inhomogeneous equation follows from (1)  

by contracting its μ  and κ   indices 

 ;F a Rμν λ ν
μ λ= − .  (8) 

Making the connection between the RHS of (8) and the coulombic current density cu Jν νρ ≡  

using (2) then gives the conventional Maxwell-Einstein version of Maxwell’s inhomogeneous 

equation 

 ; ( )cF u Jμν ν ν
μ ρ= − ≡ −  . (9) 

Because F μν is antisymmetric, the identity ; ; 0F μν
μ ν =  is forced, which in turn forces the 

coulombic charge to be a conserved quantity 

 ( ) ( )
; ;

0cu a Rν λ ν
λν ν

ρ = =  . (10) 

Using equations (2) and (3), the coulombic charge density can be solved for in terms of ,a uλ λ  

and the Ricci tensor,  

 c

a R a R

or

a R u

λ ν σ
λ σν

λ ν
λ ν

ρ
±


= 
 −

 . (11) 

In the forgoing development, only equations (1), (2) and (3) are fundamental to the new theory.  

Maxwell’s equations (7) and (9), the conservation of the charge (10), and the solution for the 

coulombic charge density (11), are all consequences of (1), (2) and (3), and the properties of the 

R-C curvature tensor.  These additional equations all represent constraints; any solution of  (1), 

(2) and (3) must also satisfy (7), (9), (10) and (11). 

One of the new pieces of physics in the foregoing development is the introduction of the vector 

field aλ , a vector field that has no counterpart in the conventionally accepted development of 

classical physics but here serves to couple the Maxwell tensor to the metric tensor through (1), 
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and the charge density to the metric tensor through (2).  Much of the analysis and discussion that 

follows will be focused on the impact of aλ  and how it drives the development of a classical field 

theory that encompasses the physics covered by the M&EFEs, but then goes further by unifying 

gravitational and electromagnetic phenomena. 

 

A classical field theory that unifies electromagnetism and gravitation  

As shown in the preceding section, equations (1), (2) and (3) when combined with the properties 

of the R-C tensor provide a basis for deriving Maxwell’s homogenous and inhomogeneous 

equations in curved space-time.  Taking the source terms of the gravitational and 

electromagnetic fields, mρ  and cρ , respectively, as dynamic fields to be solved for, a classical 

field theory of gravitation and electromagnetism that is logically consistent with the 

requirements of general covariance is possible.  For a theory to be logically consistent with the 

requirements of general covariance, the N dynamical field components of the theory must be 

underdetermined by N-4 independent equations, the remaining 4 degrees of freedom 

representing the freedom in the choice of coordinate system.   

Table I lists the 6 dynamic fields of the theory along with the number of independent components 

that comprise each field, yielding a total of 26 independent field components. Now consider the 

last of the theory’s fundamental equations, equation (4), the energy and momentum 

conservation equation  

 
;

1 0
4mu u F F g F Fμ ν μ ν λ μν ρσ

λ ρσ
ν

ρ + − = 
 

 . (4) 

The specific form of the energy-momentum tensor in (4) ensures that mρ  is conserved and that 

there is a Lorentz force law.  These two dependent equations are derived by first contracting (4) 

with uμ which leads to the conservation of mass  

 ( )
;

0mu
ν

ν
ρ =  , (12) 

and then combining (4) and (12), which leads to the Lorentz force law  
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 m c

Du
u F

D

μ
λ μ

λρ ρ
τ

=   (13) 

where ;
Du

u u
D

μ
μ σ

στ
≡ .  A more complete outline of the derivation of (12) and (13) is given in the 

Appendix I.  Table II collects and summarizes the four fundamental equations of the new theory, 

along with the number of components of each equation. 

Table II.  Fundamental equations 

Equation Equation number in text 
Number of 

components 

;F a Rλ
μν κ λκμν=  (1) 24 

( )ca R u Jλ ν ν ν
λ ρ= ≡  (2) 4 

1u uλ λ = −  (3) 1 

;

1 0
4mu u F F g F Fμ ν μ νλ μν ρσ

λ ρσ
ν

ρ + − = 
 

(4) 4 

Total number of equations 33 

 

The total number of fundamental component equations listed in Table II is 33 which is greater 

than the 26 field components listed in Table I that must to be solved for.  If all the fundamental 

component equations listed in Table II were independent, then the field components listed in 

Table I would be overdetermined and the theory would not be compatible with the requirements 

of general covariance.  However, not all the 33 component equations listed in Table II are 

independent.  As already noted, dependent constraint equations can be derived from the 

equations listed in Table II and the properties of the R-C curvature tensor.  Table III collects these 

dependent constraint equations along with a brief description of their derivation. 
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Table III. Dependent equations 

Equation 
Equation number 

in text 
Derivation 

Number of 

components 

; ; ; 0F F Fμν κ νκ μ κμ ν+ + =  (7) 
(1) and 

0R R Rλκμν λμνκ λνκμ+ + =
4 

( ) ( )
; ;

0cu a Rν λ ν
λν ν

ρ = =  (10) (1) and (2) 1 

c

a R a R

or

a R u

λ ν σ
λ σν

λ ν
λ ν

ρ
±


= 
 −

 (11) (2) and (3) 1 

( )
;

0mu
ν

ν
ρ =  (12) (4), (3) and (7) 1 

m c

Du
u F

D

μ
λ μ

λρ ρ
τ

=  (13) (4), (3) and (12) 4 

Total number of equations 11 

 

The 11 dependent constraint equations listed in Table III mean that of 33 fundamental 

component equations listed in Table II, only 33-11=22 are independent.   These 22 independent 

equations satisfy the requirements of general covariance for determining the 26 independent 

field components of Table I.  The remaining four degrees of freedom in the solution representing 

the four degrees of freedom in choosing a coordinate system.  To further elucidate the 

mathematical content of the fundamental field equations (1) through (4), an outline of their 

solution when viewed as a Cauchy initial value problem is presented in Appendix II.  

