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ABSTRACT

We propose a background-independent formulation of cosmicinflation. The inflation in this pic-

ture corresponds to a dynamical process to generate space and time while the conventional inflation is

simply an (exponential) expansion of a preexisting spacetime owing to the vacuum energy carried by

an inflaton field. We observe that the cosmic inflation is triggered by the condensate of Planck energy

into vacuum responsible for the dynamical emergence of spacetime and must be a single event accord-

ing to the exclusion principle of noncommutative spacetimecaused by the Planck energy condensate

in vacuum. The emergent spacetime picture admits a background-independent formulation so that the

inflation can be described by a conformal Hamiltonian systemcharacterized by an exponential phase

space expansion without introducing any inflaton field as well as anad hocinflation potential. This

implies that the emergent spacetime may incapacitate all the rationales to introduce the multiverse

hypothesis. In Part I we will focus on the physical foundation of cosmic inflation from the emergent

spacetime picture to highlight the main idea. Its mathematical exposition will be addressed in Part II.
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1 Introduction

History is a mirror to the future. If we do not learn from the mistakes of history, we are doomed to

repeat them.1 In the middle of the 19th century, Maxwell’s equations for electromagnetic phenomena

predicted the existence of an absolute speed,c = 2.998×108 m/sec, which apparently contradicted the

Galilean relativity, a cornerstone on which the Newtonian model of space and time rested. Since most

physicists, by then, had developed deep trust in the Newtonian model, they concluded that Maxwell’s

equations can only hold in a specific reference frame, calledthe ether. However, by doing so, they

reverted back to the Aristotelian view that Nature specifiesan absolute rest frame. It was Einstein to

realize the true implication of this quandary: It was askingus to abolish Newton’s absolute time as

well as absolute space. The ether was removed by the Einstein’s special relativity by radically modi-

fying the concept of space and time in the Newtonian dynamics. Time lost its absolute standing and

the notion of absolute simultaneity was physically untenable. Only the four-dimensional spacetime

has an absolute meaning. The new paradigm of spacetime has completely changed the Newtonian

world with dramatic consequences.

The physics of the last century had devoted to the study of twopillars: general relativity and

quantum field theory. And the two cornerstones of modern physics can be merged into beautiful

equations, the so-called Einstein equations given by

Rµν −
1

2
gµνR = 8πGNTµν , (1.1)

where the right-hand side is the energy-momentum tensor whose contents are described by (quantum)

field theories. Although the revolutionary theories of relativity and quantum mechanics have utterly

changed the way we think about Nature and the Universe, new open problems have emerged which

have not been resolved yet within the paradigm of the 20th century physics. For example, a short list of

them is the cosmological constant problem, the hierarchy problem, dark energy, dark matter, cosmic

inflation and quantum gravity. In particular, recent developments in cosmology, particle physics and

string theory have led to a radical proposal that there couldbe an ensemble of universes that might be

completely disconnected from ours [1]. Of course, it would be perverse to claim that nothing exists

beyond the horizon of our observable universe. The observable universe is one causal patch of a much

larger unobservable universe. However, a painful direction is to use the string landscape or multiverse

to explain some notorious problems in theoretical physics based on the anthropic argument [2]. “And

it’s pretty unsatisfactory to use the multiverse hypothesis to explain only things we don’t understand.”2

Taking history as a mirror, this situation is very reminiscent of the hypothetical luminiferous ether in

the late 19th century. Looking forward to the future, we may need another turn of the spacetime

picture to defend the integrity of physics.

1George Santayana (1863-1952).
2Graham Ross inQuanta magazine“At multiverse impasse, a new theory of scale” (August 18, 2014) andWired.com

“Radical new theory could kill the multiverse hypothesis.”
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In physical cosmology, cosmic inflation is the exponential expansion of space in the early universe.

Suppose that spacetime evolution is determined by a single scale factora(t) and its Hubble expansion

rateH ≡ ȧ
a

according to the cosmological principle and driven by the dynamics of a scalar fieldφ,

called the inflaton [3, 4]. Then the Einstein equation (1.1) reduces to the Friedmann equation

H2 =
8πGN

3

(1
2
φ̇2 + V (φ)

)
. (1.2)

The evolution equation of the inflaton in the Friedmann universe is described by

φ̈+ 3Hφ̇+
δV

δφ
= 0. (1.3)

The Friedmann equation (1.2) tells us that in the early universe withV (φ) ≈ V0 andφ̇ ≈ 0, there was

an inflationary epoch of the exponential expansion of space,i.e.,a(t) ∝ eHt whereH =
√

8πGNV0

3
is

called the inflationary Hubble constant. In order to successfully fit to data, one finds [3, 4]

V0 ≥ (2× 1016GeV)4 ≈ (10−2MP )
4 (1.4)

whereMP = 1/
√
8πGN is the Planck mass.

Let us contemplate the inflationary scenario with a criticaleye. According to this scenario [3, 4],

inflation is described by the exponential expansion of the universe in a supercooled false vacuum

state that is a metastable state without any fields or particles but with a large energy density. It should

be emphasized that the inflation scenario so far has been formulated in the context of effective field

theory coupled to general relativity. Thus, in this scenario, the existence of space and time isa priori

assumed from the beginning although the evolution of spacetime is determined by Eq. (1.1). In other

words, the inflationary scenario does not describe any generation (or creation) of spacetime but simply

characterizes an expansion of a preexisting spacetime. It never addresses the (dynamical) origin of

spacetime. However, there has to be a definite beginning to aninflationary universe [5]. This means

that the inflation is incomplete to describe the very beginning of our universe and some new physics

is needed to probe the past boundary of the inflating regions.One possibility is that there must have

been some sort of quantum creation event as a beginning of theuniverse [6].

The Friedmann equation (1.2) shows that the cosmic inflationis triggered by the potential energy

carried by an inflaton whose energy scale is near the Planck energy over which quantum gravity effects

become strong and effective field theory description may be broken down. Although an inflating false

vacuum is metastable, essentially all models of inflation lead to eternal inflation to the future since

expansion rate is much greater than decay rate [3]. Once inflation starts, it never stops. If one identifies

the slowly varying inflaton fieldφ(t) with a particle trajectoryx(t) = φ(t) andφ̇(t) with its velocity

v(t) = ẋ(t), the evolution equation (1.3) tells us that the frictional force, 3Hv(t), caused by the

inflating spacetime is (almost) balanced with an external forceF (x) = −dV
dx

, i.e.,

ẋ(t) ≈ F (x)

3H
, (1.5)

2



becausëx ≈ 0 during inflation. This implies that the cosmic inflation as a dynamical system corre-

sponds to a non-Hamiltonian system.3

Recent developments in string theory have revealed a remarkable and radical new picture about

gravity. For example, the AdS/CFT correspondence illustrates a surprising picture thatU(N) gauge

theory in lower dimensions defines a nonperturbative formulation of quantum gravity in higher di-

mensions [7]. In particular, the AdS/CFT duality shows a typical example of emergent gravity and

emergent space because gravity in higher dimensions is defined by a gravityless field theory in lower

dimensions. Now we have many examples from string theory in which spacetime is not fundamental

but only emerges as a large distance, classical approximation [8]. Therefore, the rule of the game in

quantum gravity is that space and time are an emergent concept. Since the emergent spacetime, we

believe, is a significant new paradigm for quantum gravity, we want to apply the emergent spacetime

picture to cosmic inflation. We will propose a background-independent formulation of the cosmic

inflation.4 This means that we do not assume the prior existence of spacetime but define a spacetime

structure as a solution of an underlying background-independent theory such as matrix models. The

inflation in this picture corresponds to a dynamical processto generate space and time which is very

different from the standard inflation simply describing an (exponential) expansion of a preexisting

spacetime. It turns out that spacetime is emergent from the Planck energy condensate in vacuum that

generates an extremely largeUniverse. Our observable patch within cosmic horizon is a very tiny

part∼ 10−60 of the entire spacetime. Originally the multiverse hypothesis has been motivated by

an attempt to explain the anthropic fine-tuning such as the cosmological constant problem [9] and

boosted by the chaotic and eternal inflation scenarios [3, 4]and the string landscape derived from the

Kaluza-Klein compactification of string theory [10, 11], which are all based on the traditional space-

time picture. Since emergent spacetime is radically different from any previous physical theories,

all of which describe what happens in a given spacetime, the multiverse picture must be reexamined

from the standpoint of emergent spacetime. The cosmic inflation from the emergent spacetime pic-

ture will certainly open a new prospect that may cripple all the rationales to introduce the multiverse

hypothesis.

Since the concept of the multiverse raises deep conceptual issues even to require to change our

view of science itself [2], it should be important to ponder on the real status of the multiverse whether

it is simply a mirage developed from an incomplete physics like the ether in the late 19th century or it

is of vital importance even in more complete theories. The main purpose of this paper is to illuminate

how the emergent spacetime picture brings about radical changes of physics, especially, regarding to

physical cosmology. In particular, a background-independent theory such as matrix models provides a

3Nonetheless, the friction term does not lead to dissipativeenergy production. This fact can be seen by observing that

Eq. (1.3) can be derived from the first law of thermodynamics,dE + pdV = V dρ + (ρ + p)dV = 0, whereρ+ p = φ̇2

andρ̇ =
(
φ̈+ δV

δφ

)
φ̇.

4Here we refer to a background-independent theory in which any spacetime structure is nota priori assumed but

defined by the theory.
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concrete realization of the idea of emergent spacetime which has a sufficiently elegant and explanatory

power to defend the integrity of physics against the multiverse hypothesis. The emergent spacetime

is a completely new paradigm so that the multiverse debate inphysics circles has to seriously take it

into account.

This is the first installment of a series of papers whose aim isto propose the cosmic inflation from

emergent spacetime picture. In Part I we will focus on the physical motivation and argumentation to

highlight the main idea, deferring the mathematical exposition to Part II. The Part II is intended to

be self-contained as much as possible and mathematical backgrounds underlying our arguments will

also be briefly reviewed in two Appendices. The Part I is organized as follows.

In Sec. 2, we explain the physical picture depicted in Figs. 1and 2, whose mathematical ex-

position will be addressed in Part II. The background-independent formulation of emergent gravity

crucially relies on the fact that noncommutative (NC) spacearises as a solution of a largeN matrix

model in the Coulomb branch and this vacuum on the Coulomb branch admits a separable Hilbert

space as quantum mechanics [12]. The gravitational metric is derived from a nontrivial inner auto-

morphism of the NC algebraAθ, in which the NC nature is essential to realize the emergent gravity

[13, 14, 15, 16]. See also closely related works [17, 18, 19, 20]. An important point is that the ma-

trix model does not presuppose any spacetime background on which fundamental processes develop.

Rather the background-independent theory provides a mechanism of spacetime generation such that

any spacetime structure including the flat spacetime arisesas a solution of the theory itself [15].

In Sec. 3, we observe that the NC spacetime is caused by the Planck energy condensate responsible

for the generation of spacetime and results in an extremely large spacetime. We demonstrate why the

emergent gravity clearly resolves the notorious cosmological constant problem [13, 14]. A principal

reason is that the huge vacuum energy being a perplexing cosmological constant in general relativity

was simply used to generate flat spacetime and thus does not gravitate. The emergent gravity is in

stark contrast to general relativity since it does not allowthe coupling of the cosmological constant

[21]. We note that the Planck energy condensate into vacuum must be a dynamical process and

show that the cosmic inflation arises as a solution of a time-dependent matrix model, describing the

dynamical process of the vacuum condensate. It turns out that the cosmic inflation corresponds to the

dynamical mechanism for the instantaneous condensation ofvacuum energy to enormously spread

out spacetime. It is remarkable to see that the inflation can be described by time-dependent matrices

only without introducing any inflaton field as well as anad hocinflation potential. Our work is not the

first to address physical cosmology using matrix models. There have been interesting earlier attempts

[22]. In particular, the cosmic inflation was addressed in very interesting works [23] using the Monte

Carlo analysis of the type IIB matrix model in Lorentzian signature and it was found that three out

of nine spatial directions start to expand at some critical time after which exactly (3+1)-dimensions

dynamically become macroscopic.

In Sec. 4, we discuss why the emergent spacetime picture may incapacitate all the rationales to

introduce the multiverse hypothesis. Since the emergent spacetime picture is radically different from
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the conventional picture in general relativity so that theyare exclusive and irreconcilable each other,

we reconsider main sources to introduce the multiverse hypothesis from the standpoint of emergent

spacetime: (A) cosmological constant problem, (B) chaoticand eternal inflation scenarios, (C) string

landscape. We argue [24] that the emergent spacetime certainly opens a new perspective that may

cripple all the rationales to introduce the multiverse hypothesis.

2 Emergent spacetime from largeN duality

String theory is defined by replacing particles (point-likeobjects) with strings (one-dimensional ob-

jects). In order to do this, we need to introduce anew constantα′ whose physical dimension is

(length)2. It is well-known that the new constantα′ introduces a new duality depicted byR →
R′ = α′

R
. This is known as the T-duality in string theory [25], but it is not possible in particle the-

ories(α′ = 0). It is important to notice that a new physical constant such as ~ andα′ introduces a

deformation of some structure in a physical theory [13, 14].For instance, the Planck constant~ in

quantum mechanics carries the physical dimension[~] = (length)× (momentum) and so it deforms

the algebraic structure of particle phase space from commutative to NC space, i.e.,

xp− px = 0 ⇒ xp− px = i~. (2.1)

An educated reasoning motivated by the fact that[α′] = (length)× (length) leads to a natural spec-

ulation thatα′ brings about the deformation of the algebraic structure of spacetime itself such that

xy − yx = 0 ⇒ xy − yx = iα′. (2.2)

From the deformation theory point of view, replacing particles with strings is equivalent to the tran-

sition from commutative space to NC space. This may be supported by the fact that the NC space

(2.2) defines only a minimal area whereas the concept of pointis doomed as if~ in quantum me-

chanics introduces a minimal area in the NC phase space (2.1). The minimal surface in the NC space

(2.2) acts as a basic building block of string theory and behaves like the smallest units of spacetime

blob. Remarkably the deformation (2.2) provides us an important clue for a background-independent

formulation of string theory as will be discussed in Part II.

It turns out [15] that the NC space (2.2) denoted byR2
α′ is much more radical and mysterious

than we thought. In order to understand NC spacetime correctly, we need to deactivate the thought

patterns that we have installed in our brains and taken for granted for so many years. The reason is

the following. As we have learned from quantum mechanics, the NC phase space (2.1) introduces

the wave-particle duality. Indeed the NC space (2.2) also brings about a radical change of physics

since the NC nature of spacetime is responsible for a new kindof duality, known as the gauge-gravity

duality. The underlying mathematical principle is the well-known duality between geometry and

algebra. A primary cause of the radical change of physics in quantum mechanics is that the NC phase
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space (2.1) introduces acomplexvector space called the Hilbert space [26]. This is also truefor

the NC space (2.2) since its mathematical structure is essentially the same as quantum mechanics.

Similarly to quantum mechanics, the NC spaceR2
α′ also admits a nontrivial inner automorphism. For

example, for an arbitrary NC fieldf(x, y), we have the relation given by

f(x+ a, y) = U(a)†f(x, y)U(a), f(x, y + b) = U(b)†f(x, y)U(b) (2.3)

whereU(a) = exp(− iay
α′
) andU(b) = exp( ibx

α′
). Thus a striking feature of the NC space is that

every points are unitarily equivalent because translations inR2
α′ are simply a unitary transformation

acting on the Hilbert spaceH. This means that the concept of space is doomed and the classical

space is replaced by a state in the Hilbert spaceH. This fact leads to an important picture that

classical spacetime is somehow a derived concept and a NC algebra and its Hilbert space play a more

fundamental role. In other words, NC spacetime necessarilyimplies emergent spacetime if spacetime

at microscopic scales should be viewed as NC and any dynamical variable defined onR2
α′ becomes an

operator acting on the Hilbert spaceH. In particular, any NC field can be regarded as a linear operator

acting on the Hilbert space. Note that the NC space (2.2) is equivalent to the Heisenberg algebra of

harmonic oscillator, i.e.[a, a†] = 1, if the annihilation operator is defined bya = 1√
2α′

(x+ iy). Thus

the Hilbert space forR2
α′ is the Fock space and has a countable basis. Therefore the representation

of NC fields on the Hilbert spaceH is given byN × N matrices whereN = dim(H) → ∞.

Consequently, the NC space (2.2) leads to an interesting equivalence between a lower-dimensional

largeN gauge theory and a higher-dimensional NCU(1) gauge theory [15].

To be specific, let us consider a2n-dimensional NC space denoted byR2n
θ whose coordinate

generators obey the commutation relation

[ya, yb] = iθab, a, b = 1, · · · , 2n, (2.4)

where(θ)ab = α′(1n ⊗ iσ2) is a2n× 2n constant symplectic matrix andls ≡
√
α′ is a typical length

scale set by the vacuum. The NC spaceR2
α′ corresponds to then = 1 case. Let us denote the NC

⋆-algebra generated byR2n
θ byAθ. Similarly to then = 1 case, the NC space (2.4) is equivalent to

the Heisenberg algebra ofn-dimensional harmonic oscillator. Hence the underlying Hilbert space on

whichAθ acts is given by the Fock space defined by

H = {|~n〉 ≡ |n1, · · · , nn〉| ni ∈ Z≥0, i = 1, · · · , n}, (2.5)

which is orthonormal, i.e.,〈~n|~m〉 = δ~n,~m and complete, i.e.,
∑∞

~n=0 |~n〉〈~n| = 1H, as is well-known

from quantum mechanics. Since the Fock space (2.5) has a countable basis, it is convenient to in-

troduce a one-dimensional basis using the “Cantor diagonalmethod” to put then-dimensional non-

negative integer lattice inH into one-to-one correspondence with the natural numbers:

Z
n
≥0 ↔ N : |~n〉 ↔ |n〉, n = 1, · · · , N →∞. (2.6)
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NC U(1) gauge theory onRd−1,1 × R2n
θ

U(N →∞) Yang-Mills gauge theory onRd−1,1 Quantized frame bundle

D = d+ 2n-dimensional Einstein gravity
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Figure 1: Flowchart for emergent gravity

In this one-dimensional basis, the completeness relation of the Fock space (2.5) is now given by∑∞
n=1 |n〉〈n| = 1H. Since NC fields inAθ are linear operators acting on the Fock spaceH, the

representation of the NC fields inAθ is given byN × N matrices inEnd(H) ≡ AN whereN =

dim(H) → ∞. Here we have denoted the set ofN × N matrices inEnd(H) by AN . In the one-

dimensional basis (2.6), the trace overAθ can also be transformed into the trace overN ×N matrices

in AN , i.e., ∫

M

d2ny

(2π)n|Pfθ| = TrH = TrN . (2.7)

Using the matrix representation, one can show [13, 27, 28, 29] that theD = (d+2n)-dimensional

NC U(1) gauge theory onRd−1,1 × R2n
θ is exactly mapped to thed-dimensionalU(N → ∞) Yang-

Mills theory onRd−1,1:

S = − 1

G2
YM

∫
dDY

1

4
(F̂AB − BAB)

2 (2.8)

= − 1

g2YM

∫
ddxTr

(1
4
FµνF

µν +
1

2
DµφaD

µφa −
1

4
[φa, φb]

2
)

(2.9)

whereG2
YM = (2π)n|Pfθ|g2YM and

BAB =

(
0 0

0 Bab

)
.

We emphasize that the equivalence between theD-dimensional NCU(1) gauge theory (2.8) and

d-dimensionalU(N →∞) Yang-Mill theory (2.9) is not a dimensional reduction but anexact math-
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ematical identity. A remarkable point is that the largeN gauge theories described by the action (2.9)

arise as a nonperturbative formulation of string/M theories [30]. For instance, we get the IKKT matrix

model ford = 0 [31], the BFSS matrix quantum mechanics ford = 1 [33] and the matrix string theory

for d = 2 [34]. The most interesting case arises ford = 4 andn = 3 which suggests an engrossing

duality [12] that the 10-dimensional NCU(1) gauge theory onR3,1 ×R
6
θ is equivalent to the bosonic

action of 4-dimensionalN = 4 supersymmetricU(N) Yang-Mills theory, which is the largeN gauge

theory of the AdS/CFT duality [7]. According to the largeN duality or gauge-gravity duality, the

resulting largeN gauge theory must be dual to a higher dimensional gravity or string theory as sum-

marized in Fig. 1. Hence it should not be surprising that the NC U(1) gauge theory should describe

a theory of gravity (or a string theory) in the same dimensions. In spite of the apparent relationship

depicted in Fig. 1, this important possibility unfortunately has been largely ignored until recently.

The blue arrows on the right-hand side of Fig. 1 show how to derive D-dimensional Einstein

gravity from NCU(1) gauge theory onRd−1,1 × R2n
θ , which should be expected if we accept the

conjectural largeN duality. However we can use the emergent gravity from NCU(1) gauge theory to

verify the conjectural largeN duality by realizing the equivalence between the actions (2.8) and (2.9)

in a reverse way. It is based on the observation [12, 15] that there are two different kinds of vacua in

Coulomb branch if we consider theN →∞ limit and the NC space (2.4) arises as a vacuum solution

of thed-dimensionalU(N → ∞) Yang-Mills theory (2.9) in the Coulomb branch. See Fig. 2. The

conventional choice of vacuum in the Coulomb branch ofU(N) Yang-Mills theory is given by

[φa, φb]|vac = 0 ⇒ 〈φa〉vac = diag
(
(αa)1, (αa)2, · · · , (αa)N

)
(2.10)

for a = 1, · · · , 2n. In this case theU(N) gauge symmetry is broken toU(1)N . If we consider the

N →∞ limit, the largeN limit opens a new phase of the Coulomb branch given by

[φa, φb]|vac = −iBab ⇒ 〈φa〉vac = pa ≡ Baby
b (2.11)

whereBab = (θ−1)ab and the vacuum moduliya satisfy the Moyal-Heisenberg algebra (2.4). This

vacuum will be called the NC Coulomb branch. Note that the Moyal-Heisenberg vacuum (2.11)

saves the NC nature of matrices while the conventional vacuum (2.10) dismisses the property.

