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ABSTRACT

We propose a background-independent formulation of cosrflation. The inflation in this pic-
ture corresponds to a dynamical process to generate spatieawhile the conventional inflation is
simply an (exponential) expansion of a preexisting spagtwing to the vacuum energy carried by
an inflaton field. We observe that the cosmic inflation is teiggl by the condensate of Planck energy
into vacuum responsible for the dynamical emergence ofedjpae and must be a single event accord-
ing to the exclusion principle of noncommutative spacetoaesed by the Planck energy condensate
in vacuum. The emergent spacetime picture admits a backdrmadependent formulation so that the
inflation can be described by a conformal Hamiltonian systearacterized by an exponential phase
space expansion without introducing any inflaton field ad a&klnad hocinflation potential. This
implies that the emergent spacetime may incapacitate altationales to introduce the multiverse
hypothesis. In Part | we will focus on the physical foundatad cosmic inflation from the emergent
spacetime picture to highlight the main idea. Its matheraaéxposition will be addressed in Part II.
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1 Introduction

History is a mirror to the future. If we do not learn from thestaikes of history, we are doomed to
repeat therﬁ.ln the middle of the 19th century, Maxwell’s equations faratomagnetic phenomena
predicted the existence of an absolute speed2.998 x 10 m/sec, which apparently contradicted the
Galilean relativity, a cornerstone on which the Newtoniadel of space and time rested. Since most
physicists, by then, had developed deep trust in the Neasomiodel, they concluded that Maxwell’s
equations can only hold in a specific reference frame, céilecether. However, by doing so, they
reverted back to the Aristotelian view that Nature spec#iesbsolute rest frame. It was Einstein to
realize the true implication of this quandary: It was askirsgto abolish Newton’s absolute time as
well as absolute space. The ether was removed by the Eilsstpicial relativity by radically modi-
fying the concept of space and time in the Newtonian dynaniiose lost its absolute standing and
the notion of absolute simultaneity was physically untéeaknly the four-dimensional spacetime
has an absolute meaning. The new paradigm of spacetime hgdetely changed the Newtonian
world with dramatic consequences.

The physics of the last century had devoted to the study ofgilVars: general relativity and
qguantum field theory. And the two cornerstones of modern ipeysan be merged into beautiful
equations, the so-called Einstein equations given by

1
R, — §gw,R = 81GNTw, (1.2)

where the right-hand side is the energy-momentum tensosavbontents are described by (quantum)
field theories. Although the revolutionary theories of tielity and quantum mechanics have utterly
changed the way we think about Nature and the Universe, new ppblems have emerged which
have not been resolved yet within the paradigm of the 20ttucgphysics. For example, a short list of
them is the cosmological constant problem, the hierarcbplpm, dark energy, dark matter, cosmic
inflation and quantum gravity. In particular, recent depeh@nts in cosmology, particle physics and
string theory have led to a radical proposal that there cbeldn ensemble of universes that might be
completely disconnected from oufs [1]. Of course, it wouddgerverse to claim that nothing exists
beyond the horizon of our observable universe. The obskrualiverse is one causal patch of a much
larger unobservable universe. However, a painful diredgdo use the string landscape or multiverse
to explain some notorious problems in theoretical physased on the anthropic argument [2]. “And
it's pretty unsatisfactory to use the multiverse hypotbésexplain only things we don’t understav@d."
Taking history as a mirror, this situation is very reminiscef the hypothetical luminiferous ether in
the late 19th century. Looking forward to the future, we magad another turn of the spacetime
picture to defend the integrity of physics.

1George Santayana (1863-1952).
2Graham Ross iQuanta magazingt multiverse impasse, a new theory of scale” (August 18,.420ndwWired.com

“Radical new theory could kill the multiverse hypothesis.”



In physical cosmology, cosmic inflation is the exponentiglansion of space in the early universe.
Suppose that spacetime evolution is determined by a single factor(¢) and its Hubble expansion
rate H = g according to the cosmological principle and driven by thaadyics of a scalar field,
called the inflaton [3,14]. Then the Einstein equation](1etuces to the Friedmann equation

87TGN 1.
2 _ P
H? = 2 (2¢ +V(¢)>. (1.2)
The evolution equation of the inflaton in the Friedmann ursees described by
. .8V
3Hp+ — = 0. 1.3
O+ 3Ho+ o (13)
The Friedmann equation (1.2) tells us that in the early us®ithV (¢) ~ V; and¢ ~ 0, there was
an inflationary epoch of the exponential expansion of spazeq(t) oc et whereH = &TGTNVO is
called the inflationary Hubble constant. In order to sudtdigdit to data, one finds [3,/4]
Vo > (2 x 10"°GeV)* ~ (1072 Mp)* (1.4)

whereMp = 1/1/87Gy is the Planck mass.

Let us contemplate the inflationary scenario with a criteyg. According to this scenaria [3, 4],
inflation is described by the exponential expansion of thiearse in a supercooled false vacuum
state that is a metastable state without any fields or pestlmlit with a large energy density. It should
be emphasized that the inflation scenario so far has beenfat@d in the context of effective field
theory coupled to general relativity. Thus, in this scemahe existence of space and timaipriori
assumed from the beginning although the evolution of spaeds determined by Eql_(1.1). In other
words, the inflationary scenario does not describe any génar(or creation) of spacetime but simply
characterizes an expansion of a preexisting spacetimeavérraddresses the (dynamical) origin of
spacetime. However, there has to be a definite beginning iaflationary universe [5]. This means
that the inflation is incomplete to describe the very begigrof our universe and some new physics
is needed to probe the past boundary of the inflating region® possibility is that there must have
been some sort of quantum creation event as a beginning ahtlierse([6].

The Friedmann equatioh (1.2) shows that the cosmic inflagiemggered by the potential energy
carried by an inflaton whose energy scale is near the Plamsiggnver which quantum gravity effects
become strong and effective field theory description mayrbkdn down. Although an inflating false
vacuum is metastable, essentially all models of inflati@u I eternal inflation to the future since
expansion rate is much greater than decay rate [3]. Oncéanfistarts, it never stops. If one identifies
the slowly varying inflaton field(¢) with a particle trajectory:(t) = ¢(t) and¢(t) with its velocity
v(t) = x(t), the evolution equatiori(1.3) tells us that the frictionalcke, 3Hv(¢), caused by the
inflating spacetime is (almost) balanced with an externaldé’(z) = —%, ie.,

(1.5)



because: ~ 0 during inflation. This implies that the cosmic inflation asyamamical system corre-
sponds to a non-Hamiltonian systm.

Recent developments in string theory have revealed a rexblgrland radical new picture about
gravity. For example, the AdS/CFT correspondence illtssra surprising picture that(/N) gauge
theory in lower dimensions defines a nonperturbative foatnah of quantum gravity in higher di-
mensions[[7]. In particular, the AdS/CFT duality shows aicgbexample of emergent gravity and
emergent space because gravity in higher dimensions iseddiya gravityless field theory in lower
dimensions. Now we have many examples from string theoryhichvspacetime is not fundamental
but only emerges as a large distance, classical approximfg]. Therefore, the rule of the game in
guantum gravity is that space and time are an emergent conejee the emergent spacetime, we
believe, is a significant new paradigm for quantum gravigy,want to apply the emergent spacetime
picture to cosmic inflation. We will propose a backgrounddpendent formulation of the cosmic
inflationB This means that we do not assume the prior existence of specktit define a spacetime
structure as a solution of an underlying background-inddpet theory such as matrix models. The
inflation in this picture corresponds to a dynamical procesgenerate space and time which is very
different from the standard inflation simply describing axdonential) expansion of a preexisting
spacetime. It turns out that spacetime is emergent fromldneck energy condensate in vacuum that
generates an extremely largimiverse Our observable patch within cosmic horizon is a very tiny
part~ 107% of the entire spacetime. Originally the multiverse hypsthéias been motivated by
an attempt to explain the anthropic fine-tuning such as tisenotogical constant problern/[9] and
boosted by the chaotic and eternal inflation scenarids [8nd]the string landscape derived from the
Kaluza-Klein compactification of string theory [10,/11], wh are all based on the traditional space-
time picture. Since emergent spacetime is radically difiefrom any previous physical theories,
all of which describe what happens in a given spacetime, thiévarse picture must be reexamined
from the standpoint of emergent spacetime. The cosmic imfidtom the emergent spacetime pic-
ture will certainly open a new prospect that may cripplelad tationales to introduce the multiverse
hypothesis.

Since the concept of the multiverse raises deep concesia¢s even to require to change our
view of science itself[2], it should be important to pondartbe real status of the multiverse whether
itis simply a mirage developed from an incomplete physikesihe ether in the late 19th century or it
is of vital importance even in more complete theories. Tharparpose of this paper is to illuminate
how the emergent spacetime picture brings about radicalggsaof physics, especially, regarding to
physical cosmology. In particular, a background-indegentheory such as matrix models provides a

3Nonetheless, the friction term does not lead to dissipaergy production. This fact can be seen by observing that
Eq. (I.3) can be derived from the first law of thermodynami@s+ pdV = Vdp + (p + p)dV = 0, wherep + p = ¢
andp = (ffo + %)‘b

“Here we refer to a background-independent theory in whighspracetime structure is nat priori assumed but
defined by the theory.



concrete realization of the idea of emergent spacetimehwias a sufficiently elegant and explanatory
power to defend the integrity of physics against the mulsgehypothesis. The emergent spacetime
is a completely new paradigm so that the multiverse debgb@ysics circles has to seriously take it
into account.

This is the first installment of a series of papers whose atmsopose the cosmic inflation from
emergent spacetime picture. In Part | we will focus on thespdat motivation and argumentation to
highlight the main idea, deferring the mathematical exgpmsito Part 1. The Part 1l is intended to
be self-contained as much as possible and mathematicajtwacids underlying our arguments will
also be briefly reviewed in two Appendices. The Part | is oizzohas follows.

In Sec. 2, we explain the physical picture depicted in Flgsand[2, whose mathematical ex-
position will be addressed in Part 1. The background-iredefent formulation of emergent gravity
crucially relies on the fact that noncommutative (NC) spagses as a solution of a largeé matrix
model in the Coulomb branch and this vacuum on the Coulombcbradmits a separable Hilbert
space as quantum mechanics| [12]. The gravitational metdeiived from a nontrivial inner auto-
morphism of the NC algebrd,, in which the NC nature is essential to realize the emergevity
[13,[14,[15/15]. See also closely related wotks [17/[18[ 09, An important point is that the ma-
trix model does not presuppose any spacetime backgroundhmh fundamental processes develop.
Rather the background-independent theory provides a messhaf spacetime generation such that
any spacetime structure including the flat spacetime asis@ssolution of the theory itself [15].

In Sec. 3, we observe that the NC spacetime is caused by thek”laergy condensate responsible
for the generation of spacetime and results in an extreraefjglspacetime. We demonstrate why the
emergent gravity clearly resolves the notorious cosmokdgionstant probleni [13, 14]. A principal
reason is that the huge vacuum energy being a perplexingatogioal constant in general relativity
was simply used to generate flat spacetime and thus doesawtage. The emergent gravity is in
stark contrast to general relativity since it does not altbes coupling of the cosmological constant
[21]. We note that the Planck energy condensate into vacuwst iie a dynamical process and
show that the cosmic inflation arises as a solution of a tiegeddent matrix model, describing the
dynamical process of the vacuum condensate. It turns outitb@osmic inflation corresponds to the
dynamical mechanism for the instantaneous condensatisacfum energy to enormously spread
out spacetime. It is remarkable to see that the inflation eatidscribed by time-dependent matrices
only without introducing any inflaton field as well asah hocinflation potential. Our work is not the
first to address physical cosmology using matrix modelsr& have been interesting earlier attempts
[22]. In particular, the cosmic inflation was addressed iry weteresting works [23] using the Monte
Carlo analysis of the type IIB matrix model in Lorentzianrsagure and it was found that three out
of nine spatial directions start to expand at some criticaétafter which exactly (3+1)-dimensions
dynamically become macroscopic.

In Sec. 4, we discuss why the emergent spacetime picture meapacitate all the rationales to
introduce the multiverse hypothesis. Since the emergextesipne picture is radically different from



the conventional picture in general relativity so that they exclusive and irreconcilable each other,
we reconsider main sources to introduce the multiverse thgsts from the standpoint of emergent
spacetime: (A) cosmological constant problem, (B) chaatid eternal inflation scenarios, (C) string
landscape. We argug [24] that the emergent spacetimerdgramens a new perspective that may
cripple all the rationales to introduce the multiverse hiesis.

2 Emergent spacetime from largeN duality

String theory is defined by replacing particles (point-ldtgects) with strings (one-dimensional ob-
jects). In order to do this, we need to introduce@ew constanta’ whose physical dimension is
(length)?. It is well-known that the new constant introduces a new duality depicted By —

R = %. This is known as the T-duality in string theofy [25], butstnot possible in particle the-
ories(a/ = 0). Itis important to notice that a new physical constant sui&h and«’ introduces a
deformation of some structure in a physical theory [13, Fr instance, the Planck constdnin
qguantum mechanics carries the physical dimengiba- (length) x (momentum) and so it deforms
the algebraic structure of particle phase space from cortmato NC space, i.e.,

xp —pr =0 = xp — px = ih. (2.1)

An educated reasoning motivated by the fact {hdt= (length) x (length) leads to a natural spec-
ulation thato/ brings about the deformation of the algebraic structurgatstime itself such that

xy —yxr =0 = Ty — yr = 1. (2.2)

From the deformation theory point of view, replacing padescwith strings is equivalent to the tran-
sition from commutative space to NC space. This may be stggdny the fact that the NC space
(2.2) defines only a minimal area whereas the concept of peidbomed as ifi in quantum me-
chanics introduces a minimal area in the NC phase spade {h#&)minimal surface in the NC space
(2.2) acts as a basic building block of string theory and besdike the smallest units of spacetime
blob. Remarkably the deformatidn (P.2) provides us an ingmticlue for a background-independent
formulation of string theory as will be discussed in Part II.

It turns out [15] that the NC spacE(2.2) denotediby is much more radical and mysterious
than we thought. In order to understand NC spacetime ctyreat need to deactivate the thought
patterns that we have installed in our brains and taken famtgd for so many years. The reason is
the following. As we have learned from quantum mechanics,N& phase spack (2.1) introduces
the wave-particle duality. Indeed the NC spdcel(2.2) alsmgbrabout a radical change of physics
since the NC nature of spacetime is responsible for a newdiddality, known as the gauge-gravity
duality. The underlying mathematical principle is the wealown duality between geometry and
algebra. A primary cause of the radical change of physicsiantum mechanics is that the NC phase



space[(ZJ1) introduces @mplexvector space called the Hilbert spacel[26]. This is also tone
the NC spacel(212) since its mathematical structure is 8allgrihe same as quantum mechanics.
Similarly to quantum mechanics, the NC sp@e also admits a nontrivial inner automorphism. For
example, for an arbitrary NC field(x, y), we have the relation given by

fle+a,y) =U@'fz,9)Ula),  flz,y+b)=U0)f(z,y)UO) (2.3)

whereU(a) = exp(—) andU(b) = exp(). Thus a striking feature of the NC space is that
every points are unitarily equivalent because translatinfR?, are simply a unitary transformation
acting on the Hilbert spac#. This means that the concept of space is doomed and thecahssi
space is replaced by a state in the Hilbert spaice This fact leads to an important picture that
classical spacetime is somehow a derived concept and a N@ralgnd its Hilbert space play a more
fundamental role. In other words, NC spacetime necessarplies emergent spacetime if spacetime
at microscopic scales should be viewed as NC and any dynbvaitable defined ofR?, becomes an
operator acting on the Hilbert spagge In particular, any NC field can be regarded as a linear operat
acting on the Hilbert space. Note that the NC spéacé (2.2)usvalgnt to the Heisenberg algebra of
harmonic oscillator, i.€a, a'] = 1, if the annihilation operator is defined by= \/%(x +1iy). Thus
the Hilbert space foR?, is the Fock space and has a countable basis. Therefore tleseepation
of NC fields on the Hilbert spac#l is given by N x N matrices whereV = dim(H) — oo.
Consequently, the NC spade_(2.2) leads to an interestiniyagnce between a lower-dimensional
large N gauge theory and a higher-dimensional NQ) gauge theoryi [15].

To be specific, let us consider2a-dimensional NC space denoted By" whose coordinate

generators obey the commutation relation

[yav yb] - ieabv a, b - 17 e ,277,, (24)

where()® = o/(1,, ® ic?) is a2n x 2n constant symplectic matrix arig= /o’ is a typical length
scale set by the vacuum. The NC sp&ce corresponds to the = 1 case. Let us denote the NC
x-algebra generated 2" by A,. Similarly to then = 1 case, the NC spacE(2.4) is equivalent to
the Heisenberg algebra afdimensional harmonic oscillator. Hence the underlyintipétit space on
which Ay acts is given by the Fock space defined by

H:{‘ﬁ>z|n17“'7nn>|ni€ZZO7izla“'?”}? (25)

which is orthonormal, i.e(7i|m) = dz,» and complete, i.ey" > |7i) (7| = 14, as is well-known
from quantum mechanics. Since the Fock spacé (2.5) has @atdenrbasis, it is convenient to in-
troduce a one-dimensional basis using the “Cantor diagme#hod” to put the:-dimensional non-
negative integer lattice i/ into one-to-one correspondence with the natural numbers:

Zig <> N:it) <> |n), n=1,--- N — oo. (2.6)



NC U(1) gauge theory o411 x R2"

Matrix represeny/ \r\dervaton

U(N — o) Yang-Mills gauge theory o411 | Quantized frame bundle

LargeNN %ca limit

D = d + 2n-dimensional Einstein gravity‘

Figure 1: Flowchart for emergent gravity

In this one-dimensional basis, the completeness relatidcheoFock space (2.5) is now given by
> 2 In)(n| = 14. Since NC fields in4, are linear operators acting on the Fock spagethe
representation of the NC fields if is given by N x N matrices inEnd(H) = Ay whereN =
dim(#H) — oo. Here we have denoted the set/éfx N matrices inEnd(#) by Ay. In the one-
dimensional basi$ (2.6), the trace ovircan also be transformed into the trace aWex N matrices
in Ay, i.e.,

d2ny

Using the matrix representation, one can sHow([13, 27, Z8h29theD = (d +2n)-dimensional
NC U(1) gauge theory ofiR?~11 x R2" is exactly mapped to thé-dimensional/(N — oo) Yang-
Mills theory onR4—11:

S = o /dDY}(ﬁAB—BAB>2 (2.8)
Gy ur 4
= _ ! d 1 27 1 p _1 2
o g)sz/d 'TTI<4FHVF + 2Du¢aD ¢a 4[¢aa¢b] ) (29)

whereG%.,, = (27)"|Pfl|g%,, and

0 O
Bup = .
o= (0 )

We emphasize that the equivalence between¥h@imensional NCU (1) gauge theory[(2]8) and
d-dimensionall (N — oo) Yang-Mill theory [2.9) is not a dimensional reduction butexact math-
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ematical identity. A remarkable point is that the laf§egauge theories described by the act{onl(2.9)
arise as a nonperturbative formulation of string/M theo[88]. For instance, we get the IKKT matrix
model ford = 0 [31], the BFSS matrix quantum mechanicsdot 1 [33] and the matrix string theory
for d = 2 [34]. The most interesting case arises do= 4 andn = 3 which suggests an engrossing
duality [12] that the 10-dimensional NC(1) gauge theory ofiR*! x RS is equivalent to the bosonic
action of 4-dimensional/ = 4 supersymmetri€/ (V) Yang-Mills theory, which is the larg&” gauge
theory of the AdS/CFT duality [7]. According to the largé duality or gauge-gravity duality, the
resulting largeV gauge theory must be dual to a higher dimensional gravityrimgstheory as sum-
marized in Fig[1l. Hence it should not be surprising that tielN 1) gauge theory should describe
a theory of gravity (or a string theory) in the same dimensidn spite of the apparent relationship
depicted in Fig[ 1L, this important possibility unforturigteas been largely ignored until recently.
The blue arrows on the right-hand side of FI[g. 1 show how tavdeb-dimensional Einstein
gravity from NCU (1) gauge theory oiR¢~1! x R2", which should be expected if we accept the
conjectural largeV duality. However we can use the emergent gravity fromINC) gauge theory to
verify the conjectural largé/ duality by realizing the equivalence between the actip®) @d [2.9)
in a reverse way. It is based on the observation[[12, 15] teattare two different kinds of vacua in
Coulomb branch if we consider thé — oo limit and the NC spacé (2.4) arises as a vacuum solution
of the d-dimensionall (N — oo) Yang-Mills theory [2.9) in the Coulomb branch. See Hig. 2eTh
conventional choice of vacuum in the Coulomb brancl/N) Yang-Mills theory is given by

[¢a7 (bb”vac =0 = <¢a>vae - diag((aa>17 (aa)27 Tty (aa)N) (210)

fora = 1,---,2n. In this case thé/(IN) gauge symmetry is broken t6(1)". If we consider the
N — oo limit, the large/NV limit opens a new phase of the Coulomb branch given by

[¢a7 ¢b]|vac - _Z.Bab = <¢a>vac = Pa = Babyb (211)

where B, = (§71),, and the vacuum modulj® satisfy the Moyal-Heisenberg algebfa{2.4). This

vacuum will be called the NC Coulomb branch. Note that the Mdyeisenberg vacuum (Z2J11)

saves the NC nature of matrices while the conventional vaof10) dismisses the property.
Suppose that fluctuations around the vacuum {2.11) takethe f

~

D, =0,—1iA,(z,y), Ga = Pa + Ea(x, ). (2.12)

We denote the NG-algebra orR?~! x R3" by Af = Ay (C>*(R*11)) = C*(R*!) @ Ay. The
adjoint scalar fields in Eg[_(2.112) now obey the deformedtaiggiven by

[Gas O) = —i(Bay — Fip) € AL, (2.13)

where
Fup = 0 Ay — 0y A, — i[ Ay, Ay (2.14)

8



U(N — oo) Yang-Mills gauge theory ofR?—1!

