+You Search Images Maps Play YouTube News Gmail Documents Calendar More fusion rostoker Sign in **Patents** Find prior art Discuss this patent Read this patent Download PDF Controlled fusion in a field A system and apparatus for controlled fusion in a field reversed configuration (FRC) magnetic topology and conversion of fusion product energies directly to electric power. Preferably, plasma ions are magnetically confined in reversed configuration and

reversed configuration and direct energy conversion

Hendrik J. Monkhorst et al

Patent number: 6852942 Filing date: Apr 2, 2003 Issue date: Feb 8, 2005 Application number: 10/406,086 A system and apparatus for controlled fusion in a field reversed configuration (FRC) magnetic topology and conversion of fusion product energies directly to electric power. Preferably, plasma ions are magnetically confined in the FRC while plasma electrons are electrostatically confined in a deep energy well, created by tuning an externally applied magnetic field. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by the nuclear force, thus forming fusion products that emerge in the form of an annular beam. Energy is removed from the fusion product ions as they spiral past electrodes of an inverse cyclotron converter. Advantageously, the fusion fuel plasmas that can be used with the present confinement and energy conversion system include advanced (aneutronic) fuels.

Inventors: Hendrik J. Monkhorst, Norman Rostoker

Original Assignees: The Regents of the University of California, University of Florida Research Foundation Primary Examiner: Wilson Lee Attorney: Orrick, Herrington & Sutcliffe LLP Current U.S. Classification: 219/121.36; 250/251; 250/292 International Classification: B23K009/00

View patent at USPTO Search USPTO Assignment Database Download USPTO Public PAIR data

Citations

Cited Patent	Filing date	Issue date	Original Assignee	Title
US3132996	Dec 10, 1962	May 12, 1964		- CONTRA-ROTATING PLASMA SYSTEM
US3258402	Jan 11, 1962	Jun 28, 1966		ELECTRIC DISCHARGE DEVICE FOR PRODUCING INTERACTIONS BETWEEN NUCLEI
US3386883	May 13, 1966	Jun 4, 1968		METHOD AND APPARATUS FOR PRODUCING NUCLEAR-FUSION REACTIONS
US3527977	Jun 3, 1968	Sep 8, 1970		MOLECULAR ION SOURCE
US3530036	Dec 15, 1967	Sep 22, 1970		APPARATUS FOR GENERATING FUSION REACTIONS
US3530497	Apr 24, 1968	Sep 22, 1970		APPARATUS FOR GENERATING FUSION REACTIONS
US3859164	May 20, 1971	1975		METHOD AND DEVICE FOR OBTAINING CONTROLLED NUCLEAR FUSION BY MEANS OF ARTIFICIAL PLASMA
US4010396	Nov 26, 1973	Mar 1, 1977	Kreidl Chemico Physical K.G.	Direct acting plasma accelerator
US4057462	Feb 26, 1975	Nov 8, 1977	The United States of America as represented by the United States Energy Research and Development Administration	Radio frequency sustained ion energy
US4065351	Mar 25, 1976	Dec 27, 1977	The United States of America as represented by the United States Energy Research and Development Administration	Particle beam injection system
US4189346	Mar 16, 1978	Feb 19, 1980		Operationally confined nuclear fusion system
US4202725	Mar 8, 1978	May 13, 1980		Converging beam fusion system