Suppose that fluctuations around the vacuum (2.11) take the form

Dµ = ∂µ − iÂµ(x, y), φa = pa + Âa(x, y). (2.12)

We denote the NC⋆-algebra onRd−1,1 × R2n
θ byAd

θ ≡ Aθ

(
C∞(Rd−1,1)

)
= C∞(Rd−1,1)⊗ Aθ. The

adjoint scalar fields in Eq. (2.12) now obey the deformed algebra given by

[φa, φb] = −i(Bab − F̂ab) ∈ Ad
θ, (2.13)

where

F̂ab = ∂aÂb − ∂bÂa − i[Âa, Âb] (2.14)
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U(N →∞) Yang-Mills gauge theory onRd−1,1

NCU(1) gauge theory onRd−1,1 × R2n
θ D = d+ 2n-dimensional Einstein gravity

Differential operators as quantized frame bundle

LargeN duality

�
�

�
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�
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�
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NC Coulomb branch
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Classical limit

❅
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❅
❅
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❅
❅❅❘

Inner derivation

�
�
�
�
�
�
�
��✒

Figure 2: Flowchart for largeN duality

with the definition∂a ≡ adpa = −i[pa, ·]. Plugging the fluctuations in Eq. (2.12) into thed-

dimensionalU(N → ∞) Yang-Mills theory (2.9), we finally get theD = (d + 2n)-dimensional

NCU(1) gauge theory. Thus we arrive at the reversed version of the equivalence [12, 15]:

S = − 1

g2YM

∫
ddxTr

(1
4
FµνF

µν +
1

2
DµφaD

µφa −
1

4
[φa, φb]

2
)

= − 1

G2
YM

∫
dDY

1

4
(F̂AB − BAB)

2, (2.15)

whereÂA(x, y) = (Âµ, Âa)(x, y) areD = (d + 2n)-dimensional NCU(1) gauge fields. It might be

remarked that the NC space (2.11) is a consistent vacuum solution of the action (2.9) and the crux

to realize the equivalence (2.15). If the conventional commutative vacuum (2.10) were chosen, we

would have failed to realize the equivalence (2.15). Indeedit turns out [12] that the NC Coulomb

branch is crucial to realize the emergent gravity from matrix models or largeN gauge theories as

depicted in Fig. 2.

Some remarks are in order. The relationship between a lower-dimensional largeN gauge theory

and a higher-dimensional NCU(1) gauge theory in Figs. 1 and 2 is an exact mathematical identity.

The identity in Fig. 1 is derived from the fact that the NC space (2.4) admits a separable Hilbert space

and NCU(1) gauge fields become operators acting on the Hilbert space. The identity in Fig. 2 is

based on the fundamental fact that the NC space (2.4) is a consistent vacuum solution of a largeN

gauge theory in the Coulomb branch and more general solutions are generated by all possible (on-

shell) deformations of the vacuum. This means that there exists an isomorphic map from the NCU(1)
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gauge theory to the Einstein gravity which completes the largeN duality. To be precise, consider the

inverse metric in Einstein gravity given by

( ∂
∂s

)2
= EA ⊗ EA = gMN(X)∂M ⊗ ∂N , (2.16)

whereEA = EM
A (X)∂M are orthonormal frames on the tangent bundleTM of a D-dimensional

spacetime manifoldM. The largeN (or gauge-gravity) duality in Figs. 1 and 2 can be achieved by

realizing the vector fieldsEA = EM
A (X)∂M ∈ Γ(TM) in terms of NCU(1) gauge fields.

A decisive clue is coming from the fact that the NC⋆-algebraAθ generated by the Moyal-

Heisenberg algebra (2.4) always admits a nontrivial inner automorphismI as was already illustrated

in Eq. (2.3) for then = 1 case. In general, for any dynamical variableΦ̂(x, y) ∈ Ad
θ, one has the

relation

Φ̂(x, y + d) = U(d)†Φ̂(x, y)U(d), U(d) = eipad
a ∈ I. (2.17)

In the presence of NCU(1) gauge fieldsÂA(x, y) = (Âµ, Âa)(x, y) which appear in the form of

background-independent variablesφA(x, y) ≡ (iDµ, φa)(x, y), one can covariantize the inner auto-

morphism withU(d) = eiφAdA ∈ I by introducing open Wilson lines [35]. See section 3.2 in [13]

for more details. The infinitesimal generators ofI form an inner derivation defined by the adjoint

operation

Ad
θ → Dd : f 7→ adf = −i[f, ·] (2.18)

for anyf ∈ Ad
θ. The module of derivationsDd is a direct sum of the submodules of horizontal and

inner derivations [36]:

Dd = Hor(Ad
θ)⊕D(Ad

θ), (2.19)

where horizontal derivation is locally generated by a vector field

kµ(x, y)
∂

∂xµ
∈ Hor(Ad

θ). (2.20)

Definitely the derivationDd is a Lie algebra homomorphism, i.e.,

ad[f,g] = i[adf , adg] (2.21)

for f, g ∈ Ad
θ and their commutator[f, g] ∈ Ad

θ. In particular, we are interested in the derivation

algebra generated by the dynamical variables in Eq. (2.12).It is defined by

V̂A = {adφA
= −i[φA, ·]|φA(x, y) = (iDµ, φa)(x, y) ∈ Ad

θ} ∈ Dd. (2.22)

In a large-distance limit, i.e.|θ| → 0, one can expand the NC vector fieldsV̂A in Eq. (2.22) using

the explicit form of the Moyal⋆-product. The result takes the form

V̂A = V M
A (x, y)

∂

∂XM
+

∞∑

p=2

V
a1···ap
A (x, y)

∂

∂ya1
· · · ∂

∂yap
∈ Dd, (2.23)
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whereXM = (xµ, ya) are local coordinates on aD-dimensional emergentLorentzianmanifoldM
andV µ

A = δµA. Thus the Taylor expansion of NC vector fields inDd generates an infinite tower of the

so-called polyvector fields [15]. Note that the leading termgives rise to the ordinary vector fields that

will be identified with a frame basis associated to the tangent bundleTM of an emergent manifold

M. It is important to perceive that the realization of emergent geometry through the derivation algebra

in Eq. (2.22) is intrinsically local. Therefore it is necessary to consider patching or gluing together

the local constructions to form a set of global quantities. We will assume that local coordinate patches

have been consistently glued together to yield global (poly)vector fields. See Refs. [37] for a global

construction of NC⋆-algebras and Ref. [15] for the globalization of emergent geometry. It will also

be recapitulated in Part II. Let us truncate the above polyvector fields to ordinary vector fields given

by

X(M) =
{
VA = V M

A (x, y)
∂

∂XM
|A,M = 0, 1, · · · , D − 1

}
. (2.24)

The orthonormal vielbeins onTM are then defined by the relation [38]

VA = λEA ∈ Γ(TM) (2.25)

or onT ∗M
vA = λ−1eA ∈ Γ(T ∗M). (2.26)

The conformal factorλ ∈ C∞(M) is determined by the volume-preserving condition

LVA
νt =

(
∇ · VA + (2− d− 2n)VA lnλ

)
νt = 0, ∀A = 0, 1, · · · , D − 1, (2.27)

where the invariant volume form onM is given by

νt ≡ ddx ∧ ν = λ2ddx ∧ v1 ∧ · · · ∧ v2n

= λ2−d−2nνg (2.28)

andνg = e0 ∧ · · · ∧ eD−1 is theD-dimensional Riemannian volume form.

Define the structure equations of vector fieldsVA = λEA ∈ Γ(TM) by

[VA, VB] = −gAB
CVC . (2.29)

Then the volume-preserving condition (2.27) can equivalently be written as [13, 14]

gBA
B = VA lnλ2. (2.30)

In the end, the Lorentzian metric on aD-dimensional spacetime manifoldM is given by [13, 14, 15]

ds2 = GMN(X)dXM ⊗ dXN = eA ⊗ eA

= λ2vA ⊗ vA = λ2
(
ηµνdx

µdxν + vab v
a
c (dy

b −Ab)(dyc −Ac)
)

(2.31)
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whereAb := Ab
µ(x, y)dx

µ. The above metric completely determines aD-dimensional Lorentzian

spacetime emergent from the NCU(1) gauge fields described by the action (2.15). Therefore the NC

field theory representation of thed-dimensional largeN gauge theory in the NC Coulomb branch

provides a powerful machinery to identify gravitational variables dual to largeN matrices.

The prescription (2.25) implies that the metricgV = vA ⊗ vA determined by the gauge theory

basisVA is in the same conformally equivalent class with the Einstein metric gE = eA ⊗ eA for

the orthonormal frameEA and thus the Weyl tensors are the same for both metrics. Hencethis

prescription is particularly useful for Ricci-flat manifolds [38]. However, for other cases such as

conformally flat manifolds, the curvature tensors, i.e. Ricci tensors, determined by the metricsgV and

gE are in general not the same. For the latter case, there existsa more natural prescription given by

(Vµ, Va) = (Eµ, λEa) ∈ Γ(TM), (2.32)

where an arbitrary positive functionλ is still determined by solving Eq. (2.30). But the volume-

preserving condition is replaced by

LVA
νt =

(
∇ · VA + (2− 2n)VA lnλ

)
νt = 0, ∀A = 0, 1, · · · , D − 1, (2.33)

becauseνt = λ2−2nνg is the invariant volume form in this case. With this prescription, the emergent

metric is now given by

ds2 = ηµνdx
µdxν + λ2vab v

a
c (dy

b −Ab)(dyc −Ac). (2.34)

It is straightforward to see that the condition (2.33) readsas

∂µρ+ ∂a(ρA
a
µ) = 0 & ∂b(ρV

b
a ) = 0, (2.35)

whereρ = λ2detvab . Thus the new prescription can be implemented as before if there exists a solution

λ(x, y) obeying Eq. (2.35). In particular, it provides a more convenient basis for a product man-

ifold. For example, if NCU(1) gauge fields show a factorized dependence given byÂA(x, y) =(
Âµ(x), Âa(y)

)
, we expect that such gauge fields will generate a product manifold of the form

Rd−1,1 × M2n. This is the case for Eq. (2.32) sinceλ = λ(y) andAa = 0 in this case, while

Eq. (2.25) gives rise to a warped product metric. Later we will take the prescription (2.32) to describe

the cosmic inflation in a comoving frame in which the inflationary metric takes the form

ds2 = −dt2 + a(t)2dy · dy. (2.36)

We have implicitly assumed that the dynamical variables in Eq. (2.22) satisfy the equations of

motion derived from the action (2.15). This means that the fluctuations in Eq. (2.12) must arise

as a solution of NCU(1) gauge theory defined by the action (2.15). Using the relationbetween

Ad
θ andDd, it is in principle possible to translate the equations of motion for NC gauge fields in

the algebraAd
θ into some geometrical equations for polyvector fields in thederivationDd whose
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commutative limit corresponds to gravitational field equations for the metric (2.31) or (2.34). This

translation for thed = 0 case is relatively simple in lower dimensions as was done in [13, 14] for

D = 2, 3, 4 dimensions. Recently we also identified the Einstein’s equation for six-dimensional

NC U(1) gauge fields obeying the Hermitian Yang-Mills equations [39]. However the problem for

general NCU(1) gauge fields in higher dimensions may be nontrivial even in the classical limit. If

we include higher spin fields in polyvector fields defined by Eq. (2.23), the problem will be much

more complicated. Nevertheless it should be important to determine the precise form of gravitational

equations and their derivative corrections because the higher-order terms in Eq. (2.23) are interpreted

as quantum corrections according to the emergent quantum gravity picture [14, 15]. We hope to

address this problem in the near future.

In conclusion, the general largeN duality depicted in Fig. 2 can be explained via the duality chain

Ad
N =⇒ Ad

θ =⇒ Dd, (2.37)

whereAd
N ≡ AN

(
C∞(Rd−1,1)

)
= C∞(Rd−1,1) ⊗ AN . The dynamical variables ind-dimensional

Yang-Mills gauge theory in Fig. 2 take values inAd
N while those inD = (d + 2n)-dimensional NC

U(1) gauge theory take values inAd
θ. These two NC algebrasAd

N andAd
θ are related to each other by

considering the NC Coulomb branch for the algebraAd
N .

3 Cosmic inflation from time-dependent matrices

From now on we will focus on the matrix quantum mechanics (MQM), i.e., thed = 1 case in Eq.

(2.15), to address the background-independent formulation of cosmic inflation. The underlying action

in this case is given by

S =
1

g2

∫
dtTr

(1
2
(D0φa)

2 +
1

4
[φa, φb]

2
)

=
1

4g2

∫
dt ηACηBDTr[φA, φB][φC , φD], (3.1)

whereφ0 ≡ iD0 = i ∂
∂t

+ A0(t), φA(t) = (φ0, φa)(t) and ηAB = diag(−1, 1, · · · , 1), A,B =

0, 1, · · · , 2n. With the notation of the symbolηAB, it is easy to see that the matrix action (3.1) has a

global automorphism given by

φA → φ′
A = ΛA

BφB + cA (3.2)

if ΛA
B is a rotation inSO(2n, 1) andcA are constants proportional to the identity matrix. It will be

shown later that the global symmetry (3.2) is responsible for the Poincaré symmetry of flat space-

time emergent from a vacuum in the Coulomb branch of MQM and sowill be called the Poincaré

automorphism. We remark that the timet in the action (3.1) is not a dynamical variable but a param-

eter. The concept of emergent time will be defined in Part II byconsidering a one-parameter family

of deformations of zero-dimensional matrices which is parameterized by the coordinatet. Then the
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one-parameter family of deformations can be regarded as thetime evolution of a dynamical system.

A close analogy with quantum mechanics implies that the concept of emergent time is related to the

time evolution of the dynamical system. In this context, theone-dimensional matrix model (3.1) can

be interpreted as a Hamiltonian system of a zero-dimensional (e.g., IKKT) matrix model [15].

The equations of motion for the matrix action (3.1) are givenby

D2
0φa + [φb, [φa, φb]] = 0, (3.3)

which must be supplemented with the Gauss constraint

[φa, D0φa] = 0. (3.4)

In order to achieve the NC field theory representation for theaction (2.15), we have considered the

NC Coulomb branch defined by

〈φA〉vac = pA =
(
i
∂

∂t
+ E , pa

)
, (3.5)

whereE ≡ 〈A0(t)〉vac is a constant vacuum energy density and the vacuum modulipa satisfy the

commutation relation (2.11). We emphasize that the NC Coulomb branch (3.5) is a consistentvacuum

solution of MQM since it satisfies the equations of motion(3.3) as well as the Gauss constraint (3.4).

SinceE is proportional to the identity matrix, it plays no role in the temporal covariant derivativeD0

and so it can be dropped without loss of generality. The notation (3.5) makes a merit of the emphasis

that the temporal differential operator inφ0 must be regarded as a timelike background on an equal

footing with the spatial vacuum modulipa. Let us consider all possible deformations of the vacuum

(3.5) and parameterize them as Eq. (2.12). Plugging the fluctuations into the action (3.1) leads to the

identity

S =
1

g2

∫
dtTr

(1
2
(D0φa)

2 +
1

4
[φa, φb]

2
)

= − 1

4G2
YM

∫
d2n+1y ηACηBD(F̂AB −BAB)(F̂CD − BCD), (3.6)

whereG2
YM(2π)n|Pfθ|g2 is the(2n+ 1)-dimensional gauge coupling constant.

Let us contemplate how we have obtained the(2n + 1)-dimensional emergent spacetimeM de-

scribed by the Lorentzian metric (2.34). At the outset, we have considered a background-independent

theory in which any existence of spacetime is not assumed butdefined by the theory itself. Of course,

the background-independent theory does not mean that the physics is independent of the background.

Background independence here means that, although a physical phenomenon occurs in a particular

background with a specific initial condition, an underlyingtheory itself describing such a physical

event should presuppose neither any kind of spacetime nor material backgrounds. Therefore the

background itself should arise from a vacuum solution of theunderlying theory. In particular, the

background-independent theory has to make no distinction between geometry and matter since it has
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no predetermined spacetime. We have defined a most primitivevacuum such that it generates a simple

spacetime structure. General and more complicated spacetime structures are obtained by deforming

the primitive vacuum in all possible ways. These deformations correspond to physical processes that

happen upon a particular (spacetime) background. Hence they are regarded as a dynamical system.

Motivated by a close analogy with quantum mechanics, we argue in Part II that the deformations of

spacetime structure supported on a vacuum solution must be understood as the time evolution of the

dynamical system. As a consequence, the fundamental action(3.1) describes a dynamical system,

from which an emergent(2n + 1)-dimensional Lorentzian spacetimeM with the metric (2.34) is

derived.

The largeN duality in Fig. 2 says that the gravitational variables suchas vielbeins in general

relativity arise from the commutative limit of NCU(1) gauge fields via the map (2.37). Then one

may ask where flat Minkowski spacetime comes from. Let us lookat the metric (2.34) to identify

the origin of the flat Minkowski spacetime. Definitely the Lorentzian manifoldM becomes the

Minkowski spacetime when all fluctuations die out, i.e.,vab → δab , Aa → 0. Therefore the vacuum

geometry for the metric (2.34) was originated from the vacuum configuration (3.5) in whichV (0)
A ≡

〈VA〉vac = δMA
∂

∂XM , soλ2 → 1 according to Eq. (2.30). In other words, the(2n + 1)-dimensional

flat Minkowski spacetime is emergent from the vacuum condensate (3.5) since the corresponding

vielbeins and the metric are given byE(0)
A = V̂

(0)
A =

(
∂
∂t
, ∂
∂ya

)
andds2 = −dt2+dy ·dy [13, 14]. We

have to emphasize that the vacuum algebra responsible for the emergence of the Minkowski spacetime

is the Moyal-Heisenberg algebra (2.11). But the NC Coulomb vacuum induces a nontrivial vacuum

energy density caused by the condensate (2.11). We can calculate it using the action (3.6):

ρvac =
1

4G2
YM

|Bab|2. (3.7)

A striking fact is that the vacuum (2.11) responsible for thegeneration of flat spacetime is not empty.

Rather the flat spacetime had been originated from the uniform vacuum energy (3.7) known as the cos-

mological constant in general relativity. This is a tangible difference from Einstein gravity, in which

Tµν = 0 in flat spacetime as one can see from Eq. (1.1). Consequently,the emergent gravity reveals

a remarkable picture that a uniform vacuum energy such as Eq.(3.7) does not gravitate. As a result,

the emergent gravity does not contain the coupling of cosmological constant like
∫
d2n+1x

√
−GΛ, so

it presents a striking contrast to general relativity. Thisimportant conclusion may be strengthened by

applying the Lie algebra homomorphism (2.21) to the commutators in Eq. (2.13), which reads as

− iad[φa,φb] ≡ V̂F̂ab−Bab
= V̂F̂ab

= [V̂a, V̂b] ∈ D1 (3.8)

for a constant field strengthBab. To stress clearly, the gravitational fields emergent from NC U(1)

gauge fields must be insensitive to the constant vacuum energy such as Eq. (3.7). In the end, the

emergent gravity clearly dismisses the notorious cosmological constant problem [13, 14, 21].

In order to estimate the dynamical energy scale for the vacuum condensate (3.5), note that the

Newton constantGN according to emergent gravity picture has to be determined by field theory
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parameters only such as the gauge coupling constantGYM andθ = B−1 defining the NCU(1) gauge

theory (3.6). A simple dimensional analysis leads to the result [13, 14]

GN~
2

c2
∼ G2

YM |θ|, (3.9)

where|θ| := |Pfθ| 1n . To be specific, when considering the four-dimensional casein whichMP =

(8πGN)
−1/2 ∼ 1018 GeV andG2

YM ∼ 1
137

, the vacuum energy (3.7) due to the condensate (2.11) is at

a moderate estimate given by

ρvac =
1

4G2
YM

|Bab|2 ∼ G2
YMM

4
P ∼ 10−2M4

P . (3.10)

Amusingly emergent gravity discloses that the perverse vacuum energyρvac ∼ M4
P was actually the

origin of flat spacetime. It is worthwhile to remark that the Planck massMP naturally sets a dynam-

ical scale for the emergence of gravity and spacetime if quantum gravity should be formulated in a

background-independent way so that the spacetime geometryemerges from a vacuum configuration

of some fundamental ingredients in the underlying theory. Therefore it may be not a surprising result

but rather an inevitable consequence that the Planck energydensity (3.10) in vacuum was the genetic

origin of spacetime.

We observed before that the MQM admits a global automorphismgiven by Eq. (3.2). Let us see

what is the consequence of the Poincaré automorphism (3.2)on the emergent spacetime geometry.

The Poincaré automorphism leads to the transformationV
(0)
A → V

′(0)
A = ΛA

BV
(0)
B . However, this

transformation does not changeλ2 becausedetΛ = 1. The geometry for the transformed vacuum

p′A is determined by the metric (2.34) that is again the flat Minkowski spacetimeR2n,1. Therefore,

we see that the vacuum configuration responsible for the generation of flat spacetime is not unique

but degenerate up to the Poincaré automorphism.5 After all, the global Poincaré symmetry of the

Minkowski spacetime is emergent from the Poincaré automorphism (3.2) of MQM.

Note that the Planck energy condensate in vacuum resulted inan extremely extended spacetime

as the metric (2.34) clearly indicates. However, since we have started with a background-independent

theory in which any spacetime structure has not been assumedin advance, the spacetime was not

existent at the beginning but simply emergent from the vacuum condensate (3.5). Therefore the Planck

energy condensation into vacuum must be regarded as a dynamical process. Since the dynamical

scale for the vacuum condensate is about of the Planck energy, the time scale for the condensation

will be roughly of the Planck timetP ∼ 10−44 sec. Inflation scenario asserts that our Universe at the

beginning had undergone an explosive inflation era lasted roughly∼ 10−33 seconds. Thus it is natural

to consider the cosmic inflation as a dynamical process for the instantaneous condensation of vacuum

energyρvac ∼ M4
P to enormously spread out spacetime [21]. Now we will explorehow the cosmic

5Note that the vacuum solution (3.5) is further degenerated under the scalingpa → p′a = βpa or ya → y′a = β−1ya

as far asβ ∈ R \ {0} is a nonzero constant. We will use this freedom to normalize the initial length scale such that

|ya(t = 0)| = LP or ls =
√
α′.
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inflation is triggered by the condensate of Planck energy in vacuum responsible for the dynamical

emergence of spacetime.

First let us understand intuitively Eqs. (1.2) and (1.3) to get some dear insight from the old

wisdom. Suppose that a test particle with massm is placed in the condensate (3.10). Consider a ball

of radiusr(t) and the test particle placed on its surface. According to theGauss’s law, the particle will

be subject to the gravitational potential energyV (r) = −GNM(r)m
r

caused by the condensate (3.10),

whereM(r) = 4πr(t)3ρvac
3

is the total mass inside the ball.6 In order to preserve the total energyE

of the particle, the ball has to expand so that the kinetic energy K(r) = 1
2
mṙ(t)2 generated by the

expansion compensates the negative potential energy. Thatis, the energy conservation implies the

following relation

H2 =
8πGNρvac

3
− k

r(t)2
, (3.11)

whereH = ṙ(t)
r(t)

is the expansion rate andk ≡ −2E
m

. By comparing the above equation with the

Friedmann equation (1.2) after the identificationr(t) = Ra(t), we see that Eq. (3.11) corresponds to

ρvac = V (φ) ≈ V0 andφ̇ ≈ 0 with k = 0. At the outset we actually assumed the spatially flat universe,

k = 0, for the Friedmann equation (1.2). In our approach with a background-independent theory, the

conditionk = 0 is automatic since the very beginning should be absolutely nothing! This conclusion

is consistent with the metric (2.34) which describes a final state of cosmic inflation. Hence we may

moderately claim that the background-independent theory for cosmic inflation predicts a spatially flat

universe, in which the constantk must be exactly zero.

