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A b s t r a c t  

Increase in visible order can be associated with an increase in microscopic disorder. This phe- 
nomenon leads to many counter-intuitive phenomena such as entropy driven crystallization and 
phase separation. I devote special attention to the entropic depletion interaction as a means 
to tune the range of attraction between colloids. The range of the intermolecular potential de- 
termines whether or not stable liquid-vapor coexistence is possible. For short range attraction, 
the liquid-vapor transition may be located below the sublimation line. Under those conditions, 
meta-stable critical fluctuations may enhance the rate of crystal nucleation 

1 I n t r o d u c t i o n  

The second law of thermodynamics  tells us that  any spontaneous change in a closed sys- 
tem results in an increase of the entropy, S. In this sense, all spontaneous transformations 
of one phase into another  are entropy driven. However, this is not what  the term "entropic 
phase transit ions" is meant  to describe. I t  is more common to consider the behavior of 
a system that  is not isolated, but  can exchange energy with its surroundings. In tha t  
case, the second law of thermodynamics  implies tha t  the system will tend to minimize its 
Helmholtz free energy F = E - TS ,  where E is the internal energy of the system and 
T the temperature .  Clearly, a system at constant  tempera ture  can lower its free energy 
in two ways: either by increasing the entropy S, or by decreasing the internal energy E. 
In order to gain a bet ter  understanding of the factors that  influence phase transit ions,  
we must look at the s tat is t ical  mechanical expressions for entropy. The simplest s tar t ing 
point is to use Bol tzmann's  expression for the entropy of an isolated system of N particles 
in volume V at an energy E,  

S = kB In ~ (1) 

where kB, the Boltzmann constant,  is simply a constant  of proportionali ty.  ~ is the total  
number of (quantum) states tha t  is accessible to the system. In the remainder of this 
paper,  I shall choose my units such tha t  kB=l .  The usual interpretat ion of Eqn. 1 is 
that  ~,  the number of accessible states of a system, is a measure for the "disorder" 
in that  system. The larger the disorder, the larger the entropy. This interpretat ion of 
entropy suggests tha t  a phase transi t ion from a disordered to a more ordered phase can 
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only take place if the loss in entropy is compensated by the decrease in internal energy. 
This statement is completely correct, provided that we use Eqn. 1 to define the amount 
of disorder in a system. However, we also have an intuitive idea of order and disorder: 
we consider crystalline solids "ordered", and isotropic liquids "disordered". This intuitive 
picture suggests that a spontaneous phase transition from the fluid to the crystalline state 
can only take place if the freezing lowers the internal energy of the system sufficiently to 
outweigh the loss in entropy: i.e. the ordering transition is "energy driven". In many 
cases, this is precisely what happens. It would, however, be a mistake to assume that our 
intuitive definition of order always coincides with the one based on Eqn. 1. In fact, the aim 
of this paper is to show that many "ordering"-transitions that are usually considered to 
be energy-driven may, in fact, be entropy driven. I stress that the idea of entropy-driven 
phase transitions is an old one. However, it has only become clear during the past few 
years that such phase transformations may not be interesting exceptions, but the rule! 

In order to observe "pure" entropic phase transitions, we should consider systems fi)r 
which the internal energy is a function of the teinperature, but not of the density. Using 
elementary statistical mechanics, it is easy to show that this condition is satisfied fl)r 
classical hard-core systems. Whenever these systems order at a fixed density and temper- 
ature, they can only do so by increasing their entropy (because, at constant temperature, 
their internal energy is fixed). Such systems are conveniently studied in computer simula- 
tions. But, increasingly, experimentalists - in [)articular, colloid scientists, have succeeded 
in making real systems that behave very nearly as ideal hard-core systems. Hence, the 
phase transitions discussed below can, and in many cases do, occur in nature. Below I list 
examples of entropic ordering in hard-core systems. But I stress that the list is far from 
complete. 