US4233537	Sep 18, 1972	Nov 11, 1980		Multicusp plasma containment apparatus
US4246067	Aug 30, 1978	Jan 20, 1981		Thermonuclear fusion system
US4267488	Jan 5, 1979	May 12, 1981	Trisops, Inc.	Containment of plasmas at thermonuclear temperatures
US4274919	Nov 14, 1977	Jun 23, 1981	General Atomic Company	Systems for merging of toroidal plasmas
US4314879	Mar 22, 1979	Feb 9, 1982	The United States of America as represented by the United States Department of Energy	Production of field-reversed mirror plasma with a coaxial plasma gun
US4347621	Jun 3, 1980	Aug 31, 1982	Environmental Institute of Michigan	Trochoidal nuclear fusion reactor
US4390494	Apr 7, 1980	Jun 28, 1983	Energy Profiles, Inc.	Directed beam fusion reaction with ion spin alignment
US4397810	Oct 28, 1980	Aug 9, 1983	Energy Profiles, Inc.	Compressed beam directed particle nuclear energy generator
US4416845	Aug 2, 1979	Nov 22, 1983	Energy Profiles, Inc.	Control for orbiting charged particles
US4434130	Nov 3, 1980	Feb 28, 1984	Energy Profiles, Inc.	Electron space charge channeling for focusing ion beams
US4543231	Dec 14, 1981	Sep 24, 1985	GA Technologies Inc.	Multiple pinch method and apparatus for producing average magnetic well in plasma confinement
US4548782	Mar 27, 1980	Oct 22, 1985	The United States of America as represented by the Secretary of the Navy	Tokamak plasma heating with intense, pulsed ion beams
US4560528	Apr 12, 1982	Dec 24, 1985	GA Technologies Inc.	Method and apparatus for producing average magnetic well in a reversed field pinch
US4584473	Aug 17, 1983	Apr 22, 1986	Tokyo Shibaura Denki Kabushiki Kaisha	Beam direct converter
US4601871	May 17, 1983	Jul 22, 1986	The United States of America as represented by the United States Department of Energy	Steady state compact toroidal plasma production
US4618470	Dec 1, 1982	Oct 21, 1986	Austin N. Stanton	Magnetic confinement nuclear energy generator
US4639348	Nov 13, 1984	Jan 27, 1987		Recyclotron III, a recirculating plasma fusion system
US4650631	May 14, 1984	Mar 17, 1987	The University of Iowa Research Foundation	Injection, containment and heating device for fusion plasmas
US4826646	Oct 29, 1985	May 2, 1989	Energy/Matter Conversion Corporation, Inc.	Method and apparatus for controlling charged particles
US4853173	Jul 24, 1987	Aug 1, 1989		Method of producing fusion reactions and apparatus for a fusion reactor
US4894199	Jun 11, 1987	Jan 16, 1990		Beam fusion device and method
US5015432	Jul 26, 1990	May 14, 1991		Method and apparatus for generating and utilizing a compound plasma configuration
US5041760	Feb 19, 1985	Aug 20, 1991		Method and apparatus for generating and utilizing a compound plasma configuration
US5160694	Dec 26, 1990	Nov 3, 1992		Fusion reactor
US5160695	Feb 8, 1990	Nov 3, 1992	QED, Inc.	Method and apparatus for creating and controlling nuclear fusion reactions

US5420425 May 27, 1994	May 30, 1995	Finnigan Corporation	Ion trap mass spectrometer system and method
US5923716 Nov 7, 1996	Jul 13, 1999		Plasma extrusion dynamo and methods related thereto
US6255648 Oct 16, 1998	Jul 3, 2001	Applied Automation, Inc.	Programmed electron flux
US6593539 Feb 26, 2001	Jul 15, 2003		Apparatus and methods for controlling charged particles

Referenced by

Citing Patent	Filing date	Issue date	Original Assignee	Title
US7459654	Nov 1, 2004	Dec 2, 2008	The Regents of the University of California University of Florida Research Foundation	Controlled fusion in a field reversed configuration and direct energy conversion
US7613271	Feb 16, 2007	Nov 3, 2009	The Regents of the University of California	Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US8031824	Mar 7, 2006	Oct 4, 2011	Regents of the University of California	Inductive plasma source for plasma electric generation system

Claims

1. A method of converting fusion product energies into electric energy, comprising the steps of

injecting ions along a helical path within a generally cylindrical cavity formed of a plurality of semi-cylindrical electrodes in spaced relation with one another forming a plurality of elongate gaps there between,

converting substantially all of the injected ions' axial energy to rotational energy,

applying an oscillating potential to the plurality of electrodes,

forming a multi-pole electric field within the cavity, the electric field comprising three or more poles, and converting at least a portion of the ion energy into electrical energy.