 

Symmetries of the fundamental field equations 

Before leaving the formal description of the fundamental equations listed in Table II, three 

important symmetries that these equations exhibit are noted.   The first of these symmetries 

corresponds to charge-conjugation  
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c c

m m

u u

a a

F F

g g

λ λ

λ λ

μν μν

μν μν

ρ ρ
ρ ρ

   
   

−   
   −   →
   
   −   
   
   

 , (14) 

the second corresponds to a matter-to-antimatter transformation as will be discussed and 

justified later 

 

c c

m m

u u

a a

F F

g g

λ λ

λ λ

μν μν

μν μν

ρ ρ
ρ ρ

   −
   

−   
   −   →
   
   
   
   
   

 , (15) 

and the third symmetry is the product of the first two  

 

c c

m m

u u

a a

F F

g g

λ λ

λ λ

μν μν

μν μν

ρ ρ
ρ ρ

   −
   
   
   
   →
   
   −   
   
   

 . (16) 

All three transformations (14) through (16) leave the fundamental equations (1) through (4) 

unchanged.  Adding an identity transformation to the symmetries (14) through (16) forms a 

group, the Klein-4 group with the product of any two of the symmetries (14) through (16) giving 

the remaining symmetry.  Note that among the fundamental fields of the theory, only gμν  and 

mρ  are unchanged by the symmetry transformations, a fact that will be useful later for defining 

boundary conditions that lead to quantized mass, charge and angular momentum of particle-like 

solutions, as well as for the treatment of antimatter. 
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Is Electromagnetism as defined by the new theory compatible with the classical Maxwell’s 

equations? 

Equations (1) and (2) are the most important concepts being proposed in this manuscript, 

fundamentally tying the Maxwell tensor and charge density to the R-C curvature tensor and 

thereby unifying electromagnetism with gravitation.  The cost of this unification is the 

introduction of a new field aλ , a field that has no counterpart in classical physics but in the new 

theory serves to couple electromagnetic and gravitational phenomena.  The unification that 

ensues puts electromagnetic phenomena on par with gravitational phenomena, with both 

intrinsically tied to nonzero curvatures.  On the surface this central role for nonzero curvature in 

all electromagnetic phenomena might be construed as problematic due to the prevalent view 

today that electromagnetic phenomena can exist in flat space-time.  However, looking a little 

deeper it is not hard to see the connection between the new theory that requires a nonzero 

curvature for all electromagnetic phenomena and the classical Maxwell theory that works in flat 

space-time.  If one were not aware of the vector field aλ , but recognized the existence of the 

coulombic current density as is the view today, then that part of the new theory not directly 

connected to aλ is exactly the classical Maxell theory.  To see this, consider the equations in 

Tables II and III that result from replacing a Rλ ν
λ  with the classical coulombic current density, 

which is just a statement of fundamental equation (2).  The before and after equations with this 

substitution are shown in Tables VI and VII.  The equations updated with the substitution 

a R Jλ ν ν
λ →  do not reference aλ and do not have an explicit connection to the R-C curvature 

tensor, and are exactly the classical Maxwell field equations and their consequences.   
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Table VI.  Fundamental equations from Table II with a R Jλ ν ν
λ →  

Original equation Updated with a R Jλ ν ν
λ →  Comment 

;F a Rλ
μν κ λκμν=  ;F Jμν ν

μ = −  

Maxwell’s 

inhomogeneous 

equation 

ca R uλ ν ν
λ ρ=  cJ uν νρ=  

Definition of 

classical current 

density 

1u uλ λ = −  1u uλ λ = −  No change 

;

1 0
4mu u F F g F Fμ ν μ νλ μν ρσ

λ ρσ
ν

ρ + − = 
 

 

;

1 0
4mu u F F g F Fμ ν μ νλ μν ρσ

λ ρσ
ν

ρ + − = 
 

 

No change 

 

Table VII.  Dependent equations from Table III with a R Jλ ν ν
λ →  

Original equation Updated witha R Jλ ν ν
λ →  Comment 

; ; ; 0F F Fμν κ νκ μ κμ ν+ + =  ; ; ; 0F F Fμν κ νκ μ κμ ν+ + =  No change 

( ) ( )
; ;

0cu a Rν λ ν
λν ν

ρ = =  ; 0J ν
ν =  

Conservation of 

charge 

c

a R a R

or

a R u

λ ν σ
λ σν

λ ν
λ ν

ρ
±


= 
 −

 c cρ ρ=  Trivial identity 

( )
;

0mu
ν

ν
ρ =  ( )

;
0mu

ν
ν

ρ =  No change 

m c

Du
u F

D

μ
λ μ

λρ ρ
τ

=  m c

Du
u F

D

μ
λ μ

λρ ρ
τ

=  No change 
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In considering the new theory, one might view classical physics at the level of the classical 

Maxwell field equations as incomplete, there being a hidden field aλ  that has gone unrecognized.  

So while the classical Maxwell equations are a consequence of the new theory, they are not the 

entire story as solutions to the classical Maxwell equations can exist in flat space-time, a situation 

that can only be an approximation of solutions to the entire set of field equations (1) through (4) 

which strictly require curved space-time for electromagnetic phenomena.   

 

How do the Einstein field equations comport with the new theory? 

While evident from the preceding discussion that Maxwell’s field equations and the classical 

physics that flows from them are derivable from the fundamental equations (1) through (4), at 

this point it is not obvious that the same can be said of Einstein’s field equations. The particle-

like solution to be analyzed in the following section demonstrates that the Reissner-Nordstrom 

metric is an exact solution of the fundamental field equations (1) through (4), thus establishing 

that the new theory and classical General Relativity support the same solutions, at least in the 

case of spherical symmetry.  But one must go further to determine if Einstein’s field equations 

are in fact derivable from the fundamental equations of the new theory.  To investigate this 

question, I start by considering equation (4).  An immediate consequence of (4) with its vanishing 

covariant divergence is that a number of trivial tensor equations can be written down relating 

the covariant divergence of the energy-momentum tensor used in (4) to various geometric 

quantities.  The simplest example of such a tensor equation is 

 ; ;G Tμν μν
ν να=   (17) 

where 1
2

G R g Rμν μν μν≡ −  is the Einstein tensor, α  is an arbitrary constant, and T μν  is the 

energy-momentum tensor defined in (4) 

 1
4mT u u F F g F Fμν μ ν μ νλ μν ρσ

λ ρσρ≡ + −  . (18) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2017                   doi:10.20944/preprints201711.0022.v1

http://dx.doi.org/10.20944/preprints201711.0022.v1


Rev 6.3  LLNL-JRNL-726138 
 

While (17) is rigorously true, it’s trivially satisfied because both sides are independently 0, the 

left being 0 by the Bianchi identity and the right by fundamental equation (4).  However, an 

immediate consequence of equation (17) on taking the anti-covariant derivative of both sides is 

 G Tμν μν μνα= + Λ  , (19) 

where μνΛ  is a symmetric tensor field 

 μν νμΛ = Λ ,  (20) 

and is forced to have vanishing covariant divergence 

 ; 0μν
νΛ =  . (21) 

In the view being put forth here, (19) is satisfied by any solution of fundamental fields that satisfy 

equation (4).  However, (19) by itself contains no useful information.  To see this, consider that 