2 (Liquid) Crys ta ls  

The earliest example of an entropy-driven ordering transition is described in a classic 
paper of Onsager [1], on the isotropic-nematic transition in a (three-dimensional) system 
of thin hard rods. Onsager showed that, oil compression, a fluid of thin hard rods of 
length L and diameter D must undergo a transition from the isotropic fluid phase, where 
the molecules are translationally and orientationally disordered, to the nematic phase. 
In the latter phase, the molecules are translationally disordered, but their orientations 
are, on average, aligned. This transition takes place at a density such that ( N / V ) L 2 D  = 
O(1). Onsager considered the limit L / D  -4 oc. In this case, the phase transition of the 
hard-rod model can be found exactly (see e.g. [2]). At first sight it may seem strange that 
the tlard rod system can increase its entropy by going from a disordered fluid phase to 
an orientationally ordered phase. Indeed, due to tile orientational ordering of the system, 
the orientational entropy of the system decreases. However, this loss in entropy is more 
than offset by the increase in translational entropy of the system: the available space 
for any one rod increases as the rods become more aligned. In fact, we shall see this 
mechanism returning time-and-again in ordering transitions of hard-core systems: the 
entropy decreases because the density is no longer uniform in orientation or position, but 
the entropy increases because the free-volume per particle is larger in the ordered than in 
the disordered phase. 
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The most famous, and for a long time controversial, example of an entropy-driven or- 
dering transition is the freezing transition in a system of hard spheres. This transition had 
been predicted by Kirkwood in the early fifties [3] on basis of an approximate theoretical 
description of the hard-sphere model. As this prediction was quite counter-intuitive and 
not based on any rigorous theoretical results, it met with wide-spread skepticism until 
Alder and Wainwright [4] and Wood and Jacobson [5] performed numerical simulations 
of the hard-sphere system that showed direct evidence for this freezing transition. Even 
then, the acceptance of the idea that freezing could be an entropy driven transition, came 
only slowly [6]. However, by now, the idea that hard spheres undergo a first-order freez- 
ing transition is generally accepted. And, although the hard-sphere model was originally 
devised as an idealized and highly unrealistic model of an atomic fluid, it is now realized 
that this model provides a good description of certain classes of colloidal systems. 

The next step in this sequence came in the mid-eighties when computer simulations [7] 
showed that hard-core interactions alone could also explain the formation of more complex 
liquid crystals. In particular, it was found that a system of hard sphero-cylinders (i.e. 
cylinders with hemi-spherical caps) can form a smectic liquid crystal, in addition to the 
isotropic liquid, the nematic phase and the crystalline solid. In the smectic (A) phase, 
the molecules are orientationally ordered but, in addition, the translational symmetry 
is broken: the system exhibits a one-dimensional density-modulation. Subsequently, it 
was found that some hard-core models could also exhibit columnar ordering [8]. In the 
latter case, the molecules assemble in liquid-like stacks, but these stacks order to form 
a two-dimensional crystal. In summary, hard-core interaction can induce orientational 
ordering and one-, two- and three-dimensional positional ordering. This is rather surprising 
because, in particular for the smectic and the columnar phase, it was generally believed 
that their formation required specific energetic interactions. 

3 B i n a r y  m i x t u r e s  

Phase separation in binary mixtures is the example that is used in many textbooks to 
illustrate the competition between energy and entropy in a phase transformation. For a 
mixture at constant total volume V, the Helmholtz free energy F, should be minimal. 
As a first approximation, the entropy of mixing of a mixture of two species A and B, is 
replaced by the entropy of mixing of an ideal mixture 

