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We explain how quantum gravity can be defined by quantizing spacetime itself. A pin-
point is that the gravitational constant G = L2

P whose physical dimension is of (length)2

in natural unit introduces a symplectic structure of spacetime which causes a noncom-
mutative spacetime at the Planck scale LP . The symplectic structure of spacetime M
leads to an isomorphism between symplectic geometry (M,ω) and Riemannian geome-
try (M, g) where the deformations of symplectic structure ω in terms of electromagnetic
fields F = dA are transformed into those of Riemannian metric g. This approach for
quantum gravity allows a background independent formulation where spacetime as well
as matter fields is equally emergent from a universal vacuum of quantum gravity which
is thus dubbed as the quantum equivalence principle.
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1. Duality from Quantization

What is quantum gravity ? This question would be one of the most difficult questions

we have ever faced. Quantum gravity naively means to “quantize” a Riemannian

manifold since, according to the general relativity, gravity is the dynamics of space-

time geometry where spacetime is a Riemannian manifold and the gravitational field

is represented by a Riemannian metric. But we are still vague how to “quantize”

the Riemannian manifold.

Mathematically, in order to define the quantization of a dynamical system, it is

necessary to first specify an underlying Poisson structure of the dynamical system.1

The dynamical system will be described by a Poisson manifold (M, θ) where M is a

differentiable manifold whose local coordinates are denoted by xA (A = 1, · · · , N =

dim(M)) and the Poisson structure

θ =
1

2

N∑

A,B=1

θAB(x)
∂

∂xA
∧

∂

∂xB
∈ Γ(∧2TM) (1)

is a (not necessarily nondegenerate) bivector field. The Poisson structure (1) defines

an R-bilinear antisymmetric operation {−,−}θ : C∞(M)×C∞(M) → C∞(M) by

(f, g) 7→ {f, g}θ = 〈θ, df ⊗ dg〉 = θAB(x)
∂f(x)

∂xA

∂g(x)

∂xB
(2)

1
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such that the bracket, called the Poisson bracket, satisfies

1) Leibniz rule : {f, gh}θ = g{f, h}θ + {f, g}θh, (3)

2) Jacobi identity : {f, {g, h}θ}θ + {g, {h, f}θ}θ + {h, {f, g}θ}θ = 0, (4)

∀f, g, h ∈ C∞(M). A Poisson manifold appears as a natural generalization of sym-

plectic manifolds where the Poisson structure θ reduces to a symplectic structure if

θ is nongenerate.1

Formally, the quantization, especially the canonical quantization where θAB in

Eq.(1) is a nondegenerate constant matrix, can be done by associating to a commu-

tative algebra C∞(M) of smooth functions, a noncommutative algebra Aθ of linear

operators acting on a suitable Hilbert space H. That is, the dynamical variables

f, g ∈ C∞(M) in a classical system are replaced by self-adjoint operators f̂ , ĝ ∈ Aθ

acting on H and the Poisson bracket (2) is replaced by a quantum bracket

{f, g}θ → −i[f̂ , ĝ]. (5)

This completes the quantization of the dynamical system whose phase space M now

becomes noncommutative, i.e.

[x̂A, x̂B] = iθAB. (6)

Note that the detailed structure of Poisson manifold (M, θ) depends on what

kind of dynamical system we consider. A prominent example is the mechanical

system of classical particles where M is the particle phase space with coordinates

(xi, pi) and the Poisson structure θ = ~
∑

i
∂

∂xi ∧
∂

∂pi
. Here, we intentionally inserted

the Planck constant ~ into θ to emphasize that the deformation (quantization)

parameter ~ carries the physical dimension of length times momentum, i.e., (x×p) so

that θ is dimensionless. In this case, the quantization (5) defines quantum mechanics

as we know very well and the particle phase space M is now noncommutative, i.e.

[xi, pj ] = i~δij. (7)

A classical field theory is a generalization of finite-dimensional particle system to

an infinite-dimensional system where particles are described by several continuous

functions φa(x, t) ∈ C∞(R3,1) defined on spacetime R3,1 and their conjugate vari-

ables πa(x, t) ∈ C∞(R3,1) where the index a = 1, · · · , n denotes internal degrees of

freedom. In this case, the corresponding Poisson structure is defined by

θ = ~

n∑

a=1

∫

Σ

δ

δφa(x)
∧

δ

δπa(x)
(8)

where Σ = R3 is a spacelike hypersurface in spacetime. The Poisson structure

(8) generalizes the Poisson bracket (2) to an infinite-dimensional Poisson manifold

(P, θ) as follows

{Φ,Ψ}θ = ~

n∑

a=1

∫

Σ

( δΦ

δφa(x)

δΨ

δπa(x)
−

δΦ

δπa(x)

δΨ

δφa(x)

)
(9)
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for any functionals (Φ,Ψ) depending on the functions (φa(x), πa(x)) ∈ P on Σ. The

canonical quantization (5) for the Poisson bracket (9) leads to quantized fields, e.g.,

[φa(x), πb(y)] = i~δabδ3(x− y). (10)

Quantum field theory is therefore defined by quantizing an infinite-dimensional

Poisson manifold (P, θ) in terms of ~ again, as we clearly know.

