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The mechanism of continuous set of di�erent universes formation is

elaborated. It provides tool to solve the problem of observed smallness

of physical parameters. Solution of two puzzles - the hierarchy and the

cosmological constant problems based on multidimensional gravity is

discussed.

1 Introduction

Small physical parameters are often subject of discussions. Short list of well
known parameters is: electron to proton mass ratio, the in�aton mass to the
Planck mass ratio, neutrino to electron mass ratio and others. There are many
attempts to solve each problem separately. In the paper [1] warped geometry
is used to the solution of small cosmological constant problem. The hybrid
in�ation [2] was developed to avoid the smallness of the in�aton mass. The
electron to proton mass ratio is discussed in [3]. Seesaw mechanism is usually
attracted to explain the smallness of neutrino to electron mass ratio [4].

At the same time, universal approach is still absent. All currently existing
models seems to su�er the �ne tuning of parameters. Moreover each small
parameter needs speci�c mechanism.
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In this paper a probabilistic mechanism of small parameters formation
is developed. It is based on the results of [5, 6], where deformed extra space
with point like defects is studied. As the examples, two issues - smallness of
cosmological constant and hierarchy problem are considered.

The approach is based on small number of well known ideas: extra space,
the gravity with higher derivatives and the space-time foam - quantum �uctuation
of metric. The latter is already included in the same quantum �eld theory.
Quantum �uctuations of �elds and the space geometry in small volumes
leads to formation of space domains with evolving content. For an internal
observer, this evolution is governed by classical equations of motion. Widely
known and successful model of the chaotic in�ation [7] is based on this idea.
E�ective physical parameters may be di�erent for di�erent �nal states of the
classical evolution [8, 9]. For example, a value of the cosmological constant
(CC) depends on the energy density of the in�aton potential.

Next questions are: how a variety of initial metrics is transformed into
a variety of physical parameters speci�c for di�erent universes? What is the
number of �nal states? The answer depends on initial conditions and a form of
�eld potential. Initial conditions produced by quantum �uctuations represent
a continuous set while a number potential minimums is usually supposed to
be �nite.This means that there exists a �nite number of �nal states and hence
a �nite number of di�erent universes described by di�erent sets of physical
parameters are at our disposal.

Our Universe is described by the speci�c set of (observed) parameters
λobs. Some of them are very small. The challenge is to �nd the set {λ} and
prove that

λobs ∈ {λ}. (1)

Unfortunately this approach has a weakness. Indeed, even if a number of
�nal states is as huge as 10500 in the string theory they could be distributed
non uniformly in a parameter space and there are no assurance whether (1)
ful�lled.

The shortcoming mentioned above can be eliminated if we assume that
the set of low energy parameters has the cardinality of the continuum. Below
a possible way to realize this suggestion is considered.

More de�nitely, the necessary elements of the approach are:
- space-time foam as the source of any initial metrics. By de�nition, the

space-time foam or quantum foam consists of metric �uctuations which can
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serve as initial conditions for further evolution of speci�c metric [10]. This
postulate underlines that all initial metrics are nucleated. It seems very
reasonable though it can not be proved without a theory of the quantum
gravity.

- Extra space does exist. Its dimensionality is not speci�ed here. An
accidental formation of manifolds with various metrics and topologies may
be considered as a source of di�erent universes whose variety is connected
with a huge number of stationary metrics of an extra space [11], [12]

- The gravity with higher derivatives is a necessary element of a primary
theory. The general basis of present study is f(R) gravity. The interest
in f(R) theories is motivated by in�ationary scenarios starting with the
pioneering work of Starobinsky [17]. A number of viable f(R) models in 4-
dim space that satisfy the observable constraints are proposed in Refs. [18],
[19], [20].

If the observable physical parameters (almost) do not vary with time the
same should take place for an extra space metric. Entropic mechanism of the
metric stabilization is considered in [21]. The set of various stationary extra
space metrics should have the cardinality of continuum. This set is a �nal
result of the metric evolution governed by the classical equation of motion
and hence the �nal stationary metric could depend on initial con�guration.
One could keep in mind an analogy with the black holes mass where the
metric depends on an initial matter distribution. Each universe as well as
ours one is described by speci�c extra space metric.