Sid(X) = - N k B [ X l n X  + (1 - X)ln(1 - X)] (2) 

where X denotes the mole-fraction of one component (say A): X = NA/(NA + NB). The 
entropy of mixing given by Eqn. 2 is a convex function of X. As a consequence, Sid(X) will 
always decrease if phase separation takes place. This implies that phase separation can 
only take place if the resulting decrease in energy E outweighs the increase in -TSid. In a 
hard-core mixture, there is no energy change upon mixing. Hence, if Eqn. 2 were exact, we 
should never observe phase separation in a hard-core mixture. And, even though Eqn. 2 
is known to be only an approximation, it was commonly thought that a fluid mixture 
of dissimilar hard spheres would not phase separate. This belief was, at least partly, 
based on the work of Lebowitz and Rowlinson [9], who studied the phase-behavior of 
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such binary mixtures of dissimilar hard spheres, using a more accurate approximation for 
the entropy of mixing, based on the Percus-Yevick (PY) integral equation. Lebowitz and 
Rowlinson found that, at least within that approximation, hard spheres of arbitrary size 
ratio will mix in all proportions in the fluid phase. The implication of this result was that 
entropic effects are not enough to cause a miscibility gap in a simple fluid mixture. In 
th early nineties, Biben and Hansen [10] applied a more sophisticated analytical theory 
for dense fluid mixtures to the same problem. Unlike the PY approximation, this theory 
predicts that an asymmetric binary hard-sphere mixture should phase separate if the sizes 
of the two spheres are sufficiently dissimilar (typically, if the size ratio is less than 0.2). 
However, as in the case of [9], it is based on an approximate theory for the hard-sphere 
mixture. Hence, one may wonder to what extent the result found in [10] depends on the 
approximations that are used to compute the equation-of-state of the mixture. In fact, 
additional theoretical evidence for the de-mixing of dissimilar hard spheres comes from 
the work of Lekkerkerker and Stroobants [ll] who used a completely different theoretical 
approach. Still, it would be highly desirable to have a model system of a binary mixture for 
which the existence of a purely entropic demixing transition can be proven exactly. It turns 
out that, in a special case [12], this can indeed be done by constructing a simple lattice 
model of binary hard-core mixture. This binary hard-core mixture can be mapped onto 
one-component lattice gas with attractive nearest neighbor interactions which, in turn, 
can be mapped onto an Ising model for which the phase behavior is either known exactly 
(in 2d), or with high accuracy (in 3d). In this model, the order-disorder transition of the 
Ising model, corresponds to the (entropic) de-mixing transition of the hard-core system. 
One would hope that computer simulations would provide a more direct test of the Biben- 
Hansen prediction. In fact, evidence for the occurrence of spontaneous phase separation 
in mixtures of hard spheres comes from a recent simulation by Buhot and Krauth [13] 
(and from a smaller-scale simulation by Biben et al. [14]). However, it is likely that this 
transition occurs in the regime where the fluid phase is meta-stable with respect to the 
solid [15]. A full study of the phase diagram of strongly asymmetric hard-sphere mixtures 
has not yet been reported. However, in simulations of dissimilar hard spherocylinders, 
Dijkstra and van Roij [15] do observe the de-mixing of thermodynamically stable isotropic 
fluids. 