From the above simple argument, we see that the size of the ball exponentially expands, i.e.,

a(t) = a0e
Ht (3.12)

where

H =

√
8πGNρvac

3
(3.13)

is a constant. Let us introduce fluctuations around the inflating solution (3.12) by consideringρvac →
ρvac + δρ andφ̇ 6= 0, whereδρ is the mechanical energy due to the fluctuations of the inflaton φ(t).

Then the evolution equation (3.11) is replaced by

H2 =
8πGN

3
(ρvac + δρ), (3.14)

and the dynamics of the inflaton is described by Eq. (1.3). As we already remarked in Eq. (1.5), the

dynamics of the inflaton must be described by a non-Hamiltonian system, whose mathematical basis

6It might be remarked that this experiment is a simple twist ofthe well-known solution of Gauss’s law for gravity

inside the earth, in which the minus sign in the gravitational potential energy presupposes a repulsive force rather than

the usual attractive force. Moreover the repulsive force isgiven byF = kgr = −∇V (r) wherekg = 4πGNmρvac

3 and

V (r) = −GNM(r)m
2r is the gravitational potential energy in Newtonian gravity. The change of sign and the factor 2

enhancement are due to the general relativity effect sinceä
a
= − 4πGN

3 (ρvac + 3p) = − 4πGN

3 (−2ρvac).
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will be reviewed in Part II. Therefore, in order to describe the inflationary universe in the context of

emergent gravity, we need to extend the moduleD1 of differential operators in Eq. (2.22) so that

the exponential behavior (3.12) is derived from it. In classical limit, such vector fields are known as

conformal vector fields whose flow preserves a symplectic form up to a constant, so they appear in

the conformal Hamiltonian dynamics such as simple mechanical systems with friction [40, 41].

As we have advocated the vitality of the background-independent formulation of emergent space-

time, it is desirable to realize the inflationary universe asa solution of the matrix model (3.1). Now we

will show that the cosmic inflation arises as such a time-dependent solution describing the dynamical

process of Planck energy condensate into vacuum without introducing any inflaton field as well as

an ad hocinflation potential. It is not difficult to show that the dynamical process for the vacuum

condensate is described by the time-dependent vacuum configuration given by

〈φa(t)〉vac = pa(t) = e
κt
2 pa, 〈Â0(t)〉vac = â0(t, y), (3.15)

where the temporal gauge field is given by an open Wilson line [35]

â0(t, y) =
κ

2

∫ 1

0

dσ
dya(σ)

dσ
pa(σ) (3.16)

along a path parameterized by the curveya(σ) = ya0 + ζa(σ) whereζa(σ) = θabkbσ with 0 ≤
σ ≤ 1 and ya(σ = 0) ≡ ya0 and ya(σ = 1) ≡ ya. The constantκ will be identified with the

inflationary Hubble constantH. First note that the second term in Eq. (3.3) identically vanishes for

the background (3.15). Therefore it is necessary to impose the condition

D0φa = e
κt
2

(κ
2
pa − i[Â0, pa]

)
= 0 (3.17)

to satisfy both (3.3) and (3.4). In terms of the NC⋆-algebraA1
θ, Eq. (3.17) reads as

∂â0(t, y)

∂ya
=
κ

2
pa. (3.18)

Using the formula
∂

∂ya

∫ 1

0

dσ
dyb(σ)

dσ
K
(
y(σ)

)
= δbaK(y) (3.19)

for some differentiable functionK(y), one can easily check that the temporal gauge field in Eq. (3.16)

satisfies Eq. (3.18).

Before calculating the metric (2.34) for the inflating background (3.15), we want to discuss some

physical significance of the nonlocal term (3.16). First we point out that the temporal gauge field

(3.16) corresponds to a background Hamiltonian density in the comoving frame. (See footnote 7

for a different choice of coordinate frame.) We will see soonthat the gravitational metric including

the effect of the nonlocal term (3.16) is still local as it should be. It was already noticed in [42]

that nonlocal observables in emergent gravity are in general necessary to describe some gravitational

18



metric that is nonetheless local. Moreover the appearance of such nonlocal terms should not be

surprising in NC gauge theories, in which there exist no local gauge invariant observables. Indeed it

was shown in [35] that nonlocal observables are the NC generalization of gauge invariant operators

in NC gauge theories.

Now let us determine the metric (2.34) for the inflating background (3.15). The(2n + 1)-

dimensional vector fields defined by Eq. (2.22) take the following form

V0(t) =
∂

∂t
− κ

2
ya

∂

∂ya
, Va(t) = e

κt
2
∂

∂ya
. (3.20)

It may be stressed that the result (3.20) is exact, i.e., higher-order derivative terms in Eq. (2.23)

identically vanish. Note that the vector fields take the local form again as the result of applying the

formula (3.19) and the open Wilson line (3.16) leads to a conformal vector fieldZ ≡ 1
2
ya ∂

∂ya
known

as the Liouville vector field [40, 41]. Then the dual orthogonal one-forms are given by

v0(t) = dt, va(t) = e−
κt
2 (dya + aa) = e−κtdyat (3.21)

where

aa =
κ

2
yadt, yat ≡ e

κt
2 ya. (3.22)

One can see that the vector fields in Eq. (3.20) satisfy[V0, Va] = κVa and thus

gAB
C =

{
g0a

b = −ga0b = κδba, a, b = 1, · · · , 2n;
0, otherwise.

(3.23)

From this result, we getλ = enκt sincegBA
B = VA lnλ2 [14]. One can see that the volume-preserving

condition (2.35) is definitely satisfied sinceρ = enκt andAa
0 = −κ

2
ya. In the end, the time-dependent

metric for the inflating background (3.15) is given by

ds2 = −dt2 + e2Htdyt · dyt, (3.24)

where we have identified the inflationary Hubble constantH ≡ (n − 1)κ. We emphasize that the

temporal gauge field (3.16) is crucial to satisfy Eqs. (3.3) and (3.4). Note that the metric (3.24)

is conformally flat, i.e., the corresponding Weyl tensors identically vanish and so describes a ho-

mogeneous and isotropic inflationary universe known as the Friedmann-Robertson-Walker metric in

physical cosmology.

We showed that the cosmic inflation arises as a time-dependent solution of a background-independent

theory describing the dynamical process of Planck energy condensate in vacuum without introducing

any inflaton field as well as anad hocinflation potential. Let us generalize the cosmic inflation by

also including arbitrary fluctuations around the inflationary background (3.15). Such a general in-

flationary universe in(2n + 1)-dimensional Lorentzian spacetime can be realized by considering a
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time-dependent NC algebra given by7

tA1
θ ≡

{
φ̂0(t, y) = i

∂

∂t
+ Â0(t, y), φ̂a(t, y) = e

κt
2

(
pa + Âa(t, y)

)}
. (3.25)

We denote the corresponding time-dependent matrix algebraby tA1
N which consists of a time-dependent

solution of the action (3.1). Then the general Lorentzian metric describing a(2n + 1)-dimensional

inflationary universe can be obtained by the following duality chain:

tA1
N =⇒ tA1

θ =⇒ tD1. (3.26)

The moduletD1 of derivations of the NC algebratA1
θ is given by

tD1 =
{
V̂A(t) = (V̂0, V̂a)(t)|V̂0(t) =

∂

∂t
+ adÂ0(t,y)

, V̂a(t) = e
κt
2

( ∂

∂ya
+ adÂa(t,y)

)}
, (3.27)

where the adjoint operations are defined by Eq. (2.22). In theclassical limit of the module (3.27), we

get a general inflationary universe described by

ds2 = −dt2 + e2Ht(1 + δλ)2vab v
a
c (dy

b
t −Ab)(dyct −Ac), (3.28)

wherevab := vab (t, y), δλ := δλ(t, y) andAb := δab0(t, y)dt. If all fluctuations are turned off for

whichvab = δab andδλ = Ab = 0, we recover the inflation metric (3.24).

To appreciate the physical picture of the vacuum configuration (3.15), recall that a NC space such

asR2
α′ cannot occupy a single point of the plane but rather lies in a region of the plane. Thus there

must be a basic length scale, below which the notion of space (and time) does not make sense. Let us

fix such a typical length scale att = 0 as|ya(t = 0)| ∼ LP or ls =
√
α′ using the scaling freedom

noted in footnote 5. It should be reasonable to identifyLP with the Planck length. Sinceya(t = 0) are

operators acting on a Hilbert space, this means that the inflationary vacuum (3.15) creates a spacetime

of the Planck size. After the creation, the universe evolvesto the inflation epoch as a solution of time-

dependent matrix model unlike the traditional inflationarymodels that describe just the exponential

expansion of a preexisting spacetime. This picture is similar to the birth of inflationary universes in

Ref. [6] in which the universe is spontaneously created by quantum tunneling from nothing into a

de Sitter space. Here by nothing we mean a state without any classical spacetime. According to the

standard inflation scenario, the universe expanded by at least a factor ofe60 during the inflation. In

order to know the duration of the inflation exactly, we need tounderstand the precise mechanism of

reheating, which unfortunately goes beyond our ability at present. Since the radius of the universe

7One may wonder why the time direction is not inflating. This isdue to our choice of a coordinate frame to describe

the dynamical system. The time evolution operatorφ̂0(t, y) is defined in the so-called comoving frame. In general,

one can choose an arbitrary frame in which the time evolutionis described byk(t, y) ∂
∂t
∈ Hor(A1

θ), i.e., thed = 1

case of Eq. (2.20). A particularly interesting frame is the conformal coordinates with which the metric is given by

ds2 = a(η)2(−dη2 + dx · dx) wherea(η) = − 1
Hη

and−∞ < η < 0. The conformal coordinates can be easily

transformed to the comoving coordinates bya(η)dη = dt.
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at the beginning of inflation is aboutLP , 60 e-foldings att = tend = 10−36 ∼ 10−33 sec mean that

Htend & 60 and the size of universe at the end of inflation amounts to|ya(t = tend)| = eHtend |ya(t =
0)| & e60LP . Since 1 eV= (6.6× 10−16sec)−1, this informs us of the energy scale of the inflationary

Hubble constant given byH & 1011 ∼ 1014GeV [3, 4].

4 Discussion

It is well-known [43, 44] that NC field theories arise as a low-energy effective theory in string theory,

in particular, on D-branes upon turning on a constantB-field. A remarkable aspect of the NC field

theory is that it can be mapped to a largeN matrix model as depicted in Fig. 1. The relation between

NC gauge theories and matrix models is quite general since any Lie algebra or Moyal-type NC space

such as (2.4) always admits a separable Hilbert space and NC gauge fields become operators acting

on the Hilbert space [29]. The matrix representation of NC gauge fields implies that they can be

embedded into a background-independent formulation in terms of a matrix model. Here we refer

to a background-independent theory in which any spacetime structure is nota priori assumed but

defined by the theory. The background-independent variables are identified as the degrees of freedom

of the underlying matrix model. The relation with the matrixmodel gives a physical interpretation

of the background independence for the NC gauge theories by the observation [12, 28] that the NC

space (2.4) is a consistent vacuum solution of a largeN gauge theory in the Coulomb branch. The

matrices are the original dynamical variables of the matrixmodel which are manifestly background-

independent and the NC gauge fields are now derived from fluctuations in the NC Coulomb branch

as depicted in Fig. 2. These matrix models can be embedded into string theories or M-theory. For

example, thed = 0 (n = 5) andd = 2 (n = 4) cases in the matrix action (2.15) are precisely the

IKKT matrix model [31] and the matrix string theory [32, 34],respectively. However its relation to

the BFSS matrix model [33] is not straightforward since the matrix model (2.15) contains only even

number of adjoint scalar fields while the BFSS matrix model requires 9. Nevertheless, the DLCQ M-

theory compactified on an odd-dimensional torusTp can be described by the matrix action (2.15) with

d = p+1 andn = 9−p
2

because it is known [30] that the former is described by the(p+1)-dimensional

U(N) supersymmetric Yang-Mills theory on a dual torus(Tp)∗. Although it remains open to realize

the original BFSS matrix model as the Hilbert space representation of a NCU(1) gauge theory, it is a

separate issue from the background-independent formulation of an emergent inflationary spacetime.

The latter arises from a time-dependent solution to a one-dimensional matrix quantum mechanics

which does not presuppose any spacetime background.

In string theory, there are two exclusive spacetime pictures based on the Kaluza-Klein (KK) theory

vs. emergent gravity although they are conceptually in deepdiscord with each other. On the one hand,

the KK gravity is defined in higher dimensions as a more superordinate theory and gauge theories in

lower dimensions are derived from the KK theory via compactification. Since the KK theory is just

the Einstein gravity in higher dimensions, the prior existence of spacetime isa priori assumed. On the
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other hand, in emergent gravity picture, gravity in higher dimensions is not a fundamental force but

a collective phenomenon emergent from more fundamental ingredients defined in lower dimensions.

In emergent gravity approach, the existence of spacetime isnot a priori assumed but the spacetime

structure is defined by the theory itself. This picture leadsto the concept of emergent spacetime. In

some sense, emergent gravity is the inverse of KK paradigm, schematically summarized by

(1⊗ 1)S ⇄ 2⊕ 0 (4.1)

where→ means the emergent gravity picture while← indicates the KK picture.

Recent developments in string theory have revealed growingevidences for the emergent grav-

ity and emergent spacetime. The AdS/CFT correspondence andmatrix models are typical examples

supporting the emergence of gravity and spacetime [7]. Since the emergent spacetime is a new funda-

mental paradigm for quantum gravity and radically different from any previous physical theories, all

of which describe what happens in a given spacetime, it is required to seriously reexamine all the ra-

tionales to introduce the multiverse hypothesis from the perspective of emergent spacetime. However,

we do not intend to make an objection to the existence of more diverse subregions in theUniverse.

The Universe is rather likely much larger than we previouslythought. Actually the emergent space-

time picture implies that our observable patch within cosmic horizon is a very tiny part∼ 10−60 of

the entire spacetime, as we will discuss soon. Instead we will pose the issue whether the existence

of more diverse subregions besides ours means that the laws of physics are ambiguous or all these

subregions follow the same laws of physics and the physical laws of our causal patch in the Universe

can be understood as accurately as possible without reference to the existence of other subregions.

First let us summarize the main (not exhausting) sources of the multiverse idea [1]:

A. Cosmological constant problem.

B. Chaotic and eternal inflation scenarios.

C. String landscape.

First of all, we have to point out that these are all based on the traditional spacetime picture. The

cosmological constant problem (A) is the problem in all traditional gravity theories such as Einstein

gravity and modified gravities. So far any such a theory has not succeeded to resolve the problem A.

The inflation scenarios (B) are also based on the traditionalgravity theory coupled to an effective field

theory for inflaton(s). Thus, in these scenarios, the prior existence of spacetime is simply assumed.

The string landscape (C) also arises from the conventional KK compactification of string theory al-

though the string theory is liberal enough to allow two exclusive spacetime pictures, as we already

remarked above. Since superstring theories can consistently be defined only in ten-dimensions, ex-

tra six-dimensional internal spaces need to be compactifiedto explain our four-dimensional world.

Moreover it is important to determine the shape and topologyof an internal space to make contact
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with a low-energy phenomenology in four-dimensions because the internal geometry of string the-

ory determines a detailed structure of the multiplets for elementary particles and gauge fields via the

KK compactification. The string landscape (C) means that thehuge variety of compactified internal

geometries exist, typically, in the range of10500 and almost the same number of four-dimensional

worlds with different low-energy phenomenologies accordingly survive [10, 11].

We have to stress again that the emergent spacetime picture is radically different from the conven-

tional picture in general relativity so that they are exclusive and irreconcilable each other. Therefore,

if the emergent spacetime picture is correct to explain our Universe, we have to give up the traditional

spacetime picture and KK paradigm. For this reason, we will reconsider all the rationales (A,B,C)

from the standpoint of emergent spacetime and the background independentness.

We already justified at the beginning of Sec. 3 why emergent gravity definitely dismisses the

cosmological constant problem (A). See also Refs. [13, 14, 21] for more extensive discussion of

this issue. There is no cosmological constant problem in emergent gravity approach founded on the

emergent spacetime. The foremost reason is that the huge vacuum energy (3.7) or (3.10) that is a

cosmological constant in general relativity was simply used to generate the flat spacetime and thus it

does not gravitate any more. The emergent gravity does not allow the coupling of the cosmological

constant thanks to the general property (3.8), which is a tangible difference from general relativity.

Consequently there is no demanding reason to rely on the anthropic fine-tuning to explain the tiny

value of current dark energy. We will also discuss later whatdark energy is from the emergent gravity

picture following the observation in Refs. [13, 14, 21].

The multiverse picture arises in inflationary cosmology (B)as follows [3, 4]. In theories of in-

flationary model, even though false vacua are decaying, the rate of exponential expansion is always

much faster than the rate of exponential decay. Once inflation starts, the total volume of the false

vacuum continues to grow exponentially with time. The chaotic inflation is also eternal, in which

large quantum fluctuations during inflation can significantly increase the value of the energy den-

sity in some parts of the universe. These regions expand at a greater rate than their parent domains,

and quantum fluctuations inside them lead to production of new inflationary domains which expand

even faster. Jumps of the inflaton field due to quantum fluctuations lead to a process of eternal self-

production of inflationary universe. In most inflationary models, once inflation happens, it produces

not just one universe, but an infinite number of universes.

Now an important question is whether the emergent spacetimepicture can also lead to the eternal

inflation. The answer is certainly no. The reason is the following. We showed that the inflation-

ary vacuum (3.15) arises as a solution of the (BFSS-like) matrix model (3.1). In order to define the

matrix model (3.1), however, we have not introduced any spacetime structure. The vacuum (3.15) cor-

responds to the creation of spacetime unlike the traditional inflationary models that describe just the

exponential expansion of a preexisting spacetime. Moreover, the inflationary vacuum (3.15) describes

a dynamical process of the Planck energy condensate responsible for the emergence of spacetime. In

general relativity the Minkowski spacetime with metricgµν = ηµν must be a completely empty space
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because the Einstein equation (1.1) requiresTµν = 0. However, in emergent gravity, it is not an

empty space but full of the Planck energy as Eq. (3.10) clearly indicates. An important point is that

the Planck energy condensate results in a highly coherent vacuum called the NC space. As the NC

phase space in quantum mechanics necessarily brings about the Heisenberg’s uncertainty relation,

∆x∆p ≥ ~

2
, the NC space (2.4) also leads to the spacetime uncertainty relation. Therefore any further

accumulation of energy over the vacuum (3.15) must be subject to the exclusion principle known as

the UV/IR mixing [45]. Consequently, it is not possible to further accumulate the Planck energy den-

sity δρ ∼M4
P over the inflationary vacuum (3.15). This means that it is impossible to superpose a new

inflating subregion over the inflationary vacuum. In other words, the cosmic inflation triggered by the

Planck energy condensate into vacuum must be a single event [21]. In the end we have a beautiful

picture: The NC spacetime is necessary for the emergence of spacetime and the exclusion principle

of NC spacetime guarantees the stability of spacetime. In conclusion, the emergent spacetime does

not allow the pocket universes appearing in the eternal inflation.

The above argument suggests an intriguing picture for the dark energy too. Suppose that the in-

flation ended. This means that the inflationary vacuum (3.15)in nonequilibrium makes a (first-order)

phase transition to the vacuum (2.11) in equilibrium in someway. We do not know how to do it. We

will discuss a possible scenario in Part II. Since the vacuum(2.11) satisfies the NC commutation rela-

tion, any local fluctuations over the vacuum (2.11) must alsobe subject to the spacetime uncertainty

relation or UV/IR mixing. This implies that any UV fluctuations are paired with corresponding IR

fluctuations. For example, the most typical UV fluctuations are characterized by the Planck massMP

and these will be paired with the most typical IR fluctuationswith the largest possible wavelength

denoted byLH = M−1
H . This means that these UV/IR fluctuations are extended up to the scaleLH

which may be identified with the current size of cosmic horizon. By a simple dimensional analysis

one can estimate the energy density of these fluctuations:

δρ ∼M2
PM

2
H =

1

L2
PL

2
H

. (4.2)

It may be emphasized that, if the microscopic spacetime is NC, then the UV/IR mixing is inevitable

and the extended (nonlocal) energy (4.2) is necessarily induced [21]. If we identifyLH with the

cosmic horizon of our observable universe,LH ∼ 1.3 × 1026 m, δρ is roughly equal to the current

dark energy, i.e.,

δρ =M4
DE ∼ (10−3eV)4. (4.3)

Thus the emergent gravity predicts the existence of dark energy whose scale is characterized by the

size of our visible universe. Since the characteristic scale of entire spacetime is set by the Planck mass

MP only, this implies that our observable universe is one causal patch out of much larger unobservable

patches. According to the cosmic uroborus [2], we estimate the total number of causal patches in our

Universe to beMP/MH =M2
P/M

2
DE ∼ 1060.

The gauge/gravity duality such as the AdS/CFT correspondence has clarified how a higher di-

mensional gravity can emerge from a lower dimensional gaugetheory. A mysterious point is that
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the emergence of gravity requires the emergence of spacetime too. If spacetime is emergent, every-

thing supported on the spacetime should be emergent too for an internal consistency of the theory. In

particular, matters cannot exist without spacetime and thus must be emergent together with the space-

time. Eventually, the background-independent theory has to make no distinction between geometry

and matter [15]. This is the reason why the emergent spacetime picture cannot coexist peacefully

with the KK paradigm. As we pointed out before, the string landscape has been derived from the KK

compactification of string theory. Therefore, if the emergent spacetime picture is correct, we need to

carefully reexamine the string landscape (C) from that point of view. The emergent spacetime picture

may endow the string landscape with a completely new interpretation since reversing the arrow in

(4.1) accompanies a radical change of physics. For example,a geometry is now derived from a gauge

theory while previously the gauge theory was derived from the geometry.

The KK compactification of string theory advocates that the Standard Model in four dimensions

is determined by a six-dimensional internal geometry, e.g., a Calabi-Yau manifold. Thus different

internal geometries mean different physical laws in four dimensions, so different universes governed

by the different Standard Models. However, the emergent gravity reverses the arrow in (4.1). Rather

internal geometries are determined by microscopic configurations of gauge fields and matter fields in

four dimensions. As a consequence, different internal geometries mean different microscopic con-

figurations of four-dimensional particles and nonperturbative objects such as solitons and instantons.