NC Coulomb branch \ij\f duality

NC U(1) gauge theory ofR?~1:1 x R2" D = d + 2n-dimensional Einstein gravit%

Inner derivation Classical limit

Differential operators as quantized frame bunqle

N

>

Figure 2: Flowchart for largéV duality

with the definitiond, = ad,, = —i[p.,]. Plugging the fluctuations in Eq.[[(2]12) into tke
dimensionalU (N — oo) Yang-Mills theory [2.9), we finally get th® = (d + 2n)-dimensional
NC U(1) gauge theory. Thus we arrive at the reversed version of thieagnce[[12, 15]:

1 1 1 1
= —— [ AT (=FWF"™ + =Du$a D ¢y — ~ [, b2
S = o [ AT (GELF + 5 Du6uD 60— flon, o]
1 1, ~
= T /dDY_(FAB_BAB)Za (2.15)
GYJ\/[ 4

whereA ,(z,y) = (EH, A,)(z,y) areD = (d + 2n)-dimensional NQU(1) gauge fields. It might be
remarked that the NC spade (2.11) is a consistent vacuurtiohf the action[(219) and the crux
to realize the equivalence (2]15). If the conventional carrative vacuum[(Z2.10) were chosen, we
would have failed to realize the equivalente (2.15). Indiéédrns out [12] that the NC Coulomb
branch is crucial to realize the emergent gravity from matnodels or largeNV gauge theories as
depicted in Fig[P.

Some remarks are in order. The relationship between a |dimeensional largeV gauge theory
and a higher-dimensional NT(1) gauge theory in Figd.l 1 afd 2 is an exact mathematical igentit
The identity in Fig[l is derived from the fact that the NC sp@Z.4) admits a separable Hilbert space
and NCU (1) gauge fields become operators acting on the Hilbert space.idEmtity in Fig.[2 is
based on the fundamental fact that the NC space (2.4) is astemsvacuum solution of a larg¥
gauge theory in the Coulomb branch and more general sotutiom generated by all possible (on-
shell) deformations of the vacuum. This means that thestsan isomorphic map from the NG 1)

9



gauge theory to the Einstein gravity which completes thgalaf duality. To be precise, consider the
inverse metric in Einstein gravity given by

0\2
(57) = Ea® Ba=g"™(X)0n ® O, (2.16)

where £, = E4(X)d,, are orthonormal frames on the tangent burifllet of a D-dimensional
spacetime manifoldM. The largeN (or gauge-gravity) duality in Fig$.] 1 andl 2 can be achieved by
realizing the vector field&, = F(X)0y € T'(T M) in terms of NCU(1) gauge fields.

A decisive clue is coming from the fact that the NGalgebra.4, generated by the Moyal-
Heisenberg algebra (2.4) always admits a nontrivial inmgormorphisn{ as was already illustrated
in Eq. (2.3) for then = 1 case. In general, for any dynamical varia@l(ar,y) € A¢, one has the
relation

O(z,y +d) = Ud)®(z,y)U(d),  U(d) =™ 7. (2.17)

In the presence of N@/(1) gauge fieldsd,(z,y) = (ﬁu,ﬁa)(x,y) which appear in the form of
background-independent variables(z,y) = (iD,, ¢,)(z,y), one can covariantize the inner auto-
morphism withU (d) = ¢*44" ¢ 7 by introducing open Wilson line§ [35]. See section 3.2(in] [13
for more details. The infinitesimal generatorsJ<oform an inner derivation defined by the adjoint
operation

AJ — D% fsady = —i[f, ] (2.18)

for any f € AJ. The module of derivation®? is a direct sum of the submodules of horizontal and
inner derivations [36]:

D% = Hor(AY) @ D(AY), (2.19)
where horizontal derivation is locally generated by a vefitdd
J d
k“(x,y)% € Hor(A7). (2.20)

Definitely the derivatiorD? is a Lie algebra homomorphism, i.e.,
adjsg = tlady, adgy] (2.21)

for f,g € A and their commutatoff, g] € A4. In particular, we are interested in the derivation
algebra generated by the dynamical variables in [Eq. |2li®)defined by

‘7A = {ad¢A = —i[qu, ]|¢A(x7y) = (iDu7¢a)(xay) € Ag} € @d‘ (222)

In a large-distance limit, i.66| — 0, one can expand the NC vector fields in Eq. (2Z.22) using
the explicit form of the Moyak-product. The result takes the form

. 0 = ) B}
Va=Vi¥ (@) s + D Vi (@95 5
= Qyer - Oy

d
el e, (2.23)
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where XM = (z#,4%) are local coordinates on A-dimensional emergertorentzianmanifold M
andV} = ¢'. Thus the Taylor expansion of NC vector fieldsd generates an infinite tower of the
so-called polyvector fields [15]. Note that the leading tgiiwes rise to the ordinary vector fields that
will be identified with a frame basis associated to the tahbandleT M of an emergent manifold
M. Itisimportant to perceive that the realization of emetgmometry through the derivation algebra
in Eq. (Z.22) is intrinsically local. Therefore it is necassto consider patching or gluing together
the local constructions to form a set of global quantities.Will assume that local coordinate patches
have been consistently glued together to yield global (welstor fields. See Refs. [B7] for a global
construction of NGe-algebras and Ref[_[15] for the globalization of emergemtngetry. It will also
be recapitulated in Part Il. Let us truncate the above palprdields to ordinary vector fields given
by

0
X(M)z{vszf(x,y)Wm,M:o,L--- ,D—1}. (2.24)

The orthonormal vielbeins dfiM are then defined by the relation [38]
Va=AE, € F(TM) (2.25)

oronT*M
v =\l e T(T*M). (2.26)

The conformal factoh € C*°(M) is determined by the volume-preserving condition
Lyvp=(V-Va+(2—-d—2n)Valn )y, =0, VA=0,1,---,D—1, (2.27)
where the invariant volume form ot is given by

v=dxAnv = NdlzAvt A A0

A=y, (2.28)

andy, = e’ A --- A e~ is the D-dimensional Riemannian volume form.
Define the structure equations of vector fields= A\E4 € I'(T M) by

[Va, V] = —gas“Ve. (2.29)
Then the volume-preserving condition (2.27) can equivbidie written as([13, 14]
gpa” = Valn X% (2.30)
In the end, the Lorentzian metric onadimensional spacetime manifaldl is given by [13] 14|, 15]
ds* = Gun(X)dXM @ dXN =et @ et

= AN @ ot = N (nudatde’ + vpot(dy’ — AP)(dy® — A°)) (2.31)
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where At = AZ(x,y)dx“. The above metric completely determine®adimensional Lorentzian
spacetime emergent from the NG 1) gauge fields described by the actibn (2.15). Therefore the NC
field theory representation of thedimensional largeV gauge theory in the NC Coulomb branch
provides a powerful machinery to identify gravitationatiahles dual to largév matrices.

The prescription[(2.25) implies that the mettic = v* ® v* determined by the gauge theory
basisV, is in the same conformally equivalent class with the Eimstaktric g = e ® e for
the orthonormal framev, and thus the Weyl tensors are the same for both metrics. Hinse
prescription is particularly useful for Ricci-flat maniftd [38]. However, for other cases such as
conformally flat manifolds, the curvature tensors, i.e.drRiensors, determined by the metrigsand
gg are in general not the same. For the latter case, there existge natural prescription given by

(V,, Vi) = (E,, AE,) € T(T M), (2.32)

where an arbitrary positive functioh is still determined by solving Eq.[(2.80). But the volume-
preserving condition is replaced by

Lyvy=(V-Va+(2-2n)Valn)y =0, VA=0,1,---,D—1, (2.33)

because, = \*~?"y, is the invariant volume form in this case. With this prestiop, the emergent
metric is now given by

ds? = ndrtde” + Nvfvi(dy’ — A°)(dy® — A°). (2.34)
It is straightforward to see that the conditién (2.33) reasls
0up + 0a(pA3) =0 & 8,(pV;) =0, (2.35)

wherep = A\ detvg. Thus the new prescription can be implemented as beforeri¢tbxists a solution
A(z,y) obeying Eq. [(2.35). In particular, it provides a more comgrhbasis for a product man-
ifold. For example, if NCU(1) gauge fields show a factorized dependence given@m@,y) =
(/Alu(x),;la(y)), we expect that such gauge fields will generate a product foldnaf the form
RI-LL x M,,. This is the case for Eq.[(282) sinee= A(y) and A = 0 in this case, while
Eq. (2.25) gives rise to a warped product metric. Later wétakle the prescriptior (2.82) to describe
the cosmic inflation in a comoving frame in which the inflaBoyymetric takes the form

ds* = —dt* + a(t)*dy - dy. (2.36)

We have implicitly assumed that the dynamical variablesdn @.22) satisfy the equations of
motion derived from the actiohi (2115). This means that thetdlations in Eq. [(2.12) must arise
as a solution of NQJ(1) gauge theory defined by the actidn (2.15). Using the relatietwveen
A4 and D4, it is in principle possible to translate the equations oftiorofor NC gauge fields in
the algebradd into some geometrical equations for polyvector fields in dieeivation®¢ whose
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commutative limit corresponds to gravitational field eduiag for the metric[(2.31) oi (2.84). This
translation for thel = 0 case is relatively simple in lower dimensions as was dond3y14] for
D = 2,3,4 dimensions. Recently we also identified the Einstein’s g8qnédor six-dimensional
NC U(1) gauge fields obeying the Hermitian Yang-Mills equatidng.[39owever the problem for
general NCU (1) gauge fields in higher dimensions may be nontrivial even éndlssical limit. If
we include higher spin fields in polyvector fields defined by E223), the problem will be much
more complicated. Nevertheless it should be important terdene the precise form of gravitational
equations and their derivative corrections because theehigrder terms in Eq[_(2.23) are interpreted
as quantum corrections according to the emergent quantawitygpicture [14,[15]. We hope to
address this problem in the near future.

In conclusion, the general largé duality depicted in Fig.12 can be explained via the dualitgich

AL = A = D7 (2.37)

where A%, = Ay (C=(R* 1)) = C*(R* ) ® Ay. The dynamical variables id-dimensional
Yang-Mills gauge theory in Fid.]2 take values.itf, while those inD = (d + 2n)-dimensional NC
U(1) gauge theory take values M. These two NC algebrad$, and.A¢ are related to each other by
considering the NC Coulomb branch for the algedrfa.

3 Cosmic inflation from time-dependent matrices

From now on we will focus on the matrix quantum mechanics (MQiIM., thed = 1 case in Eq.
(2.18), to address the background-independent formulaficosmic inflation. The underlying action
in this case is given by

S = %/dtTr(%(Doéﬁa)?—i‘i[ébaaéﬁb]z)

1
e dtn*“nPPTr[pa, ¢5l(c, dp), (3.1)
wheregy = iDy = i5 + Ao(t), ¢a(t) = (¢o,¢a)(t) andn?? = diag(—1,1,---,1), A, B =
0,1,---,2n. With the notation of the symbo}*Z, it is easy to see that the matrix actiGn {3.1) has a
global automorphism given by
da — ¢y =Aa"dp+ ca (3.2)

if A,” is a rotation inSO(2n, 1) andc, are constants proportional to the identity matrix. It widl b
shown later that the global symmetty (3.2) is responsibtettie Poincaré symmetry of flat space-
time emergent from a vacuum in the Coulomb branch of MQM andifidbe called the Poincaré
automorphism. We remark that the tichim the action[(3.11) is not a dynamical variable but a param-
eter. The concept of emergent time will be defined in Part Icbysidering a one-parameter family
of deformations of zero-dimensional matrices which is peeterized by the coordinate Then the
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one-parameter family of deformations can be regarded asntleeevolution of a dynamical system.
A close analogy with quantum mechanics implies that the gphof emergent time is related to the
time evolution of the dynamical system. In this context, dhe-dimensional matrix modél[(3.1) can
be interpreted as a Hamiltonian system of a zero-dimenk{erta, IKKT) matrix model[15].

The equations of motion for the matrix acti¢n (3.1) are gilgn

Di¢a + (60, [$a, D] = 0, (3.3)

which must be supplemented with the Gauss constraint

[¢a7 D0¢a] =0. (34)

In order to achieve the NC field theory representation forattéon [2.15), we have considered the
NC Coulomb branch defined by

(Oshwe = pa = (i +£.p2), 35)

whereE = (Ay(t)).ac IS @ constant vacuum energy density and the vacuum mpgdatisfy the
commutation relatiori (2.11). We emphasize that the NC Gublbranchl(3.J5) is a consistergcuum
solution of MQM since it satisfies the equations of mot{dr¥]) as well as the Gauss constrant (3.4).
Sincef is proportional to the identity matrix, it plays no role irettemporal covariant derivative,

and so it can be dropped without loss of generality. The iwt{B.3) makes a merit of the emphasis
that the temporal differential operator ¢y must be regarded as a timelike background on an equal
footing with the spatial vacuum moduylj,. Let us consider all possible deformations of the vacuum
(3.3) and parameterize them as Hq. (2.12). Plugging theufitichs into the actiorh (3.1) leads to the
identity

S = %/dtTr(%(Doéﬁa)?—i‘i[ébaaéﬁb]z)

1 ~ ~
= /d2n+1y n*“nPP(Fap — Bap)(Fep — Bep), (3.6)
AGy

whereG%,,(2m)"|Pff|g? is the(2n + 1)-dimensional gauge coupling constant.

Let us contemplate how we have obtained (e + 1)-dimensional emergent spacetiné de-
scribed by the Lorentzian metric (2]34). At the outset, weelmnsidered a background-independent
theory in which any existence of spacetime is not assumeddinted by the theory itself. Of course,
the background-independent theory does not mean that yfsécghs independent of the background.
Background independence here means that, although a phghienomenon occurs in a particular
background with a specific initial condition, an underlyitngory itself describing such a physical
event should presuppose neither any kind of spacetime nterimlabackgrounds. Therefore the
background itself should arise from a vacuum solution ofuhderlying theory. In particular, the
background-independent theory has to make no distincebmnden geometry and matter since it has
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no predetermined spacetime. We have defined a most primésueum such that it generates a simple
spacetime structure. General and more complicated speestructures are obtained by deforming
the primitive vacuum in all possible ways. These deformregticorrespond to physical processes that
happen upon a particular (spacetime) background. Hengeatleeregarded as a dynamical system.
Motivated by a close analogy with quantum mechanics, weeaangart Il that the deformations of
spacetime structure supported on a vacuum solution mustderstood as the time evolution of the
dynamical system. As a consequence, the fundamental g&ifndescribes a dynamical system,
from which an emergen2n + 1)-dimensional Lorentzian spacetirdel with the metric [2.3K) is
derived.

The largeN duality in Fig. [2 says that the gravitational variables sashvielbeins in general
relativity arise from the commutative limit of NC'(1) gauge fields via the map_(2137). Then one
may ask where flat Minkowski spacetime comes from. Let us ktothe metric[(2.34) to identify
the origin of the flat Minkowski spacetime. Definitely the katzian manifoldM becomes the
Minkowski spacetime when all fluctuations die out, i«.,— ¢;, A* — 0. Therefore the vacuum
geometry for the metrid (2.84) was originated from the vawsweonfiguration[(3]5) in Which/fﬁo) =
(Vayvae = 0% 527, sS0X* — 1 according to Eq.[{2.30). In other words, tf@ + 1)-dimensional
flat Minkowski spacetime is emergent from the vacuum conaeenE3.5) since the corresponding
vielbeins and the metric are given i) = V) = (%, %) andds? = —dt>+ dy - dy [13,[14]. We
have to emphasize that the vacuum algebra responsiblesfentiergence of the Minkowski spacetime
is the Moyal-Heisenberg algebifa (Z2.11). But the NC Coulomtuum induces a nontrivial vacuum
energy density caused by the condendate2.11). We caratal@wsing the actiori (3.6):

1

vae = ————| Bup|%. 3.7

A striking fact is that the vacuur (2.111) responsible forgeaeration of flat spacetime is not empty.
Rather the flat spacetime had been originated from the umifacuum energy (3.7) known as the cos-
mological constant in general relativity. This is a tangitlfference from Einstein gravity, in which
T, = 0in flat spacetime as one can see from Eqg.](1.1). Consequ#rglgmergent gravity reveals
a remarkable picture that a uniform vacuum energy such a§Zid). does not gravitate. As a result,
the emergent gravity does not contain the coupling of cosgichl constant likg d*"+*zv/—GA, so

it presents a striking contrast to general relativity. Timportant conclusion may be strengthened by
applying the Lie algebra homomorphisin (2.21) to the comiousan Eq. [2.1B), which reads as

— iadjg, ¢, = V5 =V;, = V.. Vi) € D' (3.8)

ab—Bab

for a constant field strengtB,,. To stress clearly, the gravitational fields emergent fro@ I\ 1)
gauge fields must be insensitive to the constant vacuum eiseich as Eq.[(3l7). In the end, the
emergent gravity clearly dismisses the notorious cosnicédgonstant problen [13, 14, 21].

In order to estimate the dynamical energy scale for the vaccondensatd (3.5), note that the
Newton constantyy according to emergent gravity picture has to be determinefleid theory
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parameters only such as the gauge coupling conétaptandd = B! defining the N/ (1) gauge
theory [3.6). A simple dimensional analysis leads to thalt¢$3,[14]

Gyh?
— 5~ G, (3.9)
where|d| := |Pfd|=. To be specific, when considering the four-dimensional ¢asehich M/, =

(87Gy) ™12 ~ 10" GeV andG? , ~ -, the vacuum energ{ (3.7) due to the condensafe](2.11) is at
a moderate estimate given by

1

———|Bu|? ~ G2y M ~ 1072 M}, (3.10)
1G2,,

Prac =
Amusingly emergent gravity discloses that the perversewacenergyp,.. ~ M; was actually the
origin of flat spacetime. It is worthwhile to remark that tHarftk mass\/, naturally sets a dynam-
ical scale for the emergence of gravity and spacetime if guarmgravity should be formulated in a
background-independent way so that the spacetime geoemagyges from a vacuum configuration
of some fundamental ingredients in the underlying theoher&fore it may be not a surprising result
but rather an inevitable consequence that the Planck edermgity [3.1D) in vacuum was the genetic
origin of spacetime.

We observed before that the MQM admits a global automorplisen by Eq. [(3.R). Let us see
what is the consequence of the Poincaré automorphish ¢8.2)e emergent spacetime geometry.
The Poincaré automorphism leads to the transformdfﬁh — V;‘(O) = AABVéo). However, this
transformation does not changé becauseletA = 1. The geometry for the transformed vacuum
p/y is determined by the metri€(2134) that is again the flat Mimgki spacetimeR?™!. Therefore,
we see that the vacuum configuration responsible for therggoe of flat spacetime is not unique
but degenerate up to the Poincaré automorpHisadter all, the global Poincaré symmetry of the
Minkowski spacetime is emergent from the Poincaré autpimem [3.2) of MQM.

Note that the Planck energy condensate in vacuum resultad @xtremely extended spacetime
as the metrid(2.34) clearly indicates. However, since we Iséarted with a background-independent
theory in which any spacetime structure has not been assumadl/ance, the spacetime was not
existent at the beginning but simply emergent from the vatcondensaté (3.5). Therefore the Planck
energy condensation into vacuum must be regarded as a dyalgonocess. Since the dynamical
scale for the vacuum condensate is about of the Planck erntbryyime scale for the condensation
will be roughly of the Planck timép ~ 10~ sec. Inflation scenario asserts that our Universe at the
beginning had undergone an explosive inflation era lastaghly ~ 10~32 seconds. Thus it is natural
to consider the cosmic inflation as a dynamical process #irtstantaneous condensation of vacuum
energyp... ~ M3 to enormously spread out spacetirnel[21]. Now we will explowes the cosmic

SNote that the vacuum solution (3.5) is further degeneratetuthe scaling, — p/, = Bp, or y® — ' = B~ 1y®
as far ass € R\ {0} is a nonzero constant. We will use this freedom to normalizeititial length scale such that
ly*(t =0)| = Lporly = Vo'
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inflation is triggered by the condensate of Planck energyacuum responsible for the dynamical
emergence of spacetime.