2. The method of claim 1, wherein the step of forming an electric field includes creating an azimuthal electric field across the plurality of gaps.

3. The method of claim 1, further comprising the step of decelerating the ions.

4. The method of claim 1, wherein the ions are injected in the form an annular beam.

5. The method of claim 4, further comprising the step of directing the annular beam through a magnetic cusp.

6. A method of converting fusion product energies into electric energy, comprising the steps of

injecting ions along a helical path within a generally cylindrical cavity formed of a plurality of semi-cylindrical electrodes in spaced relation with one another forming a plurality of elongate gaps there between, wherein the ions are injected in the form an annular beam,

directing the annular beam through a magnetic cusp,

converting substantially all of the injected ions' axial energy to rotational energy,

collecting charge neutralizing electrons from the annular beam as the electrons follow magnetic field lines of the magnetic cusp,

forming a multi-pole electric field within the cavity, the electric field comprising three or more poles, and converting at least a portion of the ion energy into electrical energy.

7. The method of claim 6 further comprising the step of collecting the ions once a substantial portion of their energy is converted to electric energy.

8. The method of claim 1 further comprising the step of conditioning the electric energy converted from the ion energy to match existing power grids.

9. The method of claim 1 wherein the plurality of electrodes comprises at least four electrodes.

10. The method of claim 5 further comprising the step of creating the magnetic cusp.

11. A method of converting fusion product energies into electric energy, comprising the steps of

injecting ions along a helical path within a generally cylindrical cavity formed of a plurality of semi-cylindrical electrodes in spaced relation with one another forming a plurality of elongate gaps there between, wherein the ions are injected in the form an annular beam,

creating a magnetic cusp, wherein the step of creating the magnetic cusp comprises the steps of creating first and second magnetic fields within the cavity, wherein field lines of the first and second magnetic fields extend in opposing directions, and joining the first and second magnetic fields, directing the annular beam through a magnetic cusp, converting substantially all of the injected ions' axial energy to rotational energy,

forming a multi-pole electric field within the cavity, the electric field comprising three or more poles, and converting at least a portion of the ion energy into electrical energy.

12. A method of converting fusion product energies into electric power, comprising the steps of

injecting ions along a helical path within a cylindrical cavity formed by three or more elongate electrodes in spaced relation with an elongate gap formed between adjacent electrodes of the three or more electrodes,

applying an oscillating potential to the three or more electrodes, and

converting at least a portion of the ion energy into electrical energy.

13. The method of claim 12, further comprising the step of creating an azimuthal electric field across each of the gaps.

14. The method of claim 12, further comprising the step of decelerating the ions.

15. The method of claim 12, wherein the injecting step includes converting substantially all of the ions axial energy to rotational energy.

16. The method of claim 12, wherein the ions are injected in the form an annular beam.

17. The method of claim 16, further comprising the step of directing the annular beam through a magnetic cusp.

18. A method of converting fusion product energies into electric power, comprising the steps of

injecting ions along a helical path within a cylindrical cavity formed by three or more elongate electrodes in spaced relation with an elongate gap formed between adjacent electrodes of the three or more electrodes, wherein the ions are injected in the form an annular beam,

directing the annular beam through a magnetic cusp,

collecting charge neutralizing electrons from the annular beam as the electrons follow magnetic field lines of the magnetic cusp, and

converting at least a portion of the ion energy into electrical energy.

19. The method of claim 18 further comprising the step of collecting the ions once a substantial portion of their energy is converted to electric energy.

20. The method of claim 19 further comprising the step of conditioning the electric energy converted from the ion energy to match existing power grids.

21. The method of claim 17 further comprising the step of creating the magnetic cusp.

22. A method of converting fusion product energies into electric power, comprising the steps of

injecting ions along a helical path within a cylindrical cavity formed by three or more elongate electrodes in spaced relation with an elongate gap formed between adjacent electrodes of the three or more electrodes, wherein the ions are injected in the form an annular beam,

creating a magnetic cusp, wherein the step of creating the magnetic cusp comprises the steps of creating first and second magnetic fields within the cavity, wherein field lines of the first and second magnetic fields extend in opposing directions, and joining the first and second magnetic fields, directing the annular beam through the magnetic cusp, and converting at least a portion of the ion energy into electrical energy.