4 Dep le t ion  I n t e r a c t i o n  

A slightly more complex example of an entropy-driven phase separation in a binary 
mixture is polymer-induced flocculation of colloids. Experimentally, it is well known that 
the addition of a small amount of free, non-adsorbing polymer to a colloidal suspen- 
sion induces an effective attraction between the colloidal particles and may even lead to 
coagulation. This effect has been studied extensively and is well understood, at least 
qualitatively. As in the example discussed above, the polymer-induced attraction between 
colloids is an entropic effect: when the colloidal particles are close together, the total 
number of accessible polymer conformations is larger than when the colloidal particles 
are far apart. This is the picture underlying the original picture of Asakura and Oosawa 
[16], and the subsequent theories of Vrij [17], Gast et al. [18] and Lekkerkerker et al. [19]. 
Numerical simulations of the effect of added polymer on the phase diagrams of hard-core 
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particles are also feasible [21][22]. This is not obvious because the part of the simulations 
is the calculation of the exact partition function of a (lattice) polymer in the presence of 
hard-core colloids. Fortunately, it is possible to construct a recursive Monte Carlo scheme 
to do this [20,21]. Consider a chain of length g -  1 on a lattice. For convenience, we assume 
that  the external potential on the lattice points is either zero or infinite. The total num- 
ber of accessible ideal chain conformations that terminate on lattice site i is denoted by 
Wt_l(i). The total partition function ~ - 1  is equal to ~ i  co~_l(i), where the sum runs over 
all lattice sites. The total number of chains of length g that  terminate on site i is clearly 
equal to the sum of the total number of chains of length g - 1 that terminate on any of 
the neighbors of i, multiplied by the Boltzmann factor associated with site i. Using such 
a recursive scheme, we can compute exactly ~ ,  the partition function of a single ideal 
polymer of arbitrary length g on a lattice, in an arbitrary external potential. We now 
assume that  this potential is due to the presence of N hard, spherical colloidal particles 
each of which occupies many lattice sites. The polymer partition function clearly depends 
on the coordinates r N of the colloidal particles: ~l(rN). The configurational part of the 
partition function of the system of N colloids plus one polymer of length g in volume V 
is then given by: 

Z(Y, N, 1) = f d r N  e--Uh'(rN)(~t(rN)  ) ' (a) 
V 

where Uhs(r N) denotes the hard-sphere interaction. Next, we make use of the fact that  
we are considering ideal polymers. In that case we can immediately write down the cor- 
responding partition function for N colloids and M ideal polymers: 

Z(V, N, M) = f drN e-Vh'(rN)(~t(rg))M/M! , (4) 

Y 

where the factor 1/M! accounts for the fact that  the polymers are indistinguishable. Using 
Eqn. 4 it is straightforward to transform to an ensemble where the polymer chemical 
potential (i.e. the osmotic pressure) is kept fixed. The corresponding grand-canonical 
partition function is given by: 

E(V, N, ,) = ~ e Much Z(V, N, M)/M! 
M--O 

= f drUe -U"'(~) ~ eMu~(ae(rU))M/M! 
V M~O 

= f drNe -Uh'(rN) eZ~dr N) (5) l 

' l  

V 

u where #ch In the last line of Eqn. 5, we have introduced the polymer activity z =- eta, 
denotes the chemical potential of the chain molecules. 

The important point to note is that  Eqn. 5 allows us to evaluate the properties of the 
colloidal particles in osmotic equilibrium with a polymer reservoir. In particular, it shows 
that  we can perform Monte Carlo sampling of the colloidal particles. The polymers only 
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affect Veff(rN), the effective interaction between the colloidal particles: 

UeH(r  N) -- Uhs(r N) -- Z~t(rN). (6) 

z~ t ( r  N) measures the entropic interaction between the colloids due to all possible polymer 
conformations. This entropic interaction is, in principle, not pairwise additive. In fact, it 
is shown in [21][22], that  for all but the shortest chain molecules, this non-additivity 
of the polymer-induced interaction between the colloids, has a pronounced effect on the 
structure and stability of the mixture. 

An interesting feature of the depletion interaction is that  it is tunable. By varying the 
size and concentration of the added polymers, we can vary the range and strength of the 
attractive interaction between the colloids. As we shall see in the next section, varying 
the range of the attractive interaction can have a pronounced effect on the phase diagram 
of the colloids. 

