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~hysics. - "1n what way does it become manifest in the funda­
mentnl laws oj ph.lls.ics· tAat space has thTee climensions'?" 
By Pl'of. Dr. P. EHRENFEST. (Oommunieated by Prof. Dl'. 
H. A. LORENTZ). 

(Communicated in the meeting of May 26, IQ17). 

Int?'oduction. 
"Why has our space j Llst three dimensions?" àl' in other wOl'ds: 

"By whirh singular characteristics do geometl'ic5 and physics in 
Ra distinguish themselves from those in the olher Rn's?" When put 
in this way the qllestions have pel'haps no sense. Sllrely they are 
exposed to jllstitied Cl'iticism. For does space "exist"? Is it th ree­
dimensional? And then the question "why"! What is meant by 
"physics" of R4 Ol' R7? 

I will not try to find a bet ter form fol' these questions. Perhaps 
othel's will succeeç! in indicating some mOl'e singulal' properties of R, ' 
and then it will become clear to what are the "justified" questions 
to which Dur considel'ations are fit answers. 

§ 1. Gravitation and planetary motion. 

As to tAe planeta!'y motion, lOe shall see, that tlUire is a diff'el'ence 
between Ra ancl R~ cts well as between Ra -and tlte highe?' Rn's ,witlt 
respect to t/ze stability oJ the circutm' tmjecto?'ies. 1n Ra a smal! dis/m'b­
ance leaves the trajectory finite if the energy ü not too great; in R~ 
on the cont?'al'y this is t/te case JOl' all values of t/w enm'gy. 111, R'l 
JO?' n> 3 tlw planet falls on tlw attracting cen,tre or jlies away 
infinitely. in Rn J01' n > 3 there do not exist motions comparable 
with _the elliptic rnotion in Ra. - all tra}ecto?'ies liave the cha?'acter of 

. spi7'~ls. 
For the attraction under the influence of which aplanet cirrulates in 

Mm 
the space Rn, we put "-1; to this corresponds for n > 2 a potential 

1,11-

enel'gy: 
Mm 

V(1') = -" . . '. . . (1) (n-2)rll-2 
We cleduce this law of attraction ti'om the diffel'ential equation 

of LAPJ.ACE-POISSON The means: we assume tbe force to be 
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directed towards the cenfl'e and to be a funetion of l' only, so that 
it can be deri"ed fl'om a potential and we shall apply GACSS' 

theoJ'~m for the integral of the normal component of the force over 
a elosed surface (fol'ce-eurrent). 

The equations 'of motion thus have the form 
d2Xlt " Atfm tlJl! a v 

m-=-x---=--a' (h=l, ... n) 
dt~ 1,1/-1 l' • .'lJlt 

The motion takes place in a plane. In this plane WE' introduce 
pollLl' coordinates. Then the two first integmls ean be writtell down 
at once 

m· . 
- ('I's + 1,l! q:,2) + Ver) =E, 
2 

mr2 ;P = e. 
By elimination of ;p we find for ;, 

1: = V ~:::-1:=------'2:-C:==--m-=~~:'2 ' 
. lv~-~~--~ 
'1'=- A1,2 + Br4-1l- C: 

I' 
(2) 

That l' may oscillate aiong the tl'ajectol'y between positive values, l' 
must have real and alternately positive and negati\'e values. The1'efo1'e 
the quantity from whieh the root has to be taken must ahvays be 
posith'e, petween two yalues of I' fol' whieh it is zero. The discus­
sion of the lattel' cases is to b~ found' in appendix (I). There we 
shall also consider the case 11, = 2 for which (1) haE. to be replaced by 

v= x l.1m log l' 
and (2) therefore by 

. 1 V ---::---:::--:--:;--------=­
'I' = - ar2 

- (Jr: log r _ y' , 
'I' 

where 

4 

2E 
a=­

m 
(J= 2xM , 

The result of this discussion is 

Motions between two 
n Circular trajectories positive 

values of r 

5 ... \ instabIe impossible! 

3 
I 

stabJe 
possibJe 

(moreover closed) 

I 
2 ' stabIc 

possibJe 
(not closed) 

Pt'oceedings ROy,al Acad. Amsterdam, Vol. XX. 

(2*) 

Motion to the 
infinite 

possible 

possible 

--~--

impossible! 