First let us understand intuitively Eqs[_(11.2) and [1.3) & gome dear insight from the old
wisdom. Suppose that a test particle with masis placed in the condensate (3.10). Consider a ball
of radiusr(¢) and the test particle placed on its surface. According t&ess’s law, the particle will
be subject to the gravitational potential enefgir) = —GxMm caused by the condensaite (3.10),

T

where M (r) = % is the total mass inside the b@llln order to preserve the total energy

of the particle, the ball has to expand so that the kinetiegné& () = ms(t)? generated by the

expansion compensates the negative potential energy. igithe energy conservation implies the

following relation

vac k
_ 87CNpwe (3.11)

H2
3 r(t)?’

where H = % is the expansion rate and = —%. By comparing the above equation with the
Friedmann equation_(1.2) after the identificatidn) = Ra(t), we see that Eq[(3.1L1) corresponds to
Pvac = V(0) = Vp and¢ ~ 0 with & = 0. Atthe outset we actually assumed the spatially flat uneers
k = 0, for the Friedmann equation (1.2). In our approach with &gemind-independent theory, the

conditionk = 0 is automatic since the very beginning should be absolutatlying! This conclusion

is consistent with the metri€ (2.84) which describes a fitetlesof cosmic inflation. Hence we may

moderately claim that the background-independent thergdsmic inflation predicts a spatially flat

universe, in which the constahtmust be exactly zero.

From the above simple argument, we see that the size of theXpanentially expands, i.e.,

a(t) = age™ (3.12)

H= ,/% (3.13)

is a constant. Let us introduce fluctuations around the inflaolution [3.1R) by considering.. —
pvac + 0p andg #£ 0, wheredp is the mechanical energy due to the fluctuations of the inflato).
Then the evolution equation (3]11) is replaced by

where

o 87TGN
3

and the dynamics of the inflaton is described by Eq.] (1.3). Asiready remarked in Eq._(1.5), the
dynamics of the inflaton must be described by a non-Hamatosystem, whose mathematical basis

H? (pvac +9p), (3.14)

81t might be remarked that this experiment is a simple twisthef well-known solution of Gauss’s law for gravity
inside the earth, in which the minus sign in the gravitatigpuaential energy presupposes a repulsive force rather tha

the usual attractive force. Moreover the repulsive forogiven byF = k,r = —VV (r) wherek, = ‘“’GN% and
Vir) = —W is the gravitational potential energy in Newtonian gravifyjhe change of sign and the factor 2
enhancement are due to the general relativity effect sinee— 4”5” (Pyac + 3p) = —@(—2%‘%).
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will be reviewed in Part Il. Therefore, in order to describe tnflationary universe in the context of
emergent gravity, we need to extend the modDleof differential operators in Eq.[{2.22) so that
the exponential behavidr (3/12) is derived from it. In cleaklimit, such vector fields are known as
conformal vector fields whose flow preserves a symplectimfop to a constant, so they appear in
the conformal Hamiltonian dynamics such as simple mechasistems with friction [40, 41].

As we have advocated the vitality of the background-inddpanhformulation of emergent space-
time, itis desirable to realize the inflationary universaaslution of the matrix model(3.1). Now we
will show that the cosmic inflation arises as such a time-ddpat solution describing the dynamical
process of Planck energy condensate into vacuum withoutdating any inflaton field as well as
an ad hocinflation potential. It is not difficult to show that the dynamal process for the vacuum
condensate is described by the time-dependent vacuum gaatf@n given by

(ba(t))vac = Da(t) = €T pay  (Ao(t))vae = o(t,y), (3.15)

where the temporal gauge field is given by an open Wilson B5&¢ [

k[ o
o(ty) = / ar %)y (o) (3.16)

along a path parameterized by the cupféo) = y¢ + (%(0) where(?(o) = 6%k,o with 0 <
o < landy’(c = 0) = y§ andy*(c = 1) = y*. The constank will be identified with the
inflationary Hubble constarf. First note that the second term in EQ. _(3.3) identicallyistes for
the background (3.15). Therefore it is necessary to imguesedndition

Kt K Y
Dot = % (5pa = il Ao, pa]) = 0 (3.17)

to satisfy both[(313) and[(3.4). In terms of the M@lgebraA}, Eq. [3.17) reads as

a/dO(tay) K
8ya = §pa. (318)
Using the formula
d ! dyb(U) b
oy /0 do—2—K(y(0)) = 3. K(y) (3.19)

for some differentiable functiof' (y), one can easily check that the temporal gauge field in[EgG)3.1
satisfies Eq.[(3.18).

Before calculating the metri€ (2.84) for the inflating backgnd [3.15), we want to discuss some
physical significance of the nonlocal term (3.16). First veenpout that the temporal gauge field
(3.16) corresponds to a background Hamiltonian densithéndomoving frame. (See footndie 7
for a different choice of coordinate frame.) We will see stloat the gravitational metric including
the effect of the nonlocal terni_(3]16) is still local as it gltbbe. It was already noticed ih [42]
that nonlocal observables in emergent gravity are in génergssary to describe some gravitational
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metric that is nonetheless local. Moreover the appearah&eiah nonlocal terms should not be
surprising in NC gauge theories, in which there exist nollgeaige invariant observables. Indeed it
was shown in[[35] that nonlocal observables are the NC gérnatian of gauge invariant operators
in NC gauge theories.

Now let us determine the metri€_(2134) for the inflating backmd [3.15). The2n + 1)-
dimensional vector fields defined by EQ. (2.22) take the falhg form

0 0 st O
Volt) = 5 — 5u" Valh)y =e 52

T ot 27 oy
It may be stressed that the res(lf (3.20) is exact, i.e.,dnighder derivative terms in Eq[(2]23)
identically vanish. Note that the vector fields take the ldoem again as the result of applying the
formula (3.19) and the open Wilson life(3.16) leads to a@anél vector fieldZ = 1y° aga known
as the Liouville vector field [40, 41]. Then the dual orthogbone-forms are given by

(3.20)

Ot) =dt,  v(t) = e 7 (dy* + a) = e dy? (3.21)
where
a® = gyadt, Yo = eyl (3.22)

One can see that the vector fields in Eq. (B.20) satigfyV,] = xV, and thus

_ 9oa" = —gao” = KO}, a,b=1,---2n;

QABC =
0, otherwise.

(3.23)

From this result, we get = ¢~ sincegp4” = V4 In A\? [14]. One can see that the volume-preserving
condition [2.35) is definitely satisfied sinpe= ¢™** andA§ = —4y“. In the end, the time-dependent
metric for the inflating background (3115) is given by

ds? = —dt? + e*Hidy, - dy,, (3.24)

where we have identified the inflationary Hubble constdnt (n — 1)x. We emphasize that the

temporal gauge field (3.16) is crucial to satisfy Eqs. 1(3:/3) &.4). Note that the metri€ (3124)

is conformally flat, i.e., the corresponding Weyl tensomsniically vanish and so describes a ho-
mogeneous and isotropic inflationary universe known as tieglfann-Robertson-Walker metric in

physical cosmology.

We showed that the cosmic inflation arises as a time-depéadkion of a background-independent
theory describing the dynamical process of Planck energg@&asate in vacuum without introducing
any inflaton field as well as aad hocinflation potential. Let us generalize the cosmic inflatign b
also including arbitrary fluctuations around the inflatipnbackground[(3.15). Such a general in-
flationary universe in2n + 1)-dimensional Lorentzian spacetime can be realized by densig a
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time-dependent NC algebra giverﬁby

- 9 -~ - » N
‘A = {cbo(t, y) =ig +Alty), Galtiy) =e? (pa + Aa(t,y)) } (3.25)

We denote the corresponding time-dependent matrix algsiird}, which consists of a time-dependent
solution of the action (3]1). Then the general Lorentziarimelescribing a2n + 1)-dimensional
inflationary universe can be obtained by the following dyathain:

Ay, = A4, = D. (3.26)
The modulé®! of derivations of the NC algebrfad} is given by

v V. U % 9 - st [ O
tpl — {VA(t) = (o, Vo) OVo(t) = = +adg ), Valt) = €2 (a_ya + adga(my)) } (3.27)

where the adjoint operations are defined by Eq. (2.22). Icldsical limit of the modulé (3.27), we
get a general inflationary universe described by

ds® = —dt* + (1 + ON)*vj vl (dy; — A%)(dy; — A°), (3.28)

wherev? := vi(t,y), oA = dA(t,y) and A’ = §al(t,y)dt. If all fluctuations are turned off for
whichvf = §2 andd\ = A® = 0, we recover the inflation metriE(3.24).

To appreciate the physical picture of the vacuum configomg{8.15), recall that a NC space such
asRR?, cannot occupy a single point of the plane but rather lies iegion of the plane. Thus there
must be a basic length scale, below which the notion of spaw@time) does not make sense. Let us
fix such a typical length scale at= 0 as|y%(t = 0)| ~ Lp or I, = /o' using the scaling freedom
noted in footnot€l5. It should be reasonable to idertifywith the Planck length. Sinag (¢ = 0) are
operators acting on a Hilbert space, this means that théiorfery vacuum[(3.15) creates a spacetime
of the Planck size. After the creation, the universe evdieeke inflation epoch as a solution of time-
dependent matrix model unlike the traditional inflationargdels that describe just the exponential
expansion of a preexisting spacetime. This picture is sintd the birth of inflationary universes in
Ref. [6] in which the universe is spontaneously created ntum tunneling from nothing into a
de Sitter space. Here by nothing we mean a state without asgichl spacetime. According to the
standard inflation scenario, the universe expanded by sit éefactor ofe®® during the inflation. In
order to know the duration of the inflation exactly, we neednderstand the precise mechanism of
reheating, which unfortunately goes beyond our abilityraspnt. Since the radius of the universe

’One may wonder why the time direction is not inflating. Thiglige to our choice of a coordinate frame to describe
the dynamical system. The time evolution operaE@(t,y) is defined in the so-called comoving frame. In general,
one can choose an arbitrary frame in which the time evolugoescribed b)k(t,y)% € Hor(A}), i.e., thed = 1
case of Eq. [(2.20). A particularly interesting frame is tlomformal coordinates with which the metric is given by
ds?> = a(n)?(—dn?® + dx - dx) wherea(n) = —H%] and—oco < n < 0. The conformal coordinates can be easily
transformed to the comoving coordinatesddy)dn = dt.
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at the beginning of inflation is abouty, 60 e-foldings at = t.,q = 1073¢ ~ 10733 sec mean that
Htena 2 60 and the size of universe at the end of inflation amountgt@ = t.,q)| = effend|ya(t =

0)] = e Lp. Since 1 eV= (6.6 x 10~ 0sec) ™!, this informs us of the energy scale of the inflationary
Hubble constant given bi > 10 ~ 10GeV [3,4].

4 Discussion

It is well-known [43]44] that NC field theories arise as a lemergy effective theory in string theory,
in particular, on D-branes upon turning on a constarfteld. A remarkable aspect of the NC field
theory is that it can be mapped to a lafgematrix model as depicted in Figl 1. The relation between
NC gauge theories and matrix models is quite general singceiaralgebra or Moyal-type NC space
such as[(2]4) always admits a separable Hilbert space anda@edields become operators acting
on the Hilbert space [29]. The matrix representation of NGggafields implies that they can be
embedded into a background-independent formulation mgesf a matrix model. Here we refer
to a background-independent theory in which any spacetinoetare is nota priori assumed but
defined by the theory. The background-independent vasarkeidentified as the degrees of freedom
of the underlying matrix model. The relation with the matmodel gives a physical interpretation
of the background independence for the NC gauge theoriesébgliservation [12, 28] that the NC
space[(2}14) is a consistent vacuum solution of a la¥ggauge theory in the Coulomb branch. The
matrices are the original dynamical variables of the matrodel which are manifestly background-
independent and the NC gauge fields are now derived from #tiotis in the NC Coulomb branch
as depicted in Figl]2. These matrix models can be embeddedtimg theories or M-theory. For
example, thel = 0 (n = 5) andd = 2 (n = 4) cases in the matrix actioh (2]15) are precisely the
IKKT matrix model [31] and the matrix string theory [32,134§spectively. However its relation to
the BFSS matrix model [33] is not straightforward since thetn® model [2.1b) contains only even
number of adjoint scalar fields while the BFSS matrix modguirees 9. Nevertheless, the DLCQ M-
theory compactified on an odd-dimensional tdféican be described by the matrix actién (2.15) with
d = p+1andn = %2 because itis known [30] that the former is described by(thel )-dimensional
U(N) supersymmetric Yang-Mills theory on a dual toid®)*. Although it remains open to realize
the original BFSS matrix model as the Hilbert space repitesien of a NCU (1) gauge theory, itis a
separate issue from the background-independent forrmaalafian emergent inflationary spacetime.
The latter arises from a time-dependent solution to a onmedsional matrix quantum mechanics
which does not presuppose any spacetime background.

In string theory, there are two exclusive spacetime pistbesed on the Kaluza-Klein (KK) theory
VS. emergent gravity although they are conceptually in diésgord with each other. On the one hand,
the KK gravity is defined in higher dimensions as a more suplarate theory and gauge theories in
lower dimensions are derived from the KK theory via comgaetiion. Since the KK theory is just
the Einstein gravity in higher dimensions, the prior existeof spacetime ig priori assumed. On the
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other hand, in emergent gravity picture, gravity in highenehsions is not a fundamental force but
a collective phenomenon emergent from more fundamenteddignts defined in lower dimensions.
In emergent gravity approach, the existence of spacetimetia priori assumed but the spacetime
structure is defined by the theory itself. This picture letdhe concept of emergent spacetime. In
some sense, emergent gravity is the inverse of KK paradighersatically summarized by

(1®1)s=280 (4.1)

where— means the emergent gravity picture whileindicates the KK picture.

Recent developments in string theory have revealed groewdences for the emergent grav-
ity and emergent spacetime. The AdS/CFT correspondencenatrtk models are typical examples
supporting the emergence of gravity and spacetire [7].eSime emergent spacetime is a new funda-
mental paradigm for quantum gravity and radically différieam any previous physical theories, all
of which describe what happens in a given spacetime, it isired to seriously reexamine all the ra-
tionales to introduce the multiverse hypothesis from threpective of emergent spacetime. However,
we do not intend to make an objection to the existence of miwexsk subregions in thdniverse
The Universe is rather likely much larger than we previodktyught. Actually the emergent space-
time picture implies that our observable patch within cashurizon is a very tiny part- 107 of
the entire spacetime, as we will discuss soon. Instead weuwsk the issue whether the existence
of more diverse subregions besides ours means that the faug/sics are ambiguous or all these
subregions follow the same laws of physics and the physaead bf our causal patch in the Universe
can be understood as accurately as possible without refeterthe existence of other subregions.

First let us summarize the main (not exhausting) sourceseofrtultiverse idea [1]:

A. Cosmological constant problem.
B. Chaotic and eternal inflation scenarios.

C. String landscape.

First of all, we have to point out that these are all based errtiditional spacetime picture. The
cosmological constant problem (A) is the problem in all itiadal gravity theories such as Einstein
gravity and modified gravities. So far any such a theory hasmcceeded to resolve the problem A.
The inflation scenarios (B) are also based on the traditigraadity theory coupled to an effective field
theory for inflaton(s). Thus, in these scenarios, the pristence of spacetime is simply assumed.
The string landscape (C) also arises from the conventioKat&mpactification of string theory al-
though the string theory is liberal enough to allow two egdla spacetime pictures, as we already
remarked above. Since superstring theories can congystentefined only in ten-dimensions, ex-
tra six-dimensional internal spaces need to be compactiiexplain our four-dimensional world.
Moreover it is important to determine the shape and topolufggn internal space to make contact
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with a low-energy phenomenology in four-dimensions beeahs internal geometry of string the-
ory determines a detailed structure of the multiplets femedntary particles and gauge fields via the
KK compactification. The string landscape (C) means thahtige variety of compactified internal
geometries exist, typically, in the range B and almost the same number of four-dimensional
worlds with different low-energy phenomenologies accogty survive [10] 11].

We have to stress again that the emergent spacetime pist@dically different from the conven-
tional picture in general relativity so that they are exslasnd irreconcilable each other. Therefore,
if the emergent spacetime picture is correct to explain aquvérse, we have to give up the traditional
spacetime picture and KK paradigm. For this reason, we wdbnsider all the rationales (A,B,C)
from the standpoint of emergent spacetime and the backdrowaiependentness.

We already justified at the beginning of Sec. 3 why emergeawityr definitely dismisses the
cosmological constant problem (A). See also Refs.| [13] 1§ f& more extensive discussion of
this issue. There is no cosmological constant problem inrgeme gravity approach founded on the
emergent spacetime. The foremost reason is that the hugemaenergy[(3]7) o (3.10) that is a
cosmological constant in general relativity was simplydusegenerate the flat spacetime and thus it
does not gravitate any more. The emergent gravity does luot #ie coupling of the cosmological
constant thanks to the general propeltyl(3.8), which is gilda difference from general relativity.
Consequently there is no demanding reason to rely on theaaithfine-tuning to explain the tiny
value of current dark energy. We will also discuss later vadaak energy is from the emergent gravity
picture following the observation in Ref$. [13, 14] 21].

The multiverse picture arises in inflationary cosmology é&)follows [3,4]. In theories of in-
flationary model, even though false vacua are decaying ateeaf exponential expansion is always
much faster than the rate of exponential decay. Once inflaiarts, the total volume of the false
vacuum continues to grow exponentially with time. The claawtflation is also eternal, in which
large quantum fluctuations during inflation can significamticrease the value of the energy den-
sity in some parts of the universe. These regions expand i@adey rate than their parent domains,
and quantum fluctuations inside them lead to production @f infationary domains which expand
even faster. Jumps of the inflaton field due to quantum fluicngtiead to a process of eternal self-
production of inflationary universe. In most inflationary dets, once inflation happens, it produces
not just one universe, but an infinite number of universes.

Now an important question is whether the emergent spacegtdichgre can also lead to the eternal
inflation. The answer is certainly no. The reason is the falhg. We showed that the inflation-
ary vacuum[(3.15) arises as a solution of the (BFSS-likeyimatodel [3.1). In order to define the
matrix model[(3.11), however, we have not introduced anyefi@e structure. The vacuufn (3115) cor-
responds to the creation of spacetime unlike the traditiofiationary models that describe just the
exponential expansion of a preexisting spacetime. Mometweinflationary vacuuni (3.15) describes
a dynamical process of the Planck energy condensate reb[mius the emergence of spacetime. In
general relativity the Minkowski spacetime with metsig, = 7,,, must be a completely empty space
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because the Einstein equati¢n {1.1) requifgs = 0. However, in emergent gravity, it is not an
empty space but full of the Planck energy as Eq. (3.10) gleadicates. An important point is that
the Planck energy condensate results in a highly cohereniuva called the NC space. As the NC
phase space in guantum mechanics necessarily brings disotteisenberg’s uncertainty relation,
AxAp > % the NC spacé (2.4) also leads to the spacetime uncertaiatjon. Therefore any further
accumulation of energy over the vacudm (3.15) must be sutmebe exclusion principle known as
the UV/IR mixing [45]. Consequently, it is not possible tather accumulate the Planck energy den-
sity dp ~ M3 over the inflationary vacuuri (3115). This means that it isosgible to superpose a new
inflating subregion over the inflationary vacuum. In otherag the cosmic inflation triggered by the
Planck energy condensate into vacuum must be a single é&&ntlh the end we have a beautiful
picture: The NC spacetime is necessary for the emergengeacéme and the exclusion principle
of NC spacetime guarantees the stability of spacetime. melasion, the emergent spacetime does
not allow the pocket universes appearing in the eternattiofia

The above argument suggests an intriguing picture for thie el@ergy too. Suppose that the in-
flation ended. This means that the inflationary vacudum [3rilBpnequilibrium makes a (first-order)
phase transition to the vacuum(2.11) in equilibrium in savag. We do not know how to do it. We
will discuss a possible scenario in Part Il. Since the vac(@uil) satisfies the NC commutation rela-
tion, any local fluctuations over the vacuum (2.11) must Bkssubject to the spacetime uncertainty
relation or UV/IR mixing. This implies that any UV fluctuatie are paired with corresponding IR
fluctuations. For example, the most typical UV fluctuatiores@aracterized by the Planck mags
and these will be paired with the most typical IR fluctuatiovith the largest possible wavelength
denoted byL, = Mgl. This means that these UV/IR fluctuations are extended upetedalel 4
which may be identified with the current size of cosmic haniz8y a simple dimensional analysis
one can estimate the energy density of these fluctuations:

2 2 1

op ~ MEM? = VR (4.2)
It may be emphasized that, if the microscopic spacetime istN€h the UV/IR mixing is inevitable
and the extended (nonlocal) energy [4.2) is necessarilyced [21]. If we identifyL; with the
cosmic horizon of our observable univerge; ~ 1.3 x 10% m, 6p is roughly equal to the current
dark energy, i.e.,

6p= Mpp ~ (1073%eV)*. (4.3)
Thus the emergent gravity predicts the existence of darkggnehose scale is characterized by the
size of our visible universe. Since the characteristicesobéntire spacetime is set by the Planck mass
M p only, this implies that our observable universe is one dguatah out of much larger unobservable
patches. According to the cosmic uroborius [2], we estintaedtal number of causal patches in our
Universe to bé\ip/ My = M3 /M3, ~ 10%.