(19) is trivially satisfied for any G μν and T μν that go with any specific solution to equations (1) 

through (4), and any value for the constantα  by taking G Tμν μν μναΛ = − .  This also 

demonstrates that the specific choice for the value of α  is completely arbitrary and without 

physical significance; a change in the value of α  is absorbed by a change to μνΛ  such that (19) 

remains satisfied.  This discussion should make clear that (19) is of no value when attempting to 

find a solution to the fundamental fields.  To gain a deeper understanding of how (19) fits into 

the new theory set 1α = − , again a choice having no physical significance but one that is 

convenient because equation (19), except for the appearance of μνΛ , reduces to the Einstein 

field equations in this case, i.e.,  

 G Tμν μν μν= − + Λ  . (22) 

The presence of the function μνΛ in equation (22) means that (22) is not quite identical to the 

classical Einstein field equations.  However, the required presence of μνΛ is interesting because 

it can mimic exactly the properties of dark matter, viz., it is a symmetric tensor field, it is 

conserved ; 0μν
νΛ = , it is a source of gravitational fields, and it has no interaction signature 

beyond the gravitational fields it sources.  Finally, note that μνΛ also includes as a special case, 

the possibility of a cosmological constant, i.e., gμν μνλΛ = .   
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It is important to note that equation (22) with its auxiliary conditions (20) and (21) is a 

consequence of only the fundamental field equation (4) and the properties of the R-C tensor.  

With questions today regarding the validity of classical General Relativity beyond the confines of 

our own solar system,iv the most interesting aspect of μνΛ in (22) is that it can represent both 

dark matter and dark energy.  Today such terms are appended to the energy-momentum tensor 

of Einstein’s field equations in an ad hoc manner to explain, for example, the flattening of 

rotational-velocity curves observed on galactic scales, and the accelerating expansion of the 

universe.  However, in the approach being proposed here such terms are a logical consequence 

of the fundamental field equation (4) and the properties of the R-C tensor.  Finally, it is important 

to reiterate that equation (22) standalone is not useful for solving for the metric field gμν  

because there is no way a priori to fix μνΛ .  Ultimately μνΛ must be found from a solution to the 

full set of fundamental field equations (1) through (4), i.e.,  given a specific solution to the 

fundamental field equations, both G μν  and T μν can be calculated enabling the determination of 
μνΛ  from G Tμν μν μνΛ = + .  

 

Particle-like solution: Electric field, gravitational field, and quantization 

Investigated here is an exact solution of the new theory representing a charged, spherically-

symmetric, particle-like soliton. This example is useful because an exact solution to the 

fundamental field equations (1) through (4) facilitates a clear comparison between the 

gravitational and electric fields predicted by the new theory and those predicted by the classical 

M&EFEs.    To proceed I draw on a solution for a spherically-symmetric charged particle that was 

previously derived in reference [ii].v  Working in spherical coordinates (r, θ , φ, t), it was shown in 

reference [ii] that the following expressions for the dynamic fields given in Table I are an exact 

solution to the field equations given in Table II 
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         (23) 

where 1s = ±  as will be explained later.  Solution (23) is straightforward to verify by direct 

substitution into the equations of Table II.vi  The physical interpretation of this solution is that of 

a particle having charge q±   and mass m.  Of note is the metric tensor which is identical to the 

Reissner-Nordstrom metric, establishing that the new theory predicts gravitational fields that 

agree with the Einstein field equations.  Furthermore, the electric field is radial and agrees with 

the coulomb field of the conventional Maxwell equations to leading order in 1 / r  .   

Regarding solution (23), several points are worth emphasizing.  First, the fundamental equations 

in Table II, which look very different than do the M&EFEs, give the same solutions for the 

gravitational field, and the electric field to leading order in 1 / r  as do the M&EFEs, at least for 
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the case of the spherically-symmetric charged particle investigated here.  This lends credence to 

the claim that the new theory’s predictions are consistent with those of the M&EFEs.  Second, 

solution (23) does not satisfy Einstein’s field equations, i.e., G Tμν μν≠ − .  However, (23) does 

satisfy G Tμν μν μν= − + Λ with ; 0μν
νΛ =  as outlined in the previous section.  For completeness 

the values of ,G Tμν μν  and μνΛ  that go with solution (23) are given here  
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  (24) 

 

Note, the new theory’s predictions go further than the  M&EFEs by giving the spatial distribution 

of the mass and charge density as part of their solution (23), i.e., the mass and charge density are 

dynamic fields in the new theory.  As discussed below, having the mass density and charge 

density as dynamic fields, when combined with boundary conditions that impose self-consistency 

on the field solutions leads to quantization conditions on the particle’s mass and charge.   

As previously proposed in reference [ii], a methodology for quantizing the charge of particle-like 

solutions such as (23) proceeds by imposing a boundary condition requiring the asymptotic value 

of the electric field be consistent with the spatially integrated charge density   
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 4 3 2
14limc sp r

q u d x r Fρ γ
→∞

= =   (25) 

where q is the total charge of the particle, 14F  is the radial electric field component of the 

Maxwell tensor, and spγ  is the determinant of the spatial metric defined byvii  

 4 4

44

i j
sp i j i j

g g
g

g
γ = −  (26) 

where i and j run over the spatial dimensions 1, 2 and 3.  An analogous quantizing boundary 

condition for the mass of the particle is arrived at by requiring the asymptotic value of its 

gravitational field be consistent with the spatially integrated mass density of the solution 

 4 3 441lim
2m sp

r

g
m u d x rρ γ

→∞

+= =   (27) 

where m is the total mass of the particle.  The reason for the absolute value of 4u  in the mass 

boundary condition (27) but not in the charge boundary condition (25) is the symmetry (15) 

exhibited by the theory’s fundamental field equations and the requirement that the boundary 

conditions exhibit the same symmetry. The boundary conditions (25) and (27) represent self-

consistency constraints on the charge parameter q and the mass parameter m that appear in the 

metric (23).  The proposal here is that these boundary or self-consistency conditions represent 

additional constraints on physically allowable solutions beyond the fundamental equations 

presented in Table II. 

For the spherically-symmetric solution investigated in (23), the LHS of both (25) and (27) diverge 

leaving no hope for satisfying those quantization boundary conditions.  The upshot of this 

observation is that while (23) represents a solution that describes the gravitational and electrical 

fields of a point charge that formally satisfy the equations of the theory in Table II, (23) cannot 

represent a physically allowed solution.  The possibility of finding solutions that satisfy both the 

equations of the theory in Table II and the quantized charge and mass boundary conditions 

remains an open question at this point.  However, interesting possibilities exist beyond the 

specific solution investigated here. For example, the modified Reissner-Nordstrom and modified 

Kerr-Newman metrics developed by S.M. Blinder,viii give finite values for the LHS of both (25) and 
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(27).  Finally, when considering metrics that include nonzero angular momentum, as for example 

would be required for particles having an intrinsic magnetic field, the same methodology used 

here to quantize the particle’s mass and charge can be used to quantize its angular momentum. 