14 

Î i; ;;; (1)1 tJiJ4Aj Lil ti: Q) 
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Remm'ks: 
1 ~t. In this connexion we may remind of the following tlJeorem Of 

BERTRAND 1): The tl'ajectorles of a material point described under the 
influence of a force which is directed towal'ds a tixed centre and 
a function of the distance to th at centre al'e only then closed when 
the force is propol'tional to th at distance Ol' inversely propol'tional 
to its square. 

2nd• It is l'emarkable that also in á Ilon-euchdic three-dimensional 
space the planetal'y tJoajectories correspondlllg to the elIiptic ones 
prove to be closed, if tht' changes III the gl'avitation law and in the 
equahons of mt'chanics corresponding to the cllrvature of the space 
al'e introdllced. (Comp. LIEBlIfANN) 2). -

31d • We may put the qnestion: what does of BOHR'S deduction of 
the serie& In the spectra in Ril become, If n =/= 3. Let us change in this 
deduction the law of electnc attl'action in the same way as that 
of gravitation, and hke B0HR quantisize the moment of momentum. 
From the pl'eceding 11 it clear that for n> 3 only circlllar tJ'aJectories 
can OCclU'. For n> 4 we find infinite series and for n = 4 a 
singular case which is particularly lemarkable with respect to the 
theory of quanta. (See appendix II). . 

§ 2. Translation--rotation, force-pair of forces, electric 
field-magnetic field. .. 

In Rs there 'is dualism bet ween l'otation and translation, in so 
far as both are detined by three chal'acterizing numbers. This is 
closely connected to the fact that the number of plan es through the 
pairs ofaxes of coordinates eql1al& the numbe.' of axes themselves. 

In every other Rn these two nnmbel's are not equa!. The number 
of a~es of coordinates IS n. Taking two of these at a time we 

n(n-l) n(n-l) 
can draw through them -2-- planes. Evidently -2-- > n for 

n(n-l) 
n > 3, whlle n > for n < 3 e.g.: 

2 

for n = 2 we have only one rotation and two translations, 
for n = 4 we have 6 rotationb and 4 ü'anslations. 
This corresponds to the duahsrn which eXIsts only fOl' n = 3 

between the th,'ee components of' the force and the three compooents 
of a pair of fOl'ces which together can l'eplace aD arbitl'al'y system 
of fOl'ces. 

1) J. BERTRAND. Comptes H.endus. T. 77, 1873, p. 849. 
') H. LIEBMANN, Nicht-euklidlsche Geometrie. ~e Aufl. 1912, p. 207_ 
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~tarting from the formlliae of the theory of relativity we easily 
see that also tbe duulism between the electric and magnetlc quantities 
is l'estricted to Ra. 

In Rn tlte electrie field is determined by n eomponents, the magnetz'c 
n(n-l) 

one by 2 nurnbe1'S. c 

The space-coordmates in the (n + 1)-dlmensional "world" will be 
denoted by ''V1 •••• Xu and t will be repJaced by .'Vo = iet. The electric 
and magnetié forces can be deduced from an (n + i)-fold potential 
(correspondmg to the four-fold l'etarded potentialm Ra) : rpo, (Pil' •• (Pil' 

T 
n(n-l) 

he 2 component&-of its l'otation 

('t and k = 1, ... n) 

=1= 0 

give the..- magnetic field and the n components of the rotation: 

the electric field. 

OPk dpo 
0.11

0 
-aarh , (h = 1 , .•• n) 

§ 3.. Integrals of the equation of vibration in Ril' 
(Generalization of the retarded potentials). 
The integrals of the, equation : 

1 iPrp 
-- -~rp=O 
e' ot2 

' 

have the following proper ties in Ra: If at the time -t = 0 we have 
alp 

everywhere '1' = 0 and 3t = 0 ex cept in a smal1 domain r, then 

yve have at an arbitral'y later moment t (if only t IS taken large 
oqJ I 

enough) stIll everywhere rp = 0, at = 0, except in a th in layer 

betweE'n two Slll'f'aces (fig. A), which in tile limit, when y becomes 
small enough, become spherlcal snrfaces with the centre at y. 

I 

tn R~ we have something else: hel'e we have except a distUl'bance 
of eqnilibrium between two concentl'ic-hnes rOllnd y still an asymp­
totically" diminishing dlstm'banre of equilIbrium in the whole exten­
SIon (lIl) enclosed by the inner hne. 