The gauge/gravity duality such as the AdS/CFT correspateléias clarified how a higher di-

mensional gravity can emerge from a lower dimensional gahgery. A mysterious point is that
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the emergence of gravity requires the emergence of spazébion If spacetime is emergent, every-
thing supported on the spacetime should be emergent too foternal consistency of the theory. In
particular, matters cannot exist without spacetime and thust be emergent together with the space-
time. Eventually, the background-independent theory bamdke no distinction between geometry
and matter[[15]. This is the reason why the emergent spaeqtioture cannot coexist peacefully
with the KK paradigm. As we pointed out before, the stringdiscape has been derived from the KK
compactification of string theory. Therefore, if the emeatggpacetime picture is correct, we need to
carefully reexamine the string landscape (C) from thatjpmiimiew. The emergent spacetime picture
may endow the string landscape with a completely new ing¢apion since reversing the arrow in
(4.1) accompanies a radical change of physics. For exampleometry is now derived from a gauge
theory while previously the gauge theory was derived froengbometry.

The KK compactification of string theory advocates that then8ard Model in four dimensions
is determined by a six-dimensional internal geometry, ed-alabi-Yau manifold. Thus different
internal geometries mean different physical laws in founelsions, so different universes governed
by the different Standard Models. However, the emergeniityreeverses the arrow ifi (4.1). Rather
internal geometries are determined by microscopic cordignms of gauge fields and matter fields in
four dimensions. As a consequence, different internal ggoes mean different microscopic con-
figurations of four-dimensional particles and nonperttivieeobjects such as solitons and instantons.
This picture may be more strengthened by the fact [39] th&hTarau manifolds are emergent from
six-dimensional NQJ (1) instantons and thus the origin of Calabi-Yau manifolds tsialty a gauge
theory. If the microscopic configuration changes by inteoas, then the corresponding change of
the internal geometry will also be induced by the interawtiolf so, the huge variety of internal ge-
ometries may correspond to the ensemble of microscopicgumations in four dimensions and>®
would be the Avogadro number for the microscopic ensembdéeaRthat NC geometry begins from
the rough correspondence—contravariant functor—betweeoategory of topological spaces and the
category of commutative algebras o@&and then changes the commutative algebras by NC algebras
to define corresponding NC spaces. In this correspondeiifaredt internal geometries correspond
to choosing different NC algebras. We have observed thdatter allows a background-independent
formulation which does not require a background geometdy/atarge amount (possibly infinitely
many) of spacetime geometries can be described by gendamuaions of a vacuum algebra in a
master theory. Hence a background-independent quanturitygsaems to bring a new perspective
that cripples all the rationales to introduce the multiedrgpothesis.
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1 Summary of Part |

In Part | [1], we have shown that the emergent gravity fromaaonmutative (NCJ/(1) gauge theory

is basically the largeV duality and it can be applied to cosmic inflation. It has beaseld on the
observation that thé&/ — oo limit of U(N) Yang-Mills theory opens a new phase of the so-called
NC Coulomb branch given by

[¢a7 ¢b]|vac - _'L.Bab = <¢a>vac = Pa = Babyb (11)
whereB,, = (0!),, and the vacuum moduji* satisfy the Moyal-Heisenberg algebra
[y®, "] = 0, a,b=1,---,2n. (1.2)

A fundamental fact is that the NC spafe {1.2) denoted®pyis a consistent vacuum solution of a
large N gauge theory in the Coulomb branch and more general sotugiengenerated by all possible
(on-shell) deformations of the vacuum (1.1). To be spedsiippose that the deformations take the
form

D, = QL—iA\u(l‘,y), Pa :pa+ga(x,y). (1.3)

The adjoint scalar fields in Ed._(1.3) now obey the deformgélala given by
(G0 0] = —i(Ba — Fup) € A3, (1.4)

where
ﬁab = 8ale\b - 81)21\11 - Z-[f?{aa A\b] (15)

with the definitiond, = ad,, = —i[p., -]. Plugging the fluctuations in Ed.(1.3) into ttielimensional
U(N — oo) Yang-Mills theory, we get a remarkable identity [2, 3] given

1 1 1 1
= —— [ d%Tr(=F,F*" + =D, b,D"b, — =y 2
1 D 1 ~ 9
= — Y- (Fup— B 1.
GQYM/CZ 4( AB AB)", (1.6)

whereA ,(z,y) = (A,, A,)(x,y) areD = (d + 2n)-dimensional NQJ(1) gauge fields. We empha-
size that the NC Coulomb brandh (11.1) is crucial to realizeginergent gravity from matrix models
or large N gauge theories. We summarize the emergent gravity pictane & largeN gauge theory
with the flowchart depicted in Fid] 1.

In order to complete the larg® duality in Fig.[1, it is necessary to know how to map the NC
U(1) gauge theory to the Einstein gravity. Although the answerdieeady been known thanks to
the works [3/ 4| 5], we will give here a self-contained exgiosito clarify the issues regarding to
physical cosmology addressed in Part I. We observed in Haftthat the cosmic inflation arises
as a time-dependent solution of matrix quantum mechanic@N)] i.e. thed = 1 case in Eq.

1



U(N — oo) Yang-Mills gauge theory ofR?—1!

NC Coulomb branch \ij\f duality
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Differential operators as quantized frame bunqle
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Figure 1: Flowchart for largéV duality

(@1.8), without introducing any inflaton field as well asashhocinflation potential. In particular, the
emergent spacetime picture admits a background-indepéfatenulation of the cosmic inflation as
the dynamical generation of spacetime. We have shown taénte-dependent vacuum configuration
given by

(Ga(t))vae = Palt) = €Fpa,  (Ao(t,1))vac = Ao(t, y), (1.7)

satisfies the equations of motion for the MQM, whernes related to the inflationary Hubble constant

H=(n-1)xand
. L dy(o
%@m=§Ad02§%wﬂ (1.8)

is an open Wilson lin€ [6] along a path parameterized by theecyf (o) = y5 + (“(o). The inflating
background[(1]7) determines the time-dependent metrandiy

ds? = —dt? + e*Hidy, - dy,, (1.9)

wherey; = e y*. We emphasize that the temporal gauge field (1.8) is cruzkatisfy the equations
of motion and generates a conformal vector field for the egptal behavior in Eq.[{119) [1]. Note
that the metric[(119) is conformally flat, i.e., the corresgimg Weyl tensors identically vanish and
so describes a homogeneous and isotropic inflationary rga@kaown as the Friedmann-Robertson-
Walker metric in physical cosmology.

We can further consider standard cosmological perturbatity including arbitrary fluctuations
around the inflationary background(IL.7). Such a generaitiofiary universe ifi2n+1)-dimensional



Lorentzian spacetime can be realized by considering a diependent NC algebra given by

- 9~ - ot N
tAé = {¢0(t7 y) - 'La + AO(tv y)v ¢a(t7 y) =e? (pa + Aa(tv y)) } (110)
The modulé®! of derivations of the NC algebfa} is given by
~ A~ o~ -~ 8 = ki 8
tryl _ _ N el ~
0! = {Va)) = (o, T)OITo(t) = 5 +adz,. Talt) = ¢ (W +adg )} (1D

where the adjoint operations are defined by the derivatio#}offhenx = 0. In the classical limit of
the module[(1.11), we get a general inflationary universeriesd by

ds® = —dt* + > (1 + 6X) vpvl(dy) — A" (dy; — A°)), (1.12)

wherev? := vi(t,y), oA = dA(t,y) and A’ = §al(t,y)dt. If all fluctuations are turned off for
which v = 62 andé\ = A’ = 0, we recover the inflation metriE(1.9).

Since the cosmic inflation is simply the dynamical generatibspacetime according to the emer-
gent spacetime picture, a particularly important issue istderstand the origin of space and time in
the context of physical cosmology. The emergence of spaedaisvely easy to understand compared
to the notorious issue on the emergent time. In order to git@s@mergence of time in quantum
gravity, we will get a valuable lesson by examining how timedtievolution of a dynamical system is
defined in quantum mechanics. We have a great virtue by théhfaicthe mathematical structure of
NC spacetime is basically equivalent to the NC phase spagpagintum mechanics. Motivated by the
close analogy with quantum mechanics, we argue that theismolof spacetime structure supported
on a vacuum solution must be understood as a dynamical syléned by largeV matrices. We
show that the resulting dynamical system can be describekdeoyIQM corresponding to thé = 1
case in Eq.[(1]6).

The Part Il is organized as follows. In Sec. 2, we compacthexe the background-independent
formulation of emergent gravity and emergent spacetimerims of matrix models [3,/4] 5] 7] [8, 9].
See also[[10, 11, 12, 13]. The crux of the underlying argurieetite realization that the NC space
R2" arises as a solution of a largé matrix model in the Coulomb branch and this vacuum admits
a separable Hilbert space as quantum mechanics [3]. Geswdudibns are generated by considering
arbitrary deformations of a primitive vacuum such®$ obeying the Heisenberg algebra. These
deformations can be arranged into a one-parameter famihce&ny automorphism of the matrix
algebra is inner, this means that they are described by tierglenner automorphism of an underlying
NC algebrad,. Thus these deformations are intrinsically dynamical. {@meergent) time is defined
through the Hamiltonian description of the dynamical sysli&ke quantum mechanics. The emergent
geometry is then simply derived from the nontrivial innetamorphism of the NC algebrd,, in
which the NC nature is crucial to realize the emergent gyd@it/8]. An important point is that the
matrix model does not presuppose any spacetime backgraoundhich physical processes develop.
Rather the matrix model provides a mechanism of spacetimerggon such that every spacetime
structure including the flat spacetime arises as a solufitimeaheory.
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It is important to keep in mind that the inflationary scenasi@t best an incomplete picture of
the very early universe since it is known to be past inconep|&4]. This implies that we need to
go beyond the inflationary cosmology if we really want to uistkend the very earliest moments of
the universe. In Sec. 3, we observe that the vacuum configariatthe NC Coulomb branch is the
Planck energy condensate responsible for the generatgpacétime and results in an extremely large
spacetime. Because the Planck energy condensate intomanust be a dynamical process, we ex-
plore the dynamical mechanism for the instantaneous ca@adiem of vacuum energy to enormously
spread out spacetime. We show that the cosmic inflation asantigal system can be described by a
locally conformal (co)symplectic manifold (see AppendiXok the definition) which is a generalized
phase space of a time-dependent Hamiltonian system. Siageheralized symplectic manifold ad-
mits a rich variety of vector fields, in particular, Lioudllvector fields that generate an exponential
phase space expansion, the inflation can be described byg-ttedled conformal Hamiltonian system
[15,[16] without introducing any inflaton field as well asashhocinflation potential. It is remarkable
to see that an inflationary vacuum describing the dynamioargence of spacetime simply arises as
a solution of time-dependent matrix model as far as a nohtengporal gauge field is introduced.

In Sec. 4, we emphasize that NC spacetime necessarily ismginergent spacetime if spacetime
at microscopic scales should be viewed as NC. Although sipaeet the microscopic scale is in-
trinsically NC, we understand the NC spacetime through trentjization of a symplectic manifold.
Since the most natural object to probe the symplectic gegrnsea string rather than a particle [3] or
a pseudoholomorphic curve which is a stringy generalipadioa geodesic worldline in Riemannian
geometry[[17], we need a mathematically precise framewarkié€scribing strings in a background-
independent way to make sense of the emergent spacetimasatopVe show that the pseudoholo-
morphic curve can be lifted to a NC spacetime by the matrirgtheory [18| 19]. We argue that any
NC spactime may be viewed as a second-quantized stringddsdabkground-independent formula-
tion of quantum gravity, which is still elusive in the usu#irsg theory. Hence we need to read old
literatures with the new perspective.

In Sec. 5, we discuss a speculative mechanism for a gracefiiian inflation by some nonlinear
damping through interactions between the inflating baakggaand ubiquitous local fluctuations. We
also discuss possible approaches to understand our relal R that is unfortunately beyond our
current approach becauRé' does not belong to the class of (almost) symplectic marsfold

In the first appendix, we briefly review the mathematical fdation of locally conformal cosym-
plectic (LCC) manifolds that correspond to a natural phgses describing the cosmic inflation of
our universe. In the second appendix, we give a brief exiposif harmonic oscillator with time-
dependent mass to illustrate how a nonconservative dym@hsystem with friction can be formulated
by a time-dependent Hamiltonian system which may be usefuhtierstand the cosmic inflation as
a dynamical system



2 Emergent spacetime from matrix model

Let us start with a zero-dimensional matrix model with a buotN x N Hermitian matrices{¢, €
Anla=1,---,2n}, whose action is given by [20]

2n
S=-1 > Telon il 1)

a,b=1

In particular, we are interested in the matrix algelra in the limit N — oco. We require that the
matrix algebrad is associative, from which we get the Jacobi identity

[P0, (05, @] + [P0, [Dc; Pa]l + [@c, [Pa; P]] = 0. (2.2)

We also assume the action principle, from which we yield tngagions of motion:

2n

> 6. [dar B3] = 0. (2.3)

b=1

We emphasize that we have not introduced any spacetimds&uo define the actioh (2.1). Itis
enough to suppose the matrix algebta consisted of a bunch of matrices which are subject to a few

relationships given by Eqd. (2.2) and (2.3).
First suppose that the vacuum configurationdgf is given by

<¢a>vae =DPa € AN7 (24)

which must be a solution of E(ESE(JZ.Z) and {2.3). An obviodatsm in the limit N — oo is given
by the Moyal-Heisenberg algebra

[pavpb] - _'L.Babv (25)

where(By,) = —Lp*(1, ®i0?) is a2n x 2n constant symplectic matrix anids is a typical length
scale set by the vacuum. A general solution will be genellayexbnsidering all possible deformations
of the Moyal-Heisenberg algebfa(R.5). It is assumed to tiakdorm

Ga = Pa + Aq € An, (2.6)

obeying the deformed algebra given by

[(bm (bb] - _7;<Bab - Fab)a (27)
The conventional choice of vacuum in Coulomb branch is giogn[¢a, ¢p]lvac = 0 and SO (dg)vac =
diag((aa)l, (ag)2, - ,(aa)N). However, it turns out (see Section II1.C in| [5]) that, in erdo describe a classical

geometry from a background-independent theory, it is resggsto have a nontrivial vacuum defined by a coherent
condensation obeying the algebfal2.5). For this reasonyiwehoose the Moyal-Heisenberg vacuum instead of the
conventional vacuum. A similar reasoning was also advadatéootnote 2 in Ref.[[2].
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where
F\ab = 8ale\b - 81)21\11 - 'L.[A\aa A\b] € AN (28)

with the definitiond, = ad,, = —i[p,, -]. For the general matrix, € Ay to be a solution of Egs.
(22) and [ZB), the set of matricds, € Ay, called the field strengths of NG (1) gauge fields
A, € Ay, must obey the following equations

ﬁa}/?\bc—i_ﬁb}/?\ca—i_l/jcﬁab - 07 (29)
2n
DyFy =0, (2.10)
b=1
where
Danc = ad¢anc == _i[¢a7 Fbc] = _[¢a7 [¢b7 ¢c“ (211)
The algebrady admits a large amount of inner automorphism denoteﬁnbYAN) Note that
any automorphism of the matrix algehrhy is inner. Suppose that’y = {¢la = 1,--- ,m}is
an another matrix algebra composedmblements ofV x N Hermltlan matrices. We will identify
two matrix algebras, i.e Ay = |f m = 2n and N = N and there exists a unitary matrix

U, € Inn(Ay) such thay, = U,¢,U; i for eacha = 1,--- ,2n. Itis important to recall that the NC
algebraAy generated by the vacuum operatpgsadmlts an infinite-dimensional separable Hilbert
space

H={n)n=1,---,N — oo}, (2.12)

that is the Fock space of the Moyal-Heisenberg algdbra.(A8)s well-known from quantum me-
chanics|[21], there is a one-to-one correspondence bettheevperators iflom (V') and the set of

N x N matrices ovefC whereV is an N-dimensional complex vector space. In our cdse= H

is a Hilbert space and/ = dim(?) — oo. Thus the matrix algebra y can be realized as a Hilbert
space representation of the N&lgebra

Ay = {(Ea(y) € Hom(H)|a=1,---,2n}, (2.13)

which is generated by the set of coordinate generators if(E8). The commutatof (1.2) is related
to the Moyal-Heisenberg algebfa (2.5) 8 = (B')* andp, = B,y°. To be specific, given a
Hermitian operaton,(y) € Ay, we have a matrix representationfhas follows:

o0

= > [m@lda®)m)(ml = D (@a)um|n)(ml (2.14)
n,m=1 n,m=1
using the completeness &f, i.e. > - |n)(n| = 1. The unitary representation of the operator
algebra4, can thus be understood as a linear transformation actinghaki-dimensional Hilbert
spaceHt y:
.A@ . HN — HN. (215)
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That is, we have the identification
.AN = End(HN) = .Ag. (216)

As a result, the inner automorphidmmn (A ) of the matrix algebrady is translated into that of
the NCx-algebraA,, denoted byinn(.A4y). Its infinitesimal generators consist of an inner derivatio
D defined by the map [3/4] 5| 8]

./49 —9:0+— ad@ = —z’[O, ']* (217)

for any operato® € A,. Using the Jacobi identity of the NGalgebraA,, one can easily verify the
Lie algebra homomorphism:
[ad(/)l, ad(92] = —’iad[ol’oQ}* (218)

foranyOy, O, € Ay. In particular, we are interested in the set of derivaticgtednined by NC gauge

fields in Eq. [Z.1B):
{‘7 = ad(ga S ©|§/b\a(y) = Pa + A\a(y) S ./49, a=1,--- ,Qn}. (219)

In a large-distance limit, i.€f| — 0, one can expand the NC vector fielﬁ§using the explicit form
of the Moyalx-product. The result takes the fatm

~ 0 0
V, = ayu Z; Vb aym g € D. (2.20)
Thus the NC vector fields i® generates an infinite tower of the so-called polyvector $i¢BJ. Note
that the leading term gives rise to the ordinary vector fighadsg will be identified with a frame basis
associated to the tangent bundid1 of an emergent manifold1. Since the leading term in_(Z.20)
already generates the gravitational fields of spin 2, thbdrigrder terms correspond to higher-spin
fields with spin> 3.

Since we have started with a largé matrix model, it is natural to expect that the IKKT-type
matrix model[(2.11) is dual to a higher-dimensional gravitystring theory according to the largé
duality or gauge/gravity duality [22]. The emergent gravi realized via the gauge-gravity duality
following thed = 0 case of the flowchart in Fi¢l] 11[3]:

.AN — .A@ = 9. (2.21)

The gauge theory side of the duality is described by the sktrgé NV matrices that consists of an
associative, but NC, algebrédy. By choosing a proper vacuum such as K£q.](2.4), a matrikyns
regarded as a linear representation of an operator actiagseparable Hilbert spaéé. That is, the

2In Part 11, we will use the Greek letters to denote local iediof NC coordinates unlike the Part | indicating commu-
tative ones as in Eq._(1.6).



matrix algebrady is realized as a representation of an operator algdbran the Hilbert spacé,
i.e., Ay = End(H). Consequently the algebrdy is isomorphically mapped to the NGalgebra
Ay, as Eqg. [(2.14) has clearly illustrated. The gravity sidehef dluality is defined by associating
the derivation® of the algebrad, with a quantized frame bundl%(/\/l) of an emergent spacetime
manifold M. The noncommutativity of an underlying algebra is thus @iuo realize the emergent
gravity. As we discussed in footndik 1, this is the reasonwiyeed the Moyal-Heisenberg vacuum
(2.3) instead of the conventional Coulomb branch vacuumifje choose the conventional vacuum,
we will fail to realize the isomorphism betweety, and.Ay. After all, in order to describe a quantum
geometry mathematically, we need to find a right NC alggbra.

It is important to perceive that the realization of emerggumetry through the duality chain in
Eq. (2.21) is intrinsically local. Therefore it is necess&r consider patching or gluing together
the local constructions to form a set of global quantitiegr this purpose, the concept of sheaf
may be essential because it makes it possible to recongfialzal data starting from open sets of
locally defined date [23]. Let us explain this feature brisflyce its extensive exposition was already
given in Ref. [3]. Its characteristic feature becomes tpansnt when the commutative limit, i.e.
0] — 0, is taken into account. In this limit, the N&algebra.4, reduces to a Poisson algebra
PO = (C=(U;),{—, —}y) defined on a local patch; C M in an open covering/ = |J,_; Ui
The Poisson algebrd® arises as follows. Let. — M be a line bundle ovel/ whose connection
is denoted by4. We assume that the curvaturéof the line bundleL is anondegenerateclosed
two-form. Therefore we identify the curvature two-fotfh = d.A with a symplectic structure of
M. On an open neighborhodd c M, it is possible to represe®® = B + F®) where F() =
dA® and B is the constant symplectic two-form already introduced ip 2.5). Consider a chart
(Ui, ;) whereg;y € Diff(U;) is a local trivialization of the line bundlé over the open subset
U; obeyingsy, (F*)) = B. Such a local chart always exists owing to the Darboux theaethe
Moser lemma in symplectic geometfy [24] and the local cauatt chart obeying, (F*) = Bis
called Darboux coordinates. Thus the line bunflles> M corresponds to a dynamical symplectic
manifold (M, F) where 7 = B + dA. The dynamical system is locally described by the Poisson
algebrdB®®) = (C*(U;), {—, —}4) in which the vector spac@>(U;) is formed by the set of Darboux
transformationsy;) € Diff(U;) equipped with the Poisson bracket defined by the Poissortbive
6 =B~ € I(A*TM).