In this paper it is shown that the small parameter problem can be solved
on the basis of postulates listed above. To proceed, consider a n + 4-dim
space with an extra n-dim metric GAB and initial Lagrangian with primary
physical parameters α0, β0, ...λ0. After reduction to our 4-dim space we obtain
a Lagrangian containing the observable physical parameters α, β, ...λ which
depend on the extra metric, e.g. λ = λ(α0, β0, ...λ0, G), see formulas (23),
(32),(44) as the example. If the extra metric G is di�erent for di�erent
universes, then this secondary parameters varies within an interval,

λ(α0, β0, ...λ0, G−), ..., λ(α0, β0, ...λ0, G), ..., λ(α0, β0, ...λ0, G+),

in spite of the primary parameters α0, β0, ...λ0 being �xed.
It points the way to solve the small parameter puzzle. Indeed, if

λ(α0, β0, ...λ0, G−) < 0 and λ(α0, β0, ...λ0, G+) > 0
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then there exists a metric G0 such that λ(α0, β0, ...λ0, G0) = 0 provided the
set {G} of stationary metrics has the cardinality of continuum. Hence there
should exist a set of metrics {G̃} such that λ(α0, β0, ...λ0, G̃) is arbitrarily
close to zero. Our Universe is connected to some speci�c extra metric GU .
If observed parameter λU is small then GU ∈ {G̃}. It will be shown that we
are able to �nd extra space metric GU of our Universe in that case. It should
be stressed once more that parameter �tting is performed by variation of
accidental initial conditions leaving primary parameters �xed. Variation of
primary parameters does not solve the problem because the success is usually
achieved due to strong �ne tuning of this parameters. On the contrary, initial
conditions arise as the result of quantum �uctuations so that their variety
has natural explanation.

As example, two challenging phenomena - hierarchy of masses and the
smallness of the cosmological constant - are considered. A lot of literature is
devoted to the solutions for each of them. The Hierarchy problem concerns
the smallness of electroweak scale or more de�nitely the vacuum average
of the Higgs �eld comparing to the Planck scale. It was studied in various
approaches [22]. Up to now each of them can not avoid a �ne tuning of
primary physical parameters (α0, β0, ...λ0 in our notations). The attempt
[22,24] to explain the di�erence between the Planck scale and the electroweak
scale is interesting but su�ers the same shortage as was shown in [23]. In the
Randall-Sundrum [24] scenarios, 3-branes are embedded in AdS bulk space
with a �ve-dimensional gravity localized on it and negative cosmological
constant. As was shown, there is a perfect �ne-tuning between brane tension
and the cosmological constant. The CC problem, the smallness of dark energy
widely discussed in literature [25], [26].

2 Quantum foam and continuous set of di�erent

universes

In this Section the way of continuous set of universes production is discussed.
Our Universe is the member of this set with speci�c (observed) parameters.

From here on, it is assumed that a characteristic scale of extra space is
small and its geometry is stabilized shortly after the Universe creation. The
stabilization issue is discussed in [27�29].
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Let us consider a space M = M4 × Vn with metric

ds2 = GABdZ
AdZB = gµν(x)dxµdxµ +Gab(y)dyadyb (2)

Here M4 and Vn are the manifolds with metrics gmn(x) and Gab(x, y)
respectively. x and y are the coordinates of the subspaces M4 and Vn. We
will refer to 4-dim space M4 and n-dim compact space Vn as a main space
and an extra space respectively. Here the metric has the signature (+ - - - ...),
the Greek indices µ, ν = 0, 1, 2, 3 refer to 4-dimensional coordinates). Latin
indices run over a, b, ... = 4, 5....

Time dependence of the external metric was discussed within the framework
of the Kaluza-Klein cosmology and Einstein's gravity [30]. If a gravitational
Lagrangian contains terms nonlinear in the Ricci scalar, the extra metric Gab

could have asymptotically stationary states [28]

Gab(t, y)→ Gab(y), (3)

see also [31], [32] for discussion.
Consider a gravity with higher order derivatives and action in the form,

S =
mD−2
D

2

∫
dDZ

√
|G| [f(R) + Lm] ; (4)

f(R) =
∑
k

akR
k

with arbitrary parameters ak, k 6= 1 and a1 = 1 and D = n + 4. Here Lm
is a Lagrangian of matter and mD is unique scale. Its lower limit is usually
accepted as ∼ 10TeV.