5 T h e  l i q u i d - v a p o r  t r a n s i t i o n  

Why do liquids exist? We are so used to the occurrence of phenomena such as boiling 
and freezing that  we rarely pause to ask ourselves if things could have been different. Yet 
the fact that  liquids must exist is not obvious a priori. This point is eloquently made in 
an essay by V. F. Weisskopf [23]: 
... The existence and general properties of solids and gases are relatively easy to understand 
once it is realized that atoms or molecules have certain typical properties and interactions 
that follow from quantum mechanics. Liquids are harder to understand. Assume that a 
group of intelligent theoretical physicists had lived in closed buildings from birth such 
that they never had occasion to see any natural structures. Let us forget that it may be 
impossible to prevent them to see their own bodies and their inputs and outputs. What 
would they be able to predict from a fundamental knowledge of quantum mechanics? They 
probably would predict the existence of atoms, of molecules, of solid crystals, both metals 
and insulators, of gases, but most likely not the existence of liquids. 
This statement may seem a bit bold. Surely, the liquid-vapor transition could have been 
predicted a priori. This is a hypothetical question that can never be answered. But, as 
I shall discuss below, there exists an analogous phase transition that  has not yet been 
observed experimentally and that  was found in simulation before it had been predicted. 

But let us first consider the question of the liquid-vapor transition. In his 1873 thesis, 
van der Waals gave the correct explanation for a well known, yet puzzling feature of liquids 
and gases, namely that  there is no essential distinction between the two: above a critical 
temperature To, a vapor can be compressed continuously all the way to the freezing point. 
Yet below To, a first-order phase transition separates the dilute fluid (vapor) from the dense 
fluid (liquid) [24]. From the work of Longuet-Higgins and Widom [26], we know that the 
van der Waals model (molecules are described as hard spheres with an infinitely weak, 
infinitely long-ranged attraction[25]) is even richer than originally expected: it exhibits 
not only the liquid-vapor transition but also crystallization. The liquid-vapor transition is 
possible between the critical point and the triple point, and in the van der Waals model, 
the temperature of the critical point is about a factor two larger than that  of the triple 
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Figure 1: Schematic drawing of the PT phase diagram of a system of 
spherical particles with (A): an attractive interaction with a range larger 
than one third of the hard-core diameter. (B): range of attractive inter- 
action between 5 and 20 % of the hard-core diameter. (C) range of the 
attractive interaction less than 5% of the hard-core diameter. 

point. There is, however, no fundamental reason why this transition should occur in every 
atomic or molecular substance, nor is there any rule that forbids the existence of more 
than one fluid-fluid transition. 

Whether a given compound will have a liquid phase, depends sensitively on the range 
of the intermolecular potential: as this range is decreased, the critical temperature ap- 
proaches the triple-point temperature, and when Tc drops below the latter, only a single 
stable fluid phase remains. This phenomenon is well known in mixtures of spherical col- 
loidal particles and non-adsorbing polymer, where the range of the attractive part of 
the effective colloid-colloid interaction can be varied by changing the size of the poly- 
mer [18,16,17,19,21,22]. Experiment, theory and simulation all suggest that when the 
width of the attractive well becomes less than approximately one third of the diameter 
of the colloidal spheres, the colloidal 'liquid' phase disappears. Figure 1 shows schemati- 
cally the evolution of the phase-diagram of a system of spherical particles with a variable 
ranged attraction. As the range of attraction decreases, the liquid-vapor curve moves into 
the meta-stable regime. For very short-ranged attraction (less than 5% of the hard-core 
diameter), a first-order iso-structural solid-solid transition appears in the solid phase [27]. 
It should be stressed that phase diagrams of type B in figure 1 are common for colloidal 
systems, but rare for simple molecular systems. A possible exception is C60 [28]. Phase 
diagrams of type C have, thus far, not been observed in colloidal systems. Nor had they 
been predicted before the simulations appeared (this suggests that Weisskopf was right). 

The fact that the liquid-vapor transition may become meta-stable, has important con- 
sequences for crystal nucleation. This will be discussed in the next section, in the context 
of the crystallization of globular proteins [29]. In doing so, I make a small digression into 
a field that seems far removed from statistical mechanics. It is, in itself, not an example of 
an entropic phase transition. But it illustrates how our understanding of entropic phase 
transitions can help us in understanding other phenomena of practical importance. 