In tMs 1'e8pect all R211+1' s be1wve lilce Ra, all R211' s lilce R, (see 
"appendix lIl). I 

But among tlle R2n+1'S Ra is chamcterized by a pal'ticularity 
14* 

Sb Si4Qhi 
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Fig. A. 

which becomes evident when the retarded potentialsï.e:the integrals 
of the ditferential equation 

1 fj'cp 
-- - t:. (P = Q 
c~ ot2 

tbr Ra are compared with those for the higher R21l+1's. 
Fo)' RI: 

p=~J 'Jdwj[Q] + !cG:] +~[a:t~]I. 
5 G

7 
1'6 C 1,4 c· 1'2 ~ 

(see appendix IV). 
Hel'e Ga = 4.11:, GG = ! .11: 2

, G7 = H- .11' a , are the al'eas of 'spheres 
with a radius eqnal to unity in RB, R&, R7 l'espectively. The symbol 

[QJ, [:~} [:;:] expresses that the values must be ~aken at the 
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~1' 

time t - - (the "retarded valuee"). W hile in Ra the retarded poten­
c 

rials depe!ld on ~ only, we see that in R5' R7 etc. fhey al'e functions 
of the differential coef1irients of Q with respect to the time to~. 

It must be remarked here tbat f'ol' high vallles of 'l' (whicll in 
radiation problems are the only Ol1es we are concerned witb) the 
highest ditferential coefficient is the most important because here the 
lowest power of l' OCCUI'S in the denominator. An electron with sharply 
bounded charge causes thel'efore by its motIOn high singnlarities. 

Appendix. 

I. The discllssion mentioned in 9 1 may be illustrated by fig. 1, 
where the dotted !ines give the tel'ms A/,2 and Br4- n as fnnrtions 
of 1', while fhe fuIl curve represents thei1' sum and the horizontal 
line the part C2 to be subtracted. In this graphical representation 
the condition is that the horizon tal line cuts the full curve in 
two points between which the line HeEl bt>low the curve so that the 
diffel'ence (A1,2 + B1,4-n) - C2 is here positive. 

Fot' n = 2 we have added fig. 2 of analogous structure; the lines 
represent: m,2 - (11,2 log 1', 1) their sum and y2. Then the condition 
is satisfied. 

A >0 A <'0 

PI-rl. 
I 

<Br~-n. :r.l: '1--'11 
, 

~ , , 
~ , , , , , , , 

.- , ca. , 

-, 
'. 

" 

h \ 

fa. n.3 " 
\ Al'~ 

2 
1) -A divided by - is the energy a planet must have in ol'der to be bl'ought m 

z c 4U i ..... w 411;$1 
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A >0 

A "> 0 
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0.:: > 0 
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h-~ 

A < 0 

________________ Br4- n 

ti 
I c~ 

, 
\ , , , 

\ , , 

A<o 

f-U-.u.J.J+...,---- c
1 

C< < 0 

--------Br4-n 

\ 
\ 
\ , 

\ 
\ 

\ 
I 
\ 
-I 

'. \_~r1./ ... r 
\\ ""<' , 
;r'-
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11. That the electric attraction gives the centripetal force fol' 
the circuJar motion is expressed by the equation 

e2 

mrcp~ =--. 
rn- 1 

(A) 

.BOHR'S condition fOl' the statiollary circular paths gives 
. Tl~ 

m1"p =-
2.n' 

where 't' is a whole numbel'. 
For the T tk circle the energy is therefore 

(n-2) 

_ 2(n-2) (4'12m) 4-n ~ n-4. 
E-r = T 4-n -- e4-71 ---

7~2 2(n-2) , 

where n> 2. 
For Rn too we suppose the radiated freqllencies to be caiculable 

from 

For n = 4 we ha\'e a singuJar rase. EquatlOn (A) beromes then 

e2 

1,4 cp2 =_ 
m 

so that 
mr~ p=e Vm. 

The moment ol momenttt1n can tlms have only one pmjectly defin('d 
value: e Vm, so that the coefficient of attraction must be connected 
with h if the quantllm condition (necessadly with only one value 
of -r) '·emains. For n > 4 we find 

V.,.,-r = VO «(JY - TI) , 

where r. lS a positi\Te fraction in general. Thns we obtain 
sel'Ïes in the spectrllm ,which f'or constant Tand increasing (J contain 
lines in the ultraviolet which become more and more dibtant from 
one another. 