Consider a collection of local charts to make an afld$, ¢.;))} on M = J,.; U; and complete
the atlas by gluing these charts on their overlap. To be geesuppose that/;, ¢;)) and(U;, ¢(;))
are two coordinate charts add? = dA® and FU) = dAU) are local curvature two-forms ol;

3The explicit realization of the duality chaibh (2121) depsmah the data of the matrix algehrby. In particular, the
vacuum of the algebrd 5 depends on the rank and the number of linearly independent matrices. Given e of A,
the vacuum will be specified by choosing a most primitive amthat more general solutions are generated by deforming
the primitive vacuum as we already implemented in [Eq.] (ZF8).instance, for our particular choice given y— oo
andevennumber of matrices, the Moyal-Heisenberg algebrd (2.%dsost primitive vacuum for guantum gravity. This
statement may be regarded as a quantum version of the Dattianem in symplectic geometry.
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andU;, respectively. We choose the coordinate mapse Diff(U;) and¢(;, € Diff(U;) such that
@7 (B + F") = Bandgf, (B + FUY) = B. On an intersectioty; N Uj, the local datd A, ¢;))
and(AY), ¢(;)) on Darboux chartslU;, ¢(;)) and(Uj, ¢(;)), respectively, are patched or glued together
by [25]

AD = AD 4 g\ (2.22)
Pi) = D) © D) (2.23)

whereg¢;; € Diff(U; N U;) is a symplectomorphism ofi; N U; generated by a Himiltonian vector
field X, satisfyingu(X,u«)B + d\U) = 0. We sometimes denote the interior produgtoy +(X)
for a notational convenience. Similarly, we can glue th@l®oisson algebrag® to form a globally
defined Poisson algebf = |J,, B). The global vector field$, = V/(y)52: € [(TM), a =
1,---,2n, in Eq. (2.20) can be obtained by applying a similar glotsien to the derivatiorD,
which form a linearly independent basis of the tangent baifid\1 of a 2n-dimensional emergent
manifold M. As a consequence, the set of global vector fidldd1) = {V,|la = 1,--- ,2n} results
from the globally defined Poisson algei3gd3].

The vector fieldd/, € X(M) are related to an orthonormal frame, the so-called viethgine
['(T M), in general relativity by the relation

V,=\E,, a=1,---,2n. (2.24)

The conformal facton € C*>°(M) is determined by imposing the condition that the vector §iéld
preserve a volume form
v=Nv" A A0 (2.25)

wherev® = vi(y)dy" € I'(T*M) are coframes dual to;, i.e., (v*, V) = d;. This means that the
vector fieldsV, obey the conditions

Lyv= (V-Va+(2—2n)Valn)\)l/:O, Va=1,---,2n, (2.26)

whereL y = 1xd + dvx is the Lie derivative with respect to a vector fietd Note that a symplectic
manifold always admits such volume-preserving vector ie{(8ee Appendix B in [3].) Together with
the volume-preserving condition (2]26), the relation 4 .@ompletely determinesZ-dimensional
Riemannian manifold\f whose metric is given by [3] 4] 5]

ds® = G (v)da" @ dr’ = e* ®e”
= Nt @t = Ny (y)dy" @ dy”, (2.27)

wheree® = e (r)dz" = M\v?* € I'(T*M) are orthonormal one-forms aiv. After all, the 2n-
dimensional Riemannian manifolit is emergent from the commutative limit of polyvector fields

V, =V, + O(6%) € D derived from NCU(1) gauge fields.
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So far we have discussed the emergence of spaces only. Hpwmvtheory of relativity dictates
that space and time must be coalesced into the form of Minkiogyggcetime in a locally inertial
frame. Hence, if general relativity is realized from a N@lgebraAy, it is necessary to put space
and time on an equal footing in the NalgebraAy. If space is emergent, so should time. Thus, an
important problem is how to realize the emergence of “tifgeiantum mechanics offers us a valuable
lesson that the definition of (particle) time is strictly o@ated with the problem of dynamics. In
guantum mechanics, the time evolution of a dynamical syssemefined as an inner automorphism
of NC algebraA, generated by the NC phase space

[2", 27] = 0, (2%, pj] = ihé;, i,j=1,---,n. (2.28)

The time evolution for an observabfec A;, is simply an inner derivation ofl; given by
df i
dt h[
A remarkable picture, as observed by Feynman [26], Souaiadl Sternberd [27], is that the physical
forces such as the electromagnetic, weak and strong foraeshe realized as the deformations of
an underlying vacuum algebra such as Eq. (2.28). For exanmgenost general deformation of the
Heisenberg algebra (2.128) within taesociativaalgebraA;, is given by

, fl. (2.29)

.I'i — Ilfi, Di — Di + Ai(l',t), H— H+ Ao(x,t), (230)

where (Ag, A;)(z,t) must be electromagnetic gauge fields. Then the time evolwifca particle
system under a time-dependent external force is given by

df _of |
Pl vins [H fl- (2.31)
Note that the construction of the NC algebda, or A, bears a close parallel to quantum me-
chanics. The former is based on the NC space (1.2) while tter la based on the NC phase space
(2.28). The NCU (1) gauge fields in Eq.L(216) act as deformations of the vacuuebaig2.5) in
the matrix algebrad y, similarly to Eq. (2.3D) in the quantum algeh#g. Therefore we can apply
the same philosophy to the NC algebta or Ay to define a dynamical system based on the Moyal-
Heisenberg algebra (2.5). In other words, we can consideegarameter family of deformations of
zero-dimensional matrices which is parameterized by tbhedinatet. Then the one-parameter family
of deformations characterized by (2.6) and|(2.7) can berdegikas the time evolution of a dynamical
system. For this purpose, we extend the NC algetyr#o A) = Ay(C=(R)) = C=(R) ® Ay whose
generic element takes the form
Flt,y) € Ab. (2.32)

The matrix representation (Z]14) is then replaced by

Z ) (n] £ (¢, y)|m) (m Z Fom(£)|12) (m (2.33)

n,m=1 n,m=1
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where f,,,(t) == [f(t)]nm are elements of a matrik(t) in Ay = Ay (C*(R)) = C*(R) ® Ay
as a representation of the observable (2.32) on the Hilpadel(2.1R). As the Heisenberg equation

~

(2.31) in quantum mechanics suggests, the evolution exufiii an observablé(¢,y) € A} in the
Heisenberg picture is defined by

~ ~

dfg; v) _ 6‘f(8tt, y) i[Ao(t, v), Fit, y)]. = Dof(t, y) (2.34)

where we denoted the local Hamiltonian density by

H(t,y) = —Ao(ty) € 4. (2.35)
The definition[[2.34) is intended for the following reasorot&lthat
—ilda, f(8)] = 0uf(t,y) — ilAu(t. ), F(t,9)]. = Duf(t,y), (2.36)

where the representation (2133) has been employed. Theoamnsee that the inner automorphism
Inn(Ay) of A, can be lifted to the automorphism df; given by

N ar TP
Aot 0« PO L G At D0y, 237)
~ AN A_l A~ -~ A~
A = 0 T T« A Ty, 239)

Where(?(t, y) = M) with X(t, y) € A}. Itis obvious that the above automorphism is nothing but

the gauge transformation for NIZ(1) gauge fields if2n + 1)-dimensions[28].

Our leitmotif is that a consistent theory of quantum grawhpuld be background-independent,
so that it should not presuppose any spacetime backgrounthich fundamental processes develop.
Hence the background-independent theory must provide aanéamn of spacetime generation such
that every spacetime structure including the flat spacetinses as a solution of the theory itself.
The most natural candidate for such a background-indepideory is a zero-dimensional matrix
model such as Eq.[(2.1) because it is not necessary to ashenpeidor existence of spacetime to
define the theory. Hence a background spacetime also assesacuum solution of an underlying
theory. We emphasize again that the NC nature of the vaculutiag e.g. Eq.[(255), is essential to
realize the largeV duality via the duality chainf(2.21). A profound feature hst the background-
independent theory is intrinsically dynamical becausesfieee of all possible solutions is extremely
large, typically infinite-dimensional and generic defotimas of a primitive vacuum such as Eq.
(2.3) will span a large subspace, at least, in the Moritavedemt class of NC algebras![3]. We
argued that the dynamics under the Moyal-Heisenberg vad@uihis described by the NC algebra
Al = Ay (C*(R)) = C*(R)®@.Ay. One may regardi}, as a one-parameter family of deformations
of the algebrady. In this case we can generalize the duality chain (2.21) &ize the “time-
dependent” gauge/gravity duality as follows:

Ay = A, = DN (2.39)
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It is well-known [29] that in the case od}, or A}, the module of its derivations can be written as a
direct sum of the submodules of horizontal and inner deonat

D' = Hor(A}) @ D(AL) = Hor(Ap) © D(Ap) (2.40)

where horizontal derivation is a lifting of smooth vectoddi®onR onto A}, or A} and is locally
generated by a vector field

g(t,y)% € Hor(Aj}). (2.41)

The inner derivatior®(.A}) is defined by lifting the NC vector fields in EqQ[(2]119) ont and
generated by

{Va(t) = ad;, € D(A))|Ga(t,y) = pa + Aalt,y) € A}, a=1,--- ,2n} (2.42)
and 5
{Volt) = = = adg, € DAPIA(t.y) € Ap}. (2.43)

It might be remarked that the definition of the time-like wedield %(t) is motivated by the quantum

Hamilton’s equation(2.34), i.e.,
d

Vo(t) := o

Consequently, the module of the derivations of the NC almelris given by

(2.44)

Dl — {VA( ) (%7 )( )WEJ( ) %—l—adgo, ‘//\;L(t) = ad$a’ A=0,1,--- 72n}. (2_45)

In the commutative limit|d| — 0, the time-dependent polyvector fielﬁ’g(t) in ©! will take the
following form

o9 p 9 fi - php 9 9
Volt) = 5 + A5 (ty) 5o+ pZZA ) g Gy (2.46)
~ > 0 0
Rt phe (¢ : 2.47
Valt) = VI (ty) 5 Z W g Gy (2.47)
Let us truncate the above polyvector fields to ordinary vefoetds given by
X(M) = {VA =Vt y)i\A M=0,1,--- Qn} (2.48)
A ) 3XM ) 5 Ly )

whereV = §% and X" = (¢, y*) are local coordinates on an emergkntentzianmanifold M of
(2n + 1)-dimensions. The orthonormal vielbeins 61 are then obtained by the prescription [1]

(Vo, Va) = (Eo, AE,) € T(TM) (2.49)
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oronT*M
(€2, e") = (v°, \w®) € T(T*M). (2.50)

The conformal facton € C*°(M) is similarly determined by the volume-preserving conditio
Ly,vy=(V-Vai+(2-20)Valn)y, =0, VA=0,1,---,2n. (2.51)

The above condition explicitly reads as

dp
L 0upA) =0 & BV =0, (2.52)
wherep = A\detv? and
vi=dt Av = Ndt ANvt A AV (2.53)

is a(2n + 1)-dimensional volume form oM. If the structure equation of vector fieldéls € I'(TM)
is defined by
[Va, V] = —ga8°Ve, (2.54)

the volume-preserving condition (2151) can equivalendyitten as[[5]
gpa” = Valn \%. (2.55)

In the end, the Lorentzian metric on(an + 1)-dimensional spacetime manifoli1 is given by
[3,14,[5]

ds* = Gun(X)dXM @ dXN =nupe @ P
= '@+ A\ vt = —dt* + )\Zval‘f(dy” — AM)(dy” — A") (2.56)

whereA* := Al(t,y)dt.

It should be noted that the time evolutidn (2.44) for a geln@ree-dependent system is not com-
pletely generated by an inner automorphism siHoe(.A}) is not an inner but outer derivation. This
happens since the time varialilés a bach. Thus one may extend the phase space by introducing a
conjugate variablé! of ¢ so that the extended phase space becomes a symplectic imhamifien it
is well-known [24] that the time evolution of a time-depentlsystem can be defined by the inner
automorphism of the extended phase space whose extendswbRbivector is given by

o A O
19_9+§/\8—H (2.57)
where
1.9 )
— g _—_
0 =0 3 A 5 (2.58)

is the original Poisson bivector related to the NC spéacé) (142 a result, one can seg [5] that the
temporal vector field(2.44) is realized as a generalized iHiamian vector field defined by

0
Vo =Xy = —U(dH) = 5 T X (2.59)
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where X = 0(dAy) is the original Hamiltonian vector field which is a classipalrt of the inner
derivationad ; = Xy + O(6%) € D(Ay). But we have to pay the price for the extension of phase
space. In the extended phase space, the timenow promoted to a dynamical variable whereas
it was simply an affine parameter describing a Hamiltoniaw flo the old phase space. Then the
extended Poisson structute (4.57) raises a serious isseth@vtthe time variable for a general time-
dependent system might also be quantized; in other wordg, @aiso becomes an operator obeying
the commutation relatioft, H] = —i. We want to be modest not to address this issue since it is a
challenging open problem even in quantum mechanics.

We figure out the time issue in a less ambitious way. Suppagé i, B = 6-1) is the original
symplectic manifold responsible for the emergence of spab®w we consider a contact manifold
(R x M, B) whereB = 7B is defined by the projection, : R x M — M, m(t,z) = = [24].

We define the concept of (space)time in emergent gravityutfitrahe contact manifoldR x M, E)

in the sense that the derivations in Ef._(2.45) can be olutdigequantizing the contact manifold
(R x M, E). Indeed it is shown in Appendix A that the time-like vectotdi& in Eq. (2.59) arises
as a Hamiltonian vector field of a cosymplectic manifold wdparticular class is a contact manifold.
Note that the emergent geometry described by the mEtri6){2eSpects the (local) Lorentz symmetry.
If one looks at the metri¢ (2.56), one can see that the Loi@mtnanifold M becomes the Minkowski
spacetime on a local Darboux chart in which all fluctuatioesodit, i.e.,v;; — o7, A* — 0, SOA —

1. We have to emphasizel[1] that the vacuum algebra resperfsitthe emergence of the Minkowski
spacetime is the Moyal-Heisenberg algebral (2.5). Manyriimg results will immediately come out
from this dynamical origin of the flat spacetime [4| 5] 30],igbhis absent in general relativity.

We close this section by observing that the quantized vexsithe contact manifoldR x M, E)
is described by the MQM whose action is given by

S = % dtTr (1 (Doga)® + %[%, ¢b]2)> (2.60)

9y M 2

whereDy¢, = 85’;“ —i[Ag, ¢,]. The equations of motion for the matrix actién (2.60) areegiby

Do + [dn, [da, D] = 0, (2.61)

which must be supplemented with the Gauss constraint

[¢a, Do¢a] = 0. (2.62)

As we discussed before, we interpret the matrix mddel {(2a6( Hamiltonian system of the IKKT
matrix model whose action is given by Eq. (2.1). Note thatdhginal BFSS matrix model [31]
contains 9 adjoint scalar fields while the actibn (2.60) henewumber of adjoint scalar fields. For
the former case, on the one hand, we have no idea how to rélaéizedjoint scalar fields as a matrix
representation of NC/ (1) gauge fields on a Hilbert space like s (2.33). Even it may Inérivéal to
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construct the Hilbert space because the M-theory is ingblvigh a 3-form instead of symplectic 2-
form. For the latter case, on the other hand, the previousaMidgisenberg vacuuri (2.4) is naturally
extended to the vacuum configurationf; given by

(Badvac = Do (Ao)vae = &, (2.63)

where the vacuum moduli, € A}, satisfy the commutation relation (2.5) aéids a constant pro-
portional to the identity matrix. We consider all possiblfarmations of the vacuuni_(2J63) and
parameterize them as

gb\A(tv y) = PA + IZ{A(ta y) € Aéa (264)
where the isomorphisrh (2Z.83) betweds, and.A} was used. Note that
[$A, C/b\B]* = —i(Bap — F\AB)a (2.65)

where
Fap = 04Ap — 0pAa — i[Ay, Agl, € Ab (2.66)

0 O
Bup = :
o (0 )

Plugging the fluctuation§ (Z.64) into the actibn (2.60) &tda(2n + 1)-dimensional NQJ (1) gauge
theory with the action

and

B 1 1 2 1 2
S = —E dt'Tr <§(D0¢a) _Z[¢a7¢b] )
S 12 d?*ly(Fap — Bag)’, (2.67)
4GYJ\/[

whereG%.,, = (27)"|Pff|g%,, is the(2n + 1)-dimensional gauge coupling constant. By applying the
duality chain[2.3B) to time-dependent matricesdlly, it is straightforward to derive the modui!

in Eq. (2.45) from the larg&v matrices or NOJ(1) gauge fields in the action (2J67). A Lorentzian
spacetime described by the metfic (2.56) corresponds tassichl geometry derived from the NC
module®! [3].

3 Cosmic inflation as a time-dependent Hamiltonian system

In Part | [1], we observed that a NC spacetime is caused byl#reRenergy condensate responsible
for the generation of spacetime and the Planck energy csatkemto vacuum must be a dynamical
process. The cosmic inflation corresponds to the dynamieahanism for the instantaneous con-
densation of vacuum energy to enormously spread out spazetdence the cosmic inflation as a
dynamical system is typically a time-dependent soluticthrmmist be described by a non-Hamiltonian
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dynamics. Now we will illuminate how the cosmic inflation daedescribed by the conformal Hamil-
tonian dynamic< [15, 16] which appears in, for example, &mnpechanical systems with friction. In
Appendix A we briefly review generalized symplectic mard®that correspond to a natural phase
space describing the conformal Hamiltonian dynamics.

Let us consider the simplest case, namely when the sympleetinifold isR*" with coordinates
(¢, p;) andw = dq* Adp; = da wherea = 3 (q'dp; — p;dq’). The symplectic manifoldR*", w) corre-
sponds to a local system of a locally conformal symplectic$). manifold as reviewed in Appendix
A. A conformal vector fieldX is defined by

Lxw = ka+ dH, (3.1)
whereH : R?" — R is the Hamiltonian and is a nonzero constant. Note that Eq. [3.1) implies
Lxw = kw. (3.2)

Therefore the vector fiel is a Lie algebra generator of conformal infinitesimal transfations
defined by Eq.[(A.29). It is easy to solve EQ. (3.1) for the wefield X and the result is given by
K < 0 o, 0
8 i Zap
where X is a usual Hamiltonian vector field obeying, w = dH. Thus the Hamilton’s equations
are given by

) + Xy, (3.3)

dq’ - k , OH
— =X(¢") = =¢' 4
dpi K 0OH
o = X(pi) = 5pi — 9 (3.5)

The equations of motion for the Hamiltoniah= $p?+U(q) are reduced to the differential equations

Y _, (3.6)

— Kq +
G — wq' g

whereV (q) = U(q) + %qu. To be specific, the integral curves f6(q) = 1w?¢? are given bE
q'(t) = e;tqz(/-z = 0;1), pi(t) = egtpi(/-c =0;1), (3.7)

whereq'(rk = 0;t) = A’sin(wt + 0) andp;(k = 0;t) = B, cos(wt + #) describe the usual harmonic
oscillator with a closed orbit when = 0. Therefore we see that the flow generated by a conformal
vector field has the property
O w = ew, (3.8)
4Note thata = b + d\ whereb = —p;dq* and\ = 2q'pZ Thus one can also define the conformal vector figlty
txw = kb+dH' whereH’ = H+r\. Inthis caseX = npza + X g, and the equations of motion are glvengy aH’

and £t dp = Kp; — %—{ﬂ. ForH' = 3(p? + w?q?), the general solution is given by () = A’e2" sin (, Jw? — %t + 9).
However the vector field defined by E.(3.3) is more converf@rour case.
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which may be directly obtained by integrating Elﬂﬁmhis means that the volume of phase space
exponentially expands (contractsyif> 0 (x < 0).

The mathematical parallelism between quantum mechand$N&hspacetime suggests how to
formulate the cosmic inflation as a dynamical system. Fiogt that the NC spack (1.2) in commuta-
tive limit becomes a phase space with the symplectic form

1
B = Budy" Ady'". (3.9)

The dynamics of Hamiltonian systems is characterized byntlaiance of phase space volume under
time evolution and the conservation of phase space volumeifergenceless Hamiltonian flows is
known as the Liouville theorem [24]. However, the cosmicatifin means that the volume of space-
time phase space has to exponentially expand as we haveregethe above mechanical analogue.
Hence the cosmic inflation as a dynamical system has to bedegjas a non-Hamiltonian system and
a generalized Liouville theorem is necessary to describexiponential expansion of spacetime. We
have already explained above how such a non-Hamiltoniaardigs can be formulated in terms of a
conformalHamiltonian dynamics characterized by the (local) flow abg¥Eq. [3.2). See Appendix
A for a mathematical exposition of general time-dependentonservative dynamical systemns.