Now consider to “quantize” gravity. First we have to carefully contemplate about

what is the dynamical system for gravity we want to quantize. To lift the veil, it is

necessary to clearly pin down what is the underlying Poisson manifold (M, θ) for

quantum gravity. Note that gravity describes the dynamics of spacetime geometry

and it is characterized by its own intrinsic scale given by the Newton constant

G = L2
P where classical gravity corresponds to G → 0 limit.a Furthermore, since

the gravitational constant G = L2
P carries the physical dimension of (length)2 in

natural unit, the Newton constant G, as will be seen soon, actually signifies an

intrinsic Poisson structure of spacetime

θ =
1

2
θµν(y)

∂

∂yµ
∧

∂

∂yν
∈ Γ(∧2TM). (11)

Therefore, it should be reasonable to ponder on the possibility that the quantum

gravity is defined by quantizing spacetime itself in terms of G instead of ~. In other

words, quantum gravity may be defined by the Poisson manifold (M, θ), where M

is a spacetime manifold with the Poisson structure (11).2,3

Customarily, we have taken the same route to the quantization of gravity as the

conventional quantum field theory. To be precise, basic phase space variables for

canonical quantum gravity are defined by a spatial metric gij(x) ∈ C∞(Σ) defined

on a spacelike hypersurface Σ ≈ R3 and the canonically conjugate variable πij(x) ∈

C∞(Σ) together with Hamiltonian and diffeomorphism constraints. That is, the

basic Poisson manifold (P, θ) is defined by (gij(x), π
ij(x)) ∈ P with the Poisson

structure (8) where a = (ij). Thus, the conventional quantum gravity also intends to

quantize an infinite-dimensional particle (graviton) phase space associated with the

metric field gµν(x) (or its variants such as the Ashtekar variables or spin networks) of

Riemannian geometry. This quantization scheme is very different from the quantum

gravity defined with the Poisson structure (11) because the quantization of Poisson

manifold (P, θ) is to quantize a particle (graviton) phase space P in terms of ~

while the quantization of Poisson manifold (M, θ) is to quantize spacetime M itself

in terms of the Newton constant G.3

Now we have to understand what is the origin of the spacetime Poisson struc-

ture (11) and what is the relation between Poisson geometry (M, θ) and Einstein

aNevertheless, gravitational phenomena are ubiquitous in our everyday life. The reason is that the

gravitational force is only attractive and so always additive. As a result, the standard gravitational
parameter GM for an astronomical body with mass M is not small. For example, GMe = 4 ×
1014 m3/s2 for the Earth where Me = 5.96× 1024 kg, which corresponds to 1 cm compared to the
Planck length LP =

√
G ∼ 10−33 cm.
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gravity or Riemannian geometry (M, g). It is well-known that the union of three

“fundamental” constants in Nature, the Planck constant ~ in quantum mechanics,

the universal velocity c in relativity, and the Newton constant G in gravity, uniquely

fixes characteristic scales for quantum gravity:

MP =

√
c~

G
= 2.2× 10−5 g,

LP =

√
G~

c3
= 1.6× 10−33 cm, (12)

TP =

√
G~

c5
= 5.4× 10−44 s.

And it is believed that in the Planck scale LP spacetime is no longer commuting

but becomes noncommutative, i.e.

[yµ, yν ] = iθµν . (13)

Note that the noncommutative spacetime (13) arises from the quantization (5) with

the Poisson structure (11) like as in Eq.(6). In general, if spacetime M supports a

Poisson structure such as (11), the algebra C∞(M) of smooth functions defined on

the spacetime M becomes a Lie algebra under the Poisson bracket1

{f, g}θ(y) = θµν(y)
∂f(y)

∂yµ
∂g(y)

∂yν
, (f, g) ∈ C∞(M). (14)

In the case where θµν is a constant matrix of rank 2n, we can apply the same

canonical quantization to the Poisson manifold (M, θ). We can associate to a com-

mutative algebra (C∞(M), {−,−}θ) of smooth functions defined on the spacetime

M , a noncommutative algebra Aθ of linear operators on a suitable Hilbert space

H. That is, the smooth functions f, g ∈ C∞(M) become noncommutative operators

(fields) f̂ , ĝ ∈ Aθ acting on H and the Poisson bracket (14) is replaced by a noncom-

mutative bracket [f̂ , ĝ] ∈ Aθ.
4,5 As a result, spacetime becomes noncommutative

after the quantization and satisfies the Heisenberg algebra (13).

Therefore, we understand that spacetime admits the intrinsic Poisson structure

(11) as long as spacetime at a microscopic world is noncommutative. Now the pith

and marrow of quantum gravity is to understand how to derive a Riemannian ge-

ometry (M, g) from a Poisson geometry (M, θ) of spacetime. Because quantization

in general introduces a new kind of duality between physical or mathematical en-

tities, the question is what kind of duality arises from the quantization (13) of

spacetime itself. Recall that the quantization (7) of particle phase space introduces

the wave-particle duality in quantum mechanics. The wave-particle duality results

from the fact that translations in the noncommutative phase space (7) are an inner

automorphism of the algebra A~, i.e.

eiηiξ
i

f̂(xi, pi)e
−iηiξ

i

= f̂(xi + ~li, pi − ~ki) (15)
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where ξi = (xi, pi), ηi = (ki, l
i) and f̂(xi, pi) ∈ A~. The infinitesimal form of (15)

is given by

[pi, f̂ ] = −i~
〈 ∂f̂

∂xi

〉
, [xi, f̂ ] = i~

〈 ∂f̂

∂pi

〉
(16)

where 〈· · · 〉 indicates a symmetric Weyl ordering. The exactly same mathematical

structure will also appear in the noncommutative spacetime (13) where translations

are an inner automorphism of the noncommutative ⋆-algebra Aθ, i.e.,
4,5

eikµy
µ

f̂(y)e−ikµy
µ

= f̂(y + θ · k) (17)

for any f̂(y) ∈ Aθ. What is a duality resulting from this inner automorphism ?