The particle-like solution (23) illustrates one interesting restriction that the charge-conjugation 

symmetry (14) places on metrics that contain a charge parameter q.  By (14), the charge-

conjugation transformation takes g gμν μν→ , and c cρ ρ→ −  or equivalently q q→ −  by (25).  

This forces the conclusion that the sign of q has no impact on the metric, i.e., the metric can only 

depend on the absolute value of q since it is unchanged by the transformation q q→ − .  This 

result is in line with the known charge containing solutions of the Einstein field equations such as 

the Reissner-Nordstrom and Kerr-Newman metrics, both of which depend on 2q .   

One of the unique features of the classical field theory being proposed here is that it allows for 

the inclusion of antimatter in a very natural way.  The multiplicative factor s in the expressions 

for Fμν , aλ  and uλ  in solution (23) is defined by 

 
1
1
for matter

s
for antimatter

+
= −

  (28) 

and accounts for the matter-antimatter symmetry expressed in (15). The physical interpretation 

is the 1s = −  solution represents a particle having the same mass but opposite charge and four-

velocity as the 1s = +  solution.  This is equivalent to the view today that a particle’s antiparticle 

is the particle moving backwards through time.ix   Said another way, the time-like component of 

the four-velocity is positive for matter and negative for antimatter 

 4 0
0
for matter

u
for antimatter

>
<

 . (29) 

With these definitions for the four-velocity of matter and antimatter, charged mass density can 

annihilate similarly charged anti-mass density and satisfy both local conservation of charge (10) 

and local conservation of mass (12).  Additionally, such annihilation reactions conserve total 

energy by (4). 
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Because I am endeavoring to develop a theory that flows from the four fundamental equations 

in Table II axiomatically, an interesting observation is that there appears to be nothing at this 

point in the development that precludes the existence of negative mass density, 0mρ < , and 

negative mass parameter, 0m < .  Indeed, the existence of negative mass in the context of 

classical General Relativity has been proposed, studied,x, xi and invoked when trying to find stable 

particle-like solutions using the conventional Einstein field equations.xii, xiii, xiv  However, in the 

context of the present theory, the existence of negative mass density leads to a logical 

contradiction that can only be resolved by requiring mass density be non-negative always, i.e., 

0mρ ≥ .  I’ll come back to this point and develop this logical consistency argument when 

investigating the behavior of matter and antimatter in electric and gravitational fields. 

 

Homogenous and isotropic universe solution 

As shown in a previous section, the M&EFEs and the new theory’s field equations in Table II 

share particle-like solutions having similar character.  However, when considering non-static 

metrics, differences between the predictions of the two theories start to emerge.  To illustrate 

some of these differences, here I investigate the Friedmann–Lemaître–Robertson–

Walker (FLRW) metric  

  

( )

( )
( ) ( )

2

2

2 2

2 2 2

0 0 0
1

0 0 0
0 0 Sin 0
0 0 0 1

cs

cs

cs

R t

kr

g R t r

R t r
μν

θ

 
 − 
 =
 
 
 − 

  (30) 

where k equals +1, 0 or -1 depending on whether the spatial curvature is positive, zero or 

negative, respectively, and ( )csR t  is a cosmic scale factor.  Just as in the case of classical 

General Relativity where the FLRW metric is a cosmological solution representing a 

homogenous and isotropic universe, it is the same for the field equations in Table II with an 

appropriate choice for the time development of ( )csR t .  To derive the time dependence of the 
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cosmic scale factor start by noting that the 3-dimensional spatial subspace of (30) is maximally 

symmetric and so any tensor fields that inhabit that subspace must also be maximally 

symmetric.xv   Specifically, this restricts the form of aμ  to be 

 ( )( )40,0,0,a a tμ = , (31) 

and forces the antisymmetric Maxwell tensor to vanish, 

 0Fμν =  . (32) 

Because Fμν  vanishes so must  ;Fμν κ  

 ; 0Fμν κ =  , (33) 

  which on substitution in (1) forces  

 0a Rλ
λκμν = .  (34) 

This in turn forces 

 0a Rλ ν
λ = , (35) 

which is just equation (2) with 0cρ = .  Substituting aμ  given by (31), and the FLRW metric 

given by (30) into (34) then leads to the following set of equations, 

 

4
4

4114 2

4 2 4
4224

4 2 4 2
4334

2

2

2

2

2

2

( )( )  = 0
1

( )  = ( ) 0

( )  = ( ) Sin ( )

( ) ( )

( )( )

( ) 0( )

cs cs
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cs

cs
cs

R t d R t

dt

d R t
R t

dt

d R t
R t

dt

a t
a t R

k r

a t R r a t

a t R r a t θ

=
−

− =

− =

  (36) 

with all other components of (34) being trivially satisfied, i.e., 0 0=  .   The nontrivial 

component equations in (36) are all satisfied if 

 
2

2

( ) 0csd R t

dt
=   (37) 
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or  

 0( )cs cs csR t R v t= +  , (38) 

where 0csR  is the cosmic scale factor at t=0 and csv  is the rate of change of the cosmic scale 

factor.  The solution for ( )csR t  given in (38) ensures that the metric (30) satisfies both (34) and 

(35) for all values of k.  Based on this solution, the predictions of the new theory for a 

homogenous and isotropic universe are: 

1. It must be charge neutral, i.e., 0cρ = . 

2. The cosmic scale factor changes linearly with cosmic time. 

The second prediction above runs counter to the prevailing view today based on the Friedmann 

models of classical General Relativity in which the growth of the cosmic scale factor is divided 

into three regimes: the radiation dominated regime in which the scale factor grows as t1/2, the 

matter dominated regime in which the scale factor grows as t2/3, and the dark energy 

dominated regime in which the scale factor grows exponentially with time.  That equation (38) 

for ( )csR t  gives a time dependence different than do the Friedmann models of classical General 

Relativity is not surprising because in the new theory the R-C curvature tensor is not directly 

tied to the stress-energy tensor as it is in the classical Einstein field equations.   