This picture may be more strengthened by the fact [39] that Calabi-Yau manifolds are emergent from

six-dimensional NCU(1) instantons and thus the origin of Calabi-Yau manifolds is actually a gauge

theory. If the microscopic configuration changes by interactions, then the corresponding change of

the internal geometry will also be induced by the interactions. If so, the huge variety of internal ge-

ometries may correspond to the ensemble of microscopic configurations in four dimensions and10500

would be the Avogadro number for the microscopic ensemble. Recall that NC geometry begins from

the rough correspondence–contravariant functor–betweenthe category of topological spaces and the

category of commutative algebras overC and then changes the commutative algebras by NC algebras

to define corresponding NC spaces. In this correspondence, different internal geometries correspond

to choosing different NC algebras. We have observed that thelatter allows a background-independent

formulation which does not require a background geometry and a large amount (possibly infinitely

many) of spacetime geometries can be described by generic deformations of a vacuum algebra in a

master theory. Hence a background-independent quantum gravity seems to bring a new perspective

that cripples all the rationales to introduce the multiverse hypothesis.
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ABSTRACT

In Part I, we have proposed a background-independent formulation of cosmic inflation. It was

shown that the inflationary universe arises as a time-dependent solution of a background-independent

theory such as matrix models without introducing any inflaton field as well as anad hocinflation

potential. The emergent spacetime picture admits a background-independent formulation so that the

inflation is responsible for the dynamical emergence of spacetime described by a conformal Hamilto-

nian system. In this sequel, we explore the mathematical foundation for the background-independent

formulation of cosmic inflation and generalize the emergentspacetime picture to matrix string theory.
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1 Summary of Part I

In Part I [1], we have shown that the emergent gravity from noncommutative (NC)U(1) gauge theory

is basically the largeN duality and it can be applied to cosmic inflation. It has been based on the

observation that theN → ∞ limit of U(N) Yang-Mills theory opens a new phase of the so-called

NC Coulomb branch given by

[φa, φb]|vac = −iBab ⇒ 〈φa〉vac = pa ≡ Baby
b (1.1)

whereBab = (θ−1)ab and the vacuum moduliya satisfy the Moyal-Heisenberg algebra

[ya, yb] = iθab, a, b = 1, · · · , 2n. (1.2)

A fundamental fact is that the NC space (1.2) denoted byR2n
θ is a consistent vacuum solution of a

largeN gauge theory in the Coulomb branch and more general solutions are generated by all possible

(on-shell) deformations of the vacuum (1.1). To be specific,suppose that the deformations take the

form

Dµ = ∂µ − iÂµ(x, y), φa = pa + Âa(x, y). (1.3)

The adjoint scalar fields in Eq. (1.3) now obey the deformed algebra given by

[φa, φb] = −i(Bab − F̂ab) ∈ Ad
θ, (1.4)

where

F̂ab = ∂aÂb − ∂bÂa − i[Âa, Âb] (1.5)

with the definition∂a ≡ adpa = −i[pa, ·]. Plugging the fluctuations in Eq. (1.3) into thed-dimensional

U(N →∞) Yang-Mills theory, we get a remarkable identity [2, 3] givenby

S = − 1

g2YM

∫
ddxTr

(1
4
FµνF

µν +
1

2
DµφaD

µφa −
1

4
[φa, φb]

2
)

= − 1

G2
YM

∫
dDY

1

4
(F̂AB − BAB)

2, (1.6)

whereÂA(x, y) = (Âµ, Âa)(x, y) areD = (d + 2n)-dimensional NCU(1) gauge fields. We empha-

size that the NC Coulomb branch (1.1) is crucial to realize the emergent gravity from matrix models

or largeN gauge theories. We summarize the emergent gravity picture from a largeN gauge theory

with the flowchart depicted in Fig. 1.

In order to complete the largeN duality in Fig. 1, it is necessary to know how to map the NC

U(1) gauge theory to the Einstein gravity. Although the answer has already been known thanks to

the works [3, 4, 5], we will give here a self-contained exposition to clarify the issues regarding to

physical cosmology addressed in Part I. We observed in Part I[1] that the cosmic inflation arises

as a time-dependent solution of matrix quantum mechanics (MQM), i.e. thed = 1 case in Eq.
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U(N →∞) Yang-Mills gauge theory onRd−1,1

NCU(1) gauge theory onRd−1,1 × R2n
θ D = d+ 2n-dimensional Einstein gravity
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Figure 1: Flowchart for largeN duality

(1.6), without introducing any inflaton field as well as anad hocinflation potential. In particular, the

emergent spacetime picture admits a background-independent formulation of the cosmic inflation as

the dynamical generation of spacetime. We have shown that the time-dependent vacuum configuration

given by

〈φa(t)〉vac = pa(t) = e
κt
2 pa, 〈A0(t, y)〉vac = â0(t, y), (1.7)

satisfies the equations of motion for the MQM, whereκ is related to the inflationary Hubble constant

H = (n− 1)κ and

â0(t, y) =
κ

2

∫ 1

0

dσ
dya(σ)

dσ
pa(σ) (1.8)

is an open Wilson line [6] along a path parameterized by the curveya(σ) = ya0 + ζa(σ). The inflating

background (1.7) determines the time-dependent metric given by

ds2 = −dt2 + e2Htdyt · dyt, (1.9)

whereyat ≡ e
κt
2 ya. We emphasize that the temporal gauge field (1.8) is crucial to satisfy the equations

of motion and generates a conformal vector field for the exponential behavior in Eq. (1.9) [1]. Note

that the metric (1.9) is conformally flat, i.e., the corresponding Weyl tensors identically vanish and

so describes a homogeneous and isotropic inflationary universe known as the Friedmann-Robertson-

Walker metric in physical cosmology.

We can further consider standard cosmological perturbations by including arbitrary fluctuations

around the inflationary background (1.7). Such a general inflationary universe in(2n+1)-dimensional

2



Lorentzian spacetime can be realized by considering a time-dependent NC algebra given by

tA1
θ ≡

{
φ̂0(t, y) = i

∂

∂t
+ Â0(t, y), φ̂a(t, y) = e

κt
2

(
pa + Âa(t, y)

)}
. (1.10)

The moduletD1 of derivations of the NC algebratA1
θ is given by

tD1 =
{
V̂A(t) = (V̂0, V̂a)(t)|V̂0(t) =

∂

∂t
+ adÂ0

, V̂a(t) = e
κt
2

( ∂

∂ya
+ adÂa

)}
, (1.11)

where the adjoint operations are defined by the derivation ofA1
θ whenκ = 0. In the classical limit of

the module (1.11), we get a general inflationary universe described by

ds2 = −dt2 + e2Ht(1 + δλ)2vab v
a
c (dy

b
t −Ab)(dyct −Ac)

)
, (1.12)

wherevab := vab (t, y), δλ := δλ(t, y) andAb := δab0(t, y)dt. If all fluctuations are turned off for

whichvab = δab andδλ = Ab = 0, we recover the inflation metric (1.9).

Since the cosmic inflation is simply the dynamical generation of spacetime according to the emer-

gent spacetime picture, a particularly important issue is to understand the origin of space and time in

the context of physical cosmology. The emergence of space isrelatively easy to understand compared

to the notorious issue on the emergent time. In order to graspthe emergence of time in quantum

gravity, we will get a valuable lesson by examining how the time evolution of a dynamical system is

defined in quantum mechanics. We have a great virtue by the fact that the mathematical structure of

NC spacetime is basically equivalent to the NC phase space inquantum mechanics. Motivated by the

close analogy with quantum mechanics, we argue that the evolution of spacetime structure supported

on a vacuum solution must be understood as a dynamical systemdefined by largeN matrices. We

show that the resulting dynamical system can be described bythe MQM corresponding to thed = 1

case in Eq. (1.6).

The Part II is organized as follows. In Sec. 2, we compactly review the background-independent

formulation of emergent gravity and emergent spacetime in terms of matrix models [3, 4, 5, 7, 8, 9].

See also [10, 11, 12, 13]. The crux of the underlying argumentis the realization that the NC space

R2n
θ arises as a solution of a largeN matrix model in the Coulomb branch and this vacuum admits

a separable Hilbert space as quantum mechanics [3]. Generalsolutions are generated by considering

arbitrary deformations of a primitive vacuum such asR2n
θ obeying the Heisenberg algebra. These

deformations can be arranged into a one-parameter family. Since any automorphism of the matrix

algebra is inner, this means that they are described by the general inner automorphism of an underlying

NC algebraAθ. Thus these deformations are intrinsically dynamical. The(emergent) time is defined

through the Hamiltonian description of the dynamical system like quantum mechanics. The emergent

geometry is then simply derived from the nontrivial inner automorphism of the NC algebraAθ, in

which the NC nature is crucial to realize the emergent gravity [3, 8]. An important point is that the

matrix model does not presuppose any spacetime background on which physical processes develop.

Rather the matrix model provides a mechanism of spacetime generation such that every spacetime

structure including the flat spacetime arises as a solution of the theory.

3



It is important to keep in mind that the inflationary scenariois at best an incomplete picture of

the very early universe since it is known to be past incomplete [14]. This implies that we need to

go beyond the inflationary cosmology if we really want to understand the very earliest moments of

the universe. In Sec. 3, we observe that the vacuum configuration in the NC Coulomb branch is the

Planck energy condensate responsible for the generation ofspacetime and results in an extremely large

spacetime. Because the Planck energy condensate into vacuum must be a dynamical process, we ex-

plore the dynamical mechanism for the instantaneous condensation of vacuum energy to enormously

spread out spacetime. We show that the cosmic inflation as a dynamical system can be described by a

locally conformal (co)symplectic manifold (see Appendix Afor the definition) which is a generalized

phase space of a time-dependent Hamiltonian system. Since the generalized symplectic manifold ad-

mits a rich variety of vector fields, in particular, Liouville vector fields that generate an exponential

phase space expansion, the inflation can be described by the so-called conformal Hamiltonian system

[15, 16] without introducing any inflaton field as well as anad hocinflation potential. It is remarkable

to see that an inflationary vacuum describing the dynamical emergence of spacetime simply arises as

a solution of time-dependent matrix model as far as a nonlocal temporal gauge field is introduced.

In Sec. 4, we emphasize that NC spacetime necessarily implies emergent spacetime if spacetime

at microscopic scales should be viewed as NC. Although spacetime at the microscopic scale is in-

trinsically NC, we understand the NC spacetime through the quantization of a symplectic manifold.

Since the most natural object to probe the symplectic geometry is a string rather than a particle [3] or

a pseudoholomorphic curve which is a stringy generalization of a geodesic worldline in Riemannian

geometry [17], we need a mathematically precise framework for describing strings in a background-

independent way to make sense of the emergent spacetime proposal. We show that the pseudoholo-

morphic curve can be lifted to a NC spacetime by the matrix string theory [18, 19]. We argue that any

NC spactime may be viewed as a second-quantized string for the background-independent formula-

tion of quantum gravity, which is still elusive in the usual string theory. Hence we need to read old

literatures with the new perspective.

In Sec. 5, we discuss a speculative mechanism for a graceful exit from inflation by some nonlinear

damping through interactions between the inflating background and ubiquitous local fluctuations. We

also discuss possible approaches to understand our real world R3,1 that is unfortunately beyond our

current approach becauseR3,1 does not belong to the class of (almost) symplectic manifolds.

In the first appendix, we briefly review the mathematical foundation of locally conformal cosym-

plectic (LCC) manifolds that correspond to a natural phase space describing the cosmic inflation of

our universe. In the second appendix, we give a brief exposition of harmonic oscillator with time-

dependent mass to illustrate how a nonconservative dynamical system with friction can be formulated

by a time-dependent Hamiltonian system which may be useful to understand the cosmic inflation as

a dynamical system

4



2 Emergent spacetime from matrix model

Let us start with a zero-dimensional matrix model with a bunch ofN ×N Hermitian matrices,{φa ∈
AN |a = 1, · · · , 2n}, whose action is given by [20]

S = −1
4

2n∑

a,b=1

Tr [φa, φb]
2. (2.1)

In particular, we are interested in the matrix algebraAN in the limit N → ∞. We require that the

matrix algebraAN is associative, from which we get the Jacobi identity

[φa, [φb, φc]] + [φb, [φc, φa]] + [φc, [φa, φb]] = 0. (2.2)

We also assume the action principle, from which we yield the equations of motion:

2n∑

b=1

[φb, [φa, φb]] = 0. (2.3)

We emphasize that we have not introduced any spacetime structure to define the action (2.1). It is

enough to suppose the matrix algebraAN consisted of a bunch of matrices which are subject to a few

relationships given by Eqs. (2.2) and (2.3).

First suppose that the vacuum configuration ofAN is given by

〈φa〉vac = pa ∈ AN , (2.4)

which must be a solution of Eqs. (2.2) and (2.3). An obvious solution in the limitN → ∞ is given

by the Moyal-Heisenberg algebra1

[pa, pb] = −iBab, (2.5)

where(Bab) = −L−2
P (1n ⊗ iσ2) is a2n × 2n constant symplectic matrix andLP is a typical length

scale set by the vacuum. A general solution will be generatedby considering all possible deformations

of the Moyal-Heisenberg algebra (2.5). It is assumed to takethe form

φa = pa + Âa ∈ AN , (2.6)

obeying the deformed algebra given by

[φa, φb] = −i(Bab − F̂ab), (2.7)

1The conventional choice of vacuum in Coulomb branch is givenby [φa, φb]|vac = 0 and so 〈φa〉vac =

diag
(
(αa)1, (αa)2, · · · , (αa)N

)
. However, it turns out (see Section III.C in [5]) that, in order to describe a classical

geometry from a background-independent theory, it is necessary to have a nontrivial vacuum defined by a coherent

condensation obeying the algebra (2.5). For this reason, wewill choose the Moyal-Heisenberg vacuum instead of the

conventional vacuum. A similar reasoning was also advocated in footnote 2 in Ref. [2].

5



where

F̂ab = ∂aÂb − ∂bÂa − i[Âa, Âb] ∈ AN (2.8)

with the definition∂a ≡ adpa = −i[pa, ·]. For the general matrixφa ∈ AN to be a solution of Eqs.

(2.2) and (2.3), the set of matriceŝFab ∈ AN , called the field strengths of NCU(1) gauge fields

Âa ∈ AN , must obey the following equations

D̂aF̂bc + D̂bF̂ca + D̂cF̂ab = 0, (2.9)
2n∑

b=1

D̂bF̂ab = 0, (2.10)

where

D̂aF̂bc ≡ adφaF̂bc = −i[φa, F̂bc] = −[φa, [φb, φc]]. (2.11)

The algebraAN admits a large amount of inner automorphism denoted byInn(AN). Note that

any automorphism of the matrix algebraAN is inner. Suppose thatA′
Ñ

= {φ′
a|a = 1, · · · , m} is

an another matrix algebra composed ofm elements ofÑ × Ñ Hermitian matrices. We will identify

two matrix algebras, i.e.AN
∼= A′

Ñ
if m = 2n and Ñ = N and there exists a unitary matrix

Ua ∈ Inn(AN) such thatφ′
a = UaφaU

−1
a for eacha = 1, · · · , 2n. It is important to recall that the NC

algebraAN generated by the vacuum operatorspa admits an infinite-dimensional separable Hilbert

space

H = {|n〉|n = 1, · · · , N →∞}, (2.12)

that is the Fock space of the Moyal-Heisenberg algebra (2.5). As is well-known from quantum me-

chanics [21], there is a one-to-one correspondence betweenthe operators inHom(V ) and the set of

N × N matrices overC whereV is anN-dimensional complex vector space. In our case,V = H
is a Hilbert space andN = dim(H) → ∞. Thus the matrix algebraAN can be realized as a Hilbert

space representation of the NC⋆-algebra

Aθ = {φ̂a(y) ∈ Hom(H)|a = 1, · · · , 2n}, (2.13)

which is generated by the set of coordinate generators in Eq.(1.2). The commutator (1.2) is related

to the Moyal-Heisenberg algebra (2.5) byθab = (B−1)ab andpa = Baby
b. To be specific, given a

Hermitian operator̂φa(y) ∈ Aθ, we have a matrix representation inH as follows:

φ̂a(y) =
∞∑

n,m=1

|n〉〈n|φ̂a(y)|m〉〈m| =
∞∑

n,m=1

(φa)nm|n〉〈m| (2.14)

using the completeness ofH, i.e.
∑∞

n=1 |n〉〈n| = 1H. The unitary representation of the operator

algebraAθ can thus be understood as a linear transformation acting on an N-dimensional Hilbert

spaceHN :

Aθ : HN →HN . (2.15)

6



That is, we have the identification

AN
∼= End(HN) ∼= Aθ. (2.16)

As a result, the inner automorphismInn(AN) of the matrix algebraAN is translated into that of

the NC⋆-algebraAθ, denoted byInn(Aθ). Its infinitesimal generators consist of an inner derivation

D defined by the map [3, 4, 5, 8]

Aθ → D : O 7→ adO = −i[O, ·]⋆ (2.17)

for any operatorO ∈ Aθ. Using the Jacobi identity of the NC⋆-algebraAθ, one can easily verify the

Lie algebra homomorphism:

[adO1, adO2 ] = −iad[O1,O2]⋆ (2.18)

for anyO1,O2 ∈ Aθ. In particular, we are interested in the set of derivations determined by NC gauge

fields in Eq. (2.13):

{V̂a ≡ adφ̂a
∈ D|φ̂a(y) = pa + Âa(y) ∈ Aθ, a = 1, · · · , 2n}. (2.19)

In a large-distance limit, i.e.|θ| → 0, one can expand the NC vector fieldsV̂a using the explicit form

of the Moyal⋆-product. The result takes the form2

V̂a = V µ
a (y)

∂

∂yµ
+

∞∑

p=2

V µ1···µp

a (y)
∂

∂yµ1
· · · ∂

∂yµp
∈ D. (2.20)

Thus the NC vector fields inD generates an infinite tower of the so-called polyvector fields [3]. Note

that the leading term gives rise to the ordinary vector fieldsthat will be identified with a frame basis

associated to the tangent bundleTM of an emergent manifoldM. Since the leading term in (2.20)

already generates the gravitational fields of spin 2, the higher-order terms correspond to higher-spin

fields with spin≥ 3.

Since we have started with a largeN matrix model, it is natural to expect that the IKKT-type

matrix model (2.1) is dual to a higher-dimensional gravity or string theory according to the largeN

duality or gauge/gravity duality [22]. The emergent gravity is realized via the gauge-gravity duality

following thed = 0 case of the flowchart in Fig. 1 [3]:

AN =⇒ Aθ =⇒ D. (2.21)

The gauge theory side of the duality is described by the set oflargeN matrices that consists of an

associative, but NC, algebraAN . By choosing a proper vacuum such as Eq. (2.4), a matrix inAN is

regarded as a linear representation of an operator acting ona separable Hilbert spaceH. That is, the

2In Part II, we will use the Greek letters to denote local indices of NC coordinates unlike the Part I indicating commu-

tative ones as in Eq. (1.6).
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matrix algebraAN is realized as a representation of an operator algebraAθ on the Hilbert spaceH,

i.e.,AN
∼= End(H). Consequently the algebraAN is isomorphically mapped to the NC⋆-algebra

Aθ, as Eq. (2.14) has clearly illustrated. The gravity side of the duality is defined by associating

the derivationD of the algebraAθ with a quantized frame bundlêX(M) of an emergent spacetime

manifoldM. The noncommutativity of an underlying algebra is thus crucial to realize the emergent

gravity. As we discussed in footnote 1, this is the reason whywe need the Moyal-Heisenberg vacuum

(2.5) instead of the conventional Coulomb branch vacuum [1]. If we choose the conventional vacuum,

we will fail to realize the isomorphism betweenAN andAθ. After all, in order to describe a quantum

geometry mathematically, we need to find a right NC algebra.3

It is important to perceive that the realization of emergentgeometry through the duality chain in

Eq. (2.21) is intrinsically local. Therefore it is necessary to consider patching or gluing together

the local constructions to form a set of global quantities. For this purpose, the concept of sheaf

may be essential because it makes it possible to reconstructglobal data starting from open sets of

locally defined data [23]. Let us explain this feature brieflysince its extensive exposition was already

given in Ref. [3]. Its characteristic feature becomes transparent when the commutative limit, i.e.

|θ| → 0, is taken into account. In this limit, the NC⋆-algebraAθ reduces to a Poisson algebra

P(i) = (C∞(Ui), {−,−}θ) defined on a local patchUi ⊂ M in an open coveringM =
⋃

i∈I Ui.

The Poisson algebraP(i) arises as follows. LetL → M be a line bundle overM whose connection

is denoted byA. We assume that the curvatureF of the line bundleL is a nondegenerate, closed

two-form. Therefore we identify the curvature two-formF = dA with a symplectic structure of

M . On an open neighborhoodUi ⊂ M , it is possible to representF (i) = B + F (i) whereF (i) =

dA(i) andB is the constant symplectic two-form already introduced in Eq. (2.5). Consider a chart

(Ui, φ(i)) whereφ(i) ∈ Diff(Ui) is a local trivialization of the line bundleL over the open subset

Ui obeyingφ∗
(i)(F (i)) = B. Such a local chart always exists owing to the Darboux theorem or the

Moser lemma in symplectic geometry [24] and the local coordinate chart obeyingφ∗
(i)(F (i)) = B is

called Darboux coordinates. Thus the line bundleL → M corresponds to a dynamical symplectic

manifold (M,F) whereF = B + dA. The dynamical system is locally described by the Poisson

algebraP(i) = (C∞(Ui), {−,−}θ) in which the vector spaceC∞(Ui) is formed by the set of Darboux

transformationsφ(i) ∈ Diff(Ui) equipped with the Poisson bracket defined by the Poisson bivector

θ = B−1 ∈ Γ(Λ2TM).

Consider a collection of local charts to make an atlas{(Ui, φ(i))} onM =
⋃

i∈I Ui and complete

the atlas by gluing these charts on their overlap. To be precise, suppose that(Ui, φ(i)) and(Uj , φ(j))

are two coordinate charts andF (i) = dA(i) andF (j) = dA(j) are local curvature two-forms onUi

3The explicit realization of the duality chain (2.21) depends on the data of the matrix algebraAN . In particular, the

vacuum of the algebraAN depends on the rankN and the number of linearly independent matrices. Given the data ofAN ,

the vacuum will be specified by choosing a most primitive one so that more general solutions are generated by deforming

the primitive vacuum as we already implemented in Eq. (2.6).For instance, for our particular choice given byN → ∞
andevennumber of matrices, the Moyal-Heisenberg algebra (2.5) is the most primitive vacuum for quantum gravity. This

statement may be regarded as a quantum version of the Darbouxtheorem in symplectic geometry.
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andUj , respectively. We choose the coordinate mapsφ(i) ∈ Diff(Ui) andφ(j) ∈ Diff(Uj) such that

φ∗
(i)(B + F (i)) = B andφ∗

(j)(B + F (j)) = B. On an intersectionUi ∩ Uj , the local data(A(i), φ(i))

and(A(j), φ(j)) on Darboux charts(Ui, φ(i)) and(Uj, φ(j)), respectively, are patched or glued together

by [25]

A(j) = A(i) + dλ(ji), (2.22)

φ(ji) = φ(j) ◦ φ−1
(i) , (2.23)

whereφ(ji) ∈ Diff(Ui ∩ Uj) is a symplectomorphism onUi ∩ Uj generated by a Himiltonian vector

fieldXλ(ji) satisfyingι(Xλ(ji))B + dλ(ji) = 0. We sometimes denote the interior productιX by ι(X)

for a notational convenience. Similarly, we can glue the local Poisson algebrasP(i) to form a globally

defined Poisson algebraP =
⋃

i∈I P
(i). The global vector fieldsVa = V µ

a (y)
∂

∂yµ
∈ Γ(TM), a =

1, · · · , 2n, in Eq. (2.20) can be obtained by applying a similar globalization to the derivationD,

which form a linearly independent basis of the tangent bundle TM of a 2n-dimensional emergent

manifoldM. As a consequence, the set of global vector fieldsX(M) = {Va|a = 1, · · · , 2n} results

from the globally defined Poisson algebraP [3].