First, let us expose that the noncommutative spactime (13) introduces a new

kind of duality between gauge theory and gravity.6,7,8,9 In order to illuminate the

issue in a broad context, let us return to the system (12) of physical constants.

We believe that all the four interactions in Nature, gravitational, electromagnetic,

weak and strong forces, will be unified into a single force at the Planck scale (12).

So it may be more natural to treat gauge theory on an equal footing with gravity

in the system (12) which is missing the gauge theory counterpart. For the reason,

consider the quartet of physical constants by adding a coupling constant e which is

the electric charge but sometimes it will be denoted with gYM to refer to a general

gauge coupling constant. Using the symbol L for length, T for time, M for mass, and

writing [X ] for the dimensions of some physical quantity X , we have the following

in D dimensions

[~] = ML2T−1, [c] = LT−1,

[e2] = MLD−1T−2, [G] = M−1LD−1T−2. (18)

A remarkable point of the system (18) is that it specifies the following intrinsic

scales independently of dimensions 3:

M2 =
[e2
G

]
, L2 =

[G~
2

e2c2

]
, T 2 =

[G~
2

e2c4

]
. (19)

From the four dimensional case where e2/~c ≈ 1/137, we can see that the scales in

(19) are not so different from the Planck scales in (12).

Note that the first relation GM2 = e2 in (19) implies that at the mass scale

M the gravitational and electromagnetic interactions become of equal strength.

Then, the length L in Eq.(19) is the Compton wavelength of mass M where the

gravitational and electromagnetic interactions have the same strength, which turns

out to be the scale of spacetime noncommutativity where the conspiracy between

gravity and gauge theory takes place. Suppose that a gauge theory whose coupling

constant is given by e is defined in the noncommutative spacetime (13). In this

case, the noncommutative gauge theory bears an intrinsic length scale given by

L2 = |θ| and then the quartet system (19) implies that the Newton constant G can
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be determined by field theory parameters only, i.e.2

G~
2

c2
∼ e2|θ|, (20)

hinting an intimate correspondence between gravity and gauge theory.b This novel

duality in noncommutative spacetime will be clarified in the next section.

2. Symplectization of Spacetime Geometry

We have speculated in the previous section that, if spacetime M admits a Poisson

structure such as (11), there will be a novel duality between Riemannian geometry

(M, g) and Poisson geometry (M, θ). Now we will briefly sketch how this remarkable

duality can be true. We refer to Ref. 2 and a recent review3 for a full exposition.

See also Refs. 10, 11 and references therein for related discussions.

To simplify the argument,c let us assume that the Poisson structure θ : T ∗M →

TM in (11) is nondegenerate at any point y ∈ M . Then, we can invert this map to

obtain the map θ−1 ≡ B : TM → T ∗M , which is called a symplectic structure ofM ,

i.e., a nondegenerate closed 2-form, dB = 0, in Γ(∧2T ∗M). The pair (M,ω0 = B)

is called a symplectic manifold. Now consider an arbitrary deformation of the sym-

plectic geometry (M,B) by adding an arbitrary 2-form F ∈ Γ(∧2T ∗M) such that

ω1 = B + F . But we will require that the resulting geometry after the deforma-

tion is still symplectic, i.e. dF = 0. Then, according to the Poincaré lemma, the

closed 2-form F can locally be written as F = dA where A ∈ Γ(T ∗M) is an arbi-

trary one-form. Because the original symplectic structure B is a nondegenerate and

closed 2-form, the associated map B : TM → T ∗M is a vector bundle isomorphism.

Therefore, there exists a natural pairing Γ(TM) → Γ(T ∗M) : X 7→ B(X) = ιXB

between C∞-sections of tangent and cotangent bundles. Note that X ∈ Γ(TM)

is an arbitrary vector field so that ιXB is an arbitrary one-form for a given B.

Therefore, we can identify

A = −ιXB (21)

and so F = dA = −(dιX+ιXd)B = −LXB where LX = dιX+ιXd is the Lie deriva-

tive along the flow of a vector field X . To conclude, the deformation of symplectic

geometry (M,B) in terms of an arbitrary closed 2-form F can be represented as

ω1 = B − LXB = (1 − LX)ω0. (22)

bThe relation (20) would be an analogue of the de Broglie relation λ = 2π~

p
for the wave-particle

duality. The de Broglie relation is possible because quantum mechanics has a conversion factor ~

with the physical dimension of length times momentum. Likewise, if spacetime is noncommutative
and so the theory equips with a dimensionful parameter |θ| of (length)2, the relation (20) shows
that the gravitational interaction can be inherited from a gauge field interaction, so leading to the
gauge/gravity duality.
cFor all mathematical details in this section, we refer to Ref. 1.
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The result (22) shows that a smooth family ωt = ω0 + t(ω1 − ω0) of symplectic

structures joining ω0 to ω1 is all deformation-equivalent and there exists a map

φ : M ×R → M as a flow – a one-parameter family of diffeomorphisms – generated

by the vector field Xt satisfying ιXt
ωt + A = 0 such that φ∗

t (ωt) = ω0 for all

0 ≤ t ≤ 1. This can be explicitly checked by considering a local Darboux chart

(U ; y1, · · · , y2n) centered at p ∈ U and valid on an open neighborhood U ⊂ M

such that ω0|U = 1
2Bµνdy

µ ∧ dyν where Bµν is a constant symplectic matrix of

rank 2n. Now consider a flow φt : U × [0, 1] → M generated by the vector field Xt.

