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Physics. — “In what way does it bécome manifest in the funda-

' mental laws of physics " that space has three dimensions?”’
By Prof. Dr. P. Eurenrest. (Communicated by Prof. Dr.
H. A. LorenTz). -

(Communicated in the meeting of May 26, 1917).

Introduction. -

“Why has our space just three dimensions?”’ or in other words:
“By which singular characteristics do geometrics and physics in
R, distinguish themselves from those in the other RE,’s?” When put
in this way the questions have perbaps no sense. Surely they are
exposed to justified criticism. For does space “exist”? ls it three-
dimensional? And then the question “why”! What is meant by
“physics” of R, or R,? g

[ will not try to find a better form for these questions. Perhaps
others will succeed in indicating some more singular properties of &,
and then it will become clear to what are the “justified” questions
to which our considerations are fit answers.

§ 1. Gravitation and planetary motion.

As to the planetary motion, 1we shall see, that there s a difference
between R, and R, as well as between R, and the higher Ry’s with
respect to the stability of the circutar trajectories. In R, a small disturb-
ance leaves the trajectory finite if the energy is not too great; in R,
on the contrary this is the case for all values of the energy. In R,
for n>38 the planet falls on the attracting centre or flies away
infinttely. In R, for n > 3 there do not exist motions comparable

with _the elliptic motion in R,, — all trajectories have the character of
3 1 A
spirals.

For the attraction under the influence of which a planet circulates in

Mm
the space R,, we put x —to this corresponds for n >> 2 a potential
—

energy :
Mm ' )
ZW . e e ()
We deduce this law of attraction from the differential equation
of Larrace—PoissoNn The means: we assume the forece to be
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directed towards the cenire and to be a function of » only, so that
it can be derived from a potential and we shall apply Gatss’
theorem for the integral of the normal component of the force over
a closed surface (force-current).

The equations ‘of motion thus have the form
d'wy - Mm . oV
a 7"’_17_755.

The motion takes place in a plane. In this plane we introduce
polar coordinates. Then the two first integrals can be written down

at once

h=1,...n)

m

S0 47+ V) =E,
mrtg =0,

By elimination of ¢ we find for »

é=1VA7-’+Br4—n—0= N )
;

That » may oscillate along the trajectory between positive values, »
must have real and alternately positive and negative values. Therefore
the quantity from which the root has to be taken must always be
positive, between two values of » for which it is zero. The discus-
sion of the latter cases is to b& found in appendix (I). There we
shall also consider the case » = 2 for which (1) has to be replaced by

. =2 Mmlog r
and (2) therefore by .
01
r==Va* —Brilgr—7y*, . . . . . (2%)
r
where
. 2F o*
a=— , f=2M , yY=—.
m m

The result of this discussion is

] ) _ Motions bgtyveen two Motion to the
n Circular trajectories positive it
values of r latinite
4 5 instable impossible! possible
possible .
8 stable {moreover closed) possible
. possible . .
2 stable (not closed) impossible!
14
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Remarks :
1st. In this eonnexion we may remind of the following theorem of

BerTranD *): The trajectories of a material point described under the .

influence of a force which is directed towards a fixed centre and
a function of the distance to that centre are only then closed when
the force is proportional to that distance or inversely proportional
to its square.

20d, Tt is remarkable that also in a non-euchdic three-dimensional
space the planetary trajectories corresponding to the elliptic ones
prove to be closed, if the changes in the gravitation law and in the
equations of mechanies corresponding to the curvature of the space
are introduced. (Comp. LiEBMANK) ?). ’

34, We may put the question: what does of BoHrR’s deduction of
the series 1 the spectrain R, become, 1f n == 3. Let us change in this
deduction the law of electric attraction in the same way as that
of gravitation, and like Bomr quantisize the moment of momentum.
From the preceding 1t it clear that for n ~> 3 only circular trajectories
can occur. For n >4 we find infinite series and for n—4 a
singular case which is particularly r1emarkable with respect to the
theory of quanta. (See appendix II).

§ 2. Translation-—rotation, force—pair of forces, electric
field—magnetic field. .

In R, there *is dualism between rotation and translation, in so
far as both are defined by three characterizing nambers. This is
closely connected to the fact that the number of planes through the
pairs of axes of coordinates equals the number of axes themselves.