The vector fieldsVa ∈ X(M) are related to an orthonormal frame, the so-called vielbeinsEa ∈
Γ(TM), in general relativity by the relation

Va = λEa, a = 1, · · · , 2n. (2.24)

The conformal factorλ ∈ C∞(M) is determined by imposing the condition that the vector fieldsVa
preserve a volume form

ν = λ2v1 ∧ · · · ∧ v2n, (2.25)

whereva = vaµ(y)dy
µ ∈ Γ(T ∗M) are coframes dual toVa, i.e., 〈va, Vb〉 = δab . This means that the

vector fieldsVa obey the conditions

LVaν =
(
∇ · Va + (2− 2n)Va lnλ

)
ν = 0, ∀a = 1, · · · , 2n, (2.26)

whereLX = ιXd+ dιX is the Lie derivative with respect to a vector fieldX. Note that a symplectic

manifold always admits such volume-preserving vector fields. (See Appendix B in [3].) Together with

the volume-preserving condition (2.26), the relation (2.24) completely determines a2n-dimensional

Riemannian manifoldM whose metric is given by [3, 4, 5]

ds2 = Gµν(x)dxµ ⊗ dxν = ea ⊗ ea

= λ2va ⊗ va = λ2vaµ(y)v
a
ν(y)dy

µ ⊗ dyν, (2.27)

whereea = eaµ(x)dx
µ = λva ∈ Γ(T ∗M) are orthonormal one-forms onM. After all, the2n-

dimensional Riemannian manifoldM is emergent from the commutative limit of polyvector fields

V̂a = Va +O(θ2) ∈ D derived from NCU(1) gauge fields.
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So far we have discussed the emergence of spaces only. However, the theory of relativity dictates

that space and time must be coalesced into the form of Minkowski spacetime in a locally inertial

frame. Hence, if general relativity is realized from a NC⋆-algebraAθ, it is necessary to put space

and time on an equal footing in the NC⋆-algebraAθ. If space is emergent, so should time. Thus, an

important problem is how to realize the emergence of “time.”Quantum mechanics offers us a valuable

lesson that the definition of (particle) time is strictly connected with the problem of dynamics. In

quantum mechanics, the time evolution of a dynamical systemis defined as an inner automorphism

of NC algebraA~ generated by the NC phase space

[xi, xj] = 0, [xi, pj] = i~δij, i, j = 1, · · · , n. (2.28)

The time evolution for an observablef ∈ A~ is simply an inner derivation ofA~ given by

df

dt
=
i

~
[H, f ]. (2.29)

A remarkable picture, as observed by Feynman [26], Souriau,and Sternberg [27], is that the physical

forces such as the electromagnetic, weak and strong forces,can be realized as the deformations of

an underlying vacuum algebra such as Eq. (2.28). For example, the most general deformation of the

Heisenberg algebra (2.28) within theassociativealgebraA~ is given by

xi → xi, pi → pi + Ai(x, t), H → H + A0(x, t), (2.30)

where(A0, Ai)(x, t) must be electromagnetic gauge fields. Then the time evolution of a particle

system under a time-dependent external force is given by

df

dt
=
∂f

∂t
+
i

~
[H, f ]. (2.31)

Note that the construction of the NC algebraAN or Aθ bears a close parallel to quantum me-

chanics. The former is based on the NC space (1.2) while the latter is based on the NC phase space

(2.28). The NCU(1) gauge fields in Eq. (2.6) act as deformations of the vacuum algebra (2.5) in

the matrix algebraAN , similarly to Eq. (2.30) in the quantum algebraA~. Therefore we can apply

the same philosophy to the NC algebraAN orAθ to define a dynamical system based on the Moyal-

Heisenberg algebra (2.5). In other words, we can consider a one-parameter family of deformations of

zero-dimensional matrices which is parameterized by the coordinatet. Then the one-parameter family

of deformations characterized by (2.6) and (2.7) can be regarded as the time evolution of a dynamical

system. For this purpose, we extend the NC algebraAθ toA1
θ ≡ Aθ

(
C∞(R)

)
= C∞(R)⊗Aθ whose

generic element takes the form

f̂(t, y) ∈ A1
θ. (2.32)

The matrix representation (2.14) is then replaced by

f̂(t, y) =
∞∑

n,m=1

|n〉〈n|f̂(t, y)|m〉〈m| =
∞∑

n,m=1

fnm(t)|n〉〈m| (2.33)
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wherefnm(t) := [f(t)]nm are elements of a matrixf(t) in A1
N ≡ AN

(
C∞(R)

)
= C∞(R) ⊗ AN

as a representation of the observable (2.32) on the Hilbert space (2.12). As the Heisenberg equation

(2.31) in quantum mechanics suggests, the evolution equation for an observablêf(t, y) ∈ A1
θ in the

Heisenberg picture is defined by

df̂(t, y)

dt
=
∂f̂ (t, y)

∂t
− i[Â0(t, y), f̂(t, y)]⋆ ≡ D̂0f̂(t, y) (2.34)

where we denoted the local Hamiltonian density by

Ĥ(t, y) ≡ −Â0(t, y) ∈ A1
θ. (2.35)

The definition (2.34) is intended for the following reason. Note that

− i[φa, f̂(t)] = ∂af̂(t, y)− i[Âa(t, y), f̂(t, y)]⋆ ≡ D̂af̂(t, y), (2.36)

where the representation (2.33) has been employed. Then onecan see that the inner automorphism

Inn(Aθ) of Aθ can be lifted to the automorphism ofA1
θ given by

Â0(t, y)→ Û(t, y) ⋆
∂Û−1(t, y)

∂t
+ Û(t, y) ⋆ Â0(t, y) ⋆ Û

−1(t, y), (2.37)

Âa(t, y)→ Û(t, y) ⋆
∂Û−1(t, y)

∂ya
+ Û(t, y) ⋆ Âa(t, y) ⋆ Û

−1(t, y), (2.38)

whereÛ(t, y) = e
iλ̂(t,y)
⋆ with λ̂(t, y) ∈ A1

θ. It is obvious that the above automorphism is nothing but

the gauge transformation for NCU(1) gauge fields in(2n + 1)-dimensions [28].

Our leitmotif is that a consistent theory of quantum gravityshould be background-independent,

so that it should not presuppose any spacetime background onwhich fundamental processes develop.

Hence the background-independent theory must provide a mechanism of spacetime generation such

that every spacetime structure including the flat spacetimearises as a solution of the theory itself.

The most natural candidate for such a background-independent theory is a zero-dimensional matrix

model such as Eq. (2.1) because it is not necessary to assume the prior existence of spacetime to

define the theory. Hence a background spacetime also arises as a vacuum solution of an underlying

theory. We emphasize again that the NC nature of the vacuum solution, e.g. Eq. (2.5), is essential to

realize the largeN duality via the duality chain (2.21). A profound feature is that the background-

independent theory is intrinsically dynamical because thespace of all possible solutions is extremely

large, typically infinite-dimensional and generic deformations of a primitive vacuum such as Eq.

(2.5) will span a large subspace, at least, in the Morita equivalent class of NC algebras [3]. We

argued that the dynamics under the Moyal-Heisenberg vacuum(2.4) is described by the NC algebra

A1
N = AN

(
C∞(R)

)
= C∞(R)⊗AN . One may regardA1

N as a one-parameter family of deformations

of the algebraAN . In this case we can generalize the duality chain (2.21) to realize the “time-

dependent” gauge/gravity duality as follows:

A1
N =⇒ A1

θ =⇒ D1. (2.39)
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It is well-known [29] that in the case ofA1
N orA1

θ, the module of its derivations can be written as a

direct sum of the submodules of horizontal and inner derivations:

D1 = Hor(A1
N)⊕D(A1

N)
∼= Hor(A1

θ)⊕D(A1
θ) (2.40)

where horizontal derivation is a lifting of smooth vector fields onR ontoA1
N or A1

θ and is locally

generated by a vector field

g(t, y)
∂

∂t
∈ Hor(A1

θ). (2.41)

The inner derivationD(A1
θ) is defined by lifting the NC vector fields in Eq. (2.19) ontoA1

θ and

generated by

{V̂a(t) ≡ adφ̂a
∈ D(A1

θ)|φ̂a(t, y) = pa + Âa(t, y) ∈ A1
θ, a = 1, · · · , 2n} (2.42)

and {
V̂0(t)−

∂

∂t
≡ adÂ0

∈ D(A1
θ)|Â0(t, y) ∈ A1

θ

}
. (2.43)

It might be remarked that the definition of the time-like vector field V̂0(t) is motivated by the quantum

Hamilton’s equation (2.34), i.e.,

V̂0(t) :=
d

dt
. (2.44)

Consequently, the module of the derivations of the NC algebraA1
θ is given by

D1 =
{
V̂A(t) =

(
V̂0, V̂a

)
(t)|V̂0(t) =

∂

∂t
+ adÂ0

, V̂a(t) = adφ̂a
, A = 0, 1, · · · , 2n

}
. (2.45)

In the commutative limit,|θ| → 0, the time-dependent polyvector fieldsV̂A(t) in D1 will take the

following form

V̂0(t) =
∂

∂t
+ Aµ

0 (t, y)
∂

∂yµ
+

∞∑

p=2

A
µ1···µp

0 (t, y)
∂

∂yµ1
· · · ∂

∂yµp
, (2.46)

V̂a(t) = V µ
a (t, y)

∂

∂yµ
+

∞∑

p=2

V µ1···µp

a (t, y)
∂

∂yµ1
· · · ∂

∂yµp
. (2.47)

Let us truncate the above polyvector fields to ordinary vector fields given by

X(M) =
{
VA = V M

A (t, y)
∂

∂XM
|A,M = 0, 1, · · · , 2n

}
(2.48)

whereV 0
A = δ0A andXM = (t, yµ) are local coordinates on an emergentLorentzianmanifoldM of

(2n+ 1)-dimensions. The orthonormal vielbeins onTM are then obtained by the prescription [1]

(V0, Va) = (E0, λEa) ∈ Γ(TM) (2.49)
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or onT ∗M
(e0, ea) = (v0, λva) ∈ Γ(T ∗M). (2.50)

The conformal factorλ ∈ C∞(M) is similarly determined by the volume-preserving condition

LVA
νt =

(
∇ · VA + (2− 2n)VA lnλ

)
νt = 0, ∀A = 0, 1, · · · , 2n. (2.51)

The above condition explicitly reads as

∂ρ

∂t
+ ∂µ(ρA

µ
0 ) = 0 & ∂µ(ρV

µ
a ) = 0, (2.52)

whereρ = λ2detvaµ and

νt ≡ dt ∧ ν = λ2dt ∧ v1 ∧ · · · ∧ v2n (2.53)

is a(2n+1)-dimensional volume form onM. If the structure equation of vector fieldsVA ∈ Γ(TM)

is defined by

[VA, VB] = −gAB
CVC , (2.54)

the volume-preserving condition (2.51) can equivalently be written as [5]

gBA
B = VA lnλ2. (2.55)

In the end, the Lorentzian metric on a(2n + 1)-dimensional spacetime manifoldM is given by

[3, 4, 5]

ds2 = GMN (X)dXM ⊗ dXN = ηABe
A ⊗ eB

= −v0 ⊗ v0 + λ2va ⊗ va = −dt2 + λ2vaµv
a
ν(dy

µ −Aµ)(dyν −Aν) (2.56)

whereAµ := Aµ
0(t, y)dt.

It should be noted that the time evolution (2.44) for a general time-dependent system is not com-

pletely generated by an inner automorphism sinceHor(A1
θ) is not an inner but outer derivation. This

happens since the time variablet is a bach. Thus one may extend the phase space by introducing a

conjugate variableH of t so that the extended phase space becomes a symplectic manifold. Then it

is well-known [24] that the time evolution of a time-dependent system can be defined by the inner

automorphism of the extended phase space whose extended Poisson bivector is given by

ϑ = θ +
∂

∂t

∧ ∂

∂H
(2.57)

where

θ =
1

2
θµν

∂

∂yµ

∧ ∂

∂yν
(2.58)

is the original Poisson bivector related to the NC space (1.2). As a result, one can see [5] that the

temporal vector field (2.44) is realized as a generalized Hamiltonian vector field defined by

V0 = XH = −ϑ(dH) =
∂

∂t
+XH (2.59)
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whereXH = θ(dA0) is the original Hamiltonian vector field which is a classicalpart of the inner

derivationadÂ0
= XH + O(θ2) ∈ D(A1

θ). But we have to pay the price for the extension of phase

space. In the extended phase space, the timet is now promoted to a dynamical variable whereas

it was simply an affine parameter describing a Hamiltonian flow in the old phase space. Then the

extended Poisson structure (2.57) raises a serious issue whether the time variable for a general time-

dependent system might also be quantized; in other words, time also becomes an operator obeying

the commutation relation[t, H ] = −i. We want to be modest not to address this issue since it is a

challenging open problem even in quantum mechanics.

We figure out the time issue in a less ambitious way. Suppose that (M,B ≡ θ−1) is the original

symplectic manifold responsible for the emergence of spaces. Now we consider a contact manifold

(R ×M, B̃) whereB̃ = π∗
2B is defined by the projectionπ2 : R ×M → M, π2(t, x) = x [24].

We define the concept of (space)time in emergent gravity through the contact manifold(R ×M, B̃)

in the sense that the derivations in Eq. (2.45) can be obtained by quantizing the contact manifold

(R×M, B̃). Indeed it is shown in Appendix A that the time-like vector field V0 in Eq. (2.59) arises

as a Hamiltonian vector field of a cosymplectic manifold whose particular class is a contact manifold.

Note that the emergent geometry described by the metric (2.56) respects the (local) Lorentz symmetry.

If one looks at the metric (2.56), one can see that the Lorentzian manifoldM becomes the Minkowski

spacetime on a local Darboux chart in which all fluctuations die out, i.e.,vaµ → δaµ, A
µ → 0, soλ→

1. We have to emphasize [1] that the vacuum algebra responsible for the emergence of the Minkowski

spacetime is the Moyal-Heisenberg algebra (2.5). Many surprising results will immediately come out

from this dynamical origin of the flat spacetime [4, 5, 30], which is absent in general relativity.

We close this section by observing that the quantized version of the contact manifold(R×M, B̃)

is described by the MQM whose action is given by

S =
1

g2YM

∫
dtTr

(1
2
(D0φa)

2 +
1

4
[φa, φb]

2
)
, (2.60)

whereD0φa =
∂φa

∂t
− i[A0, φa]. The equations of motion for the matrix action (2.60) are given by

D2
0φa + [φb, [φa, φb]] = 0, (2.61)

which must be supplemented with the Gauss constraint

[φa, D0φa] = 0. (2.62)

As we discussed before, we interpret the matrix model (2.60)as a Hamiltonian system of the IKKT

matrix model whose action is given by Eq. (2.1). Note that theoriginal BFSS matrix model [31]

contains 9 adjoint scalar fields while the action (2.60) has even number of adjoint scalar fields. For

the former case, on the one hand, we have no idea how to realizethe adjoint scalar fields as a matrix

representation of NCU(1) gauge fields on a Hilbert space like as (2.33). Even it may be nontrivial to
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construct the Hilbert space because the M-theory is involved with a 3-form instead of symplectic 2-

form. For the latter case, on the other hand, the previous Moyal-Heisenberg vacuum (2.4) is naturally

extended to the vacuum configuration ofA1
N given by

〈φa〉vac = pa, 〈Â0〉vac = E , (2.63)

where the vacuum modulipa ∈ A1
N satisfy the commutation relation (2.5) andE is a constant pro-

portional to the identity matrix. We consider all possible deformations of the vacuum (2.63) and

parameterize them as

φ̂A(t, y) = pA + ÂA(t, y) ∈ A1
θ, (2.64)

where the isomorphism (2.33) betweenA1
N andA1

θ was used. Note that

[φ̂A, φ̂B]⋆ = −i
(
BAB − F̂AB

)
, (2.65)

where

F̂AB = ∂AÂB − ∂BÂA − i[ÂA, ÂB]⋆ ∈ A1
θ (2.66)

and

BAB =

(
0 0

0 Bab

)
.

Plugging the fluctuations (2.64) into the action (2.60) leads to a(2n+1)-dimensional NCU(1) gauge

theory with the action

S = − 1

g2YM

∫
dtTr

(1
2
(D0φa)

2 − 1

4
[φa, φb]

2
)

= − 1

4G2
YM

∫
d2n+1y

(
F̂AB − BAB

)2
, (2.67)

whereG2
YM = (2π)n|Pfθ|g2YM is the(2n+1)-dimensional gauge coupling constant. By applying the

duality chain (2.39) to time-dependent matrices inA1
N , it is straightforward to derive the moduleD1

in Eq. (2.45) from the largeN matrices or NCU(1) gauge fields in the action (2.67). A Lorentzian

spacetime described by the metric (2.56) corresponds to a classical geometry derived from the NC

moduleD1 [3].

3 Cosmic inflation as a time-dependent Hamiltonian system

In Part I [1], we observed that a NC spacetime is caused by the Planck energy condensate responsible

for the generation of spacetime and the Planck energy condensate into vacuum must be a dynamical

process. The cosmic inflation corresponds to the dynamical mechanism for the instantaneous con-

densation of vacuum energy to enormously spread out spacetime. Hence the cosmic inflation as a

dynamical system is typically a time-dependent solution and must be described by a non-Hamiltonian
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dynamics. Now we will illuminate how the cosmic inflation canbe described by the conformal Hamil-

tonian dynamics [15, 16] which appears in, for example, simple mechanical systems with friction. In

Appendix A we briefly review generalized symplectic manifolds that correspond to a natural phase

space describing the conformal Hamiltonian dynamics.

Let us consider the simplest case, namely when the symplectic manifold isR2n with coordinates

(qi, pi) andω = dqi∧dpi = da wherea = 1
2
(qidpi−pidqi). The symplectic manifold(R2n, ω) corre-

sponds to a local system of a locally conformal symplectic (LCS) manifold as reviewed in Appendix

A. A conformal vector fieldX is defined by

ιXω = κa + dH, (3.1)

whereH : R2n → R is the Hamiltonian andκ is a nonzero constant. Note that Eq. (3.1) implies

LXω = κω. (3.2)

Therefore the vector fieldX is a Lie algebra generator of conformal infinitesimal transformations

defined by Eq. (A.29). It is easy to solve Eq. (3.1) for the vector fieldX and the result is given by

X =
κ

2

(
qi
∂

∂qi
+ pi

∂

∂pi

)
+XH , (3.3)

whereXH is a usual Hamiltonian vector field obeyingιXH
ω = dH. Thus the Hamilton’s equations

are given by

dqi

dt
= X(qi) =

κ

2
qi +

∂H

∂pi
, (3.4)

dpi
dt

= X(pi) =
κ

2
pi −

∂H

∂qi
. (3.5)

The equations of motion for the HamiltonianH = 1
2
p2i +U(q) are reduced to the differential equations

q̈i − κq̇i + ∂V

∂qi
= 0, (3.6)

whereV (q) = U(q) + κ2

8
q2i . To be specific, the integral curves forU(q) = 1

2
ω2q2i are given by4

qi(t) = e
κ
2
tqi(κ = 0; t), pi(t) = e

κ
2
tpi(κ = 0; t), (3.7)

whereqi(κ = 0; t) = Ai sin(ωt+ θ) andpi(κ = 0; t) = Bi cos(ωt+ θ) describe the usual harmonic

oscillator with a closed orbit whenκ = 0. Therefore we see that the flow generated by a conformal

vector field has the property

φ∗ω = eκtω, (3.8)

4Note thata = b + dλ whereb = −pidqi andλ = 1
2q

ipi. Thus one can also define the conformal vector fieldX by

ιXω = κb+dH ′ whereH ′ = H+κλ. In this caseX = κpi
∂

∂pi
+XH′ and the equations of motion are given bydqi

dt
= ∂H′

∂pi

and dpi

dt
= κpi − ∂H′

∂qi
. ForH ′ = 1

2 (p
2
i + ω2q2i ), the general solution is given byqi(t) = Aie

κ

2
t sin

(√
ω2 − κ2

4 t + θ
)

.

However the vector field defined by Eq. (3.3) is more convenient for our case.
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which may be directly obtained by integrating Eq. (3.2).5 This means that the volume of phase space

exponentially expands (contracts) ifκ > 0 (κ < 0).

The mathematical parallelism between quantum mechanics and NC spacetime suggests how to

formulate the cosmic inflation as a dynamical system. First note that the NC space (1.2) in commuta-

tive limit becomes a phase space with the symplectic form

B =
1

2
Bµνdy

µ ∧ dyν. (3.9)

The dynamics of Hamiltonian systems is characterized by theinvariance of phase space volume under

time evolution and the conservation of phase space volume for divergenceless Hamiltonian flows is

known as the Liouville theorem [24]. However, the cosmic inflation means that the volume of space-

time phase space has to exponentially expand as we have seen from the above mechanical analogue.

Hence the cosmic inflation as a dynamical system has to be regarded as a non-Hamiltonian system and

a generalized Liouville theorem is necessary to describe the exponential expansion of spacetime. We

have already explained above how such a non-Hamiltonian dynamics can be formulated in terms of a

conformalHamiltonian dynamics characterized by the (local) flow obeying Eq. (3.2). See Appendix

A for a mathematical exposition of general time-dependent nonconservative dynamical systems.6

Let us apply the conformal Hamiltonian dynamics to the cosmic inflation. Recall that we have

considered an atlas{(Ui, φ(i))} onM =
⋃

i∈I Ui as a collection of local Darboux charts and complete

it by gluing these local charts on their overlap. On each local chart, we have a local symplectic

structureΩi =
1
2
Bµνdy

µ
(i) ∧ dyν(i) where{yµ(i)} are Darboux coordinates on a local patchUi ⊂ M . As

was explained in Refs. [36, 37] and reproduced in Appendix A,the phase space coordinates{yµ(i)}Ui
of

a conformal Hamiltonian system undergo a nontrivial time evolution even in a local Darboux frame.