 

Electromagnetic and gravitational wave solutions 

Working in the weak field limit, derived here are expressions for a propagating electromagnetic 

plane wave in terms of the vector field aλ  and the metric tensor gμν .xvi  This example is useful as 

it makes clear the relationship between electromagnetic and gravitational radiation imposed by 

the fundamental equations in Table II, and predicts that an electromagnetic wave cannot exist 

without an underlying gravitational wave.  To begin, consider an electromagnetic plane wave 

having frequency ω , propagating in the +z-direction and polarized in the x-direction.  The 

Maxwell tensor for this field is given by 
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 ( )
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0 0 0 0

0 0 0
0 0 0

y x

i t z

y

x

B E

F e
B

E

ω
μν

−

− 
 
 =
 
 − 

  (39) 

where xE  and yB  are the constant field amplitudes.  Assuming a near Minkowski weak field 

metric 

 
( )

1

i t zg h e

h

ω
μν μν μν

μν

η −= +


  (40) 

where the hμν  are complex constants, and a constant vector field aλ , 

 ( )1 2 3 4, , ,a a a a aλ =  , (41) 

proceed by substituting forFμν , gμν  and aλ   into (1) and only retain terms to first order in the 

fields hμν  and Fμν , which are both assumed to be small and of the same order.  Doing this leads 

to a set of 8 independent linear equations for the 16 unknown constants: hμν , aλ , xE  and yB .  

Imposing the 8 constraining equations, the field components xE , yB , gμν  and aλ can be solved 

for in terms of 8 free constants 

 
( )2 2

11 12 1

112x

y x

h h
E i a
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ω
+

=

=
 , (42) 
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i t z
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h h h h
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μν μνη −
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 , (43) 

and 
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 1 1 4 412

11

, , ,h
a a a a a

h
λ  

=  
 

 . (44) 

This solution illustrates several ways in which the new theory departs from the traditional view 

of electromagnetic radiation.  In the approach being put forth here the undulations in the 

electromagnetic field are due to undulations in the metrical field  (43) via the coupling defined in 

(1).  This result also underlines that the existence of electromagnetic radiation is forbidden in 

strictly flat space-time.  An interesting aspect of this solution is that while electromagnetic 

radiation necessitates the presence of an underlying gravitational radiation field, the 

gravitational radiation is not completely defined by the electromagnetic radiation.  The 

supporting gravitational radiation has 6 undetermined constants ( )11 12 14 24 33 44, , , , ,h h h h h h , with 

the only restriction being they satisfy 1hμν   and 11 0h ≠  as required by (42).  Further insight 

into the content of the metric (43) is evident after making the infinitesimal coordinate 

transformation from 'x xμ μ→  given by 

 

14

24

33

44

'
'
'

2'

2

i
x h

x x i
y h

y y

z z i
z h

t t
i

t h

ω

ω

ω

ω

 + 
      +        → =       −        
 

− 
 

  (45) 

and only retaining terms to first order in the h’s.  Doing this, the metric (43) is transformed to  

 ( )

11 12

12 11

0 0
0 0

'
0 0 0 0
0 0 0 0

i t z

h h

h h
g e ω

μν μνη −

 
 − = +
 
 
 

 , (46) 

while 'xE  and ' yB , the transformed electric and magnetic field amplitudes, respectively, are 

identical to xE and yB given in (42).  Note that only the 11h and 12h  components of the metric (46) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2017                   doi:10.20944/preprints201711.0022.v1

http://dx.doi.org/10.20944/preprints201711.0022.v1


Rev 6.3  LLNL-JRNL-726138 
 

have an absolute physical significance, and 22 11h h= −  which makes the plane wave solution (46) 

identical to the plane wave solution of the classical Einstein field equations.xvii, xviii  Because the 

underlying gravitational wave couples to both charged and uncharged matter, one consequence 

of the solution here is that there will be an uncertainty when describing the interaction of 

electromagnetic radiation with matter if the gravitational wave component of the problem is 

ignored.  However, for a nonrelativistic matter, this gravitational interaction (46) vanishes to first 

order in the h’s.  To see this, consider the following expansion of the Lorentz force law 

 

m c

u
m m c

Du
u F

D

du
u u u F

d

μ
λ μ

λ

μ
ν λ μ λ

νλ λ

ρ ρ
τ

ρ ρ ρ
τ

=

↓

= − Γ +

 . (47) 

The first term on the RHS in the line above represents the gravitational interaction.  This 

gravitational interaction term vanishes for nonrelativistic matter with ( )0,0,0,1uλ ≈ because for 

the metric (46) all the 4 4
μΓ  vanish to first order in the h’s. 

The forgoing analysis demonstrates the necessity of having an underlying gravitational wave to 

support the presence of an electromagnetic wave, but the converse is not true, and gravitational 

radiation can exist independent of any electromagnetic radiation.  The following analysis 

demonstrates this by solving for the structure of gravitational radiation in the absence of 

electromagnetic radiation.  Following the same weak field formalism for the unknown fields hμν  

given in (40), but this time zeroing out xE  and yB  in (39), leads to the following solutions for gμν  

and aλ   
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  (48) 
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and 

 1 1 4 411

12

, , ,h
a a a a a

h
λ  

= − 
 

 . (49) 

Both gμν  given by (48) and aλ given by (49) are modified from their solutions in the presence of 

an electromagnetic wave as given by (43) and (44), respectively.  Performing a transformation to 

the same primed coordinate system as given in (45), here gives the metric field  

 ( )

11 12
2

12
12

11

0 0

0 0
'

0 0 0 0
0 0 0 0

i t z

h h

h
h

g eh ω
μν μνη −

 
 
 
 = +
 
 
 
 

  (50) 

again illustrating that only the 11h and 12h components have an absolute physical significance.  The 

interaction of nonrelativistic matter with the gravitational wave (50) vanishes for the same 

reason that it vanished for the gravitational wave (46) that accompanies electromagnetic 

radiation.  Of particular note is the change in the value of the 22h  component depending on 

whether the gravitational wave supports an electromagnetic wave as in (46) or is standalone as 

in (50).  