In every other R, these two numbers are not equal. The number
of axes of coordinates 1s n. Taking two of these at a time we

—1
n(n2 __) ~n for

nfn—1) .
can draw through them e planes. Evidently

n(n—1)
n >3, while n > 5
for n =2 we have only one rotation and two translations,

for n =4 we have 6 rotations and 4 translations.

This corresponds to the dualism which exists only for n =3
between the three components of the force and the three components
of a pair of forces which together can replace an arbitrary system
of forces.

for n <3 eg.: -

) J. Bertranp, Comptes Rendus. T. 77, 1873, p. 849.
3) H. Liesmann, Nicht-euklidische Geometrie. 2e Aufl. 1912, p. 207.

-~
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Starting from the formulae of the theory of relativity we easily
see that also the dualism between the electric and magnetic quantities
is restricted to E,.

In R, the electric field s determined by n components, the magnetic

—1

one by n(n2 ) numbers.
The space-coordinates in the (n + 1)-dimensional “world” will be
denoted by x,....a, and ¢ will be replaced by &, — 7ct. The electric

and magneti¢ forces can be deduced from an (n - 1)-fold potential
(corresponding to the four-fold retarded potential in R,) : ¢,, ., . . . @y

—1 - s .
The ) components of its rotation
O0pr  Opk (k and k=1,...n
b.’vk am}, =F 0
give the magnetic field and the n components of the rotation :

0pr O,
— * h=1,...
dx, Oy ( reen)

the electric field.

§ 3. Integrals of the equation of vibration in R,.
(Generalization of the retarded potentials).
The integrals of the equation :

1 0%

have the following properties in R, : If at the time 7=0 we have
everywhere ;= U and %—?:0 except in a small domain y, then
we have at an arbitrary later moment ¢ (if only ¢ 1s taken large
dg
)
between two surfaces (fig. A), which in the limit, when y becomes
small enough, become spherical surfaces \yith the centre at y.

In R, we have something else: here we have except a disturbance
of equilibrium between two concentric lines round v still an asymp-
totically” diminishing disturbance of equilibrium in the whole exten-
sion (lII) enclosed by the inner lne.

In this vespect all Ro,yy’s behave like R,, all Bo’s like R, (see
‘appendix III). ‘

But among the R, yi’s R, is characterized by a particularity

14*

~

1
enough) stll everywhere o =0, — =0, except in a thin layer




which becomes evident when the retarded potentials’.e.’the integrals
of the differential equation

~

~

for R, ave compared with those for the higher Rs,1;’s.
For R,:

_ 1 [¢]
=g
For Riz

t“ 1 a ‘
e
For R,: i i
3 ¥
SRS CRIEI
7 r c r

4 + 2 2
{see appendix 1V).

C r
Here C,=4x, C,=23&a* C,=1iia° are the areas of spheres
with a radius equal to unity in &,, &, 2, respectively. The symbol

0 0?
[e], [679]’ [5‘79] expresses that the values must be taken at the
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. ’)‘
time t—-c— (the “retarded values”). While in R, the retarded poten-

tials depend on ¢ only, we see that in R, R, etc. ihey are functions
of the differential coefficients of ¢ with respect to the time too.

It must be remarked here that for high values of » (which in
radiation problems are the only ones we are concerned with) the
highest differential coefficient is the most important because here the
lowest power of » occurs in the denominator. An electron with sharply
bounded charge causes therefore by its motion high singularities.

Appendix.

I. The discussion mentioned in § 1 may be illustrated by fig. 1,
where the dotted lines give the terms A»* and Brt— as functions
of », while the full curve represents their sum and the horizontal
line the part C* to be subtracted. In this graphical representation
the condition is that the horizontal line cuts the full curve in
two points between which the line lies below the curve so that the
difference (4r* - Bri—) — C* is here positive.

For n =2 we have added fig. 2 of analogous structure ; the lines
represent : ar® — Br* logr, ") their sum and y*. Then the condition
is safisfied.