In the following inequality

R4 � Rn (5)

or more correctly

∂µ � ∂a (6)

is assumed. The �rst suggestion looks natural for the extra space size Ln <
10−18 cm as compared to the Schwarzschild radius Ln � rg ∼ 106cm of
stellar mass black hole where the largest curvature in the modern Universe
exists.
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Using inequality (5) the Taylor expansion of f(R) in Eq. 4 gives

S ' mD−2
D

2

∫
d4+nZ

√
|G| (7)

[R4(x)f ′(Rn) + f(Rn) + Lm]

It is assumed that the extra space metric and the �elds distribution in the
extra space have been evolved to a stationary states that are determined
by the stationary classical equations and boundary conditions. The latter
depends on initial con�guration of the manifold nucleated from the space
time foam. It is assumed in the following that a �nal stationary state is
achieved. Its form is governed by the stationary equations which are the
subject of study. Besides it is well known that a speci�c solution to di�erential
equations depends on additional conditions. The latter are just mentioned in
this section and will be used in more detail below.

Classical equations for the metric of extra space have the following form

Rabf
′ − 1

2
f(R)Gab −∇a∇bfR +Gab�f

′ =
1

mD−2
D

Tab, (8)

+ additional conditions.

where the �rst term in (7) proportional to R4 is omitted due to inequality (5)
and Tab denotes the stress tensor of matter. Here � stands by the d'Alembert
operator

� = �n =
1√
|G|

∂a(G
ab
√
|G|∂b), a, b = 1, 2. (9)

Up to now we did not specify the number of extra dimensions, its topology,
and a form of the function f(R). Now is a proper moment to do it. We limit
ourselves by the simplest choice to support numerically the ideas described
above. Let the dimensionality of extra space equal 2, its topology is sphere
and the function is

f(R) = u1(R−R0)
2 + u2. (10)

Evidently, there is a set of solutions to system (8) depending on additional
conditions. Maximally symmetrical extra spaces which are used in great
majority of literature represent a small subset of this set. The choice n = 2
strongly facilitates the analysis. Indeed, if an extra space is 2-dimensional,
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only one equation in system (8) remains independent. The simplest choice is
the equation representing the trace of (8)

f ′(Rn)Rn −
n

2
f(Rn) + (n− 1)�nf

′(Rn) = T, (11)

The compact 2-dim manifold is supposed to be parameterized by the two
spherical angles y1 = θ and y2 = φ (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π). The choice of
metric

Gθθ = −r(θ)2; Gφφ = −r(θ)2 sin2(θ) (12)

leads to the Ricci scalar expressed in terms of the extra space radius r(θ).
As a result explicit form of equation (11) to be solved numerically is

∂2θR + cot θ∂θR = −1

2
r(θ)2

[(
R2

0 −R2
)

+
u2 + T

u1

]
. (13)

As the additional conditions let us �x the metric at the point θ = π

r(π) = rπ; r′(π) = 0; R(π) = Rπ; R′(π) = 0. (14)

From here on we will use the units mD = 1.
Numerical solutions rb(θ) for T = 0 with point like defects and their

features are discussed in [5]. It was found that due to high nonlinearity of
the equation the gravity is able to trap itself in a small region around θ = 0
even without matter contribution.

The metric depends on conditions (14) which are the result of initial
conditions. These metrics form a set of cardinality of the continuum. This
remark is of extreme importance for the following study.

3 First Example. The smallness of

the cosmological Λ-term

The result of previous section is the prove of existence of a continuum set of
universes. Next question to be solved is: does our Universe belongs to this
set? In particular, we know that it is characterized by the small parameters,
some of which are mentioned in the beginning of Introduction. Hence, if this
continuum set contains a subset of universes with such small parameters our
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Universe belongs to this subset. Proof of this statement is a separate task for
each small parameter.