6 P r o t e in  crysta l l iza t ion 

The human genome codes for some hundred thousand proteins. To understand the 
function of these proteins, we need to know their three-dimensional structure. At present, 
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Figure 2: Optical micro-graphs of liquid-liquid phase separation of 
calf 7IVa-crystallin solutions for three different protein concentrations 
quenched below the coexistence curve between solid and dilute solu- 
tion. (a): droplets of protein-rich phase in protein poor solution. (b): 
bi-continuous structure of protein-rich and protein poor- phase, near 
the meta-stable critical point, (c): Droplets of protein-poor phase in 
a protein-rich solution. For details, see [36]. Photograph by courtesy of 
Michael Broide. 

only some four thousand protein structures have been determined (almost all of them 
globular proteins less than ten membrane-protein structnres have been resolved). One 
of tire bottlenecks in the determination of the three-dimensional structures of proteins by 
X-ray crystallography is the difficulty of growing good protein crystals. Ill his book on 
this subject, McPherson [30] wrote "The problem of crystallization is less approachable 
from a classical analytical standpoint, contains a substantial component of trial and error, 
and draws more from the collective experience of the past century. [...] It is much like 
pTvspecting for gold". The experiments clearly indicate that the success of protein crys- 
tallization depends sensitively on the physical conditions of the initial solution [30,31]. 
It is therefore crucial to understand the physical factors that determine whether a given 
solution is likely to produce good crystals. 

During the past few years, evidence has accumulated that not just the strength, but 
also the range of the interactions between protein molecules is of crucial importance for 
crystal nucleation. In 1994, George and Wilson [32] showed that the success of protein 
crystallization appears to correlate with the value of B2, the second osmotic virial (:()effi- 
cient of the protein solution. George and Wilson measured B2 for a number of proteins in 
various solvents. They found that for those solvent conditions that are known to promote 
crystallization, B2 was always restricted to a narrow "slot". If B2 was to() large, crystal- 
lization did not occur at all, while for large negative values of B2 protein aggregation, 
rather than crystallization, took place. 

More recently, Rosenbaum et al. [33] established a link between the work of George 
and Wilson arrd earlier studies of the phase behavior of spherical, uncharged colloids. As 
explained above, for sufficiently short-ranged attractive forces, the liquid-vapor critical 
point crosses the triple point (see figure 1B) and only a meta-stable liquid-vapor coex- 
istence curve survives below the equilibrium sublimation curve. This fact is relevant fi)r 
protein solutions, because globular proteins often have relatively short-ranged attractive 
interactions. In fact, a series of stndies by Benedek and Broide and collaborators [36,37] 
show that the phase diagram of a wide variety of proteins is of the kind shown in figure 1B 
(see figure 2). Moreover, the range of the effective interactions between proteins can be 
changed by tire addition of non-ionic polymer (e.g. poly-ethylene glycol) to the solution 
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(see [35]). 
The interesting observation presented by Rosenbaum et al. [33], is that the conditions 

under which a large number of globular proteins can be made to crystallize, map onto a 
narrow temperature range or, more precisely, a narrow range in the value of the osmotic 
second virial coefficient - of the computed fluid-solid sublimation curve of colloids with 
short-ranged attraction [34]. Starting with the work of Kose and Hachisu, several authors 
had already noted that a similarly narrow crystallization window exists for colloidal sus- 
pensions [38]. The question that we address here is: what is the physical origin of this 
nucleation window? 

The rate-limiting step in crystal nucleation is the crossing of a free-energy barrier. In 
our simulations we computed the barrier for homogeneous crystal nucleation for a model 
"globular protein". Our model system exhibited some of the essential features needed to 
get a "protein-like" phase diagram of the type shown in figure 1B: the particles repel 
strongly at short distances and attract at larger distances. 