For example, look at the equations of motion (3.4) and (3.5) to recognize such a nontrivial time

evolution even whenH = 0. The dynamics in this case consists of the orbits of a conformal vector

field X obeying the condition (A.29). The result is essentially thesame as the previous mechanical

system with negative-friction. To be specific, writeΩi = da(i) on a local patchUi ⊂ M where

a(i) = −1
2
p
(i)
µ dy

µ
(i) with p(i)µ = Bµνy

ν
(i) and consider a conformal vector fieldX defined by

ιXΩi = κa(i) + dHi, (3.10)

whereHi : Ui → R is a local Hamiltonian andκ is a positive constant. Using the fact thatdΩi = 0,

it is easy to derive the condition (A.29) from Eq. (3.10), i.e.,

LXΩi = κΩi. (3.11)

5The proof goes as follows. Letφt denote the flow ofX . By the Lie derivative theorem [24], we haved
dt
(φ∗

tω) =

φ∗
tLXω = κφ∗

tω, which has the unique solution (3.8).
6We want to remark that such systems ubiquitously arise in, e.g., dynamical systems with friction and nonequilibrium

statistical mechanics. Recently the statistical mechanics of non-Hamiltonian systems has been formulated using a gener-

alized Liouville measure to study the simulation of molecular dynamics. See, for example, [32, 33, 34, 35]. We think that

their formulation may be useful to understand the evolutionof our early universe, especially, regarding to the issue ofthe

cosmic Landau damping discussed in the last section.
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The vector fieldX obeying Eq. (3.10) is given by

X =
κ

2
yµ(i)

∂

∂yµ(i)
+XHi

, (3.12)

whereXHi
is the ordinary Hamiltonian vector field satisfyingι(XHi

)Ωi = dHi. The conformal vector

fieldZ(i) ≡ 1
2
yµ(i)

∂
∂yµ

(i)
in Eq. (3.12) is known as the Liouville vector field [15, 16] and is generated by

the open Wilson line (1.8) [1]. We will setHi = 0 for simplicity. The time evolution of local Darboux

coordinates is then determined by the equations

dyµ(i)
dt

= X(yµ(i)) =
κ

2
yµ(i). (3.13)

The solution is given by

yµ(i)(t) = e
κ
2
tyµ(i)(0). (3.14)

We may glue the local solutions (3.14) to have a global form

pa(t) = Baby
b(t) = e

κ
2
tpa. (3.15)

Then the time-dependent canonical one-form is given by

a(t) = −1
2
pa(t)dy

a(t) = −1
2
eκtpady

a (3.16)

and thus

Ω(t) = da(t) = eκtB. (3.17)

The exterior derivative above acts only onR2n. One can show using the proof in footnote 5 that the

result (3.17) is the integral form of Eq. (3.11). More generally, the result (3.17) is a particular case of

the general Moser flowφt generated by a time-dependent vector fieldXt for an LCS manifold which

is given by [38]

φ∗
tΩt = exp

(∫ t

0

φ∗
s

(
bs(Xs)

)
ds
)
· Ω, (3.18)

where the one-formb is the Lee form ofΩ [39]. The above result (3.17) is simply obtained from Eq.

(3.18) whenb(X) is a constantκ.

We have motivated the cosmic inflation with the idea that the vacuum configuration (2.63) is a

final state accumulating the vacuum energy [1]. Therefore, the cosmic inflation corresponds to a

dynamical system describing the transition from the initial state referring to “absolutely nothing” to

the final state. For this purpose, let us consider a symplectic manifold
(
M,Ω(t)

)
whose symplectic

two-form is given by Eq. (3.17). It was shown in [1] that this symplectic manifold arises from a

time-dependent vacuum solution given by

〈φa(t)〉vac = pa(t) = e
κ
2
tpa, 〈Â0(t, y)〉vac = â0(t, y). (3.19)
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Recall that the temporal gauge field in Eq. (3.19) is given by the non-local Hamiltonian (1.7). As

was shown in Eq. (1.8), it is necessary to turn on a non-local Hamiltonian to satisfy the equations of

motion (2.61) as well as the Gauss constraint (2.62) and it leads to the conformal vector field (3.12).

However we will set̂a0(t, y) = 0 to highlight the conformal Hamiltonian dynamics of cosmic infla-

tion and compare its difference with the caseâ0(t, y) 6= 0 later. Since the vacuum (3.19) is in highly

non-equilibrium, it is expected that it will eventually evolve to the final state (2.63) through inter-

actions with an environment (e.g., ubiquitous fluctuations) as we have learned from hydrodynamics

and thermodynamics in non-equilibrium. The decay of exponentially growing modes via interactions

with the environment is known as the reheating process in physical cosmology. However we do not

know the precise mechanism for the reheating. We will speculate in Sec. 5 a plausible picture for the

reheating mechanism. It turns out [1] thatκ is identified with the inflationary Hubble constantH and

the inflationary energy scale is given by

H = (n− 1)κ & 1011 ∼ 1014 GeV. (3.20)

Let us first determine the vacuum geometry emergent from the vacuum configuration (3.19). In

this case it is not necessary to glue Darboux charts because we have not introduced local fluctuations

yet, so the Darboux coordinates in (3.19) are globally defined. Note that

〈[φa(t), φb(t)]〉vac = −ieκtBab = −iΩab(t), (3.21)

and so we regardΩ(t) = 1
2
Ωab(t)dy

a ∧ dyb as the symplectic structure of the inflating vacuum (3.19).

According to the definition (A.11), we get (omitting the symbol indicating the vacuum for a notational

simplicity)

Va(t) = θ(t)
(
dpa(t)

)
= e

κ
2
tVa(0) (3.22)

whereVa(0) = δµa
∂

∂yµ
. Similarly,

V0(t) =
∂

∂t
(3.23)

since we set̂A0(t, y) = 0. Thus the dual one-forms are given by

v0(t) = dt, va(t) = e−
κ
2
tva(0) (3.24)

whereva(0) = δaµdy
µ. It is easy to calculate the Lie algebra defined by Eq. (2.54) for the time-

dependent vector fieldsVA(t) where

gAB
C =

{
g0a

b = −ga0b = κ
2
δba, a, b = 1, · · · , 2n;

0, otherwise.
(3.25)

Thusλ2 = enκt according to Eq. (2.55). Note that, if we include the temporal gauge field in Eq.

(3.19), the conformal factor is enhanced toλ2 = e2nκt [1]. The invariant volume form of the vacuum

manifold is then given by

νt = λ2dt ∧ v1(t) ∧ · · · ∧ v2n(t) = dt ∧ dy1 ∧ · · · ∧ dy2n. (3.26)
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After applying the above results to the metric (2.56), we seethat the vacuum configuration (3.19)

determines the spacetime geometry with the metric

ds2 = −dt2 + eHtdy · dy. (3.27)

This is the de Sitter space in flat coordinates which covers half of the de Sitter manifold. Definitely

the inflation metric (3.27) describes a homogeneous and isotropic Universe known as the Friedmann-

Robertson-Walker metric in physical cosmology. By comparing this result with Eq. (1.9), we see that

the temporal gauge field (1.8) enhances the inflation by the factor two, i.e.H → 2H.

The vector fieldsVA(t) form a solvable Lie algebra and the de Sitter space is its Lie group. The Lie

algebra for Eq. (3.25) has the generatorsV0 = −κ
2
L0(2n+1), Va =

1
2
(L0a+La(2n+1)), which is indeed a

subalgebra of the de Sitter algebra whereLAB are the Lie algebra generators ofSO(2n+1, 1) Lorentz

symmetry. In this point of view, energy and momentum do not commute unlike in the Minkowski

spacetime and are no longer conserved, as translations are no more a symmetry of the space.7 Instead,

energy generates scale transformations in momentum. This is the reason why the isometry of the de

Sitter space is enhanced toSO(2n + 1, 1) which combinesSO(2n, 1) Lorentz transformations and

translations together [40]. In the limitκ→ 0, we recover the Minkowski spacetime.

Important remarks are in order. First we see that the cosmic inflation is a typical example of an

LCS manifold. The LCS manifold has a disparate property compared to symplectic manifolds. First

of all, it is allowed a nontrivial conformal vector field defined by Eq. (3.11) even when an underly-

ing Hamiltonian function identically vanishes. The so-called Liouville vector fieldZ ≡ 1
2
yµ ∂

∂yµ
is

still nontrivial [15] and it generates the exponential expansion of spacetime described by the metric

(3.27).8 If the one-forma in Eq. (3.10) is proportional to the Lee formb, X is called a Hamiltonian

vector field of an LCS manifold. See the definition (A.10). Even in this case, the Hamiltonian vector

field shows a peculiar property different from the symplectic case: Ifb is not exact,XH = 0 only if

H = 0. Therefore we see that the vector fields of an LCS manifold is in stark contrast to those of

a symplectic manifold, in whichXH = 0 impliesH = constant only and, due to this property, the

constant vacuum energy does not couple to gravity as was shown in Part I. Remarkably, if the cosmic

inflation is described by an LCS (or more generally LCC) manifold, the vacuum energy rightly cou-

ples to gravity during the inflation. This is a desirable property since the cosmic inflation is triggered

by the condensate of vacuum energy. Physically the reason isobvious since every quantity during the

inflation is time-dependent due to the existence of the nontrivial Liouville vector field.

7One important consequence is that the energy will not be positive. Polyakov has suggested [41] that this makes de

Sitter space unstable with respect to decay by creation of particle-antiparticle pairs.
8It would be worthwhile remarking that it is not possible to realize the Liouville vector field in terms of a local

Hamiltonian function. Probably this situation becomes more transparent by the mechanical analogue described by Eq.

(3.6). Thus the inflation is a dynamical system without any Hamiltonian. It may explain why even string theory faces

many difficulties to realize the cosmic inflation. However weshow in Appendix B that this situation can be cured by

introducing a time-dependent Hamiltonian.
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It may be instructive to understand the above situation moreclosely in comparison with the equi-

librium case described by the metric (2.56). First note thatthe invariant volume form (2.53) can be

written as

νt = λ2−2nνg, (3.28)

whereνg = e0 ∧ · · · ∧ e2n =
√
−Gd2n+1x is the volume form of the metric. Therefore, the vector

fields VA do not necessarily preserve the Riemannian volume formνg although they preserve the

volume formνt. However, sinceλ2 → 1 at spatial infinity according to Eq. (2.55),νt|∞ = νg|∞
for the asymptotic volume forms denoted byνt|∞ and νg|∞. In other words, the flow generated

by VA leads to only local changes of the spacetime volume while it preserves the volume element

at asymptotic regions. On the contrary, the conformal vector field changes the spacetime volume

everywhere. Accordingly it definitely gives rise to the exponential expansion of the spacetime volume.

After all, we see that a natural phase space for the cosmic inflation has to contain an LCS manifold

replacing a standard symplectic manifold. Including time,it becomes an LCC manifold [37]. Our

result shows that the matrix model (2.60) contains the LCC manifold as a solution.

As was summarized in Eq. (1.12), a general Lorentzian metricdescribing(2n + 1)-dimensional

inflating spacetime can be obtained by considering arbitrary fluctuations around the inflationary back-

ground (1.7). The fluctuations are given by Eq. (1.10) and form a time-dependent NC algebratA1
θ.

Let us denote the corresponding time-dependent matrix algebra by tA1
N which consists of a time-

dependent solution of the action (2.60). Then the general Lorentzian metric describing a(2n + 1)-

dimensional inflationary universe is constructed by using the following duality chain [1]:

tA1
N =⇒ tA1

θ =⇒ tD1. (3.29)

The moduletD1 of derivations of the NC algebratA1
θ is given by Eq. (1.11). In the classical limit

of the module, we get a general inflationary universe described by the metric (1.12). The chain of

maps in (3.29) shows how to realize the largeN duality in Fig. 1 and achieve the background-

independent description of an inflationary universe. A remarkable picture is that the cosmic inflation

arises as a time-dependent solution of MQM and describes thedynamical process of Planck energy

condensate in vacuum without introducing any inflaton field as well as anad hocinflation potential

[1]. In conclusion, the emergent spacetime is a completely new paradigm that enables the background-

independent description of an inflationary universe [42].

4 NC spacetime as a second-quantized string

We know that quantum mechanics is the more fundamental description of nature than classical physics.

The microscopic world is already quantum. Nevertheless, the quantization is necessary to find a quan-

tum theoretical description of nature since we have understood our world starting with the classical

description which we understand better. After quantization, the quantum theory is described by a
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fundamental NC algebra such as Eq. (2.28). A striking feature of the NC algebraA~ is that every

point inRn is unitarily equivalent because translations inRn are generated by an inner automorphism

of A~, i.e.,f(x + a) = U(a)f(x)U(a)† wheref(x) ∈ A~ andU(a) = eipia
i/~ ∈ Inn(A~). There-

fore, through the quantization, the concept of (phase) space is doomed. Instead the (phase) space

is replaced by the algebraA~ and its Hilbert space representation and dynamical variables become

operators acting on the Hilbert space. Only in the classicallimit, a phase space with the symplectic

structureω = dxi ∧ dpi is emergent from the quantum algebraA~ such as (2.28).

Recall that the mathematical structure of NC spacetime is basically the same as the NC phase

space in quantum mechanics [11]. Therefore essential features in quantum mechanics must be applied

to the NC spacetime too. In particular, NC algebrasAθ such as the NC space (1.2) also play a

fundamental role and every points in the NC space are indistinguishable, i.e., unitarily equivalent

because any two points are connected by an inner automorphism of Aθ. In other words, there is no

space(time) for the same reason as quantum mechanics and a classical spacetime must be derived

from the NC algebraAθ. After all, an important lesson is that NC spacetime necessarily implies

emergent spacetime.

Although spacetime at a microscopic scale, e.g. the Planck scaleLP , is intrinsically NC, we

understand the NC spacetime through the quantization of a symplectic (or more generally Poisson)

manifold. Let(M,B) be a symplectic manifold. On the one hand, the basic concept in symplectic

geometry is an area defined by the symplectic two-formB that is a nondegenerate, closed two-form.

On the other hand, the basic concept in Riemannian geometry determined by a pair(M, g) is a distance

defined by the metric tensorg that is a nondegenerate, symmetric bilinear form. One may identify

this distance with a geodesic worldline of a “particle” moving inM . Geodesic curves inM give us

all information of Riemannian geometry(M, g). On the contrary, the area in symplectic geometry

(M,B) may be regarded as a minimal worldsheet swept by a “string” moving inM . In this picture,

the wiggly string, so a fluctuating worlsheet, corresponds to a deformation of symplectic structure in

M . This picture becomes more transparent by the so-called pseudoholomorphic orJ-holomorphic

curve introduced by Gromov [43].

Let (M,J) be an almost complex manifold and(Σ, j) be a Riemann surface. By the compatibility

of J to B, we have the relationg(X, Y ) = B(X, JY ) for any vector fieldsX, Y ∈ X(M). Let us

also fix a Hermitian metrich of (Σ, j). A smooth mapf : Σ→M is called pseudoholomorphic [17]

if the differentialdf : TΣ→ TM is a complex linear map with respect toj andJ :

df ◦ j = J ◦ df. (4.1)

This condition corresponds to the commutativity of the following diagram

TΣ
j

//

df
��

TΣ

df
��

TM
J

// TM
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SinceJ−1 = −J , it is also equivalent to∂Jf = 0 where∂Jf := 1
2
(df + J ◦ df ◦ j). For example,

suppose that the Riemann surface is(Σ, i) wherei is the standard complex structure. We can work

in a chartuǫ : Uα → C with local coordinatez = τ + iσ whereUǫ ⊂ Σ is an open neighborhood.

Definefǫ = f ◦ u−1
ǫ . In this case, we have

∂Jf =
1

2

[(∂fǫ
∂τ

+ J(fǫ)
∂fǫ
∂σ

)
dτ +

(∂fǫ
∂σ
− J(fǫ)

∂fǫ
∂τ

)
dσ

]
. (4.2)

Thus we see that∂Jf = 0 if
∂fǫ
∂τ

+ J(fǫ)
∂fǫ
∂σ

= 0. (4.3)

SinceJ isB-compatible, every smooth mapf : Σ→M satisfies [44, 45]

1

2

∫

Σ

||df ||2g dvolΣ =

∫

Σ

||∂Jf ||2g dvolΣ +

∫

Σ

f ∗B, (4.4)

where the norms are taken with respect to the metricg anddvolΣ is a volume form onΣ. In terms of

local coordinates,(σ1, σ2) onΣ andf(σ) = (x1, · · · , x2n) onM ,

||df ||2g = gµν
(
f(σ)

)∂xµ
∂σa

∂xν

∂σb
hab(σ) (4.5)

anddvolΣ =
√
hd2σ. Therefore, the left-hand side of Eq. (4.4) is nothing but the Polyakov action

in string theory. For a pseudoholomorphic curvef : Σ → M that obeys∂Jf = 0, we thus have the

identity

SP (f) ≡
1

2

∫

Σ

||df ||2g dvolΣ =

∫

Σ

f ∗B. (4.6)

This means that any pseudoholomorphic curves minimize the “harmonic energy”SP (f) in a fixed

homology class and so are harmonic maps. In other words, their symplectic area coincides with the

surface area. Therefore, any pseudoholomorphic curve is a solution of the worldsheet Polyakov action

SP (f). For instance, ifM = C
n with complex coordinatesφi = x2i−1 +

√
−1x2i (i = 1, . . . , n) and

fǫ(z, z̄) ≡ φi(z, z̄), Eq. (4.3) becomes

1

2

( ∂
∂τ

+
√
−1 ∂

∂σ

)
φi(z, z̄) = ∂z̄φ

i(z, z̄) = 0. (4.7)

In this case, pseudoholomorphic curves coincide with holomorphic curves. Moreover such curves are

harmonic and minimal surfaces.9

The pseudoholomorphic curve also provides us a useful tool to understand the emergent gravity

picture. To demonstrate this aspect, let us include a boundary interaction in the sigma model (4.4)

such that the open string action is given by

SA(f) ≡
1

2

∫

Σ

||df ||2g dvolΣ +

∫

∂Σ

f ∗A, (4.8)

9In the topological A-model that is concerned with pseudoholomorphic maps fromΣ toM = T ∗N , there is a vanish-

ing theorem [46] stating that
∫
Σ
f∗B = 0. In particular, the mappings from∂Σ toN are necessarily constant.
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where the one-formA is the connection of a line bundleL → M . Using the Stokes’ theorem, the

second term can be written as ∫

∂Σ

f ∗A =

∫

Σ

f ∗dA. (4.9)

After combining the identities (4.4) and (4.9) together, wewrite the action

SA(f) =

∫

Σ

||∂Jf ||2g dvolΣ +

∫

Σ

f ∗F , (4.10)

whereF = B + F andF = dA. If one recalls the derivation of Eq. (4.4), one may immediately

realize that the actionSA(f) can equivalently be written as the form of the Polyakov action

SP (ψ) ≡
1

2

∫

Σ

||dψ||2G dvolΣ, (4.11)

where the differentialdψ for a smooth mapψ : Σ → M has the norm taken with respect to some

metricG. For this purpose, let us assume that the almost complex structureJ is also compatible with

the deformed symplectic structureF , i.e.,

G(X, Y ) = F(X, JY ), ∀X, Y ∈ X(M) (4.12)

is a Riemannian metric onM . An explicit representation of the Polyakov action (4.11) can be made

by introducing local coordinatesψ(σ) = (X1, · · · , X2n) on an open setUi ⊂M so that

||dψ||2G = Gµν
(
ψ(σ)

)∂Xµ

∂σa

∂Xν

∂σb
hab(σ). (4.13)

One can then apply the same derivation of Eq. (4.4) to the action (4.11) to derive the identity

1

2

∫

Σ

||dψ||2G dvolΣ =

∫

Σ

||∂Jψ||2G dvolΣ +

∫

Σ

ψ∗F . (4.14)

For pseudoholomorphic curvesψ : Σ→M satisfying∂Jψ = 0, we finally get the result

SP (ψ) =
1

2

∫

Σ

||dψ||2G dvolΣ =

∫

Σ

ψ∗F . (4.15)

The above argument reveals a nice picture that dynamicalU(1) gauge fields in a line bundleL

overM deform an underlying symplectic structure(M,B) and this deformation is transformed into

the dynamics of gravity [3]. This is a reincarnation of the duality chain in Fig. 1 indicating the

gauge-gravity duality. As we observed before, the symplectic geometry is probed by strings while the

Riemannian geometry is probed by particles. We note that theNC space (1.2) defines only a minimal

area whereas the concept of point is doomed as if~ in quantum mechanics introduces a minimal area

in the NC phase space (2.28). The minimal area (surface) in the NC space behaves like the smallest

unit of spacetime blob and acts as a basic building block of string theory. The concept of pseudo-

holomorphic orJ-holomorphic curves in symplectic geometry plays a role of such minimal surfaces.
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It is known [17] that there is a nonlinear Fredholm theory which describes the deformations of a

given pseudoholomorphic curvef : Σ→ (M,J) and the deformations are parameterized by a finite-

dimensional moduli space. (This moduli space may be enriched by considering pseudoholomorphic

curves in an LCS manifold.) When a symplectic manifold is probed with a string or pseudoholomor-

phic curve, the notion of a wiggly string in this probe picture corresponds to the deformation of a

symplectic structure. Hence the emergence of gravity from symplectic geometry or more precisely

NC U(1) gauge fields may not be surprising because we know from stringtheory that a Riemannian

geometry (or general relativity) is emergent from the wiggly string.

We can think of the integralA(f) =
∫
Σ
f ∗B in two ways iff is a pseudoholomorphic curve. On

the one hand, the pointwise compatibility between the structures(B, J) means thatA(f) is essentially

the area of the image off , measured in the Riemannian metricg. On the other hand, the condition

thatB is closed means thatA(f) is a topological (homotopy) invariant of the mapf since it depends

only on the evaluation of a closed 2-formB on the 2-chain defined byf(Σ). Hence we can use

the curves in two main ways [17]. The first way is as geometrical probes to explore a symplectic

manifold, as we advocated above. The second way is as the source of numerical invariants known

as the Gromov-Witten invariants. Using the pseudoholomorphic curves, Gromov proved a surprising

non-squeezing theorem [43, 44, 45] stating that a ballB2n(r) of radiusr in a symplectic vector

spaceR2n with the standard symplectic formB cannot be mapped by a symplectomorphism into any

cylinderB2(R)×R2n−2 of radiusR if R < r. It is possible to replaceR2n−2 by a(2n−2)-dimensional

compact symplectic manifoldV with π2(V ) = 0.