It seems remarkable that the fundamental equations (1) through (4) that lead to Maxwell’s 

equations and electromagnetic radiation can also lead to gravitational waves, unifying both 

phenomena as undulations of the metric field.   On the other hand, equation (1) with 0Fμν =  is 

a system of second order partial differential equations, 0a Rλ
λκμν =  in the metric field 

components gμν  just as the Einstein field equations are, so the fact that both sets of field 

equations give similar solutions for gravitational waves is not to be completely unexpected.   
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Antimatter and its behavior in electromagnetic and gravitational fields 

The distinction between matter and antimatter is naturally accommodated in the new theory, 

with antimatter solutions generated from their corresponding matter solutions using 

transformation (15).  As already mentioned, antimatter can be viewed as matter moving 

backwards through time.  To see this more rigorously, consider the four-velocity associated with 

a fixed quantity of charge and mass density, 

 dx
u

d

λ
λ

τ
=  . (51) 

Under the matter-antimatter transformation (15), u uλ λ→ − , or equivalently d dτ τ→ − . This 

motivates the following expression for the four-velocity in terms of the coordinate time   

 
1
vdx dx

u s s
d dt

λ λ
λ γ γ

τ
 

= = =  
 


  (52) 

where s is the matter-antimatter parameter defined in (28), ( ), ,x y zv = v v v


 is the ordinary 3-

space velocity of the charge or mass density, and 
2

1 / 1 vγ = −


 .  Equation (52) establishes that 

the corresponding matter-antimatter solutions travel in opposite time directions relative to each 

other.  One of the unusual aspects of the matter-antimatter transformation (15) is that cρ does 

not change sign under the transformation.  To see that this is consistent with the usual view in 

which antiparticles have the opposite charge of their corresponding particles, I’ll use (52) to 

illustrate the behavior of a charged matter and antimatter density in an electromagnetic field.  

Consider a region with an externally defined electromagnetic field  
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B B E
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B B E

E E E

μν

− 
 − =
 −
 − − − 

 (53) 

and with no, or at least a very weak gravitational field so that gμν μνη≈ and 0λ
μνΓ ≈ .  Starting 

with the Lorentz force law (13) and expanding 
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   (54) 

which on the last line above ends up at the conventional form of the Lorentz force law except for 

the extra factor of s on the RHS.  This factor of s in (54) gives the product csρ  the appearance 

that antimatter charge density has the opposite sign to that of matter charge density.  The 

definition of q given in (25) is also equivalent to this point of view because making the matter-

antimatter transformation (15) changes the sign of uλ  but not cρ in (25), thus changing the sign 

of q. 

Next, I investigate antimatter in a gravitational field.  There is no question about the gravitational 

fields generated by matter and antimatter, they are identical under the matter-antimatter 

symmetry (15), as gμν  is unchanged by that transformation.  To understand whether antimatter 

is attracted or repelled by a gravitational field, I again go to the Lorentz force law (13), but this 

time assume there is no electromagnetic field present, just a gravitational field given by a 

Schwarzschild metric generated by a central mass m>0 corresponding to either matter or 

antimatter.  Placing a test particle a distance r from the center of the gravitational field and 

assuming it to be initially at rest, the equation of motion for the test particle, a geodesic 

trajectory, is given by the following development  
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0
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0
0

Du

D

du
s u u
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m m
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r r
d d

s s u u s s
dt dt

t

μ

μ
μ ν ρ

νρ

μ ν ρ μ
νρ

τ

γ

θ
γ γ

φ

=

↓

= −Γ

↓

  − −          
   = −Γ ≈ −Γ =  
    
        

 

  (55) 

where in the last line above I have approximated the RHS using the initial at rest value of uμ , 

(0,0,0, )u sμ =  and additionally used the fact that the only nonzero 44
μΓ in a Schwarzschild 

metric is 1
44 2

21m m

r r
 Γ = − 
 

.  Simplifying the LHS of the last line in (55) by noting that initially

1γ = , gives 

 
2

2 2

d r m

dt r
≈ −  (56) 

independent of s, and so demonstrating that the proposed theory predicts both matter and 

antimatter will be attracted by a gravitational field because they follow the same geodesic 

trajectory, and this regardless of whether matter or antimatter generated the gravitational field.  

As already noted, there appears to be nothing in the fundamental equations of Table II that 

preclude the possibility of negative mass density, 0mρ < .  However, there are inconsistencies 

that are introduced if negative mass density were to exist.  As just shown, equation (56) with 

0m >  predicts a test particle at some distance from the origin will feel an attractive gravitational 

force regardless of whether it is comprised of matter or antimatter.  But this attraction is also 

independent of whether the test particle is comprised of positive or negative mass because the 

test particle’s mass does not enter the calculation; all test particles, regardless of their 

composition, follow the same geodesic trajectory.  Now consider equation (56) with 0m < .  In 
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this case a test particle at some distance from the origin will feel a repulsive gravitational force 

regardless of whether the test particle is matter or antimatter and regardless of whether the test 

particle has positive or negative mass.  These two situations directly contradict each other, 

making the new theory logically inconsistent if negative mass density were to exist.  Thus, the 

only way to avoid this logical contradiction is to require mass density be non-negative always.   

The condition that mρ  be non-negative always is also consistent with the symmetry 

transformations (14) through (16) where it was noted that the field mρ  does not change sign 

under any of the transformations. 

 

Discussion  

In addition to the new theory’s coverage of electromagnetism, it also contains solutions 

replicating those of the Einstein field equations.  In fact, the Reissner-Nordstrom metric (and the 

Schwarzschild metric as a limiting case) are exact solutions of the fundamental equations (1) 

through (4) demonstrating that the new theory replicates gravitational physics at the level of the 

Einstein field equations, at least in the spherically-symmetric case.  The particle-like solution (23) 

also establishes that exact solutions to the theory do exist.  This is not at all evident from equation 

(1), which represents a mixed system of first order partial differential equations for Fμν  and so 

carries with it specific integrability conditions that must be satisfied for solutions to exist.xix, xx  

The existence of the exact solution (23) allays that concern by direct demonstration. 

The FLRW metric is a solution of the fundamental field equations representing a homogenous 

and isotropic universe, just as it does in classical General Relativity.   However, the new theory 

predicts a rate of change for the cosmic scale factor that is linear in time, a result that differs 

from the predictions of the Friedmann models of classical General Relativity.  This, with the new 

theory’s modification of Einstein’s field equations by a term that can replicate the properties of 

dark matter and dark energy adds a new avenue of investigation to extended gravity theories 

and their cosmological consequences.xxi, xxii   
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The weak field solution for electromagnetic radiation investigated here requires that it be 

supported by an underlying gravitational radiation, a result that is very different than that 

predicted by the M&EFEs.  Because of this, a test particle in the path of an electromagnetic wave 

would in addition to feeling the effects of an undulating electromagnetic field, also feel the 

effects of the underlying gravitational wave.  This prediction of the new theory suggests 

investigations that could yield empirical results either supporting or refuting the predictions of 

the new theory.  For example, if the new theory is the more correct description of nature, then 

taking only electromagnetic effects into account for relativistic particles interacting with 

electromagnetic radiation would introduce an error in the calculated trajectory of particles due 

to the neglect of the interaction with the underlying gravitational wave.  

A unique feature of the new theory is the way in which antimatter is naturally accommodated by 

it.  This ability to incorporate a logical description of antimatter is both surprising and unique 

when one considers that the new theory is a classical field theory and not a quantum field theory.  