Under the action of φǫ with an infinitesimal ǫ, we find that a point p ∈ U whose

coordinate is yµ is mapped to φǫ(y) ≡ xµ(y) = yµ + ǫXµ(y). Using the inverse map

φ−1
ǫ : xµ 7→ yµ(x) = xµ−ǫXµ(x), the symplectic structure ω0|U = 1

2Bµν(y)dy
µ∧dyν

can be expressed as12

(φ−1
ǫ )∗(ω0|y) =

1

2
Bµν(x− ǫX)d(xµ − ǫXµ) ∧ d(xν − ǫXν)

≈
1

2

[
Bµν − ǫXλ(∂λBµν + ∂νBλµ + ∂µBνλ)

+ǫ
(
∂µ(BνλX

λ)− ∂ν(BµλX
λ)
)]

dxµ ∧ dxν

≡ B + ǫF (23)

where Aµ(x) = Bµν(x)X
ν(x) or ιXB+A = 0 and dB = 0 was used for the vanishing

of the second term. Equation (23) can be rewritten as φ∗
ǫ (B + ǫF ) = B, which is

exactly the result obtained from (22) by taking φ∗
ǫ = (1 + ǫLX).

So far, F = dA = −LXB ∈ Γ(∧2T ∗M) in Eq.(22) is an arbitrary closed 2-form

deforming the original symplectic structure B. Now we make an important identi-

fication that the one-form A ∈ Γ(T ∗M) is a connection of U(1) bundle supported

on a symplectic manifold (M,B) and F = dA as its curvature.13 To phrase in

physics, we are considering electromagnetic fields F = dA defined on a symplectic

manifold (M,B). This identification is consistent with the Bianchi identity dF = 0

in electromagnetism. Furthermore, the identification (21) is defined up to symplec-

tomorphisms, i.e., X ∼ X + Xφ ⇔ A ∼ A + dφ where ιXφ
B + dφ = 0 and so

LXφ
B = 0, because it does not affect the symplectic structure ω1 or the curvature

2-form F = dA. From the gauge theory point of view, the symplectomorphisms can

be identified with U(1) gauge transformations.14,15,16 In other words, the gauge

symmetry acting on U(1) gauge fields as A → A+dφ is generated by a Hamiltonian

vector field Xφ, i.e., satisfying ιXφ
B + dφ = 0.

So we arrive at an overwhelming evidence for the novel duality between Rie-

mannian geometry (M, g) and symplectic geometry (M,ω).2,3 The first important

point is that the U(1) gauge symmetry is a diffeomorphism symmetry generated by

a vector field Xφ satisfying LXφ
B = 0 which is known as the symplectomorphism

in symplectic geometry. Therefore, the U(1) gauge symmetry on a symplectic man-

ifold (M,B) should be regarded as a spacetime symmetry rather than an internal

symmetry. This result implies that U(1) gauge fields on a symplectic spacetime can

be realized as a spacetime geometry like as gravity in general relativity.2,3 In gen-
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eral relativity, the equivalence principle beautifully explains why the gravitational

force has to manifest itself as a spacetime geometry. If the gauge/gravity duality

is realized in noncommutative spacetime, it is necessary to realize a corresponding

equivalence principle for the geometrization of the electromagnetic force.

Note that we have already realized such a noble form of the equivalence principle

in Eq.(23) as follows.2 The presence of dynamical gauge fields on a symplectic

manifold (M,B) appears only as a deformation of the symplectic manifold (M,B)

such that the resulting symplectic structure is given by ω1 = B+F where F = dA.

But the result (22) immediately implies that the electromagnetic force F = dA can

always be eliminated by a local coordinate transformation generated by a vector

field X satisfying (21), as was explicitly shown in (23). Remarkably, the Poisson

structure (11) of spacetime admits the novel equivalence principle even for the

electromagnetic force which turns out to be the crux of the gauge/gravity duality.2,3

This geometrization of the electromagnetism is inherent as an intrinsic property in

symplectic geometry known as the Darboux theorem or the Moser lemma.1 As a

consequence, the electromagnetism on a symplectic spacetime can be realized as a

geometrical property of spacetime like gravity.d

One overarching lesson we have learned so far is that the Darboux theorem in

symplectic geometry manifests itself as a novel form of the equivalence principle such

that the electromagnetism on symplectic spacetime can be regarded as a theory of

gravity. Hence, the final touch for the gauge/gravity duality is to find an explicit

map between electromagnetism and gravity.14,15,16 First, note that the U(1) gauge

field (21) deforming an underlying symplectic structure is completely encoded into

a local trivialization of the symplectic structure up to symplectomorphisms via the

Darboux theorem or the Moser lemma.17,18 Let us denote the local coordinate

transformation φ : yµ 7→ xµ(y) as

xµ(y) ≡ yµ + θµνÂν(y) ∈ C∞(M), (24)

where the local coordinates {yµ} will be assumed to be Darboux coordinates so

that the Poisson bracket {yµ, yν}θ = θµν is a constant matrix of rank 2n. The

argument (23) shows that such Darboux coordinates always exist. It is well-known1

that, for a given Poisson algebra (C∞(M), {−,−}θ), there exists a natural map

C∞(M) → TM : f 7→ Xf between smooth functions in C∞(M) and vector fields

in TM such that

Xf(g)(y) ≡ {g, f}θ(y) =
(
θµν

∂f(y)

∂yν
∂

∂yµ

)
g(y) (25)

for any g ∈ C∞(M). That is, we can obtain a vector field Xf = Xµ
f ∂µ ∈ Γ(TMy)

from a smooth function f ∈ C∞(M) defined at y ∈ M where Xµ
f (y) = θµν ∂f(y)

∂yν .

dIt should be emphasized that there is no need to introduce any Riemannian structure to realize
the equivalence principle for the electromagnetic force. It can be derived only in the context of
symplectic or Poisson geometry using the Poincaré lemma and the bundle isomorphism B : TM →
T ∗M together with the Cartan’s magic formula LX = dιX + ιXd.