Now we will discuss how a NC space provides us an important clue for a background-independent

formulation of string theory. The NC spacetime is defined by the quantization of a symplectic mani-

fold (M,B). One may try to lift the notion of the pseudoholomorphic curve to a quantized symplectic

manifold, namely, a NC space such as Eq. (1.2). The quantization of a symplectic manifold leads to

a radical change of classical concepts such as spaces and observables. The classical space is replaced

by a Hilbert space and dynamical observables become operators acting on the Hilbert space. Then

the NC spacetime provides a more elegant framework for the background-independent formulation

of quantum gravity in terms of matrix models, which is still elusive in string theory. We explained

how the dynamical Lorentzian spacetime (2.56) emerges froma classical solution of the matrix model

(2.60). Remarkably, the cosmic inflation described by the metric (1.9) also arises as a vacuum solution

of the time-dependent matrix model.

In order to grasp how a pseudoholomorphic curve looks like inNC spacetime, let us consider the

simplest case in Eq. (4.7). After quantization, the coordinates ofCn denoted byφi(z, z̄) become

operators in a NC⋆-algebraA2
θ ≡ Aθ

(
C∞(R2)

)
= C∞(R2) ⊗ Aθ, i.e.,φi(z, z̄) → φ̂i(z, z̄) ∈ A2

θ.

The worldsheetR2 may be replaced byT2 or R × S1. Let us clarify the notationA2
θ after the Wick

rotation of the worldsheet coordinateτ = it, soR2 → R1,1. Consider a generic element in the NC

⋆-algebraA2
θ given by

f̂(t, σ, y) ∈ A2
θ. (4.16)
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The matrix representation (2.33) is now generalized to

f̂(t, σ, y) =
∞∑

n,m=1

|n〉〈n|f̂(t, σ, y)|m〉〈m| =
∞∑

n,m=1

fnm(t, σ)|n〉〈m| (4.17)

where the coefficientsfnm(t, σ) := [f(t, σ)]nm are elements of a matrixf(t, σ) inA2
N ≡ AN

(
C∞(R1,1)

)
=

C∞(R1,1) ⊗ AN as a representation of the observable (4.16) on the Hilbert space (2.12). Then we

have an obvious generalization of the duality chain (2.39) as follows:

A2
N =⇒ A2

θ =⇒ D2. (4.18)

The module of derivations is similarly a direct sum of the submodules of horizontal and inner deriva-

tions [29]:

D2 = Hor(A2
N)⊕D(A2

N)
∼= Hor(A2

θ)⊕D(A2
θ), (4.19)

where horizontal derivations are locally generated by a vector field

k(t, σ, y)
∂

∂t
+ l(t, σ, y)

∂

∂σ
∈ Hor(A2

θ). (4.20)

It can be shown [3, 5] that the matrix model for the duality chain (4.18) is given by

S = − 1

g2s

∫
d2σTr

(1
4
F 2
αβ +

1

2
(Dαφa)

2 − 1

4
[φa, φb]

2
)
, (4.21)

wherea = 2, · · · , 2n + 1 and σα = (t, σ), α = 0, 1 andFαβ = ∂αAβ − ∂βAα − i[Aα, Aβ].

Then = 4 case is known as the matrix string theory that is supposed to describe a nonperturbative

type IIA string theory in light-cone gauge [19]. The matrix string theory can be obtained from the

BFSS matrix model via compactification on a circle [22]. To achieve this goal, the BFSS matrix

model has to have 9 adjoint scalar fields,φa(t) (a = 1, · · · , 9), unlike the action (2.60) with even

number of adjoint scalar fields. The reason why we consider only even number of adjoint scalar

fields is to realize the equivalence (2.67). In this case, theaction (2.60) can be understood as a

Hilbert space representation of certain NC gauge theory under a symplectic vacuum such as (2.5)

with rank(B) = 2n. However we do not know a corresponding NC gauge theory whoseHilbert space

representation precisely reproduces the BFSS matrix model. We will further comment on this issue

later. Fortunately the matrix string theory (4.21) has 8 adjoint scalar fields forn = 4. Thus it is

possible to realize it as the Hilbert space representation of (9+1)-dimensional NCU(1) gauge theory

with rank(B) = 8 [3, 5]. Therefore it will be interesting to understand how toderive the matrix string

theory (4.21) from the MQM (2.60) as if the latter has been derived from a contact structure of the

zero-dimensional matrix model (2.1).

The basic idea is similar to the previous scheme to constructthe one-dimensional matrix model

(2.60) through the contact structure of zero-dimensional matrices. A difference is that we start with

the one-dimensional matrix model (2.60) and introduce an additional contact structure along a spatial
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direction whose coordinate is calledσ in our case. Ultimately, the matrix string theory (4.21) canbe

realized as the quantization of a regular 2-contact manifold. See Ref. [36] for a generalk-contact

manifold. First let us consider the projectionπ2 : R1,1 × M → M, π2(σ
α, x) = x whereM is

a symplectic manifold with the symplectic formB.10 The regular 2-contact(2n + 2)-dimensional

manifold is defined by a quartet(R1,1 ×M, B̃, ηα), α = 0, 1, whereB̃ = π∗
2B, such that

η0 ∧ η1 ∧ Bn 6= 0 (4.22)

everywhere anddηα = γαB with constantsγα anddB = 0. Moreover there are uniquely defined two

Reeb vectorsRα (α = 0, 1) satisfying

ιRαη
β = δβα, ιRαB = 0, α, β = 0, 1. (4.23)

The above relations imply

LRαη
β = 0, LRαB = 0, [R0, R1] = 0. (4.24)

For example, the contact forms for the matrix string theory (4.21) are given by

η0 = dt− 1

2
pady

a, η1 = dσ − 1

2
pady

a, (4.25)

which determines the corresponding Reeb vectors

R0 =
∂

∂t
, R1 =

∂

∂σ
. (4.26)

These Reeb vectors span the space of horizontal derivationsin Eq. (4.20).

Since there are two independent contact structures, each contact structure generates its own Hamil-

tonian vector field defined by (A.42). For the contact structures in Eq. (4.25), they are given by

Vα =
∂

∂σα
+ Aµ

α(t, σ, y)
∂

∂yµ
. (4.27)

The quantization of the 2-contact manifold(R1,1×M, B̃, ηα) is simple because it is performed using

the Darboux coordinates(σα, ya). It is basically defined by the quantization of the symplectic mani-

fold (M,B) in whichσα are regarded as classical variables like the time coordinate in the algebraA1
θ.

After quantization, a generic element of the NC⋆-algebraA2
θ takes the form (4.16). Then the module

D2 in Eq. (4.19) is generated by

D2 =
{
V̂A(t, σ) =

(
V̂α, V̂a

)
(t, σ)|V̂α(t, σ) =

∂

∂σα
+ adÂα

, V̂a(t, σ) = adφ̂a

}
, (4.28)

10It is possible to replaceR1,1 ×M by a general(2n + 2)-dimensional manifoldN as far as there is a well-defined

two-dimensional foliationV such that the corresponding space of leavesN/V = M is a Hausdorff differentiable manifold

[36]. See (A.24) for a relevant discussion. We will keep the maximal simplicity for a plain argument.
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whereA = 0, 1, · · · , 2n + 1 and the adjoint operations are inner derivations ofA2
θ. Finally the

corresponding Lorentzian metric dual to the matrix string theory (4.21) is given by [3, 5]

ds2 = λ2ηABv
A ⊗ vB = λ2

(
ηαβdσ

αdσβ + vaµv
a
ν(dy

µ −Aµ)(dyν −Aν)
)
, (4.29)

whereAµ := Aµ
α(t, σ, y)dσ

α andλ2 = ν(t,σ)(V0, V1, · · · , V2n+1) is determined by the volume pre-

serving condition,LVA
ν(t,σ) = 0, with respect to a given volume form

ν(t,σ) = dt ∧ dσ ∧ ν = λ2dt ∧ dσ ∧ v1 ∧ · · · ∧ v2n. (4.30)

Let us come back to our previous question about the generalization of pseudoholomorphic curves

to a quantized spacetime. In order to address this issue, letus consider the Wick rotationt = −iτ
again to return to the Euclidean space. If the quantum version of pseudoholomorphic curves exists,

Eq. (4.3) suggests that it will also obey the first-order partial differential equations. It is well-known

[47] that the matrix action (4.21) admits such a first-order system. For simplicity, assume that adjoint

scalar fields mostly vanish except(φ2, φ3) 6= 0. It is convenient to use the complex variables

φ =
1

2
(φ2 − iφ3), φ† =

1

2
(φ2 + iφ3). (4.31)

It is not difficult to show that the Euclidean action withφa = 0 for a = 4, · · · , 9 can be written as the

Bogomol’nyi-type, i.e.,

S =
1

g2s

∫
d2σTr

(1
4
F 2
αβ +

1

2
(Dαφa)

2 − 1

4
[φa, φb]

2
)

=
2

g2s

∫
d2σTr

((
iFzz̄ − [φ, φ†]

)2
+ |Dz̄φ|2 − i∂α

(
εαβφ†Dβφ

))
. (4.32)

Since the last term is a topological number, the minimum of the action is achieved in the configurations

obeying

Fzz̄ + i[φ, φ†] = 0, Dz̄φ = 0. (4.33)

Note that the above equations recover Eq. (4.7) in a very commutative limit where[φ†, φ] = 0.

Therefore it is reasonable to identify Eq. (4.33) with the quantum version of pseudoholomorphic

curves.

Mathematically Eq. (4.33) is equivalent to the Hitchin equations describing a Higgs bundle [48].

A Higgs bundle is a system composed of a connectionA on a principalG-bundle or simply a vec-

tor bundleE over a Riemann surfaceΣ and a holomorphic endomorphismφ of E satisfying Eq.

(4.33). The Hitchin equations describe four-dimensional Yang-Mills instantons onΣ× R2 which are

invariant with respect to the translation groupR2. (ThisR2 is transverse to the Riemann surface, so

independent of the worldsheetR2.) Using the translation invariance, the Yang-Mills instantons can be

dimensionally reduced to the Riemann surfaceΣ in which Yang-Mills gauge fields along the isometry

directions become an adjoint Higgs fieldφ. In our case the gauge groupG is U(N). In particular,
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we are interested in the largeN limit, i.e.,N → ∞. In this limit, the action (4.32) can be mapped to

four-dimensional NCU(1) gauge theory under the Coulomb branch vacuum〈φa〉vac = pa, a = 2, 3

obeying the commutation relation[p2, p3] = −iB23. Then the Hitchin equations (4.33) precisely be-

come the self-duality equation for NCU(1) instantons onR2(or Σ)×R2
θ [49, 50]. The corresponding

gravitational metric for the casen = 1 was already identified in Eq. (4.29) with the analytic con-

tinuationt = −iτ . It was shown in [51, 52, 53] that the solution of the Hitchin equations (4.33) is

dual to four-dimensional gravitational instantons which are hyper-Kähler manifolds. In particular, the

real heaven is governed by thesu(∞) Toda equation and the self-duality equation for the real heaven

exactly reduces to the commutative limit of the Hitchin equations (4.33). See eq. (4.31) in Ref. [51].

Thus the Hitchin system with the gauge groupG = U(N → ∞) may be closely related to the Toda

field theory. Indeed this interesting connection was already analyzed in [54]. In sum, Hitchin equa-

tions, NCU(1) instantons, gravitational instantons and pseudoholomorphic curves may be only the

tip of the iceberg in the matrix string theory (4.21) that have barely shown themselves.

Let us conclude this section by drawing an invaluable insight. So far we have understood NC

spacetimes too easily. However the NC spacetime is much moreradical and mysterious than we

thought. It is fair to say that we have not yet fully understood the mathematically precise sense in

which spacetime should be NC. Indeed we have observed at the outset of this section that NC space-

time necessarily implies emergent spacetime if spacetime at microscopic scales should be viewed as

NC. This means that classical spacetime is somehow a derivedconcept.11 Since we form our picture

of the world by recognizing the NC spacetime as a small deformation of classical symplectic or Pois-

son manifolds, we need an efficient tool to explore the symplectic geometry. The most natural object

to probe symplectic manifolds is a pseudoholomorphic curvewhich is a stringy generalization of a

geodesic worldline in Riemannian geometry [17]. Recall that the pseudoholomorphic curve is basi-

cally a minimal surface or a string worldsheet embedded intospacetime. However, to make sense of

the emergent spacetime proposal, we need a mathematically precise framework for describing strings

in a background-independent way. If it is so, the background-independent theory does not have to

assume from the outset that strings are vibrating in a preexisting spacetime. In this section we have

aimed at clarifying how the pseudoholomorphic curves can belifted to a NC spacetime by the matrix

string theory. The matrix string theory naturally extends the first-quantized string theory so that it also

describes the perturbative interactions of splitting and joining of strings, producing surfaces with non-

trivial topology [19]. That is, the matrix string theory is asecond-quantized theory in which spacetime

emerges from the collective behavior of matrix strings. Thus we argue that the NC spacetime can be

viewed as a second-quantized string for the background-independent formulation of quantum gravity,

which is still elusive in ordinary string theory.

11This prospect has been recently advocated by Moore in (especially, Sec. 9) “Physical mathematics and the fu-

ture” (available at http://www.physics.rutgers.edu/∼gmoore/). See also Segal in “Space and spaces” (available at

http://www.lms.ac.uk/sites/lms.ac.uk/files/files/About−Us/AGM−talk.pdf) and [55].
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5 Discussion

We want to emphasize again that NC spacetime necessarily implies emergent spacetime if space-

time at microscopic scales should be viewed as NC. The NC spacetime is much more radical and

mysterious than we previously thought. (See Sec. 1 in Ref. [3] for the discussion of this aspect.)

In order to understand NC spacetime correctly, we need to deactivate the thought patterns that we

have installed in our brains and taken for granted for so manyyears. As we argued in Part I, the

background-independent formulation of quantum gravity requires the concept of emergent spacetime

that may open a new perspective to resolve the notorious problems in theoretical physics such as the

cosmological constant problem, hierarchy problem, dark energy, dark matter, and cosmic inflation.

In particular, the emergent spacetime picture admits a background-independent formulation of infla-

tionary cosmology so that the inflation simply arises as a time-dependent solution of a largeN matrix

model without introducing any inflaton field as well as anad hoc inflation potential. Therefore it

brings about radical changes of physics, especially, regarding to physical cosmology.

In Part II, we have explored the mathematical foundation forthe largeN duality in Fig. 1 in order

to elucidate how the largeN duality can be applied to physical cosmology. The most remarkable

aspect of the background-independent formulation for inflationary cosmology is that the cosmic in-

flation is described by largeN matrices only without introducing any inflaton field and anad hoc

inflation potential. Thus an urgent question is how to make a successful exit from inflation with no

help of the inflaton field.

We certainly live in the universe where the inflationary epoch had lasted only for a very tiny pe-

riod in very early times although it is currently in an accelerating phase driven by the dark energy.

Therefore there should be some relaxation mechanism for the(first-order) phase transition from the

inflating universe to a radiation-dominated universe. We showed that the former is described by the

metric (1.12) whereas the latter is described by (2.56) and both arise as solutions of the background-

independent matrix model (2.60). In scalar field inflation scenarios, the relaxation mechanism is

known as the reheating in which the scalar field switches frombeing overdamped to being under-

damped and begins to oscillate at the bottom of the potentialto transfer its energy to a radiation

dominated plasma at a temperature sufficient to allow standard nucleosythesis [56]. For this purpose,

it is necessary to introduce a veryad hocpotential for the inflaton. In our case, however, we have

introduced neither an inflaton field nor an inflation potential. Nevertheless, the inflation was possible

since an LCS manifold admits a rich variety of vector fields, in particular, the Liouville vector field

which generates the inflation

We do not know the precise mechanism for the graceful exit. Thereby we will briefly speculate a

plausible scenario only. Let us start with a naive observation. The Lorentzian metric (1.12) describes

general scalar-tensor perturbations on the inflating spacetime. Since the fluctuations have been super-

posed on the inflating background, we suspect that there may be some nonlinear damping mechanism

through the interactions between the background and the density fluctuations. To be precise, there
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may be a cosmic analogue of the Landau damping in plasma physics originally applied to longitu-

dinal oscillations of an electron plasma. The Landau damping in a plasma occurs due to the energy

exchange between an electromagnetic wave and particles in the plasma with velocity approximately

equal to phase velocity of the wave and leads to exponentially decaying collective oscillations.12 The

Landau damping may be intuitively understood by considering how a surfer gains energy from the

sea wave. If the suffer is slightly slower than the wave mode,the mode loses energy to the suffer. For

the wave to be damped, the wave velocity and the surfer velocity must be similar and then the surfer

is trapped by the wave. A similar situation may happen in the inflating spacetime (1.12). Local fluc-

tuations (suffers) on the inflating spacetime (the wave mode) are given by Eq. (1.10). Note that these

local fluctuations carry an additional localized energy andthis local energy will cause a slight delay

of the drift of local lumps compared to the inflating background. Moreover these drift delays will

occur everywhere since (quantum) fluctuations are everywhere. Then this is precisely the condition

for the Landau damping to occur. If this is true, the inflatingmode will transfer its kinetic energy to

ubiquitous local fluctuations, ending the inflation throughan exponential damping and entering to a

radiation dominated era via the reheating at a sufficiently high temperature for the standard Big Bang.

The above speculation may be too good to be true. However, it may not be so absurd, considering

the fact that the cosmic inflation is described by a conformalHamiltonian system [15, 16] which often

appears in dynamical systems with friction and the transition of such dynamical systems in nonequi-

librium into equilibrium is induced by interactions with environment. For the cosmic inflation, ubiq-

uitous fluctuations over the inflating spacetime will play a role of the environment. Furthermore it

seems to be a reasonable clue since the underlying theory foremergent gravity is the Maxwell’s elec-

tromagnetism on NC spacetime and the Landau damping can be realized even at a nonlinear level

[57]. Therefore it will be important to verify whether the innocent idea can work or not. Probably

the cosmic Landau damping may be closely related to the instability of de Sitter space suggested by

Polyakov [41].

Our real world,R1,3 ∼= R × R3, is mystic as ever because the spatial 3-manifoldR3 does not

belong to the family of (almost) symplectic manifolds. We thus finally want to list possible stairways

to our real world - the four-dimensional Lorentzian spacetimeM:

A. Analytic continuation or Wick rotation fromR4.

B. Kaluza-Klein compactificationM× S1.

C. Constact manifold(R3, η).

D. Nambu structure(R3, C).

12There is a nice exposition on the Landau damping by Werner Herr, “Physics of Landau Damping: An introduction

(to a mysterious topic),” available at https://indico.cern.ch/event/216963/contribution/41/material/slides/0.pdf. Recently

the Landau damping has been mathematically established even at the non-linear level [57].
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Hereη is a contact form onR3 andC = 1
3!
Cµνλdx

µ∧dxν ∧dxλ is a nondegenerate, closed three-form

onR3. In the case (A), the Lorentzian metric is obtained from Eq. (2.27) withn = 2 by the Wick

rotationy4 = iy0. We used this boring method to evaluate the dark energy in Ref. [4]. It is also

straightforward to compactify the(4 + 1)-dimensional Lorentzian metric (2.56) ontoS1 to get the

result (B). Since the time is also defined as a contact structure, the case (C) has two contact structures

as the matrix string theory discussed in Sec. 4. It may be interesting to briefly explore some clue

for the cosmic inflation in the context (C). LetN = R × R3 andt ∈ R be the time coordinate and

ft = f(t) be a positive monotonic function. Define a time-dependent closed two-form onN by

Bt = dλt = ft(dT ∧ η + dη) (5.1)

whereλt = ftη andT = ln ft. SinceB2
t = e2TdT ∧ η ∧ dη is nowhere vanishing,Bt is a symplectic

structure onN . Consider a time-dependent HamiltonianH : N → R such thatdH = −eTdT and

denote the Hamiltonian vector field ofH byXH . LetR be the Reeb vector field associated with the

contact formη. Then it is easy to show that

ιRBt = dH, (5.2)

that is,R = XH . A very interesting property is that

Z =
∂

∂T
(5.3)

is the Liouville vector field of the symplectic formBt, i.e.,LZBt = Bt or ιZBt = λt. This condition

can be written asLZλt = λt. One can regard the Liouville vector fieldZ as the Reeb vector field

associated with the contact formdT . SinceιZ(B2
t ) = e2T η ∧ dη, the one-formλt gives rise to a

contact form on every three-dimensional submanifoldM ⊂ N transverse toZ. Thus we expect that

the conformal vector fieldZ will generate an inflationary metric given by

ds2 = −dT 2 + e2Tdx · dx. (5.4)

It will be interesting to have a microscopic derivation of the above inflation metric from the matrix

string theory (4.21). The approach in [58] may be useful for this case. Since we have no idea how to

formulate emergent gravity based on the Nambu structure (D), the last case would remain to be our

dream. It may be of M-theory origin because it is involved with the 3-formC instead of symplectic

2-formB.
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A Locally conformal cosymplectic manifolds

In this Appendix we briefly review the mathematical foundation of locally conformal cosymplectic

(LCC) manifolds. It was shown in [37] that an LCC manifold canbe seen as a generalized phase

space of time-dependent Hamiltonian system. Thus we argue that the LCC manifold is also a natural

phase space describing the cosmic inflation of our universe as a direct application of the results in

Refs. [36, 37] to emergent gravity.

First let us consider locally conformal symplectic (LCS) manifolds. An LCS manifold is a triple

(M,Ω, b) whereb is a closed one-form andΩ is a nondegenerate (but not closed) two-form satisfying

dΩ− b ∧ Ω = 0. (A.1)

The dimension ofM will be assumed to be at least 4 and the one-formb is called the Lee form

[39]. If the Lee formb is exact, the manifold is globally conformal symplectic (GCS). A symplectic

manifold corresponds to the case withb = 0. Locally by choosingb = dλ(α) for a local function

λ(α) : Uα → R on an open neighborhoodUα, Eq. (A.1) is equivalent tod(e−λ(α)
Ω) = 0, so the local

geometry of LCS manifolds is exactly the same as that of symplectic manifolds. Thus an LCS form

on a manifoldM is a non-degenerate two-formΩ that is locally conformal to a symplectic form. In

other words, on an LCS manifold(M,Ω, b), there exists an open covering{Uα} of M and a smooth

positive functionfα on eachUα such thatfαΩ|Uα is symplectic onUα. Two LCS formsΩ andΩ′

are said to be (conformally) equivalent if there exists somepositive functionf such thatΩ′ = fΩ,

where the Lee form ofΩ′ is justb′ = b+ d ln f . An interesting example [59] is provided by the Hopf

manifolds that are diffeomorphic toS1×S2n−1 and have a locally conformal Kähler metric while they

admit no Kähler metric.