Let us apply the conformal Hamiltonian dynamics to the casimilation. Recall that we have
considered an atlagU;, ¢(;))} on M = | J,.; U; as a collection of local Darboux charts and complete
it by gluing these local charts on their overlap. On eachllobart, we have a local symplectic
structure; = %deyg.) A dyp Where{yé‘i)} are Darboux coordinates on a local patéhc M. As
was explained in Refs,_[36, B7] and reproduced in Appendiképhase space coordina{@g)}w of
a conformal Hamiltonian system undergo a nontrivial timeletron even in a local Darboux frame.
For example, look at the equations of motidn 13.4) (35)etognize such a nontrivial time
evolution even wherl{ = 0. The dynamics in this case consists of the orbits of a cordbuactor
field X obeying the conditior (A.29). The result is essentially $hene as the previous mechanical
system with negative-friction. To be specific, wrile = da(;) on a local patch/; C M where

agy = —%pff)dyg) with pff) = By, and consider a conformal vector field defined by

Lxﬁi = KCL(Z‘) + dHZ, (310)

whereH; : U; — R is a local Hamiltonian and is a positive constant. Using the fact thi&t;, = 0,
it is easy to derive the conditioh (A.29) from Ef. (3.10),,i.e

,CxQZ' = K,QZ'. (311)

5The proof goes as follows. Let, denote the flow ofX. By the Lie derivative theoren [24], we ha\ﬁ(gbj;w) =

oF Lxw = kpfw, which has the unique solution (8.8).
5We want to remark that such systems ubiquitously arise gn, @ynamical systems with friction and nonequilibrium

statistical mechanics. Recently the statistical mechasficion-Hamiltonian systems has been formulated using ergen
alized Liouville measure to study the simulation of moleculynamics. See, for example, [82] 33,134, 35]. We think that
their formulation may be useful to understand the evolutibour early universe, especially, regarding to the issubef
cosmic Landau damping discussed in the last section.
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The vector fieldX obeying Eq.[(3.10) is given by

K 0
(4)
whereX, is the ordinary Hamiltonian vector field satisfyingX y, )<2; = dH;. The conformal vector
field Z;) = %y@)% in Eq. (8.12) is known as the Liouville vector field [15, 16]ckis generated by
@
the open Wilson lind (118) [1]. We will s€¥; = 0 for simplicity. The time evolution of local Darboux

coordinates is then determined by the equations

W _ xiup) = St (3.13)
a Yo T %) :
The solution is given by

() = eyl (0), (3.14)

We may glue the local solutions (3]114) to have a global form

pa(t) = Babyb(t) = egtpa. (3.15)

Then the time-dependent canonical one-form is given by

1 1
a(t) = —ipa(t)dy“(t) = —§e“tpady“ (3.16)

and thus
Qt) = da(t) = ™ B. (3.17)

The exterior derivative above acts only BA*. One can show using the proof in footngte 5 that the
result [3.17) is the integral form of Eq. (3]111). More gefiigréhe result[[3.1]7) is a particular case of
the general Moser flow; generated by a time-dependent vector figldor an LCS manifold which

is given by [38]

$:Q, = exp ( /0 t & (bS(XS))ds) Q, (3.18)

where the one-form is the Lee form of2 [39]. The above result(3.17) is simply obtained from Eq.
(3.18) whem)(X) is a constant.

We have motivated the cosmic inflation with the idea that theuum configuratiod (2.63) is a
final state accumulating the vacuum energy [1]. Therefdre,dosmic inflation corresponds to a
dynamical system describing the transition from the ihgtate referring to “absolutely nothing” to
the final state. For this purpose, let us consider a symplewinifold (17, 2(¢)) whose symplectic
two-form is given by Eq. [(3.17). It was shown inl [1] that thigrgplectic manifold arises from a
time-dependent vacuum solution given by

~

<¢a(t)>vac = pa<t) = egtpcw <A0<t7 y))vae - Z’/\0(157 y) (319)
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Recall that the temporal gauge field in E§._(3.19) is givenh®/rion-local Hamiltoniar_(11.7). As
was shown in Eq.L(118), it is necessary to turn on a non-loeahifonian to satisfy the equations of
motion (2.61) as well as the Gauss constrdint (2.62) anddtdéo the conformal vector field (3]112).
However we will seti, (¢, y) = 0 to highlight the conformal Hamiltonian dynamics of cosnrifa-
tion and compare its difference with the cagét, y) # 0 later. Since the vacuurh (3119) is in highly
non-equilibrium, it is expected that it will eventually dve to the final state[ (2.63) through inter-
actions with an environment (e.g., ubiquitous fluctuatjaswe have learned from hydrodynamics
and thermodynamics in non-equilibrium. The decay of exptialy growing modes via interactions
with the environment is known as the reheating process isiphl)cosmology. However we do not
know the precise mechanism for the reheating. We will sgeuh Sec. 5 a plausible picture for the
reheating mechanism. It turns out [1] thais identified with the inflationary Hubble constafitand
the inflationary energy scale is given by

H=(n—1)x > 10" ~ 10" GeV. (3.20)

Let us first determine the vacuum geometry emergent from alecauwm configuratioi (3.19). In
this case it is not necessary to glue Darboux charts becagi$ave not introduced local fluctuations
yet, so the Darboux coordinates in (3.19) are globally ddfitNote that

<[¢a(t)7 (bb(t)bvac = _iemBab = _iQab(t>7 (321)

and so we regarf(t) = Q. (t)dy" A dy” as the symplectic structure of the inflating vaculim (8.19).
According to the definitio (A.11), we get (omitting the syohimdicating the vacuum for a notational
simplicity)

Va(t) = 0(t) (dpa(t)) = e2'V,(0) (3.22)
whereV,(0) = & 5oz Similarly,
V()= o (3.23)

since we setly (¢, y) = 0. Thus the dual one-forms are given by
VO(t) = dt, v(t) = e~ 3'0%(0) (3.24)

wherev®(0) = dudy”. Itis easy to calculate the Lie algebra defined by Hg. (2.6#}fe time-
dependent vector fields, (¢) where

C gOab:_gaOb:gagv a,b=1,---2n;
9gAB =

, (3.25)
0, otherwise.

Thus\? = e according to Eq. [(2.55). Note that, if we include the tempgeauge field in Eq.
(3.19), the conformal factor is enhanced\fo= 2"~ [1]. The invariant volume form of the vacuum
manifold is then given by

ve = Ndt AvH(E) A - AU = dEAdyt A - A dy (3.26)
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After applying the above results to the metfic (2.56), we the¢ the vacuum configuration (3119)
determines the spacetime geometry with the metric

ds* = —dt* + ef'dy - dy. (3.27)

This is the de Sitter space in flat coordinates which covelfsofighe de Sitter manifold. Definitely
the inflation metric[(3.27) describes a homogeneous anjsiotUniverse known as the Friedmann-
Robertson-Walker metric in physical cosmology. By compathis result with Eq.[{1]9), we see that
the temporal gauge field (1.8) enhances the inflation by ttterfféawo, i.e. H — 2H.

The vector fieldd/4 (¢) form a solvable Lie algebra and the de Sitter space is itsideg The Lie
algebra for Eq.[(3.25) has the generatdys= —% Lont1), Vo = %(L0a+La(2n+1)), whichis indeed a
subalgebra of the de Sitter algebra wherg; are the Lie algebra generatorssi®(2n+1, 1) Lorentz
symmetry. In this point of view, energy and momentum do nehicwte unlike in the Minkowski
spacetime and are no longer conserved, as translatione atene a symmetry of the spe@dznstead,
energy generates scale transformations in momentum. J ke ireason why the isometry of the de
Sitter space is enhanced $@)(2n + 1, 1) which combinesSO(2n, 1) Lorentz transformations and
translations togethelr [40]. In the limit— 0, we recover the Minkowski spacetime.

Important remarks are in order. First we see that the coanfigtion is a typical example of an
LCS manifold. The LCS manifold has a disparate property ameghto symplectic manifolds. First
of all, it is allowed a nontrivial conformal vector field dedid by Eq. [(3.11) even when an underly-
ing Hamiltonian function identically vanishes. The soledlLiouville vector fieldZ = %y“% is
still nontrivial [15] and it generates the exponential exgian of spacetime described by the metric
43:2])@ If the one-forma in Eq. (3.10) is proportional to the Lee forbn X is called a Hamiltonian
vector field of an LCS manifold. See the definition (A.10). Eve this case, the Hamiltonian vector
field shows a peculiar property different from the symplectse: Ifb is not exact, Xy = 0 only if
H = 0. Therefore we see that the vector fields of an LCS manifold istark contrast to those of
a symplectic manifold, in whictX; = 0 implies H = constant only and, due to this property, the
constant vacuum energy does not couple to gravity as wasrsimdart I. Remarkably, if the cosmic
inflation is described by an LCS (or more generally LCC) maldifthe vacuum energy rightly cou-
ples to gravity during the inflation. This is a desirable mdp since the cosmic inflation is triggered
by the condensate of vacuum energy. Physically the reagsiavieus since every quantity during the
inflation is time-dependent due to the existence of the noakt_iouville vector field.

’One important consequence is that the energy will not betipesiPolyakov has suggestéd [41] that this makes de

Sitter space unstable with respect to decay by creationrtitfgaantiparticle pairs.
8]t would be worthwhile remarking that it is not possible talize the Liouville vector field in terms of a local

Hamiltonian function. Probably this situation becomes enmansparent by the mechanical analogue described by Eq.
(3.8). Thus the inflation is a dynamical system without anyrif@nian. It may explain why even string theory faces
many difficulties to realize the cosmic inflation. However sl®w in Appendix B that this situation can be cured by
introducing a time-dependent Hamiltonian.
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It may be instructive to understand the above situation mlmgely in comparison with the equi-
librium case described by the metric (2.56). First note thatinvariant volume forni(2.53) can be
written as

v, = A2y, (3.28)

wherey, = e® A -+ A e?™ = \/=Gd*" 'z is the volume form of the metric. Therefore, the vector
fields V4 do not necessarily preserve the Riemannian volume fgrralthough they preserve the
volume formv,. However, since\? — 1 at spatial infinity according to EqQL(ZB5%)| = v|xo

for the asymptotic volume forms denoted by, andv,|-. In other words, the flow generated
by V, leads to only local changes of the spacetime volume whilegsgrves the volume element
at asymptotic regions. On the contrary, the conformal vefitdd changes the spacetime volume
everywhere. Accordingly it definitely gives rise to the erpatial expansion of the spacetime volume.
After all, we see that a natural phase space for the cosmationil has to contain an LCS manifold
replacing a standard symplectic manifold. Including tinhidgecomes an LCC manifold [37]. Our
result shows that the matrix modEl(Z2.60) contains the LC@ifokl as a solution.

As was summarized in Eq._(1]12), a general Lorentzian megscribing(2n + 1)-dimensional
inflating spacetime can be obtained by considering arlyiffactuations around the inflationary back-
ground [1.7). The fluctuations are given by Eq. (1.10) anchfartime-dependent NC algebitd}.
Let us denote the corresponding time-dependent matribbedgey ‘. A}, which consists of a time-
dependent solution of the actidn (2.60). Then the generedritaian metric describing @n + 1)-
dimensional inflationary universe is constructed by uslrgfollowing duality chain[]1]:

Ay = A, = DL (3.29)

The modulg®! of derivations of the NC algebrad} is given by Eq. [(1.71). In the classical limit
of the module, we get a general inflationary universe desdrlty the metricl(1.12). The chain of
maps in [(3.2B) shows how to realize the lafyeduality in Fig. [1 and achieve the background-
independent description of an inflationary universe. A nélale picture is that the cosmic inflation
arises as a time-dependent solution of MQM and describedythemical process of Planck energy
condensate in vacuum without introducing any inflaton fieddvell as arad hocinflation potential
[1]. In conclusion, the emergent spacetime is a comple®lyparadigm that enables the background-
independent description of an inflationary universe [42].

4 NC spacetime as a second-quantized string

We know that quantum mechanics is the more fundamentaligésarof nature than classical physics.
The microscopic world is already quantum. Neverthelegsgtlantization is necessary to find a quan-
tum theoretical description of nature since we have undedsour world starting with the classical

description which we understand better. After quantizgtibe quantum theory is described by a
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fundamental NC algebra such as EQ. (2.28). A striking featirthe NC algebrad;, is that every
point inR™ is unitarily equivalent because translation®ihare generated by an inner automorphism
of Ay, i.e., f(x +a) = Ula)f(z)U(a)! wheref(z) € A, andU(a) = ¢®'/" ¢ Inn(A;). There-
fore, through the quantization, the concept of (phase)espadoomed. Instead the (phase) space
is replaced by the algebtd, and its Hilbert space representation and dynamical vasabécome
operators acting on the Hilbert space. Only in the classitat, a phase space with the symplectic
structurew = dx' A dp; is emergent from the quantum algebta such as[(Z.28).

Recall that the mathematical structure of NC spacetime $schlly the same as the NC phase
space in guantum mechanicsl[11]. Therefore essentialrsaituquantum mechanics must be applied
to the NC spacetime too. In particular, NC algebsbs such as the NC spack _(1.2) also play a
fundamental role and every points in the NC space are indistshable, i.e., unitarily equivalent
because any two points are connected by an inner automoriisl,. In other words, there is no
space(time) for the same reason as quantum mechanics andsécal spacetime must be derived
from the NC algebrady. After all, an important lesson is that NC spacetime necégsmplies
emergent spacetime.

Although spacetime at a microscopic scale, e.g. the Placale 4.5, is intrinsically NC, we
understand the NC spacetime through the quantization ofrgplggtic (or more generally Poisson)
manifold. Let(M, B) be a symplectic manifold. On the one hand, the basic conneptmplectic
geometry is an area defined by the symplectic two-fétiiat is a nondegenerate, closed two-form.
On the other hand, the basic concept in Riemannian geometgyrdined by a paif}/, g) is a distance
defined by the metric tensgrthat is a nondegenerate, symmetric bilinear form. One memtity
this distance with a geodesic worldline of a “particle” muyiin A/. Geodesic curves in/ give us
all information of Riemannian geometfy/, g). On the contrary, the area in symplectic geometry
(M, B) may be regarded as a minimal worldsheet swept by a “string/imgan A/. In this picture,
the wiggly string, so a fluctuating worlsheet, correspoids tleformation of symplectic structure in
M. This picture becomes more transparent by the so-calleadpd®lomorphic ot/-holomorphic
curve introduced by GromoV [43].

Let (M, J) be an almost complex manifold afd, j) be a Riemann surface. By the compatibility
of J to B, we have the relatiop(X,Y) = B(X, JY) for any vector fieldsX,Y € X(M). Let us
also fix a Hermitian metrié of (3, 7). A smooth magpf : ¥ — M is called pseudoholomorphic [17]
if the differentialdf : T — T'M is a complex linear map with respecti@and.J/:

df o j = Jodf. (4.2)

This condition corresponds to the commutativity of thedaling diagram

TS L. 7%

Y

TM —— TM
J
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SinceJ~! = —J, itis also equivalentt®;f = 0 whered,f := %(df + J o df o j). For example,
suppose that the Riemann surfacé>s:) wherei is the standard complex structure. We can work
in a chartu, : U, — C with local coordinatez: = 7 + ioc whereU, C X is an open neighborhood.
Definef. = f ou_". In this case, we have

C1[/0f. o], of. of.
dsf =5 [( e (15 )+ (G = T(F) 5 )do | (4.2)
Thus we see thal; f = 0 if
Ofe ofe
5, +J(f)8a = 0. (4.3)
SinceJ is B-compatible, every smooth mgp: ¥ — M satisfies([[44, 45]
1 _
5/ ||df |2 dvoly = / 110 f|12 dvols +/ f*B, (4.4)
% % b
where the norms are taken with respect to the meteanddvoly, is a volume form ork. In terms of
local coordinatesic!, 0?) on¥ andf (o) = (z,--- ,2°") on M,
ozt Ox¥
2 _
1112 = 9u (£(0)) 5 551" (@) (4.5)

anddvoly, = Vhd?o. Therefore, the left-hand side of Eq._(4.4) is nothing bt Bolyakov action
in string theory. For a pseudoholomorphic curve ¥ — M that obeys); f = 0, we thus have the
identity

J— 1 _ k
n=y [l avls = [ 5. (46)

This means that any pseudoholomorphic curves minimize tlaenionic energy’Sy(f) in a fixed
homology class and so are harmonic maps. In other words,dfeiplectic area coincides with the
surface area. Therefore, any pseudoholomorphic curveisiaan of the worldsheet Polyakov action
Sp(f). Forinstance, if\/ = C" with complex coordinateg’ = z%~! + /—12% (i = 1,...,n) and
fe(z,2) = ¢'(z, 2), Eq. [4.3) becomes
;( VTS )gb’(z 2) = 0:4/(2,2) = 0. (4.7)

In this case, pseudoholomorphic curves coincide with holqiic curves. Moreover such curves are
harmonic and minimal surfacEs.

The pseudoholomorphic curve also provides us a useful toohterstand the emergent gravity
picture. To demonstrate this aspect, let us include a bayrideeraction in the sigma moddl (4.4)
such that the open string action is given by

ISR, :
=g [l dvls+ [ fa @8)

%In the topological A-model that is concerned with pseudohwarphic maps front to M = T* N, there is a vanish-
ing theorem[[45] stating thejf2 f*B = 0. In particular, the mappings from to N are necessarily constant.
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where the one-formi is the connection of a line bundle — M. Using the Stokes’ theorem, the
second term can be written as

FrA = / FrdA. (4.9)
[o)> b
After combining the identitie$ (4.4) and (#.9) together,wrée the action
Sa(h) = [ 10415 dvols + [ 7. (4.10)
P P

whereF = B + F andF' = dA. If one recalls the derivation of EqL_(4.4), one may immesliat
realize that the actiof4(f) can equivalently be written as the form of the Polyakov actio

Se(0) = 5 [ 14013 dvols, (a.11)

where the differentiatly) for a smooth map) : > — M has the norm taken with respect to some
metricG. For this purpose, let us assume that the almost compleststay/ is also compatible with
the deformed symplectic structurg i.e.,

G(X,Y)=F(X,JY), VXY eXx(M) (4.12)
is a Riemannian metric of/. An explicit representation of the Polyakov actién (4.14h) e made
by introducing local coordinates(c) = (X!, -, X?") on an open sdt; C M so that

OXHoXV
2 ab
|d||g = Gy ((0)) Da Wh (o). (4.13)

One can then apply the same derivation of [£q.](4.4) to them{.11) to derive the identity
1 _
—/ ||dw||é dvoly, :/ ||8J¢Hé dvolg+/w*f. (4.14)
2 P P P

For pseudoholomorphic curves: ¥ — M satisfyingd ;) = 0, we finally get the result

Sp(0) = 5 [ ldvl dvols = [ 077, (4.15)

The above argument reveals a nice picture that dynamical gauge fields in a line bundlé
over M deform an underlying symplectic structur&/, B) and this deformation is transformed into
the dynamics of gravity( [3]. This is a reincarnation of thealily chain in Fig. [1 indicating the
gauge-gravity duality. As we observed before, the sympgetometry is probed by strings while the
Riemannian geometry is probed by particles. We note thatithepace[(1]2) defines only a minimal
area whereas the concept of point is doomed Asnfquantum mechanics introduces a minimal area
in the NC phase space (2128). The minimal area (surfacekiiN@ space behaves like the smallest
unit of spacetime blob and acts as a basic building blockroigstheory. The concept of pseudo-
holomorphic orJ-holomorphic curves in symplectic geometry plays a roleuafsminimal surfaces.
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It is known [17] that there is a nonlinear Fredholm theory ethdescribes the deformations of a
given pseudoholomorphic curye: 3 — (M, J) and the deformations are parameterized by a finite-
dimensional moduli space. (This moduli space may be emtiblyeconsidering pseudoholomorphic
curves in an LCS manifold.) When a symplectic manifold ishqg with a string or pseudoholomor-
phic curve, the notion of a wiggly string in this probe pi&uworresponds to the deformation of a
symplectic structure. Hence the emergence of gravity frgmpdectic geometry or more precisely
NC U(1) gauge fields may not be surprising because we know from stigyy that a Riemannian
geometry (or general relativity) is emergent from the wygsiring.

We can think of the integrall(f) = [, f*B in two ways if f is a pseudoholomorphic curve. On
the one hand, the pointwise compatibility between the sires( B, /) means thatl( f) is essentially
the area of the image of, measured in the Riemannian metgicOn the other hand, the condition
that B is closed means that( f) is a topological (homotopy) invariant of the mgsince it depends
only on the evaluation of a closed 2-forf on the 2-chain defined by(X). Hence we can use
the curves in two main ways$ [17]. The first way is as geomdtpecabes to explore a symplectic
manifold, as we advocated above. The second way is as theesofinumerical invariants known
as the Gromov-Witten invariants. Using the pseudoholomiorpurves, Gromov proved a surprising
non-squeezing theoremn [43,144,] 45] stating that a Ball(r) of radiusr in a symplectic vector
spaceR?" with the standard symplectic forf cannot be mapped by a symplectomorphism into any
cylinder By(R) x R*"~2 of radiusR if R < r. Itis possible to replacB?"~2 by a(2n—2)-dimensional
compact symplectic manifold with 7o(V") = 0.