August 23, 2010 0:15 WSPC/INSTRUCTION FILE review-mpla

Emergent Geometry and Quantum Gravity 9

As long as θ ∈ Γ(∧2TM) in (25) is a Poisson structure of M , the assignment (25)

between a Hamiltonian function f and the corresponding Hamiltonian vector field

Xf is the Lie algebra homomorphism in the sense

X{f,g}θ
= −[Xf , Xg] (26)

where the right-hand side represents the Lie bracket between the Hamiltonian vector

fields.

From the above arguments, we see that U(1) gauge fields on a symplectic man-

ifold (M,B = θ−1) have been transformed into a set of smooth functions

{Dµ(y) ∈ C∞(M)|Dµ(y) ≡ Bµνx
ν(y) = Bµνy

ν + Âµ(y), µ, ν = 1, · · · , 2n} (27)

through the coordinate transformation (24). Thus, we can apply the map

(25) to embody the Lie algebra homomorphism (26) from the Poisson algebra

(C∞(M), {−,−}θ) for the set (27) to the Lie algebra (Γ(TM), [−,−]) of vector

fields defined by

{Vµ = V a
µ ∂a ∈ Γ(TM)|Vµ(f)(y) ≡ {Dµ(y), f(y)}θ, a = 1, · · · , 2n} (28)

for any f ∈ C∞(M). The vector fields Vµ = V a
µ (y)

∂
∂ya ∈ Γ(TMy) in (28) take

values in the Lie algebra of volume-preserving diffeomorphisms because ∂aV
a
µ = 0 by

definition. But it can be shown that the vector fields Vµ ∈ Γ(TM) are related to the

orthonormal frames (vielbeins) Eµ by Vµ = λEµ where λ2 = detV a
µ . Therefore, we

see that the Darboux theorem in symplectic geometry implements a deep principle

to realize a Riemannian manifold as an emergent geometry from symplectic gauge

fields through the correspondence (25) whose metric is given by

ds2 = δµνE
µ ⊗ Eν = λ2δµνV

µ
a V ν

b dya ⊗ dyb (29)

where Eµ = λV µ ∈ Γ(T ∗M) are dual one-forms.2,3

Note that the emergent metric (29) is completely determined by the set (27) of

U(1) gauge fields and it describes any Riemannian manifold with a fixed asymptotic

background. For example, the asymptotic background geometry is a flat Euclidean

space R4 if Âµ(y) (µ = 1, · · · , 4) in (27) are asymptotically vanishing fluctuations

in four dimensions while it becomes a hyper-Kähler manifold if Âµ(y) (µ = 1, · · · , 4)

describe a noncommutative U(1) instanton.19,20

3. Quantization of Gravity

Let us recapitulate how we could get the Riemannian metric (29). We have con-

sidered electromagnetism on a symplectic spacetime (M,B). The electromagnetic

fields in this case manifest themselves only as a deformation of symplectic struc-

ture such that the resulting symplectic spacetime is described by (M,B+F ) where

F = dA. Via the Darboux theorem together with the homomorphism (25), this

deformation of symplectic structure in terms of the electromagnetic force F = dA

can be translated into a deformation of frame bundle over spacetime manifold M ;
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∂µ → Eµ = Ea
µ(y)∂a, or, in terms of dual frames, dyµ → Eµ = Eµ

a (y)dy
a. That is,

the deformations of symplectic spacetime (M,B) in terms of electromagnetic force

F = dA are isomorphic to those of Riemannian manifold (M, g)

ds2 = δµνdy
µ ⊗ dyν → ds2 = δµνE

µ ⊗ Eν . (30)

This isomorphism implies that a field theory equipped with the fields in (27) on a

symplectic or Poisson spacetime gives rise to Einstein gravity.2,3 Another crucial

point, as will be shown below, is that an underlying field theory action for emergent

gravity will be represented only by the Poisson bracket {Dµ, Dν}θ(y) between the

fields in (27), and so the equations of motion will be defined only with the Poisson

bracket (14). If this is the case, quantum gravity will be much more accessible since

there is a natural symplectic or Poisson structure (11) and so it is obvious how to

quantize the underlying system, as was already done in (5).