This, along with the new theory’s introduction of a vector field aλ which has no counterpart in 

the accepted description of classical physics today, and in fact can be considered a hidden 

variable in that description, raises interesting questions regarding how the new theory could 

potentially be bridged to the quantum mechanical world.   

As proposed here, the new theory is a theory of everything at the level of classical physics.  This 

claim rests on the fact that both charge density and mass density are treated as dynamic fields in 

the theory, leaving no external entities to be introduced.  This of course highlights one 

shortcoming of the particle-like solution (23).  As already noted that solution cannot satisfy the 

charge and mass boundary conditions, (25) and (27), respectively, because the spatial integrals 

in both of those equations diverge due to singularities at the origin.  This is a technical problem 

due to the metric solution in (23), the Reissner-Nordstrom metric with its singularity at the origin.  

One way to get around this difficulty might be to investigate other choices of metric such as, for 

example, the Blinder-Reissner-Nordstrom metricviii which is well behaved at the origin.  Still other 

possibilities include relaxing the spherical symmetry of the solutions investigated within to that 

of cylindrical symmetry, thus allowing for angular momentum about an axis and solutions capable 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2017                   doi:10.20944/preprints201711.0022.v1

http://dx.doi.org/10.20944/preprints201711.0022.v1


Rev 6.3  LLNL-JRNL-726138 
 

of modeling particles having a magnetic field; but this goes well beyond the level of analysis 

presented within. 

 

Conclusion 

The proposed classical field theory of electromagnetism and gravitation developed here 

encompasses classical physics at the level of the M&EFEs using four fundamental field equations 

as detailed in Table II, but then goes further by unifying electromagnetic and gravitational 

phenomena in a fundamentally new and mathematically complete way.  Maxwell’s field 

equations, and the Einstein field equations with the addition of a term that can mimic dark matter 

and dark energy are consequences of the new theory’s four fundamental field equations and the 

properties of the R-C tensor.  The coupling between electromagnetic and gravitational physics is 

accomplished through the introduction of a vector field aλ  that has no counterpart in the 

presently accepted description of nature based on the classical M&EFEs but can be viewed as a 

hidden variable in that description.  This observation explains the apparent contradiction 

between the new theory’s requirement that all electromagnetic phenomena require a nonzero 

curvature, and the classical Maxwell equation description in which electromagnetic phenomena 

can occur in flat space-time.  In the view of the new theory, the classical Maxwell equation 

description is incomplete.  

The unification brought to electromagnetic and gravitational phenomena by the new theory is 

demonstrated through several specific examples, the electric and gravitational fields of a 

spherically-symmetric particle, and radiative solutions representing both electromagnetic and 

gravitational waves.  One of the strengths of the new theory’s field equations, in fact a guiding 

principle in their development, is the requirement that the full set of fundamental field equations 

be logically consistent with the requirements of general covariance.  Another strength of the new 

theory is the reductionism brought to electromagnetic and gravitational phenomena by treating 

the sources of these fields as dynamic variables rather than external entities; a development 

which potentially explains the quantization of the mass, charge and angular momentum of 

particles in the context of a classical field theory.  Finally, to elucidate the mathematical 
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completeness of the new theory’s fundamental field equations an outline for their numerical 

solution in the form of a Cauchy initial value problem is given. 

The genesis of the work presented within was reported in a preliminary form in reference [ii].  

The same fundamental equations and quantizing boundary conditions reviewed here were first 

reported there.  New to this manuscript is the discussion of the symmetries of the fundamental 

equations in Table II, and based on these symmetry properties the interpretation of the particle-

like solution has been advanced here.  The derivation of the Einstein field equations augmented 

by a function of integration μνΛ  capable of representing dark matter or dark energy is also new 

to this manuscript as is the discussion of the cosmological solution based on the FLRW metric.  

The present manuscript also corrects an error in the weak field analysis of reference [ii] leading 

to the expanded discussion of electromagnetic radiation and its underlying gravitational 

radiation.  Finally, the analysis of the Cauchy initial value problem as it relates to the theory’s 

fundamental equations is new. 
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Appendix I – Derivation of the Lorentz force law and the conservation of mass 

The Lorentz force law (13) and the conservation of mass (12) follow from the fundamental 

equations of the theory.  An outline of the derivation of these equations is given here.  To derive 

the conservation of mass equation (12), I begin with equation (4) contracted with uμ   
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μ λ ρσ
ν

ρ + − = 
 

 . (57) 

Expanding (57) and then simplifying as per the following development 
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  (58) 

leads to the conservation of mass equation (12) on the last line above.  The Lorentz force law (13) 

is now derived using the conservation of mass result just derived and equation (4).   Expanding 

and then simplifying per the following development 
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  (59) 

leads to the Lorentz force law (13) on the last line above. 

 

Appendix II – The Cauchy problem applied to the fundamental field equations  

One of the unusual features of the field equations in Table II is the lack of any explicit derivatives 

of the vector field aλ , a situation which raises questions about the time dependent development 

of aλ .  To further elucidate this and other questions regarding solutions of the fundamental field 

equations, and to outline how they could be solved numerically, they are here analyzed in terms 

of a Cauchy initial value problem.  
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Given a set of initial conditions comprising the values of the fundamental fields in Table I at all 

spatial locations, a procedure is outlined that propagates those fields to any other time.  To begin, 

assume , , , ,c mg F uλ
μν μν ρ ρ  and 

g

t
μν∂

∂
 are known at all spatial coordinates at some initial 

coordinate time 0t .   Note that the initial values for the field aλ  are not required, rather they will 

be solved for using equation (1) as described below.  Also note that in addition to gμν  the initial 

values of 
g

t
μν∂

∂
must be specified because the fundamental field equations are second order in 

the time derivatives of gμν , a situation analogous to classical General Relativity.  The goal of the 

Cauchy method as it applies here is to start with specified initial conditions for 

, , , ,c mg F uλ
μν μν ρ ρ  and 

g

t
μν∂

∂
 at 0t , and then using the fundamental field equations in Table II 

solve for , , , , ,m c
F u

a R
t t t t

λ
μνλ

λκμν
ρ ρ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
 and 

2

2

g

t
μν∂

∂
 at 0t .   Armed with these values at 0t , it is 

straight forward to propagate the fields , , , ,c mg F uλ
μν μν ρ ρ  and 

g

t
μν∂

∂
 from their initial 

conditions at 0t  to 0t dt+  and then solve for , , , , ,m c
F u

a R
t t t t

λ
μνλ

λκμν
ρ ρ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
 and 

2

2

g

t
μν∂

∂
 at 0t dt+  

using the same procedure that was used to find them at 0t .  Repeating this procedure, values for 

the fundamental fields of the theory can be found at all times.  One additional requirement on 

the field values specified by initial conditions is that they must be self-consistent with the 

fundamental field equations in Table II, i.e., the specified initial conditions must be consistent 

with a solution to the field equations in Table II. 