Now we will discuss how a NC space provides us an importaetidua background-independent
formulation of string theory. The NC spacetime is definedh®/quantization of a symplectic mani-
fold (M, B). One may try to lift the notion of the pseudoholomorphic @t a quantized symplectic
manifold, namely, a NC space such as KEq.](1.2). The quaiatizaf a symplectic manifold leads to
a radical change of classical concepts such as spaces awaliiss. The classical space is replaced
by a Hilbert space and dynamical observables become opef@tting on the Hilbert space. Then
the NC spacetime provides a more elegant framework for tbhkgraund-independent formulation
of quantum gravity in terms of matrix models, which is stiligve in string theory. We explained
how the dynamical Lorentzian spacetirhe (2.56) emerges &olassical solution of the matrix model
(2.60). Remarkably, the cosmic inflation described by th&#im@.9) also arises as a vacuum solution
of the time-dependent matrix model.

In order to grasp how a pseudoholomorphic curve looks like@spacetime, let us consider the
simplest case in Eq.[[(4.7). After quantization, the coaatis ofC" denoted byy'(z, z) become
operators in a NG-algebrad2 = Ay (C®(R?)) = C®(R?) @ Ay, i.e., ¢'(z,2) — ¢'(z,2) € A2
The worldsheeR? may be replaced b¥? or R x S'. Let us clarify the notatiopd? after the Wick
rotation of the worldsheet coordinate= it, soR?> — R!. Consider a generic element in the NC
x-algebraA? given by

Flt,o,y) € A2 (4.16)
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The matrix representatioh (2]33) is now generalized to

flt,o,y) = Z|n (n|f(t, o, y)|m)(m anmta\n m| (4.17)

n,m=1 n,m=1

where the coefficient,.,(t, o) := [f(t, )], are elements of amatrit, o) in A3 = Ay (C=(RY)) =
C>(R") ® Ay as a representation of the observable (4.16) on the Hilpaes(Z.I2). Then we
have an obvious generalization of the duality chiain (2.3%pHows:

Ay = A = D% (4.18)

The module of derivations is similarly a direct sum of thersgllules of horizontal and inner deriva-

tions [29]:
D? = Hor(A%) @ D(A%) = Hor(A3) @ D(A3), (4.19)

where horizontal derivations are locally generated by aordield

0 9, )
k(t, o, y)a 7 € Hor(Aj). (4.20)

It can be showr[3,15] that the matrix model for the dualityioh@.18) is given by

+1(t,0,y)

1 1 1
S = gs /d%—Tr <4Fa5 (Da¢a)2 - Z[¢a;¢b]2), (4.21)

wherea = 2,---,2n+ 1 ando® = (t,0), a = 0,1 and F,,5 = 0,4 — 03As — i[An, Ag].
Then = 4 case is known as the matrix string theory that is supposeésoribe a nonperturbative
type llA string theory in light-cone gauge [19]. The matrixisg theory can be obtained from the
BFSS matrix model via compactification on a cirdlel[22]. Tdiawe this goal, the BFSS matrix
model has to have 9 adjoint scalar fieldg(t) (¢ = 1,---,9), unlike the action[(2.60) with even
number of adjoint scalar fields. The reason why we considgr even number of adjoint scalar
fields is to realize the equivalende (2.67). In this case,aitteon [2.6D) can be understood as a
Hilbert space representation of certain NC gauge theorgmuadsymplectic vacuum such as (2.5)
with rank( B) = 2n. However we do not know a corresponding NC gauge theory wHdbert space
representation precisely reproduces the BFSS matrix matlelwill further comment on this issue
later. Fortunately the matrix string theofy (4.21) has &adjscalar fields fom = 4. Thus it is
possible to realize it as the Hilbert space representafiof- 1)-dimensional NQJ (1) gauge theory
with rank( B) = 8 [3,[5]. Therefore it will be interesting to understand hovdaive the matrix string
theory [4.21) from the MQML(2.80) as if the latter has beenwvéerfrom a contact structure of the
zero-dimensional matrix modél(2.1).

The basic idea is similar to the previous scheme to constinecone-dimensional matrix model
(2.60) through the contact structure of zero-dimensioratices. A difference is that we start with
the one-dimensional matrix model(2160) and introduce alitiathal contact structure along a spatial

26



direction whose coordinate is calledn our case. Ultimately, the matrix string theoky (4.21) &an
realized as the quantization of a regular 2-contact mahif@ee Ref.[[36] for a generatcontact
manifold. First let us consider the projectian : R"! x M — M, my(0%, z) = x whereM is

a symplectic manifold with the symplectic form The regular 2-contadq2n + 2)-dimensional
manifold is defined by a quartéR’! x M, B,n*), a = 0,1, whereB = 7} B, such that

" Ant AB"#£0 (4.22)

everywhere andn® = v* B with constants/® andd B = 0. Moreover there are uniquely defined two
Reeb vectorsz, (o = 0, 1) satisfying

R’ =68, wr,B=0, a =01 (4.23)
The above relations imply
;CRQHB = 0, ;CRQB = 0, [Ro, Rl] =0. (424)
For example, the contact forms for the matrix string thedi21) are given by
0 1 a 1 1 a
m=dt = gpedy®, = do — gpady”, (4.25)

which determines the corresponding Reeb vectors

0 0
— R = —.
' 9o
These Reeb vectors span the space of horizontal derivatidits (4.20).
Since there are two independent contact structures, eathatstructure generates its own Hamil-
tonian vector field defined bjy (A.42). For the contact streesun Eq. [4.25), they are given by
0

0
-9 p i
V. oy + Ak(t, o, y)ﬁy“' (4.27)

(4.26)

The quantization of the 2-contact manifglR" x A, B, ") is simple because it is performed using
the Darboux coordinatgs®, y*). It is basically defined by the quantization of the symplentani-
fold (M, B) in which o> are regarded as classical variables like the time coomlinahe algebrad;.
After quantization, a generic element of the M@lgebraA? takes the form{4.16). Then the module
D?in Eq. (4.19) is generated by

02 = {Valt,0) = (Vo Vo) (L) Valt, 0) = -+ adg,, Valt,0) = adg, |, (4.28)

9
oo™

101t is possible to replac&! x M by a genera(2n + 2)-dimensional manifoldV as far as there is a well-defined

two-dimensional foliatior) such that the corresponding space of leaVg¥ = M is a Hausdorff differentiable manifold
[36]. Seel(A.Z4) for a relevant discussion. We will keep theximal simplicity for a plain argument.
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where A = 0,1,---,2n + 1 and the adjoint operations are inner derivations43f Finally the
corresponding Lorentzian metric dual to the matrix strimgary [4.21) is given by [3,/5]

ds® = Nnapv? @ 0P = N\ (nagdoo‘daﬁ +vguy (dyt — AF)(dy” — A”)), (4.29)

whereA# := AL(t,0,y)do® and\* = v, (Vo, Vi, - -+, Va,y1) is determined by the volume pre-
serving conditionLy, v,y = 0, with respect to a given volume form

Vo) =dt Ndo Nv = Ndt Ado AvEA - AP (4.30)

Let us come back to our previous question about the genatializof pseudoholomorphic curves
to a quantized spacetime. In order to address this issueslebnsider the Wick rotation= —ir
again to return to the Euclidean space. If the quantum vemsigseudoholomorphic curves exists,
Eq. (4.3) suggests that it will also obey the first-orderiphdifferential equations. It is well-known
[47] that the matrix actiori (4.21) admits such a first-ordestem. For simplicity, assume that adjoint
scalar fields mostly vanish except,, ¢3) # 0. It is convenient to use the complex variables

1 . 1 .
¢ = §(¢2 —ig3), ¢ = 5(% +ig3). (4.31)

It is not difficult to show that the Euclidean action with = 0 for a = 4, - - - ;9 can be written as the
Bogomol'nyi-type, i.e.,

N 2_ 1 2

§ = o | dom <4Fa6 + 5(Data)? = 1[0, 04 )
2 : . o
= & [ @ ((ZFZZ —[6,01)" + | D:6|? — i0a (= %TDW)). (4.32)

Since the last term is a topological number, the minimume#gtttion is achieved in the configurations
obeying
F:+ilp,¢']=0,  D:p=0. (4.33)

Note that the above equations recover EQ.1(4.7) in a very aatative limit where[¢', ¢] = 0.
Therefore it is reasonable to identify Ed._(4.33) with theugum version of pseudoholomorphic
curves.

Mathematically Eq.[(4.33) is equivalent to the Hitchin etipras describing a Higgs bundle [48].
A Higgs bundle is a system composed of a connectioon a principalG-bundle or simply a vec-
tor bundle E over a Riemann surfaceé and a holomorphic endomorphismof E satisfying Eq.
(4.33). The Hitchin equations describe four-dimensiorai-Mills instantons o x R? which are
invariant with respect to the translation groBp. (ThisRR? is transverse to the Riemann surface, so
independent of the worldsheRt.) Using the translation invariance, the Yang-Mills ingtars can be
dimensionally reduced to the Riemann surfada which Yang-Mills gauge fields along the isometry
directions become an adjoint Higgs field In our case the gauge grodpis U(N). In particular,
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we are interested in the largé limit, i.e., N — oo. In this limit, the action[(4.32) can be mapped to
four-dimensional NG/ (1) gauge theory under the Coulomb branch vacyvm .. = p., a = 2,3
obeying the commutation relatidp,, p3s] = —iBs3. Then the Hitchin equationk (4133) precisely be-
come the self-duality equation for NIZ(1) instantons ofiR?(or 32) x RZ [49,[50]. The corresponding
gravitational metric for the case = 1 was already identified in Eq[_(4.29) with the analytic con-
tinuationt = —ir. It was shown in[[511, 52, 53] that the solution of the Hitchguations[(4.3B3) is
dual to four-dimensional gravitational instantons whioh layper-Kahler manifolds. In particular, the
real heaven is governed by the(co) Toda equation and the self-duality equation for the realéea
exactly reduces to the commutative limit of the Hitchin eipres (4.38). See eq. (4.31) in Ref. [51].
Thus the Hitchin system with the gauge gradp= U(/N — oo) may be closely related to the Toda
field theory. Indeed this interesting connection was alyeathlyzed in[[54]. In sum, Hitchin equa-
tions, NCU(1) instantons, gravitational instantons and pseudoholohioqurves may be only the
tip of the iceberg in the matrix string theofy (4121) that@&arely shown themselves.

Let us conclude this section by drawing an invaluable irnsigdo far we have understood NC
spacetimes too easily. However the NC spacetime is much nadieal and mysterious than we
thought. It is fair to say that we have not yet fully understdbe mathematically precise sense in
which spacetime should be NC. Indeed we have observed authet®f this section that NC space-
time necessarily implies emergent spacetime if spacettm@aoscopic scales should be viewed as
NC. This means that classical spacetime is somehow a dem')m:iap Since we form our picture
of the world by recognizing the NC spacetime as a small dedition of classical symplectic or Pois-
son manifolds, we need an efficient tool to explore the syotjglgeometry. The most natural object
to probe symplectic manifolds is a pseudoholomorphic cwhih is a stringy generalization of a
geodesic worldline in Riemannian geomefry![17]. Recalt tha pseudoholomorphic curve is basi-
cally a minimal surface or a string worldsheet embeddedspaxetime. However, to make sense of
the emergent spacetime proposal, we need a mathematicadig@ framework for describing strings
in a background-independent way. If it is so, the backgremdépendent theory does not have to
assume from the outset that strings are vibrating in a pséegispacetime. In this section we have
aimed at clarifying how the pseudoholomorphic curves califteel to a NC spacetime by the matrix
string theory. The matrix string theory naturally exterfusfirst-quantized string theory so that it also
describes the perturbative interactions of splitting amclipg of strings, producing surfaces with non-
trivial topology [19]. That is, the matrix string theory isacond-quantized theory in which spacetime
emerges from the collective behavior of matrix strings. §iue argue that the NC spacetime can be
viewed as a second-quantized string for the backgrounep@adent formulation of quantum gravity,
which is still elusive in ordinary string theory.

This prospect has been recently advocated by Moore in (@dlyeSec. 9) “Physical mathematics and the fu-
ture” (available al http://www.physics.rutgers.edgmoore/). See also Segal in “Space and spaces” (available at
http://lwww.lms.ac.uk/sites/Ims.ac.uk/files/files/Albous/AGM _talk.pdf) and[[55].
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5 Discussion

We want to emphasize again that NC spacetime necessariljesrgmergent spacetime if space-
time at microscopic scales should be viewed as NC. The NCesipae is much more radical and
mysterious than we previously thought. (See Sec. 1 in Rgffof3the discussion of this aspect.)
In order to understand NC spacetime correctly, we need totidate the thought patterns that we
have installed in our brains and taken for granted for so maaays. As we argued in Part |, the
background-independent formulation of quantum gravitumees the concept of emergent spacetime
that may open a new perspective to resolve the notorioudgmshin theoretical physics such as the
cosmological constant problem, hierarchy problem, dagegy) dark matter, and cosmic inflation.
In particular, the emergent spacetime picture admits adgrackd-independent formulation of infla-
tionary cosmology so that the inflation simply arises as @ttdapendent solution of a largé matrix
model without introducing any inflaton field as well as @ hocinflation potential. Therefore it
brings about radical changes of physics, especially, diggto physical cosmology.

In Part I, we have explored the mathematical foundatioriferlarge/N' duality in Fig.[1 in order
to elucidate how the larg& duality can be applied to physical cosmology. The most rkatde
aspect of the background-independent formulation for tiofi@ry cosmology is that the cosmic in-
flation is described by largé’ matrices only without introducing any inflaton field and @ hoc
inflation potential. Thus an urgent question is how to makaaeassful exit from inflation with no
help of the inflaton field.

We certainly live in the universe where the inflationary dpbad lasted only for a very tiny pe-
riod in very early times although it is currently in an accateng phase driven by the dark energy.
Therefore there should be some relaxation mechanism fqffiteeorder) phase transition from the
inflating universe to a radiation-dominated universe. Wansdd that the former is described by the
metric [1.12) whereas the latter is described[by (2.56) arl arise as solutions of the background-
independent matrix model (260). In scalar field inflatioersrios, the relaxation mechanism is
known as the reheating in which the scalar field switches fo@img overdamped to being under-
damped and begins to oscillate at the bottom of the potetatitdansfer its energy to a radiation
dominated plasma at a temperature sufficient to allow stantzcleosythesis [56]. For this purpose,
it is necessary to introduce a veagl hocpotential for the inflaton. In our case, however, we have
introduced neither an inflaton field nor an inflation potdntievertheless, the inflation was possible
since an LCS manifold admits a rich variety of vector fielasparticular, the Liouville vector field
which generates the inflation

We do not know the precise mechanism for the graceful exierdly we will briefly speculate a
plausible scenario only. Let us start with a naive obseovafi he Lorentzian metri¢ (1.112) describes
general scalar-tensor perturbations on the inflating spaeeSince the fluctuations have been super-
posed on the inflating background, we suspect that there magrne nonlinear damping mechanism
through the interactions between the background and thsitgdhuctuations. To be precise, there
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may be a cosmic analogue of the Landau damping in plasmagshgsginally applied to longitu-
dinal oscillations of an electron plasma. The Landau dagpira plasma occurs due to the energy
exchange between an electromagnetic wave and particlés ipldsma with velocity approximately
equal to phase velocity of the wave and leads to expongntiatiaying collective oscillatior@.The
Landau damping may be intuitively understood by considehow a surfer gains energy from the
sea wave. If the suffer is slightly slower than the wave mtlie mode loses energy to the suffer. For
the wave to be damped, the wave velocity and the surfer \glouist be similar and then the surfer
is trapped by the wave. A similar situation may happen in tiflating spacetimé (1.12). Local fluc-
tuations (suffers) on the inflating spacetime (the wave radegiven by Eq.[{1.10). Note that these
local fluctuations carry an additional localized energy #msl local energy will cause a slight delay
of the drift of local lumps compared to the inflating backgrdu Moreover these drift delays will
occur everywhere since (quantum) fluctuations are evergvhEhen this is precisely the condition
for the Landau damping to occur. If this is true, the inflatmgde will transfer its kinetic energy to
ubiquitous local fluctuations, ending the inflation throwghexponential damping and entering to a
radiation dominated era via the reheating at a sufficient/is kemperature for the standard Big Bang.

The above speculation may be too good to be true. Howeveayitmat be so absurd, considering
the fact that the cosmic inflation is described by a confotd@hiltonian systemi[15, 16] which often
appears in dynamical systems with friction and the tramsitif such dynamical systems in nonequi-
librium into equilibrium is induced by interactions withveronment. For the cosmic inflation, ubig-
uitous fluctuations over the inflating spacetime will playoéerof the environment. Furthermore it
seems to be a reasonable clue since the underlying theogynergent gravity is the Maxwell’s elec-
tromagnetism on NC spacetime and the Landau damping camabeedt even at a nonlinear level
[57]. Therefore it will be important to verify whether theniacent idea can work or not. Probably
the cosmic Landau damping may be closely related to thehitisyeof de Sitter space suggested by
Polyakov [41].

Our real world,R%? = R x R3, is mystic as ever because the spatial 3-manifvlddoes not
belong to the family of (almost) symplectic manifolds. WeglHinally want to list possible stairways
to our real world - the four-dimensional Lorentzian spaoetiV1:

A. Analytic continuation or Wick rotation froriR*.
B. Kaluza-Klein compactificatioMt x S*.
C. Constact manifoldR?, 7).

D. Nambu structuréR?, C).

2There is a nice exposition on the Landau damping by Werner, Frefnysics of Landau Damping: An introduction
(to a mysterious topic),” available at https://indicorteh/event/216963/contribution/41/material/slidgsdd. Recently
the Landau damping has been mathematically establishedagtiee non-linear level [57].
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Heren is a contact form oiik* andC' = %Clmdx“ Adz¥ Adz? is a nondegenerate, closed three-form
onRR3. In the case (A), the Lorentzian metric is obtained from EZ21) withn = 2 by the Wick
rotationy* = iy°. We used this boring method to evaluate the dark energy in [@&f It is also
straightforward to compactify thet + 1)-dimensional Lorentzian metri€ (2156) orffé to get the
result (B). Since the time is also defined as a contact streictivie case (C) has two contact structures
as the matrix string theory discussed in Sec. 4. It may beastig to briefly explore some clue
for the cosmic inflation in the context (C). L&t = R x R? andt € R be the time coordinate and
fi = f(t) be a positive monotonic function. Define a time-dependergad two-form onV by

B, = d\ = fi(dT A+ dn) (5.1)

where)\; = fi;n andT = In f,. SinceB? = ¢*I'dT A n A dn is nowhere vanishing3; is a symplectic
structure onV. Consider a time-dependent Hamiltoni&n: N — R such thattH = —e?dT and
denote the Hamiltonian vector field éf by X . Let R be the Reeb vector field associated with the
contact formy. Then it is easy to show that

'r B, = dH, (5.2)

thatis,R = Xy. A very interesting property is that

0
=T
is the Liouville vector field of the symplectic for#,, i.e.,L,B; = B; or .z B; = ). This condition
can be written a£,\; = A\;. One can regard the Liouville vector field as the Reeb vector field
associated with the contact fordT". Since.z(B?) = ¢*"n A dn, the one-form\, gives rise to a
contact form on every three-dimensional submanifeld- N transverse t&. Thus we expect that
the conformal vector field will generate an inflationary metric given by

(5.3)

ds* = —dT? + e*Tdx - dx. (5.4)

It will be interesting to have a microscopic derivation oé thbove inflation metric from the matrix
string theory[(4.211). The approach In[58] may be useful liig tase. Since we have no idea how to
formulate emergent gravity based on the Nambu structuretfi)last case would remain to be our
dream. It may be of M-theory origin because it is involvedhitie 3-formC' instead of symplectic
2-form B.
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A Locally conformal cosymplectic manifolds

In this Appendix we briefly review the mathematical foundatbf locally conformal cosymplectic
(LCC) manifolds. It was shown in_[37] that an LCC manifold da@m seen as a generalized phase
space of time-dependent Hamiltonian system. Thus we algieite LCC manifold is also a natural
phase space describing the cosmic inflation of our univesse direct application of the results in
Refs. [36/ 37] to emergent gravity.

First let us consider locally conformal symplectic (LCS)nifalds. An LCS manifold is a triple
(M, Q,b) whereb is a closed one-form artd is a nondegenerate (but not closed) two-form satisfying

dQ—bAQ=0. (A.1)

The dimension ofA/ will be assumed to be at least 4 and the one-foria called the Lee form
[39]. If the Lee formb is exact, the manifold is globally conformal symplectic (§)CA symplectic
manifold corresponds to the case with= 0. Locally by choosingy = d\(® for a local function
A@ . 7, — IR on an open neighborhodd,, Eq. (A1) is equivalent ta(c >’ Q) = 0, so the local
geometry of LCS manifolds is exactly the same as that of sgotigl manifolds. Thus an LCS form
on a manifoldM is a non-degenerate two-forfhthat is locally conformal to a symplectic form. In
other words, on an LCS manifold/, €2, b), there exists an open coverifg, } of M and a smooth
positive functionf, on eachlU, such thatf,Q|y,, is symplectic on/,. Two LCS formsQ and ¢
are said to be (conformally) equivalent if there exists s@uositive functionf such thatY' = f(,
where the Lee form of?’ is justd’ = b+ dIn f. An interesting example [59] is provided by the Hopf
manifolds that are diffeomorphic & x S**~! and have a locally conformal Kahler metric while they
admit no Kahler metric.