We demonstrate the emergent gravity with the following action

SP =
1

4g2YM

∫
d2ny{Dµ(y), Dν(y)}θ{D

µ(y), Dν(y)}θ (31)

where gYM is a 2n-dimensional gauge coupling constant. Note that

{Dµ(y), Dν(y)}θ = −Bµν + ∂µÂν(y)− ∂νÂµ(y) + {Âµ(y), Âν(y)}θ

≡ −Bµν + F̂µν(y) (32)

and

{Dµ(y), {Dν(y), Dλ(y)}θ}θ = ∂µF̂νλ(y) + {Âµ(y), F̂νλ(y)}θ

≡ D̂µF̂νλ(y). (33)

It is easy to see by identifying f(y) = Dµ(y) and g(y) = Dν(y) and using the relation

(32) that the Lie algebra homomorphism (26) leads to the following identity

X
F̂µν

= [Vµ, Vν ] (34)

where Vµ ≡ XDµ
and Vν ≡ XDν

. Similarly, using (33), we can further deduce that

X
D̂µF̂νλ

= [Vµ, [Vν , Vλ]]. (35)

The Jacobi identity (4) for the Poisson bracket (33) can be written as in the

form

{D[µ, {Dν , Dλ]}θ}θ = D̂[µF̂νλ] = 0, (36)

where [µ, ν, λ] denotes the cyclic permutation of indices. Similarly the equations of

motion derived from the action (31) read as

{Dµ, {Dµ, Dν}θ}θ = D̂µF̂µν = 0. (37)

Then, the map (35) translates the Jacobi identity (36) and the equations of motion

(37) into some geometric relations between the vector fields Vµ defined by (28).
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That is, we have the following correspondence2

D̂[µF̂νλ] = 0 ⇔ [V[µ, [Vν , Vλ]]] = 0, (38)

D̂µF̂µν = 0 ⇔ [V µ, [Vµ, Vν ]] = 0. (39)

Since the vector fields Vµ in (28) completely determine the gravitational metric (29),

the right-hand sides of (38) and (39) are thus second-order differential equations of

the metric (29), so that they finally reduce to some equations related to Riemann

curvature tensors. It was shown in Ref. 2 that the Bianchi identity (38) for symplec-

tic gauge fields in the action (31) is equal to the first Bianchi identity of Riemann

tensors, i.e.

[V[µ, [Vν , Vλ]]] = 0 ⇔ R[µνλ]ρ = 0, (40)

and the equations of motion (39) are equivalent to the Einstein equations for the

emergent metric (29), i.e.

[V µ, [Vµ, Vν ]] = 0 ⇔ Rµν −
1

2
gµνR =

8πG

c4
Tµν , (41)

where the gravitational constant G is defined by (20). See Ref. 2 for the derivation

and, especially, for a surprising content of the energy-momentum tensor in Eq.(41).

Now we have realized that Einstein gravity can be emergent from electromag-

netism as long as spacetime admits a symplectic structure (11). Therefore classical

gravity is defined by the action (31) and the so-called emergent gravity suggests a

novel and authentic way for quantum gravity where the quantization of gravity is

reduced to quantizing a dynamical system described by the action (31).3 With the

Poisson structure (11), who is still in agony to find a quantum world ?

A question is whether the canonical quantization (5) for the action (31) correctly

describes quantum spacetime geometries and resolves some notorious problems in

classical gravity, e.g., the cosmological constant problem.21,22 We will not try to

answer to the question right now because it may be premature to disclose. Instead

we will show that the action (31) arises in the commutative limit of a completely

background independent theory where no prior existence of spacetime is assumed

but is defined by the theory itself as a vacuum solution.

Consider the zero-dimensional IKKT matrix model23 whose action is given by

SIKKT = −
1

4
Tr

(
[Xµ, Xν ][X

µ, Xν ]
)
. (42)

Since the action (42) is 0-dimensional, it does not assume any kind of spacetime

structure. There are only a bunch of N×N Hermitian matrices Xµ (µ = 1, · · · , 2n)

which are subject to a couple of algebraic relations given by

[X [µ, [Xν , Xλ]] = 0, (43)

[Xµ, [X
µ, Xν]] = 0. (44)

In order to expand the matrix theory (42), first we have to specify a vacuum of the

theory where all fluctuations are supported. Of course, the vacuum solution should
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also satisfy the Eqs. (43) and (44). Suppose that the vacuum solution is given

by Xµ
vac = yµ.e In the limit N → ∞, the noncommutative space defined by (13)

definitely satisfies the equations of motion (44). Furthermore, in this case, the matrix

algebra (AN , [−,−]) defining the action (42) can be mapped to a noncommutative

⋆-algebra (Aθ, [−,−]⋆)
24,16 defined by the star product

(f̂ ⋆ ĝ)(y) = exp
( i

2
θµν

∂

∂yµ
∂

∂zν

)
f(y)g(z)

∣∣∣
y=z

(45)

where f̂ , ĝ ∈ Aθ and f, g ∈ C∞(M). For example, the largeN matricesXµ ≡ θµνD̂ν

can be expanded around the Moyal vacuum (13) as follows

D̂µ(y) = Bµνy
ν + Âµ(y) ∈ Aθ. (46)

It is then easy to calculate the following ⋆-commutator

− i[D̂µ(y), D̂ν(y)]⋆ = −Bµν + ∂µÂν(y)− ∂µÂν(y)− i[Âµ(y), Âν(y)]⋆

≡ −Bµν + F̂ ⋆
µν(y). (47)

Therefore we see that the matrix action (42) can be obtained by quantizing à la (5)

the classical action (31).