ﬂ,
A>o0 / A<o
Ax*
/
s
SRy BI"-‘”
/| - /t”
A .
C 4
”/ ,/ ,’,
e L. __¢*
AN
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II. That the electric attraction gives the centripetal force for
the circular motion is expressed by the equation

eﬁ

(4)

mr @* = i

Bomr’s condition for the stationary circular paths gives
. th
mr? g —= py
where v is a whole number. ‘
For the vt circle the energy is therefore
(n—2)
—w(4m’m G by

- d—n

E.—=xt ¢mn
2 2(n—2)’

where 7 > 2.
For R, too we suppose the radiated frequencies to be calculable
from
E.—E.
h
For n =4 we have a singular case. Equation (4) becomes then

3
gl = —

Dy =
Vs, <

so that
mtp=—ey'm.

The moment of momentum can thus have only one perfectly defined
value: eV'm, so that the coefficient of attraction must be connected
with A if the quantum condition (necessarily with only one value
of ) remains. For n >4 we find

Vo, = D, (07 — ),
where % 1s a positive fraction in general. Thus we obtain
series in the spectram which for constant T and increasing o contain
lines in the ultraviolet which become more and more distant from
one another.

IIT. The solation of the equation of vibration for a membrane
can be derived from that for a three-dimensional body by supposing
in the latter case the disturbances of equilibrium to be in the
beginning independent of one of the rectangular coovdinates e.g. of

2
to an infinite distance without velocity, — = divided by . on the other hand the

energy required to carry it without velocity to the distance 1 from the centre,
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z. Then spheres with a radius » = cf are continually cutting the
domain of the original disturbance of equilibrium. Working out
the calculation we find that the number of integrations to be executed
if one of the coordinates does not occur is still the same as when
it occurs.’) That is the reason why in R, a disturbance
of equilibrium never vanishes there where it once appeared. In
an analogous way we can pass from a solution for R,.y; to one
for Re,. In this way it becomes clear that the continuation of a
disturbance of equilibrinm is a common property of all Ra,’s.

IV. The easiest way to find these solutions is by means of
KircHHOFF's method.?) A special solution y of the equation without
right-hand side is then used. This y is a function ot fand of the dis-
tance » to a fixed centre P only so that the equation which is satisfied
by %, becomes in I,

Foe T w e
: . 19 : .
Applying the operation D::;a—r to a special solution of this

equation we find a solution of the same equation for n -+ 2 instead
of for n. For odd values of n the special solution is

n—1

(=% o(es )
[+
viz, for n=1:

, G(t+-’l),
c

where ¢ is an arbitrary function;

for n=3:
106G 1 r
—— oralso =—F t+—-)
r aT Ve T ¢
(F an arbitrary function);
for n=235:

10 /1 pe 1 » 1. r
:a:(;F(t +:))—*5F(‘+;)+FGF (“f,:)
ete.

Applying Grerx’s identity to the required solution y and thisy (e.g.
for »=2>5) in the whole space w outside a small sphere with
radius R round P we find

1) Comp. e.g. H. A. Lorentz: The theory of electrons. Note 4, p. 2383.
%) See e.g. Ravueien, Theory of Sound, Ch. XIV, § 275,

-10 -
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e o2 e22)
e o2 o) e

where = represents the area of the sphere and A its normal
drawn towards w. _

Now we must integrate with respect to ¢ from a high negative
value ¢, to’a high positive one ¢, *). For the arbitrary function # occur-
ring in y we take a function which is zero for all values of the
argument except for those very near zero (there we' must passto the
limit) in this way however that for zero the integral of F over that
small domain has just the value !. By interchanging the passage to
the limit and the integration *) and by contraction of the sphere the
identity beconies

s ~fa[[foe] 3o b2
4

or after a partial integration

1 (9),_ -z at)t_~_

PP, (1=0) = 3C. dw ————
13

A translation of the point t=0 then gives the 1esult we want.

1) If we want to be accurate the extension must also be delimited at the
r
outside. For the largest value of » which occurs # +?must still be negative.

Only afterwards we pass to the limit of an infinite extension,

%) This interchange which is not further justified will be known to be charac-
teristic of KircrHOFF's method. Here we shall simply borrow it from KircuHoFF.
If we want to execute the integration rigorously, we shall have to avail our-
selves of a method given by J. Hapamarp: Acta Math. 31 (1908) p. 338;
especially § 22 Comp. for further literature J, Hapamarp, Journ. de Phys. 1906.
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