An LCS manifold can be seen as a generalized phase space oltdfaam dynamical systems
since the form of the Hamilton’s equations is preserved bydthetic canonical transformations. Let
us recapitulate how the LCS manifolds naturally arise frown lHamiltonian dynamics of particles.
Consider a dynamical system withdegrees of freedom so that its phase spaceis-dimensional
differentiable manifold}/ endowed with an open covering of coordinate neighborhdads .«
with local coordinateiqfa),pga)), 1 =1,---,n. Then we know that the dynamics consists of the
orbits of a Hamiltonian vector fiel ;. Every point of M has an open neighborhoad, with the
local Darboux coordinateéqfa),pgo‘)). One can restrict the HamiltoniaH and a nondegenerate

two-form w to eachU, to have a local Hamiltoniai/, = H, (qéa), p§a>) and a symplectic structure

Wo = dqfa) A dpl-a). Similarly the globally defined Hamiltonian vector fieldy is restricted taJ,
which is precisely given by, . Then the orbits are defined by the Hamilton’s equations
dql,y  OH, '™ 9H,

= = A.2
it "ot~ oq, (A2)

When one takes the coordinate chart definition of symplentaifolds, there is no compulsory
reason why one should require the two-fatnto be closed. Indeed, the Hamiltonian formulation of
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particle dynamics consists in asking the local formsand local functiong?,, to glue up to a global
symplectic formw and a global Hamiltonia®/. However, since the dynamical information is given
by a global vector field, it is more natural to only requiretttige transition functions

ds) = i) (@l 21, P =57 (o 0 (A.3)

on an overlafd/, N Ug # () preserve the form of the Hamilton’s equatiohs (A.2). Thipgens not
only if Eq. (A.3) implies

ws = dgig) Ndp)” = dgloy Ndp® = wa,  Hz = H,, (A.4)
whereH,, : U, — R, « € I, but also if it implies
Ws = MgaWas  Hg = AgaH,, (A.5)
where)s, = constant # 0. Sincew(Xy, )w, = dH,, from Eq. [A.5) we obtain
X, = Xu,, (A.6)

so the integral curves ok, and X, are the same. Furthermore, E§._(A.5) implies the cocycle
condition
MsAsa = Ma (A.7)

as the gluing condition. We know that the cocycle conditiarylf implies the existence of the local
functionso,, : U, — R satisfying
Ao = —. (A.8)

Thus Eq. [(A.b) shows that
w = e7%W,, H=¢H, (A.9)

are globally defined on/. Moreover a Hamiltonian vector field is globally defined, &, = Xy,
as was indicated in Eq[_(A.6). Hence we have a basic line leubdiver A/ and a Hamiltonian/
as a cross-section df (a “twisted Hamiltonian”) instead of a simple function. Tefre (M, w) is
an LCS manifold that can be considered as a natural phase spe@miltonian dynamical systems,
more general than the symplectic manifolds.

As we explained in Sec. 2, the realization of emergent gegnieintrinsically local too. The
emergent geometry is constructed by gluing local Darbowattshand their local Poisson algebras.
Therefore the construction of an LCS manifold as a genedlghase space for particle dynamics
should also be applied to the emergent geometry. Therdf@rbelpful to briefly review infinitesimal
automorphisms of an LCS manifold/, 2, b). The infinitesimal automorphism (IA) will be denoted
by 2. Let C*°(M) denote the associative algebra of smooth functiondfoand f : M — R be
such a globally defined function. The Hamiltonian vectofi&l; of f € C°°(M) with respect to the
LCS form(2 is defined by

X)) =df — fb. (A.10)
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As we observed above, there is a well-defined line buidéeer A/ in which local functionsf,, =
e % f on a patchl/, € M correspond to sections df — U,. If we take the Lee form o/, as
bly, = do,, Eq. [A.10) refers to the usual (local) Hamiltonian vecteldiX ;,, = X, defined by

U Xy, ) = df, (A.11)
where(), = e~?=(). Using the Cartan formula for the Lie derivative
Lx =dix + txd, (A.12)
one can immediately deduce from Eds. {A.1) dnd (A.10) that
L, Q= b(X;)Q, (A.13)
Lx ;b= db(Xy). (A.14)

Therefore, unlike the symplectic case, the Hamiltonianarefeeld X ; is in general not an IA of LCS
manifolds.
Using the Hamiltonian vector fields defined by Eqg. (A.10), wéirtk the Poisson bracket

{f.9}a = u(X5)u(X,)Q ==Xy, Xy) = e7u(X7,)t( Xy, ) Q% = €7{ fa: Ga } - (A.15)
Then we can calculate the double Poisson bracket
{{f, g}, htao = Xn(QUX;, X,)) — b(Xn)QUX s, X,). (A.16)

Using this result, it is easy to check the Jacobi identityhefPoisson bracket:

{f,9}a, kYo + {{g. h}a, fYa + {{N, f}a. 9}a = (dQ—bA Q) (X}, X,, Xp) = 0. (A.17)

Let P = (C*(M),{—,—}q) be the Poisson-Lie algebra 0#/,2) andX (M) the Lie algebra of
vector fields ofM/. The result[(A.Ib) shows that the mappifig ¢ — X(M) givenbyf — X isa
Lie algebra homomorphism because one can derive the melatio

Xitgra = [X5 Xy (A.18)

from the Jacobi identity (A.17). However, ({fi/, Q) is a (connected) LCS manifold that is not GCS,
thens) must be a monomorphism, i.e., an injective homomaorphisre tis=Proposition 2.1 in [36] for
the proof. This means thaf; = 0 implies f = 0. This is in stark contrast to symplectic manifolds,
in which X; = 0 justimpliesf = constant. Since we argue that the phase space for cosmic inflation
is a locally conformal (co)symplectic manifold, this imgdia desirable property that vacuum energy
couples to gravity and triggers cosmic inflation. Howeveddes not mean that the cosmological
constant problem threatens the emergent gravity becaysgcphquantities during inflation are not
constant but time-dependent as we noted before.
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Let us denote the IA ofM, 2) by X (M) whose elements obeyx 2 = 0. Then we havel xb =
0 by Eqg. [A.1) which implies the conditiob{ X') = constant. In particular, if X, Y € Xq(M), then
b(X) = constant, b(Y) = constant anddb(X,Y") = 0 yieldsb([X, Y]) = 0 using the formula

db(X,Y) = X (b(Y)) =Y (b(X)) — b([X, Y]). (A.19)

Hence, the applicatioh: Xo(M) — R defined byl(X) = b(X) is a Lie algebra homomorphism,
called the Lee homomorphism &fq(M). The kernelker(l) is the Lie algebra of the horizontal
elements ofto (M), denoted byxir(M). The IA X € Xq(M) with [(X) # 0 is called transversal
IA and an LCS manifold} is called the first kind if it has a transversal IA. Otherwidé, is of
the second kind and the Lee homomorphism is trivial. Not¢ tfidA7, Q) is of the first kind and
f: M — R is a function such thaif|,, = b(x), then(M,e=/Q) has the Lee fornd — df with a
vanishing point, so it becomes an LCS manifold of the secamd. k
There is a special vector field defined by.,€2 = b. Then it is easy to see

LAb = 0, ,CAb = 0, ,CAQ =0. (AZO)

We do haveX; € Xq(M) if and only if b(Xs) = 0 according to Eq.L{A.113) or equivalenthyX ;) =
LxtaQ = —a(df — fb) = —A(f) = 0. Let us fix an elemenB € I7'(1) C Xo(M). Then every
elementY” in X, (M) has a unique decomposition

Y =X+I(Y)B, X € Xk (M). (A.21)

Now, puta = —:552, soa(B) = 0 anda(A) = tptaQ = b(B) = 1. SinceL5Q = (tpd+dip)S2 = 0,
this yields a particular expression fargiven by

Q=da—bAa=dya, (A.22)

whered, is the Lichnerowicz differential defined ki3 = d5 — b A 5 for any k-form 5 and satisfies
d; = 0. Furthermore, using the formuldy,ty] = ux,y| for vector fieldsX andY, we have
Lpa = 0, hence.gda = 0 that means ranka < 2n. SinceQ2" # 0, one can deduce from Ed._(Al22)
the condition

bAaA (da)" ™ #0 (A.23)

everywhere. This yields the Proposition 2.2 in Ref.| [36] thenanifold)M of dimensior2n admits an
LCS structure of the first kind if and only if it admits two of@msa, b such thatlb = 0, rankda <
2n and Eq. [[A.ZB) holds at every point 87. Note also that,da = tA(Q2+bAa) =b—a(A)b= 0.
This means thatA, B] = 0 because da = Laa = —L4tpsd = —114, 52 = 0. In sum, there exist
particular vector fieldst and B in X (M) that obey

[A,B]=0, a(A)=bB)=1, a(B)=>bA)=0. (A.24)

Thus one can obtain o/ the vertical foliation) = span{ A, B}, whose leaves are the orbits of a
natural action ofR2.
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Suppose that)M, 2) is an LCS manifold of the first kind an® is a basic transversal IA. Let
Xkr(M, B) be the Lie subalgebra ot (M) whose automorphisms also presefye It turns out
that X € Xi"(M, B) if and only if LxQ = 0, b(X) = 0 and[X, B] = 0. Similarly consider
the subset of”>° (M) that consists of functions satisfying(f) = B(f) = 0 and is denoted by
C5(M). Then one can show thgty, = (C3°(M), {—, —}q) is a Poisson-Lie subalgebra ¥ and
9 Py — X&r(M, B) is an isomorphism. A striking fact is that a semi-simple Lieup GG cannot
act transitively on a nonsymplectic LCS manifold.

The formula [[A.IB) proves that a Hamiltonian vector field isamformal infinitesimal transfor-
mation (CIT) of(M, Q). In general, a vector field is a CIT if

LxQ = axQ (A.25)

whereay is a function onM. The CIT forms a Lie algebra denoted &Y, (1/). By differentiating
Eq. (A.23), one can derive thétyb = dax, which implies

ax = b(X) + k, Kk = constant. (A.26)

One can rewrite Eq[{A.25) as
KQ = dy(1xQ). (A.27)

Thus an LCS form is d,-exact if there is a CITX. Or it can be written in terms of a local symplectic
formQ, = e 720 as
LxQ, = (aX — b(X))Qa. (A.28)

That is, the local form of the CIT is given by
LxQy = Kk, (A.29)

If we write 2, = dA(,) on an open neighborhodd, according to the Poincaré lemma, EQ. (A.29)
can be written as the form [16]
txQa = KA @) + dfa, (A.30)

where f, : U, — R is a smooth function ow/,,. If the conditions[(A.2P) and_(A.30) hold either
locally or globally, we will call X a conformal vector field which plays an important role in our
discussion. Ifif(M) = 0, the conformal vector fiel& has a unique decomposition given by

X =rZ+ X;, (A.31)

where.;Q) = Aand.x, 2 = df. The vector field? is called the Liouville vector field [15]. Note that,
even thougly = 0 identically, the conformal vector field = xZ is nontrivial and it is generated by
the open Wilson line (118) in our case [1]. We observed in Sebat this remarkable property leads
to a desirable consequence for the cosmic inflation.

We can extend the Lee homomorphisml toX,(M) — R by definingl(X) = b(X) — ax =
—k. If XY € X§(M), we getayxy) = X (b(Y)) — Y(b(X)) from Lixy)Q = axy)Q and so
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I([X,Y]) =b([X,Y]) — oqx,y) = —db(X,Y’) = 0 using the formula{A.119). Hence the extendesl
also a Lie algebra homomorphism. Its kernel is denotekeby = X!;, (M) and consists of vector
fields X to obeyLx 2, = 0, i.e., of locally Hamiltonian vector fields. Note thlitX) for Q = Q)
is equal tol(X) for . Thus the Lee homomorphishis conformally invariant. If we fix an element

C € 17'(1), we can get for every € X5 (M) the unique decomposition

Y =X+I1Y)0, XeXxi, (M). (A.32)

Ham

Then, ifc = —1cQ, we can solveL Q2 = (tcd + die)2 = acf2 to get a particular expression for
given by
Q=dc—bAc=dec. (A.33)

In a conservative dynamical system described by a Hamdtowector field, time coordinateis
not a phase space coordinate but an affine parameter on@#idiectories. But, for a general time-
dependent system, it is necessary to include the time auatelas an extra phase space coordinate.
The corresponding2n + 1)-dimensional manifold is known as an almost cosymplectiaifo&d
which is a triple( M, €2, ) where(2 andn are a two-form and a one-form ad such that) A Q" # 0.
If 2 andn are closed, i.edf) = dn = 0, thenM is said to be a cosymplectic manifold. Thus an
odd-dimensional counterpart of a symplectic manifold iggiby a cosymplectic manifold, which is
locally a product of a symplectic manifold with a circle oriad. A contact manifold constitutes a
subclass of cosymplectic manifolds with= dn. Then the one-formy is called a contact structure
or a contact one-form. Given a contact one-foynthere is a unique vector field such thatzn = 1
and.z(2 = 0. This vector fieldR is known as the Reeb vector field of the contact forntwo contact
formsn andn’ on M are equivalent if there is a smooth positive functipoan M such thaty = pn,
sincen’ A (dn')™ = p™tn A (dn)™ # 0. The contact structur€(n) determined by is the equivalence
class ofy.

The Darboux theorem for a contact manifolf, ) states that, in an open neighborhood of each
pointof M, itis always possible to find a set of local (Darboux) cooatés(z!, - - - , 2™, y1, -+ , Yn, 2)
such that the one-form can be written as

n=dz—> yda' (A.34)
i=1
and the Reeb vector field is given by
R = Q (A.35)
0z

To understand the contact one-forrmore closely, first let us denote Bythe contact distribution or
subbundle defined by the kernelflf X, Y are (local) vector fields i®, we have

dn(X,Y) = X(n(Y)) =Y (n(X)) = n([X,Y]) = —n([X,Y]). (A.36)

This says that the distribution is integrable if and only/if is zero onD. However the condition
n A (dn)" # 0 means that the kernel afy is one-dimensional and everywhere transvers®to
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Consequentlydn is a linear symplectic form of® and the largest integral submanifoldsofaren-
dimensional, so maximally non-integrable. In other wordspntact structure is nowhere integrable.

In the above Darboux coordinate system, the contact sulid@hi$ spanned by
0 0 , 0
Xi:—. PNy YZ: y >:1,"', 5 A.37
ox’ Ty 0z y; ! " ( )

so they obey the bracket relations

[X;,Y7] = /R, (X, Rl =Y, R] =0. (A.38)

Sincedn = Y., dz' A dy; is a symplectic form with rankn, the kernel ofdn is one-dimensional
and generated by the Reeb vectar Therefore every vector field on M can be uniquely written
asX = fR+ Y wheref € C~(M) andY is a section ofD. A contact structure is regular R is
regular as a vector field, that is, every point of the manif@d a neighborhood such that any integral
curve of the vector field passing through the neighborhoedemthrough only once.

Given a(2n — 1)-dimensional contact manifoldl/ with a contact form, i.e. a A (da)"* # 0,
one can construct an LCS manifold by considering a prindipaldlep : V' — M with groupS*
over M. ConsiderV = S! x M endowed with the fornf2 = da — b A a = dya, whereb is the
canonical one-form o!. Clearly,2 is nondegenerate arids closed but not exact. And it obeys
dQY—bAQ = dQ) = dia = 0. Hence,(V,Q) is an LCS manifold having as its Lee form but it
is not GCS. More generally, lgt : V' — M be an arbitrary principal bundle with gro§ over a
(2n —1)-dimensional manifold/. And leta be the connection one-form on this principal bundle and
F = da be the corresponding curvature two-form. Them,/ifa A F"~! #£ 0, the formQ = F —bAa
defines an LCS structure dnwhich is not GCS.

Let X(M) andA'(M) be theC™> (M )-modules of differentiable vector fields and one-forms\én
respectively. If(M, 2, n) is a cosymplectic manifold, then there exists an isomomlasC>°(M)-
modules

T:X(M)— AY(M) (A.39)

defined by
T(X) =txQ4+n(X)n. (A.40)

The Reeb vector field is given by = Y~1(5). Let f : M — R be a smooth function oA/. The
Hamiltonian vector field\ is then defined by

T(Xy) =df = R(f)n+n. (A.41)
In other words,X is the vector field characterized by the identities
UXp)Q=df = R(f)n,  n(Xy)=1. (A.42)

Then one can check that the time-like vector figldn Eq. (2.59) is a Hamiltonian vector field for
a cosymplectic manifoldR x M, 7} B, dt) wherem, : R x M — M and (M, B) is a symplectic
manifold.
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An almost cosymplectic manifoltV/, €2, 1) is said to be LCC, if there exist an open covering
{U,}aer and local functions,, : U, — R such that

d(e™?*Q) =0, d(e™*n) = 0. (A.43)
The local one-formdo,, glue up to a closed one-forirsatisfying
dQY—bAQ=d,Q =0, dn—bAn=dymn=0. (A.44)

Two LCC structure$(?’, ') and(2, n) are equivalentif)’ = fQ andn’ = fn for a positive functiory
on M where the Lee form a’ is given byt = b+d1In f. An LCC manifold reduces to a cosympletic
manifold if the Lee formb vanishes while it becomes an LCS manifoldyit= 0 identically. The
isomorphism[(A.4D) can be generalized to LCC manifolds &edbrresponding Hamiltonian vector
field is defined by

X;="""(df —R(f)n+n)+ S (A.45)

whereS is called the canonical vector field defined by
T(S)=b(R)n —b. (A.46)
Therefore X is characterized by the identities
UXp)Q=df = R(f)n+ f(L(R)n—b),  n(Xy) =1 (A.47)

It was shown in[[3[7] that an LCC manifold can be seen as a gkredlgphase space of time-dependent
Hamiltonian systems. Hence we argue that an LCC manifolWl@sresponds to a generalized phase
space for an inflationary universe and its quantizatiorizesala background-independent formulation
of the cosmic inflation, in particular, in the context of egent spacetime.

B Harmonic oscillator with time-dependent mass

We observed that the NC spacetif@g® in equilibrium is described by the Hilbert space of an
dimensional harmonic oscillator while the inflating spaoetin nonequilibrium is described by the
n-dimensional harmonic oscillator with a negative frictidine corresponding harmonic oscillator of
constant frequency and friction coefficienty satisfies the equation

§ + 204" + w?q' =0, i=1,---,n. (B.1)

The inflationary coordinateb (3]14) correspond to the ease—% < 0. Itis known that the above
second-order equation of motion cannot be directly derivath the Euler-Lagrange equation of any
Lagrangian. However, there is an equivalent second-ogleaten

e*(§ + 204’ + w?q') =0, (B.2)
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for which a variational principle can be fourid [60]. Althdugq. [B.1) is traditionally considered to
be non-Lagrangian, there exists an action principle foretipgation of motion[(BlJ2) in terms of the
Lagrangian

1
L = Em(q'2 — w?q?)e*™. (B.3)
The corresponding Hamiltonian is given by
1
H = _(6—2atp2 + 62atm2w2q2) (B4)
2m

wherep; = mg‘e?*.
It is interesting to notice that the equation of motibn (Bz2h be derived from an-dimensional
harmonic oscillator with a time-dependent masg) whose action is given by

S = %/dt(m(t)qz — k(t)q%) (B.5)

wherek(t) = m(t)w? with constant frequency. The variational principlejS = 0, with respect to
arbitrary variationgq’ leads to the equation of motion

o ) o5 L
m(t)(q +m(t)q +w q) = 0. (B.6)
The second-order equatidn (B.2) corresponds to the case
w — _ 2at
m() 20 = m(t) = mee ™. (B.7)

Recall that the equation of motion for the inflaton field cepends to the case with the time-dependent
massm(t) = moe3ft.
There is also the first-order formalism for the dynamicateys(B.5). The action has the form

S = % /dt(yi' — zy — (v + 2amy + w’z?)) e (B.8)
The equations of motion derived from the actibn (B.8) aregiby
(7 + 20y + wx)e*™ =0, (& —y)e*™ = 0. (B.9)
The above actior (Bl8) describes a singular system withngkctass constraints
be=pe— gy, Gy =p, + gme (8.10)
with the Hamiltonian .
H(z,y,t) = 5(@/2 + 20y + wia?)e, (B.11)

Even though the constraints are explicitly time-dependeiststill possible to apply the Hamiltonian
formalism with the help of Dirac brackets and perform thearacal quantization of the system. It
was shown in[[60] that the classical and quantum descrigifahe harmonic oscillator described
by the action[(B.b) is equivalent to the first-order approgisien in terms of the constraint system
described by the actiof (B.8). Furthermore it can be prokatithe dynamical system described by
Eqg. (B.2) is locally (i.e.|t| < oo) equivalent to the system with the equation of motlon{B.1).
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