111. The solution of the equation of ,,\ibration fol' a membrane 
can be derived fl'Om that for _a tilree-dimensional body by supposing 
in the latter case tile disturbances of equilibl'ium to be in the 
beginning independent of one of tlle rectangular rool'dinates e. g. of 

2 
to an infinite dislance without velocity, -:(, divided hy - on the other hand the 

m 
energy required to carry Jt without velocity to the dlstance 1 fl'om the centre, 

== .. :::c:::= 
k t ti :;) l1d1:AI!I'\!4f\' 4 .--W4Jl& --
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z. Then sphel'es with tt radius I' = ct al'e continually cutting the 
dom~in of the original distl1l'bance of equilibrium. W orking out 
the calculation we find that the num,bel' of integrations to be exeeuted 
if one of the eOOl'dinates does not occur is still the same as when 
it OCClll'S, 1) That is the l'eason WllJ in R, a distlll'bance 
of eqllllibrium never vanishes there where it once appeared, In 
an analogons way we ean pas'3 from a solution fol' R2n+l to one 
for R2n . In ihis way it becomes cleal' that the eontinuation of a 
distnl'bance of equilibrium iE> a common property of all R21l 's. 

IV. The easiest way to find these solntions i'l by means of 
KIRCHHOF~"S method.~) A special solution X of the eql1ation without 
right-hand side is then nsed. This X is a function ot' tand of the dis­
tance l' to a fixed centre P only so that tbe eqnation whicb is satisfied 
by X, becomes in Ru 

1 i}2X ~ n--l aX a2X 
--------0 
c2 at' 'J' ar arz - • 

1 a 
Applying the operation D = --a to a special solution of this 

l' l' 

equation we find a solution of the same equation for n + 2 instead 
of for n. For odd vallles of n the special soll1tion is 

viz. fol' n = 1 : 

G(t +;} 
whel'e G is an al'bitral'Y function; 

fol' 12 = 3: 

~ dG or also = ~ F (t + ~) 
l' ar r l' C 

(F an arbitl'al'Y function); 
fol' -n= 5: 

~~(~F (t +~)) = -~ F (t +.:.) + ~F' (t +~) 
r ar l' C 1,1 C 1" C • C 

etc. 
Applying GREEN'S identity to the l'equü'ed solution", and this X (e.g. 

for n = 5) in the whole space W outside a small sphere with 
l'adius R round P we find 

1) Comp. e.g. H. A. LORENTZ: 'The theory of electrons. Note 4, p. 233. 
2) See e.g. RAYLEIGH, Theory of Sound, Ch. XIV, § 275. 



- 11 -

20g 

where :E l'epl'esents the al'ea of the sphel'e and N its nOl'mal 
dl'awn towards w. 

Now we must integl'ate with respect to t fl'om a high negatIve 
value ti to' a high positive one t~ 1). For the aL'bitl'al'Y function F OCCUl'­

ring in X we take a function which is zero for all values of the 
argument except fOl' those very near zero (thel'e we' must pass to the 
limit) in this way howevel' that fol' zel'O the integral of F over that 
sm all domain has ju st the valne 1. By interchanging the passage to 
the limit and the integration ')' and by contraction of the sphel'~ the 
identity beconies 

t~ 

-3C,tpp, (t=O)= -fatJIfJf dw Q~-~F(t+ ~)+ 1.!cFI(t+~)t, 
ti 

01' aftel' a pal'tial integration I 

I (OQ) l 1 f (Q)t= _.: f ot t=_': 
tPP,(t=O) = -C aw ~-B-C + aw • c. 

8 5 r r-c 

A translation of the point t = 0 then gives the result we want. 

1) lf we want to be accurate the extension must also be delimited at the 
r 

outside. For the largest value of?' which occurs tI + - must still be negative, 
c 

Only afterwards we pass to the limit of an infinile extension. 
~) This interchange which is not further justified wil! be known to be charac­

teristic of KIRCHHOFF'S method, Here we shall simply borrow it from KIRCHHOFF. 

If we want to execute the integration rigorously, we shaU have to avail our· 
selves of a method given by J. HADAMARD: Acta Math, 31 (1908) p, 333; 
esperially § 22 Comp, for further literature J. HADAMA.RD, Journ, de Phys. 1906. 

zac 