In what follows Greek indices ( , , ,μ ν κ  …) take on the usual space-time coordinates 1-4 but Latin 

indices ( , , ,i j k  …) are restricted to spatial coordinates, 1-3 only.  Since the values of gμν  and 

g

t
μν∂

∂
are known at all spatial coordinates at time 0t , the values of 

2

,
i i j

g g

x x x
μν μν∂ ∂

∂ ∂ ∂
 and 

2

i

g

x t
μν∂

∂ ∂
can 

be calculated at all spatial coordinates at time 0t .  This leaves the ten quantities 
2

2

g

t
μν∂

∂
as the only 
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second derivatives of gμν  not known at 0t .  To find the values of 
2

2

g

t
μν∂

∂
at 0t  proceed as follows.  

First find the values of the six 
2

2
ijg

t

∂
∂

at 0t  using a subset of equations from (1);  the subset 

containing only those equations having spatial derivatives of Fμν  on the LHS and at most one 

time index in each occurrence of the R-C tensor on the RHS.  These equations will be used to 

solve for the values of aλ  at time 0t .  In all there are 12 such equations out of the 24 that comprise 

(1), as listed here  
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=

=

=

=

=

=

=

=

=

= + =

= + =

= + =

 . (60) 

The last three equations in (60) use (7), Maxwell’s homogenous equation to express the time 

derivative of a Maxwell tensor component on the LHS as the sum of the spatial derivatives of two 

Maxwell tensor components.  The importance of having only spatial derivatives of the Maxwell 

tensor components on the LHS of (60) is that they are all known quantities at time 0t , i.e., since 

all  the Fμν  are known at time 0t , all 
i

F

x
μν∂

∂
 can be calculated at time 0t .   Equally important is that 

the RHS of the 12 equations that comprise (60) contain at most a single time index in each 

occurrence of their R-C tensor and so are also known at time 0t .  That this is so is seen by 
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examining the general form of the R-C tensor in a locally inertial coordinate system where all first 

derivatives of gμν vanish, i.e.,  

 
2 2 2 21

2
g g g g

R
x x x x x x x x

μλ μκ νλ κν
λκμν ν κ ν λ μ κ μ λ

 ∂ ∂ ∂ ∂= − − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 . (61) 

Note that having at most one time index on the RHS of (61) means that the R-C tensor is made 

up entirely of terms from 
2

i j

g

x x
μν∂

∂ ∂
 and 

2

i

g

x t
μν∂

∂ ∂
, all of which are known at time 0t .  Examining the 

set of equations (60) there are 12 equations for 4 unknowns, the unknowns being the 

components of aλ .   These 12 equations can be solved for aλ  at time 0t  if the initial conditions 

were chosen self-consistently with the fundamental field equations in Table II, i.e., chosen such 

that a solution to the field equations is indeed possible. 

Knowing the R-C tensor components with at most one time index at 0t , I now proceed to 

determine the R-C tensor components with two time indices.  Going back to the 24 equations 

that comprise the set of equations (1), here I collect the subset of those equations in which the 

LHS is known at time 0t , i.e., contains only spatial derivatives of the Maxwell tensor, and the RHS 

has an R-C tensor component that contain two time indices  
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 . (62) 

Each of the equations in (62) contains only one unknown, the R-C component having two time 

indices.  In total, there are six such independent R-C tensor components,  
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R

R

R

  (63) 

so the system of nine equations (62) can be algebraically solved for the these six unknown R-C 

components at time 0t .  With this I now know the value all components of the R-C tensor at time 

0t .  From the 0t values of the R-C tensor components listed in (63), the values of the six unknown 

2

2
ijg

t

∂
∂

at 0t  can be found.  

There are three remaining equations from the set of equations (1) that have not yet been 

addressed  
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34,4 434

F a R
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λ
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=

=

=

 . (64) 

These are the equations for which the temporal derivatives of the Maxwell tensor components 

are not yet known.  Because all values of the R-C tensor and aλ  are now known at 0t , these three 

remaining time-differentiated components of the Maxwell tensor can now be solved for directly 

using (64), giving complete knowledge of 
F

t
μν∂

∂
 at time 0t . 

If the values of the four 
2

4
2

g

t
μ∂

∂
could be calculated then all

2

2

g

t
μν∂

∂
would be known and all 

g

t
μν∂

∂

could be propagated from 0t  to 0t dt+ .  Just as is the case with classical General Relativity, the 

four 
2

4
2

g

t
μ∂

∂
can be determined from the four coordinate conditions that are fixed by the choice 

of coordinate system.xxiii  Recapping, at 0t  the following quantities are now known: 
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, , , ,c mg F uλ
μν μν ρ ρ  and 

g

t
μν∂

∂
are defined by initial conditions, and 

2

, ,
g

a R
x x

μνλ
λκμνκ λ

∂
∂ ∂

 and 
F

x
μν
λ

∂
∂

are solved for using those initial conditions, the fundamental field equations, and the four 

coordinate conditions that are fixed by the choice of coordinate system.  Still needed to 

propagate the initial conditions in time from 0t  to 0t dt+  are , mu

t t

μ ρ∂ ∂
∂ ∂

and c

t

ρ∂
∂

.  Using the 

Lorentz force law (13), the following progression, 
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  (65) 

shows on the last line above that u
t

μ∂
∂

can be solved for at 0t  in terms of knowns at 0t .  Using the 

conservation of mass (12) and knowing u
t

μ∂
∂

at 0t , the following progression 
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u u u
t

ν
ν

ρ
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ρ ρ ρ

=

↓

= −

↓
∂ = − −
∂

  (66) 

shows on the last line above that m

t

ρ∂
∂

 can be solved for at 0t  in terms of knowns at 0t .  Following 

an analogous progression for cρ  using the charge conservation equation (10), c

t

ρ∂
∂

can be solved 
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for at 0t  in terms of knowns at 0t .  With these, the values of , , , , ,m c
F u

a R
t t t t

λ
μνλ

λκμν
ρ ρ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
 and 

2

2

g

t
μν∂

∂
 are all known at 0t  and can be used to propagate the initial conditions  , , , ,c mg F uλ

μν μν ρ ρ  

and 
g

t
μν∂

∂
 at 0t  to time 0t dt+ .  Iterating the process then gives the fundamental fields at all times. 
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