23. A method of converting fusion product energies into electric power, comprising the steps of

creating first and second magnetic fields within a cavity formed in part by three or more semi-cylindrical electrodes in spaced relation with elongate gaps formed between adjacent electrodes, wherein field lines of the first and second magnetic fields extend in opposing directions,

joining the field lines of the first and second magnetic fields to form a magnetic cusp,

injecting ions in the form of an annular beam along a helical path within the cavity,

directing the annular beam through the magnetic cusp,

applying an oscillating potential to the three or more electrodes, and converting at least a portion of the ion energy into electrical energy.

24. The method of claim 23, further comprising the step of creating azimuthal electric fields across the gaps.

25. The method of claim 24, further comprising the step of decelerating the ions.

26. The method of claim 23, wherein the injecting step includes converting substantially all of the ions' axial energy to rotational energy.

27. A method of converting fusion product energies into electric power, comprising the steps of

creating first and second magnetic fields within a cavity formed in part by three or more semi-cylindrical electrodes in spaced relation with elongate gaps formed between adjacent electrodes, wherein field lines of the first and second magnetic fields extend in opposing directions,

joining the field lines of the first and second magnetic fields to form a magnetic cusp,

injecting ions in the form of an annular beam along a helical path within the cavity,

directing the annular beam through the magnetic cusp, collecting charge neutralizing electrons from the annular beam as the electrons follow magnetic field lines of the magnetic cusp, and

converting at least a portion of the ion energy into electrical energy.

28. The method of claim 27 further comprising the step of collecting the ions once a substantial portion of their energy is converted to electric energy.

29. The method of claim 23 further comprising the step of conditioning the electric energy converted from the ion energy to match existing power grids.

30. A method of converting fusion product energies into electric power, comprising the steps of

applying an oscillating potential to three or more elongate electrodes in spaced relation with elongate gaps formed between adjacent electrodes, the three or more elongate electrodes forming a cylindrical cavity,

creating a multi-pole elongate electric field comprising three or more poles,

injecting ions in the form of an annular beam along a helical path through the electric field, and

converting at least a portion of the ion energy into electrical energy.

31. The method of claim 30, wherein the step of creating a multi-pole elongate electric field includes creating azimuthal electric fields across the gaps.

32. The method of claim 30 further comprising the step of creating first and second magnetic fields within the cavity, wherein field lines of the first and second magnetic fields extend in opposing directions.

33. The method of claim 32 further comprising the step of joining the field lines of the first and second magnetic fields to form a magnetic cusp.

34. The method of claim 33 further comprising the step of directing the annular beam through the magnetic cusp.

35. The method of claim 30, further comprising the step of decelerating the ions.

36. The method of claim 30, wherein the injecting step includes converting substantially all of the ions' axial energy to rotational energy.

37. A method of converting fusion product energies into electric power, comprising the steps of

applying an oscillating potential to three or more elongate electrodes in spaced relation with elongate gaps formed between adjacent electrodes, the three or more elongate electrodes forming a cylindrical cavity,

creating a multi-pole elongate electric field comprising three or more poles,

injecting ions in the form of an annular beam along a helical path through the electric field,

creating first and second magnetic fields within the cavity, wherein field lines of the first and second magnetic fields extend in opposing directions,

joining the field lines of the first and second magnetic fields to form a magnetic cusp,

collecting charge neutralizing electrons from the annular beam as the electrons follow magnetic field lines of the magnetic cusp, and

converting at least a portion of the ion energy into electrical energy.

38. The method of claim 37 further comprising the step of collecting the ions once a substantial portion of their energy is converted to electric energy.

39. The method of claim 38 further comprising the step of conditioning the electric energy converted from the ion energy to match existing power grids.

Drawings 對兵 Drawings Drawings Drawings Drawings Drawings

Google Home - USPTO Bulk Downloads - Privacy Policy - Terms of Service - About Google Patents - Send Feedback ©2012 Google