An LCS manifold can be seen as a generalized phase space of Hamiltonian dynamical systems

since the form of the Hamilton’s equations is preserved by homothetic canonical transformations. Let

us recapitulate how the LCS manifolds naturally arise from the Hamiltonian dynamics of particles.

Consider a dynamical system withn degrees of freedom so that its phase space is a2n-dimensional

differentiable manifoldM endowed with an open covering of coordinate neighborhoods{Uα}α∈I
with local coordinates

(
qi(α), p

(α)
i

)
, i = 1, · · · , n. Then we know that the dynamics consists of the

orbits of a Hamiltonian vector fieldXH . Every point ofM has an open neighborhoodUα with the

local Darboux coordinates
(
qi(α), p

(α)
i

)
. One can restrict the HamiltonianH and a nondegenerate

two-formω to eachUα to have a local HamiltonianHα = Hα

(
qi(α), p

(α)
i

)
and a symplectic structure

ωα = dqi(α) ∧ dp
(α)
i . Similarly the globally defined Hamiltonian vector fieldXH is restricted toUα

which is precisely given byXHα. Then the orbits are defined by the Hamilton’s equations

dqi(α)
dt

=
∂Hα

∂p
(α)
i

,
dp

(α)
i

dt
= − ∂Hα

∂qi(α)
. (A.2)

When one takes the coordinate chart definition of symplecticmanifolds, there is no compulsory

reason why one should require the two-formω to be closed. Indeed, the Hamiltonian formulation of
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particle dynamics consists in asking the local formsωα and local functionsHα to glue up to a global

symplectic formω and a global HamiltonianH. However, since the dynamical information is given

by a global vector field, it is more natural to only require that the transition functions

qi(β) = qi(β)
(
qi(α), p

(α)
i

)
, p

(β)
i = p

(β)
i

(
qi(α), p

(α)
i

)
(A.3)

on an overlapUα ∩ Uβ 6= ∅ preserve the form of the Hamilton’s equations (A.2). This happens not

only if Eq. (A.3) implies

ωβ = dqi(β) ∧ dp(β)i = dqi(α) ∧ dp(α)i = ωα, Hβ = Hα, (A.4)

whereHα : Uα → R, α ∈ I, but also if it implies

ωβ = λβαωα, Hβ = λβαHα, (A.5)

whereλβα = constant 6= 0. Sinceι(XHα)ωα = dHα, from Eq. (A.5) we obtain

XHα = XHβ
, (A.6)

so the integral curves ofXHα andXHβ
are the same. Furthermore, Eq. (A.5) implies the cocycle

condition

λγβλβα = λγα (A.7)

as the gluing condition. We know that the cocycle condition (A.7) implies the existence of the local

functionsσα : Uα → R satisfying

λβα =
eσα

eσβ
. (A.8)

Thus Eq. (A.5) shows that

ω = eσαωα, H = eσαHα (A.9)

are globally defined onM . Moreover a Hamiltonian vector field is globally defined, i.e. XH = XHα ,

as was indicated in Eq. (A.6). Hence we have a basic line bundleL overM and a HamiltonianH

as a cross-section ofL (a “twisted Hamiltonian”) instead of a simple function. Therefore(M,ω) is

an LCS manifold that can be considered as a natural phase space of Hamiltonian dynamical systems,

more general than the symplectic manifolds.

As we explained in Sec. 2, the realization of emergent geometry is intrinsically local too. The

emergent geometry is constructed by gluing local Darboux charts and their local Poisson algebras.

Therefore the construction of an LCS manifold as a generalized phase space for particle dynamics

should also be applied to the emergent geometry. Therefore it is helpful to briefly review infinitesimal

automorphisms of an LCS manifold(M,Ω, b). The infinitesimal automorphism (IA) will be denoted

by AΩ. Let C∞(M) denote the associative algebra of smooth functions onM andf : M → R be

such a globally defined function. The Hamiltonian vector fieldXf of f ∈ C∞(M) with respect to the

LCS formΩ is defined by

ι(Xf )Ω = df − fb. (A.10)
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As we observed above, there is a well-defined line bundleL overM in which local functionsfα ≡
e−σαf on a patchUα ⊂ M correspond to sections ofL → Uα. If we take the Lee form onUα as

b|Uα = dσα, Eq. (A.10) refers to the usual (local) Hamiltonian vector fieldXfα = Xf defined by

ι(Xfα)Ωα = dfα (A.11)

whereΩα = e−σαΩ. Using the Cartan formula for the Lie derivative

LX = dιX + ιXd, (A.12)

one can immediately deduce from Eqs. (A.1) and (A.10) that

LXf
Ω = b(Xf )Ω, (A.13)

LXf
b = db(Xf ). (A.14)

Therefore, unlike the symplectic case, the Hamiltonian vector fieldXf is in general not an IA of LCS

manifolds.

Using the Hamiltonian vector fields defined by Eq. (A.10), we define the Poisson bracket

{f, g}Ω = ι(Xf )ι(Xg)Ω = −Ω(Xf , Xg) = eσαι(Xfα)ι(Xgα)Ωα = eσα{fα, gα}Ωα . (A.15)

Then we can calculate the double Poisson bracket

{{f, g}Ω, h}Ω = Xh

(
Ω(Xf , Xg)

)
− b(Xh)Ω(Xf , Xg). (A.16)

Using this result, it is easy to check the Jacobi identity of the Poisson bracket:

{{f, g}Ω, h}Ω + {{g, h}Ω, f}Ω + {{h, f}Ω, g}Ω =
(
dΩ− b ∧ Ω

)
(Xf , Xg, Xh) = 0. (A.17)

Let P = (C∞(M), {−,−}Ω) be the Poisson-Lie algebra of(M,Ω) andX(M) the Lie algebra of

vector fields ofM . The result (A.15) shows that the mappingH : P→ X(M) given byf 7→ Xf is a

Lie algebra homomorphism because one can derive the relation

X{f,g}Ω = [Xf , Xg] (A.18)

from the Jacobi identity (A.17). However, if(M,Ω) is a (connected) LCS manifold that is not GCS,

thenH must be a monomorphism, i.e., an injective homomorphism. See the Proposition 2.1 in [36] for

the proof. This means thatXf = 0 impliesf = 0. This is in stark contrast to symplectic manifolds,

in whichXf = 0 just impliesf = constant. Since we argue that the phase space for cosmic inflation

is a locally conformal (co)symplectic manifold, this implies a desirable property that vacuum energy

couples to gravity and triggers cosmic inflation. However, it does not mean that the cosmological

constant problem threatens the emergent gravity because physical quantities during inflation are not

constant but time-dependent as we noted before.
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Let us denote the IA of(M,Ω) byXΩ(M) whose elements obeyLXΩ = 0. Then we haveLXb =

0 by Eq. (A.1) which implies the conditionb(X) = constant. In particular, ifX, Y ∈ XΩ(M), then

b(X) = constant, b(Y ) = constant anddb(X, Y ) = 0 yieldsb([X, Y ]) = 0 using the formula

db(X, Y ) = X
(
b(Y )

)
− Y

(
b(X)

)
− b([X, Y ]). (A.19)

Hence, the applicationl : XΩ(M) → R defined byl(X) = b(X) is a Lie algebra homomorphism,

called the Lee homomorphism ofXΩ(M). The kernelker(l) is the Lie algebra of the horizontal

elements ofXΩ(M), denoted byXhor
Ω (M). The IAX ∈ XΩ(M) with l(X) 6= 0 is called transversal

IA and an LCS manifoldM is called the first kind if it has a transversal IA. Otherwise,M is of

the second kind and the Lee homomorphism is trivial. Note that, if (M,Ω) is of the first kind and

f : M → R is a function such thatdf |x0 = b(x0), then(M, e−fΩ) has the Lee formb − df with a

vanishing point, so it becomes an LCS manifold of the second kind.

There is a special vector fieldA defined byιAΩ = b. Then it is easy to see

ιAb = 0, LAb = 0, LAΩ = 0. (A.20)

We do haveXf ∈ XΩ(M) if and only if b(Xf ) = 0 according to Eq. (A.13) or equivalentlyb(Xf ) =

ιXf
ιAΩ = −ιA(df − fb) = −A(f) = 0. Let us fix an elementB ∈ l−1(1) ⊂ XΩ(M). Then every

elementY in XΩ(M) has a unique decomposition

Y = X + l(Y )B, X ∈ Xhor
Ω (M). (A.21)

Now, puta ≡ −ιBΩ, soa(B) = 0 anda(A) = ιBιAΩ = b(B) = 1. SinceLBΩ = (ιBd+dιB)Ω = 0,

this yields a particular expression forΩ given by

Ω = da− b ∧ a = dba, (A.22)

wheredb is the Lichnerowicz differential defined bydbβ = dβ − b ∧ β for anyk-form β and satisfies

d2b = 0. Furthermore, using the formula[LX , ιY ] = ι[X,Y ] for vector fieldsX andY , we have

LBa = 0, henceιBda = 0 that means rankda < 2n. SinceΩn 6= 0, one can deduce from Eq. (A.22)

the condition

b ∧ a ∧ (da)n−1 6= 0 (A.23)

everywhere. This yields the Proposition 2.2 in Ref. [36] that a manifoldM of dimension2n admits an

LCS structure of the first kind if and only if it admits two one-formsa, b such thatdb = 0, rankda <

2n and Eq. (A.23) holds at every point ofM . Note also thatιAda = ιA(Ω + b∧ a) = b− a(A)b = 0.

This means that[A,B] = 0 becauseιAda = LAa = −LAιBΩ = −ι[A,B]Ω = 0. In sum, there exist

particular vector fieldsA andB in XΩ(M) that obey

[A,B] = 0, a(A) = b(B) = 1, a(B) = b(A) = 0. (A.24)

Thus one can obtain onM the vertical foliationV = span{A,B}, whose leaves are the orbits of a

natural action ofR2.
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Suppose that(M,Ω) is an LCS manifold of the first kind andB is a basic transversal IA. Let

Xhor
Ω (M,B) be the Lie subalgebra ofXhor

Ω (M) whose automorphisms also preserveB. It turns out

thatX ∈ Xhor
Ω (M,B) if and only if LXΩ = 0, b(X) = 0 and [X,B] = 0. Similarly consider

the subset ofC∞(M) that consists of functions satisfyingA(f) = B(f) = 0 and is denoted by

C∞
V (M). Then one can show thatPV =

(
C∞

V (M), {−,−}Ω
)

is a Poisson-Lie subalgebra ofP and

H : PV → Xhor
Ω (M,B) is an isomorphism. A striking fact is that a semi-simple Lie groupG cannot

act transitively on a nonsymplectic LCS manifold.

The formula (A.13) proves that a Hamiltonian vector field is aconformal infinitesimal transfor-

mation (CIT) of(M,Ω). In general, a vector fieldX is a CIT if

LXΩ = αXΩ (A.25)

whereαX is a function onM . The CIT forms a Lie algebra denoted byXc
Ω(M). By differentiating

Eq. (A.25), one can derive thatLXb = dαX , which implies

αX = b(X) + κ, κ = constant. (A.26)

One can rewrite Eq. (A.25) as

κΩ = db(ιXΩ). (A.27)

Thus an LCS formΩ is db-exact if there is a CITX. Or it can be written in terms of a local symplectic

formΩα = e−σαΩ as

LXΩα =
(
αX − b(X)

)
Ωα. (A.28)

That is, the local form of the CIT is given by

LXΩα = κΩα. (A.29)

If we write Ωα = dA(α) on an open neighborhoodUα according to the Poincaré lemma, Eq. (A.29)

can be written as the form [16]

ιXΩα = κA(α) + dfα, (A.30)

wherefα : Uα → R is a smooth function onUα. If the conditions (A.29) and (A.30) hold either

locally or globally, we will callX a conformal vector field which plays an important role in our

discussion. IfH1(M) = 0, the conformal vector fieldX has a unique decomposition given by

X = κZ +Xf , (A.31)

whereιZΩ = A andιXf
Ω = df . The vector fieldZ is called the Liouville vector field [15]. Note that,

even thoughf = 0 identically, the conformal vector fieldX = κZ is nontrivial and it is generated by

the open Wilson line (1.8) in our case [1]. We observed in Sec.3 that this remarkable property leads

to a desirable consequence for the cosmic inflation.

We can extend the Lee homomorphism tol : Xc
Ω(M) → R by definingl(X) = b(X) − αX =

−κ. If X, Y ∈ Xc
Ω(M), we getα[X,Y ] = X

(
b(Y )

)
− Y

(
b(X)

)
from L[X,Y ]Ω = α[X,Y ]Ω and so
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l([X, Y ]) = b([X, Y ])− α[X,Y ] = −db(X, Y ) = 0 using the formula (A.19). Hence the extendedl is

also a Lie algebra homomorphism. Its kernel is denoted byker l = Xl
Ham(M) and consists of vector

fieldsX to obeyLXΩα = 0, i.e., of locally Hamiltonian vector fields. Note thatl̃(X) for Ω̃ = eϕΩ

is equal tol(X) for Ω. Thus the Lee homomorphisml is conformally invariant. If we fix an element

C ∈ l−1(1), we can get for everyY ∈ Xc
Ω(M) the unique decomposition

Y = X + l(Y )C, X ∈ Xl
Ham(M). (A.32)

Then, if c = −ιCΩ, we can solveLCΩ = (ιCd + dιC)Ω = αCΩ to get a particular expression forΩ

given by

Ω = dc− b ∧ c = dbc. (A.33)

In a conservative dynamical system described by a Hamiltonian vector field, time coordinatet is

not a phase space coordinate but an affine parameter on particle trajectories. But, for a general time-

dependent system, it is necessary to include the time coordinate as an extra phase space coordinate.

The corresponding(2n + 1)-dimensional manifold is known as an almost cosymplectic manifold

which is a triple(M,Ω, η) whereΩ andη are a two-form and a one-form onM such thatη ∧Ωn 6= 0.

If Ω andη are closed, i.e.,dΩ = dη = 0, thenM is said to be a cosymplectic manifold. Thus an

odd-dimensional counterpart of a symplectic manifold is given by a cosymplectic manifold, which is

locally a product of a symplectic manifold with a circle or a line. A contact manifold constitutes a

subclass of cosymplectic manifolds withΩ = dη. Then the one-formη is called a contact structure

or a contact one-form. Given a contact one-formη, there is a unique vector fieldR such thatιRη = 1

andιRΩ = 0. This vector fieldR is known as the Reeb vector field of the contact formη. Two contact

formsη andη′ onM are equivalent if there is a smooth positive functionρ onM such thatη′ = ρη,

sinceη′∧ (dη′)n = ρn+1η∧ (dη)n 6= 0. The contact structureC(η) determined byη is the equivalence

class ofη.

The Darboux theorem for a contact manifold(M, η) states that, in an open neighborhood of each

point ofM , it is always possible to find a set of local (Darboux) coordinates(x1, · · · , xn, y1, · · · , yn, z)
such that the one-formη can be written as

η = dz −
n∑

i=1

yidx
i (A.34)

and the Reeb vector field is given by

R =
∂

∂z
. (A.35)

To understand the contact one-formη more closely, first let us denote byD the contact distribution or

subbundle defined by the kernel ofη. If X, Y are (local) vector fields inD, we have

dη(X, Y ) = X
(
η(Y )

)
− Y

(
η(X)

)
− η([X, Y ]) = −η([X, Y ]). (A.36)

This says that the distribution is integrable if and only ifdη is zero onD. However the condition

η ∧ (dη)n 6= 0 means that the kernel ofdη is one-dimensional and everywhere transverse toD.
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Consequently,dη is a linear symplectic form onD and the largest integral submanifolds ofD aren-

dimensional, so maximally non-integrable. In other words,a contact structure is nowhere integrable.

In the above Darboux coordinate system, the contact subbundleD is spanned by

Xi =
∂

∂xi
+ yi

∂

∂z
, Y i =

∂

∂yi
, i = 1, · · · , n, (A.37)

so they obey the bracket relations

[Xi, Y
j ] = −δjiR, [Xi, R] = [Y i, R] = 0. (A.38)

Sincedη =
∑n

i=1 dx
i ∧ dyi is a symplectic form with rank2n, the kernel ofdη is one-dimensional

and generated by the Reeb vectorR. Therefore every vector fieldX onM can be uniquely written

asX = fR + Y wheref ∈ C∞(M) andY is a section ofD. A contact structure is regular ifR is

regular as a vector field, that is, every point of the manifoldhas a neighborhood such that any integral

curve of the vector field passing through the neighborhood passes through only once.

Given a(2n − 1)-dimensional contact manifoldM with a contact forma, i.e. a ∧ (da)n−1 6= 0,

one can construct an LCS manifold by considering a principalbundlep : V → M with groupS1

overM . ConsiderV = S1 × M endowed with the formΩ = da − b ∧ a = dba, whereb is the

canonical one-form onS1. Clearly,Ω is nondegenerate andb is closed but not exact. And it obeys

dΩ − b ∧ Ω = dbΩ = d2ba = 0. Hence,(V,Ω) is an LCS manifold havingb as its Lee form but it

is not GCS. More generally, letp : V → M be an arbitrary principal bundle with groupS1 over a

(2n−1)-dimensional manifoldM . And leta be the connection one-form on this principal bundle and

F = da be the corresponding curvature two-form. Then, ifb∧a∧F n−1 6= 0, the formΩ = F − b∧a
defines an LCS structure onV which is not GCS.

LetX(M) andΛ1(M) be theC∞(M)-modules of differentiable vector fields and one-forms onM ,

respectively. If(M,Ω, η) is a cosymplectic manifold, then there exists an isomorphism of C∞(M)-

modules

Υ : X(M)→ Λ1(M) (A.39)

defined by

Υ(X) = ιXΩ+ η(X)η. (A.40)

The Reeb vector field is given byR = Υ−1(η). Let f : M → R be a smooth function onM . The

Hamiltonian vector fieldXf is then defined by

Υ(Xf ) = df − R(f)η + η. (A.41)

In other words,Xf is the vector field characterized by the identities

ι(Xf )Ω = df − R(f)η, η(Xf) = 1. (A.42)

Then one can check that the time-like vector fieldV0 in Eq. (2.59) is a Hamiltonian vector field for

a cosymplectic manifold(R ×M,π∗
2B, dt) whereπ2 : R ×M → M and(M,B) is a symplectic

manifold.
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An almost cosymplectic manifold(M,Ω, η) is said to be LCC, if there exist an open covering

{Uα}α∈I and local functionsσα : Uα → R such that

d(e−σαΩ) = 0, d(e−σαη) = 0. (A.43)

The local one-formsdσα glue up to a closed one-formb satisfying

dΩ− b ∧ Ω = dbΩ = 0, dη − b ∧ η = dbη = 0. (A.44)

Two LCC structures(Ω′, η′) and(Ω, η) are equivalent ifΩ′ = fΩ andη′ = fη for a positive functionf

onM where the Lee form ofΩ′ is given byb′ = b+d ln f . An LCC manifold reduces to a cosympletic

manifold if the Lee formb vanishes while it becomes an LCS manifold ifη = 0 identically. The

isomorphism (A.40) can be generalized to LCC manifolds and the corresponding Hamiltonian vector

field is defined by

Xf = Υ−1
(
df −R(f)η + η

)
+ fS (A.45)

whereS is called the canonical vector field defined by

Υ(S) = b(R)η − b. (A.46)

Therefore,Xf is characterized by the identities

ι(Xf)Ω = df − R(f)η + f
(
b(R)η − b

)
, η(Xf) = 1. (A.47)

It was shown in [37] that an LCC manifold can be seen as a generalized phase space of time-dependent

Hamiltonian systems. Hence we argue that an LCC manifold also corresponds to a generalized phase

space for an inflationary universe and its quantization realizes a background-independent formulation

of the cosmic inflation, in particular, in the context of emergent spacetime.

B Harmonic oscillator with time-dependent mass

We observed that the NC spacetimeR2n
θ in equilibrium is described by the Hilbert space of ann-

dimensional harmonic oscillator while the inflating spacetime in nonequilibrium is described by the

n-dimensional harmonic oscillator with a negative friction. The corresponding harmonic oscillator of

constant frequencyω and friction coefficientα satisfies the equation

q̈i + 2αq̇i + ω2qi = 0, i = 1, · · · , n. (B.1)

The inflationary coordinates (3.14) correspond to the caseα = −κ
2
< 0. It is known that the above

second-order equation of motion cannot be directly derivedfrom the Euler-Lagrange equation of any

Lagrangian. However, there is an equivalent second-order equation

e2αt(q̈i + 2αq̇i + ω2qi) = 0, (B.2)
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for which a variational principle can be found [60]. Although Eq. (B.1) is traditionally considered to

be non-Lagrangian, there exists an action principle for theequation of motion (B.2) in terms of the

Lagrangian

L =
1

2
m(q̇2 − ω2q2)e2αt. (B.3)

The corresponding Hamiltonian is given by

H =
1

2m
(e−2αtp2 + e2αtm2ω2q2) (B.4)

wherepi = mq̇ie2αt.

It is interesting to notice that the equation of motion (B.2)can be derived from ann-dimensional

harmonic oscillator with a time-dependent massm(t) whose action is given by

S =
1

2

∫
dt
(
m(t)q̇2 − k(t)q2

)
(B.5)

wherek(t) = m(t)ω2 with constant frequencyω. The variational principle,δS = 0, with respect to

arbitrary variationsδqi leads to the equation of motion

m(t)
(
q̈i +

ṁ(t)

m(t)
q̇i + ω2qi

)
= 0. (B.6)

The second-order equation (B.2) corresponds to the case

ṁ(t)

m(t)
= 2α ⇒ m(t) = m0e

2αt. (B.7)

Recall that the equation of motion for the inflaton field corresponds to the case with the time-dependent

massm(t) = m0e
3Ht.

There is also the first-order formalism for the dynamical system (B.5). The action has the form

S =
1

2

∫
dt
(
yẋ− xẏ − (y2 + 2αxy + ω2x2)

)
e2αt. (B.8)

The equations of motion derived from the action (B.8) are given by

(ẏ + 2αy + ω2x)e2αt = 0, (ẋ− y)e2αt = 0. (B.9)

The above action (B.8) describes a singular system with second-class constraints

φx = px −
1

2
ye2αt, φy = py +

1

2
xe2αt (B.10)

with the Hamiltonian

H(x, y, t) =
1

2
(y2 + 2αxy + ω2x2)e2αt. (B.11)

Even though the constraints are explicitly time-dependent, it is still possible to apply the Hamiltonian

formalism with the help of Dirac brackets and perform the canonical quantization of the system. It

was shown in [60] that the classical and quantum descriptionof the harmonic oscillator described

by the action (B.5) is equivalent to the first-order approachgiven in terms of the constraint system

described by the action (B.8). Furthermore it can be proved that the dynamical system described by

Eq. (B.2) is locally (i.e.,|t| <∞) equivalent to the system with the equation of motion (B.1).
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