The noncommutative ⋆-algebra (Aθ, [−,−]⋆) can be obtained by the canonical

quantization (5) of Poisson algebra (C∞(M), {−,−}θ) through the Weyl-Wigner

correspondence4,5 where the Poisson structure is defined by (11). In particular,

the correspondence (25) between the Poisson algebra (C∞(M), {−,−}θ) and vector

fields in Γ(TM) can be generalized to the noncommutative ⋆-algebra (Aθ, [−,−]⋆)

by considering an adjoint action of noncommutative gauge fields in (46) as follows

V̂µ[f̂ ](y) ≡ −i[D̂µ(y), f̂(y)]⋆ = −θab
∂Dµ(y)

∂yb
∂f(y)

∂ya
+ · · ·

= Vµ[f ](y) +O(θ3). (48)

Note that the leading term in (48) precisely reproduces the usual vector fields in

(28) and so we will refer to V̂µ in (48) as generalized vector fields. According to

the correspondence (48), the noncommutative gauge fields in (46) are mapped to

generalized vector fields as an inner derivation in Aθ. In particular, we have the

following property generalizing the identity (34)

X̂
F̂⋆

µν
= [V̂µ, V̂ν ]⋆ (49)

where [V̂µ, V̂ν ]⋆ = [Vµ, Vν ]+O(θ3) is a generalization of Lie bracket to the generalized

vector fields in (48). Using the maps (48) and (49), we can further deduce that

X̂
D̂⋆

µF̂
⋆
νλ

= [V̂µ, [V̂ν , V̂λ]⋆]⋆. (50)

eIt should be remarked that a sufficient condition for the vacuum is that it is a (semi-)stable
solution of the theory. Therefore the vacuum is not unique in general. For example, an instanton
solution in four dimensions, [Xµ

ins,X
ν
ins] = ± 1

2
εµνλρ[X

λ
ins,X

ρ
ins], is also a stable vacuum satisfying

(44). But we will understand the instanton vacuum as an inhomogeneous deformation, possibly

with a topology change, from the primitive vacuum (13), i.e., Xµ
ins = yµ + θµν Â

(ins)
ν (y).2
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Using the relation (50), we can easily show that the correspondence in (40) and

(41) can be generalized to the noncommutative gauge fields (46) and the generalized

vector fields defined by (48) as follows 2,3:

D̂⋆
[µF̂

⋆
νλ] = 0 ⇔ [V̂[µ, [V̂ν , V̂λ]]⋆]⋆ = 0, (51)

D̂⋆µF̂ ⋆
µν = 0 ⇔ [V̂ µ, [V̂µ, V̂ν ]⋆]⋆ = 0. (52)

Since the leading order in (48) recovers usual vector fields, the Einstein gravity

described by (40) and (41) will appear as the leading order of noncommutative

gauge fields described by (51) and (52). Therefore we expect, according to the line

of thought in Sec. 1, that Eqs. (51) and (52) will describe quantum gravity, which

can be formulated in terms of the background independent matrix action (42). Our

scheme for quantum gravity is radically different from the conventional wisdom.3

4. Geometry and Matters from Algebra

We have shown that the spacetime Poisson structure (11) provides a back-

ground independent completion of quantum gravity through the IKKT matrix

model (42). We will further enhance this picture by showing that the AdS/CFT

correspondence25,26,27 can be understood as the emergent gravity defined by the

spacetime Poisson structure (11).

Let us consider U(N → ∞) Yang-Mills theory in d dimensions

SN = −
1

Gs

∫
ddzTr

(
1

4
FµνF

µν +
1

2
DµΦ

aDµΦa −
1

4
[Φa,Φb]2

)
, (53)

where Gs ≡ 2πgs/(2πκ)
4−d
2 and Φa (a = 1, · · · , 2n) are adjoint scalar fields in

U(N). Note that, if d = 4 and n = 3, the action (53) is exactly the bosonic part of

4-dimensional N = 4 supersymmetric U(N) Yang-Mills theory, which is the large

N gauge theory of the AdS/CFT correspondence.25,26,27 Suppose that a vacuum

of the theory (53) is given by

〈Φa〉vac =
1

κ
ya, 〈Aµ〉vac = 0. (54)

Assume that the vacuum expectation values ya ∈ U(N → ∞) satisfy the algebra

[ya, yb] = iθab1N×N , (55)

where θab is a constant matrix of rank 2n. If so, the vacuum (54) in the N → ∞ limit

is definitely a solution of the theory (53) and the adjoint scalar fields in vacuum

satisfy the noncommutative Moyal algebra (13). The large N matrices in the action

(53) can then be mapped to noncommutative fields in Aθ like as (46).

Let us consider fluctuations ÂM (X) ≡ (Âµ, Âa)(z, y), M = 1, · · · , d + 2n, of

large N matrices in the action (53) around the vacuum (54)

Φa(z, y) =
1

κ

(
ya + θabÂb(z, y)

)
, Dµ(z, y) = ∂µ − iÂµ(z, y), (56)
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where the fluctuations are assumed to also depend on the vacuum moduli in (54).

Therefore let us introduce D = d+ 2n-dimensional coordinates XM = (zµ, ya) and

D-dimensional connections defined by

DM (X) = ∂M − iÂM (X)

≡ (Dµ = ∂µ − iÂµ, Da = −iκBabΦ
b)(z, y). (57)

As a result, the large N matrices in the action (53) are now represented by their

master fields which are higher dimensional noncommutative U(1) gauge fields in

(57) whose field strength is given by

F̂MN = ∂M ÂN − ∂N ÂM − i[ÂM , ÂN ]⋆. (58)

In the end, the d-dimensional U(N) Yang-Mills theory (53) has been transformed

into a D-dimensional noncommutative U(1) gauge theory and the action (53) can

be recast into the simple form16

ŜB = −
1

4g2YM

∫
dDX(F̂MN −BMN ) ⋆ (F̂MN −BMN ). (59)