Conventional Molecular Dynamics simulations cannot be used to study crystal nucle- 
ation under realistic conditions. The reason is that the formation of a critical nucleus is a 
rare event - crystallization in real protein solutions may take days or weeks. In a simula- 
tion, the situation would be worse because the volume that can be conveniently studied 
by simulation is some fifteen orders of magnitude smaller, and the probability of forming a 
crystal is decreased by the same amount. Moreover, the computational costs of Molecular 
Dynamics simulations that cover more than 10 -8 s becomes prohibitive. Hence, the prob- 
lem has to be approached in a different way. We used a technique that we had developed 
to study crystal nucleation in simple liquids [39]. In general, we can write the nucleation 
rate as the product of a kinetic prefactor, u, and the part that describes the probability 
that a spontaneous fluctuation will bring the system to the top of the nucleation barrier: 
e x p ( - A G * / k B T ) ,  where AG* is the height of the (Gibbs) free-energy barrier separating 
the meta-stable liquid from the crystal phase. Unless the system is close to a glass or gel 
transition, the temperature-dependence of the nucleation rate is dominated by the varia- 
tion of e x p ( - A G * / k B T ) .  The model that we study is not close to gelation, and hence we 
can safely focus on the variation of the free energy barrier. A rough estimate of AG* is 
given by classical nucleation theory [40], 

AG* 16r73 
k s T  -- 3 k u T p 2 A #  2 (7) 

where 7 is the free-energy density per unit area of the solid-fluid interface, p is the number 
density of the solid phase, and A# is the difference in chemical potential between the fluid 
and the solid it is the thermodynamic driving force for crystallization. 

To compute the free energy barrier that the system must overcome to form a critical 
crystal nucleus, we use a suitable modification of the umbrella-sampling Monte Carlo 
scheme of Valleau [39,41]. We denote the number of solid-like particles belonging to a 
given crystal nucleus by Ncr~s. We find that crystallization near the meta-stable fluid- 
fluid critical point is strongly influenced by the large density fluctuations that occur in 
the vicinity of such a critical point. We therefore also consider the free energy barrier 
associated with formation of dense, liquid-like droplets. We define the size of a high- 
density cluster (be it solid or liquid-like), as the number Np of (connected) particles that 
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Figure 3: Contour plots of the free-energy landscape along the path 
from the meta-stable fluid to the critical crystal nucleus, for our system 
of spherical particles with short-ranged attraction. The curves of con- 
stant free energy are drawn as a function of Np and N~ys (see text) 
and are separated by 5kBT. If a liquid-like droplet forms in the system, 
we expect No to become large, while Nc~y~ remains essentially zero. In 
contrast, for a normal crystallite, we expect that Np is proportional to 
Ncrys. 
Figure 3A shows the free energy landscape well below the critical temper- 
ature (T/Tc = 0.89). The lowest free-energy path to the critical nucleus 
is indicated by a dashed curve. Note that this curve corresponds to the 
formation and growth of a highly crystalline cluster. 
Figure 3B: Idem, but now for T = Tc. In this case, the free-energy valley 
(dashed curve) first runs parallel to the Np axis (formation of a liquid- 
like droplet), and moves towards a structure with a higher crystallinity 
(crystallite embedded in a liquid-like droplet). The free energy barrier 
for this route is much lower than the one shown in figure 3A. 

have a significantly denser local environment than particles in the remainder of the system. 
In our simulations, we determine the free-energy "landscape"of the system, as a function 
of the two coordinates Ncry8 and Np. In a crystal nucleation event, we start from the 
homogeneous liquid (N~rv8 ~ Np ~ 0) - the free energy then increases, until  it reaches a 
saddle-point (the critical nucleus). From there on, the crystal will grow spontaneously. 

We first computed the phase diagram of our model system. Subsequently, we studied the 
free-energy barrier for crystal nucleation at four different points in the phase diagram: one 
well above the meta-stable critical point (T = 2.23Tc), one at T~, and the remaining two 
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at 0.89T~ and 1.09T~. All systems were prepared at a comparable degree of super-cooling 
to be more precise, we chose the degree of super-cooling such that classical nucleation 

theory would predict the same value of A G * / ( k R T )  for all systems. To estimate AG* from 
Eqn. 7, we used 

A #  ~ A H  T m -  T 
Tm (8) 

where AH is the enthalpy of melting at the coexistence temperature Tm. To estimate 
the surface free-energy 7, we used Turnbull's empirical rule [40] which states that 7 is 
proportional to AH. For all points, we studied the free-energy landscape and the lowest 
free-energy path to the critical nucleus. 