To find a gravitational metric dual to the large N gauge theory (53) or, equiva-

lently, to find an emergent metric determined by the noncommutative gauge theory

(59), first apply the adjoint operation (48) to the D-dimensional noncommutative

gauge fields in (57) after switching the index M → A = 1, · · · , D = d+ 2n:

V̂A[f̂ ](X) = [DA, f̂ ]⋆(z, y)

≡ V M
A (z, y)∂Mf(z, y) +O(θ3). (60)

In commutative limit, the vector fields VA = VM
A ∂M ∈ Γ(TM) on a D-dimensional

manifold M are given by

VA(X) = (∂µ +Aa
µ∂a, D

b
a∂b) (61)

or their dual basis V A = V A
MdXM ∈ Γ(T ∗M) is given by

V A(X) =
(
dzµ, V a

b (dy
b −Ab

µdz
µ)
)

(62)

where V c
aD

b
c = δba and

Aa
µ ≡ −θab

∂Âµ

∂yb
, Db

a ≡ δba − θbc
∂Âa

∂yc
. (63)

Hence the D-dimensional metric can be determined by the dual basis (62) as16,2

ds2 = λ2ηABV
A ⊗ V B

= λ2
(
ηµνdz

µdzν + δabV
a
c V

b
d (dy

c −Ac)(dyd −Ad)
)
, (64)

where Aa = Aa
µdz

µ and the conformal factor is determined by

λ2 = V(V1, · · · , VD) (65)



August 23, 2010 0:15 WSPC/INSTRUCTION FILE review-mpla

Emergent Geometry and Quantum Gravity 15

for a D-dimensional volume form V = ddz ∧ ν.f

Note that the large N gauge theory (53) gives rise to a series of matrix models

depending on the choice of base space R1,d−1, which is a nonperturbative formula-

tion of string or M theories. (See Ref. 28 for a review and references therein.) We

see that the existence of nontrivial gauge fields Aµ(z) causes the curving of the orig-

inal flat spacetime R1,d−1 and so it becomes dynamical together with an entirely

emergent 2n-dimensional space. Therefore, the large N gauge theory (53) almost

provides a background independent description of spacetime geometry except the

original background R1,d−1 whose existence was a priori assumed at the outset.

We may completely remove the spacetime R1,d−1 from the action (53) and start

with a theory without spacetime from the beginning, like as (42),2,3 by applying

the ‘matrix T-duality’ (see Sec. VI.A in Ref. 28).

A remarkable aspect of the large N gauge theory (53) is that it admits a rich

variety of topological objects. Consider a stable class of time-independent solutions

in the action (53) satisfying the asymptotic boundary condition (54). In particular,

the matrices Φa(x) are nondegenerate along Sd−1 = Rd−1 ∪{∞} and so Φa defines

a well-defined map29

Φa : Sd−1 → GL(N,C) (66)

from Sd−1 to the group of nondegenerate complex N × N matrices. If this map

represents a nontrivial class in the (d − 1)-th homotopy group πd−1(GL(N,C)),

the solution (66) will be stable under small perturbations, and the corresponding

nontrivial element of πd−1(GL(N,C)) represents a topological invariant. In the

stable regime where N > d−1
2 , the homotopy groups of GL(N,C) or U(N) define

a generalized cohomology theory, known as K-theory K(X).30 For example, for

X = Rd, this group is given by

K(Rd) = πd−1(GL(N,C)). (67)

It is well-known30 that K-theory generators in (67) can be constructed in terms

of Clifford module. The construction uses the gamma matrices Γµ : S+ → S− of

SO(d − 1, 1) to satisfy {Γµ,Γν} = 2ηµν of the Lorentz group SO(d − 1, 1).31,32

Let X be even dimensional so that K(X) = Z and S± be two irreducible spinor

representations of Spin(d) Lorentz group and a Dirac operator D : V ×S+ → V ×S−

such that D = Γµ∂µ+· · · acting on a Hilbert space V as well as a spinor vector space

S±. An explicit construction2,3 shows that the Dirac operator D acts on collective

(coarse-grained) modes of the solution (66) satisfying the Dirac equation

iΓµ(∂µ − ieAµ − iAI
µQ

I)χ+ · · · = 0, (68)

f It can be shown16 that the vacuum geometry (64) for the state (54) is a flat spacetime R
1,D−1

if ν = dy1 ∧ · · · ∧ dy2n while it is AdSd+1 × S2n−1 if ν = dy1
∧···∧dy2n

ρ2
with ρ2 =

∑2n
a=1 y

aya.
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where the fermion χA carries the index A = (αa) with α the spinor index of Spin(d)

and a = 1, · · · , n an internal index of an n-dimensional representation End(V ) of a

compact symmetry G.

To conclude, we observed that the theory (53) allows topologically stable solu-

tions as long as the homotopy group (66) is nontrivial. Remarkably, a matter field

such as leptons and quarks simply arises from such a stable solution and non-Abelian

gauge fields correspond to collective zero-modes of the stable localized solution.29

Although the solution (66) is interpreted as particles and gauge fields ignoring its

gravitational effects, we have to recall that it is a stable excitation over the vacuum

(54) and so originally a part of spacetime geometry according to the map (60).

Consequently, we get a remarkable picture, if any, that matter fields such as leptons

and quarks simply arise as a stable localized geometry, which is a topological object

in the defining algebra (noncommutative ⋆-algebra) of quantum gravity.2,3 This

approach for quantum gravity thus allows a background independent formulation

where spacetime as well as matter fields is equally emergent from a universal vacuum

of quantum gravity which may be dubbed as the quantum equivalence principle.
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