We find that away from Tc (both above and below), the path of lowest free energy 
is one where the increase in Np is proportional to the increase in Ncrys (see figure 3A). 
Such behavior is expected if the incipient nucleus is simply a small crystallite. However, 
we observe a striking change in the free-energy landscape around T~ (see figure 3B). 
First, the route to the critical nucleus leads through a region where Np increases while 
Ncry~ is still essentially zero in words: the first step towards the critical nucleus is the 
formation of a liquid-like droplet. Then, beyond a certain critical size, the increase in Np 
is proportional to NCrys a crystalline nucleus forms inside the liquid-like droplet. Near 
the fluid-fluid critical point, the wetting of the crystal nucleus by a liquid-like layer results 
in a value of the interfacial free-energy 7, and therefore of the barrier height AG*, that 
is much lower than would be estimated on the basis of Turnbull's rule. In fact, there is 
experimental evidence[42] that the experimentally determined interfacial free energy of 
small protein crystals [43] is much smaller than the value predicted on the basis of their 
version of Turnbull's rule. Clearly, the presence of large density fluctuations close to a 
fluid-fluid critical point, has a pronounced effect on the route to crystal nucleation. But, 
more importantly, the nucleation barrier close to Tc is much lower than at either higher 
or lower temperatures. 

Note that the observed reduction in AG* near T~ by some 30kBT corresponds to an 
increase in nucleation rate by a factor 1013. The crucial point to note is that, at near 
the critical point, the incipient crystallite is wetted by a nearly critical liquid. This has a 
pronounced effect on the surface free energy of the nucleus. Let us denote the free energy 
density of the solid surface in contact with the "vapor" phase by %,. This is the interfacial 
free-energy density to which Turnbull's rule should apply. However, if the crystallite is 
covered by a thin liquid layer, then (ignoring curvature effects) the surface free-energy 
density becomes %t + 71,, where %t is the solid-liquid interfacial free-energy density and 
7tv the liquid-vapor surface tension. The first point to note is that %t is typically an order 
of magnitude less than %.. But, in addition, at the critical point 71. vanishes. Hence it is 
not surprising that the surface free energy of a crystallite embedded in a critical droplet 
is much less than that the same crystallite in contact with the dilute vapor phase. 

Let us consider the implications of this reduction of the crystal nucleation barrier near 
T~. An alternative way to lower the crystal nucleation barrier would be to quench the solu- 
tion deeper into the meta-stable region below the solid-liquid coexistence curve. However, 
such deep quenches often result in the formation of amorphous aggregates [32,33,35,44]. 
Moreover, in a deep quench, the thermodynamic driving force for crystallization (#tiq - 
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#cr~st) is also enhanced. As a consequence, the crystallites that  nucleate will grow rapidly 
and far from perfectly [31]. In contrast, by adjusting the solvent conditions (e.g. by the 
addition of non-ionic polymer) such that  a meta-stable fluid-fluid critical point is located 
just below the sublimation curve, we can selectively speed up the rate of crystal nucle- 
ation, but not the rate of crystal growth, nor the rate at which amorphous aggregates 
form. 

Clearly, our description of the early stages of protein crystallization is highly simplified. 
Yet, we believe that  the mechanism for enhanced crystal nucleation that  we find is quite 
general. We conclude by noting that  the phase diagram shown in figure 1B is likely to be 
the rule, rather than the exception for compact  macromolecules. It is tempting to spec- 
ulate that  nature already makes extensive use of "piggy-back riding" on critical density 
fluctuations to facilitate the formation of ordered structures. 
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