Let us apply the former ideas to explain why the cosmological Λ term is
many orders of magnitude smaller then the Planck scale, MPl. Consider the
Lagrangian of a scalar �eld

Lm =
1

2
∂AϕG

AB∂Bϕ− Uϕ(ϕ), Uϕ(ϕ) =
∑
i

giϕ
i (15)

which is contributed to the dark energy. Equation of motion

�4+nϕ+ U ′ϕ(ϕ) = 0 (16)

acquires the form

�4+nϕ̃+ U ′′ϕ(ϕm)ϕ̃ = 0, ϕ = ϕm + ϕ̃ (17)

around the potential minimum. The scalar �eld is assumed to be almost
uniformly distributed in our 4-dim space,

ϕ(x, θ) = φ(x)Y (θ) = ϕmY (θ) + φ̃(x)Y (θ) (18)

so that the classical equation of motion is

Y (θ)�4φ̃(x) + φ̃(x)�2Y (θ) + Y (θ)U ′′ϕ(ϕm)φ̃(x) = 0. (19)

+ additional conditions.

due to (6):

�2Y (θ) + U ′′ϕ(ϕm)Y (θ) = 0. (20)

This equation should be solved together with Eq.13. The trace of stress tensor
has the form

T = GabTab = 2Uϕ(ϕ) ' 2Uϕ(ϕm). (21)

Last equality is valid for a 2-dim metric.
Let the functions Gab(y) and Y (y) be the solutions to (8) and (20)

correspondingly. Their substitution into the action leads to the following
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form of e�ective action for the proto-Higgs �eld and gravity

S = πmD−2
D

∫
d4xdθ

√
|g(x)G(y)|R4(x)f ′(Rn(y)) + f(Rn(y)) (22)

+ πmD−2
D

∫
d4x[Kφ∂µφ(x)gµν∂νφ(x)− Uφ],

Uφ(φ) =
∑
i

g̃iφ(x)i.

where

Kφ =

∫
dθ
√
|G(θ)|Y (θ)2

g̃2 =

∫
dθ
√
|G(θ)|

[
g1Y (θ)2 − 1

2
∂aY (θ)Gab∂bY (θ)

]
(23)

g̃i 6=2 = gi

∫
dθ
√
|G(θ)|Y (θ)i

Comparison of expression (22) with the Einstein-Hilbert action

SEH =
M2

Pl

2

∫
d4x
√
|g(x)|(R4 − 2Λ) (24)

gives the expression

M2
Pl = 2πmD−2

D

∫
dθ
√
|G(θ)|f ′(R2(θ)) (25)

for the Planck mass. The term

Λ ≡ πmD−2
D

M2
Pl

[
Uφ(vφ)−

∫
dθ
√
|G(θ)|f(R2)

]
(26)

represents the cosmological Λ term. Here vφ = vφ(g̃i) is a vacuum state of
the �eld φ. The Λ term depends on a stationary geometry Gab(y) and hence
on the additional conditions.

A scalar �eld distribution satis�es the classical equation

cot(θ)∂θY (θ) + ∂2θY (θ)− U ′′ϕ(ϕm)r(θ)2Y (θ) = 0. (27)

obtained by substitution metric (12) into equation (19). Additional conditions
are as follows

Y (π) = Yπ; Y ′(π) = 0 (28)

9



Ðèñ. 1: The cosmological constant vs. 2-dim extra space radius at point
θ = π. Here u1 = 100, u2 = 10−7, R0 = 10−3, g2 = 10−5, g3 = 4.2 · 10−6, g4 =
3 · 10−7 and gi = 0 for i 6= 2, 3, 4. Additional condition is Y (π) = 100.
It is assumed that mD = 1. r(π) ' 43.45 for our Universe because of the
observable smallness of the cosmological constant.
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As an illustration, numerical solution to Eq.27 is represented in Fig.1 where
speci�c parameter values are listed. One can see that the curve intersects
zero value at the extra space radius r(π) ' 43.45 which means that universes
with arbitrary small cosmological constants do form the continuous subset.
Our Universe belongs to this subset.

According to expression (25) the D-dim Planck mass is connected to the
Planck mass. For the numerical values of the parameters listed in Fig.1
one can obtain the connection mD = MPl/21.5 as the result of numerical
calculations. This allows to �x the radius of the extra space r(π) = 43.45/mD '
900/MPl. The characteristic size of the extra space is large enough to be
described classically.

4 Primary and secondary parameters

of a theory

Previous discussion reveals that some physical parameters acquire their present
values as a result of D-dim space 1-step reduction to 4-dim space. These
parameters are "secondary" with respect to primary parameters of initial
Lagrangian. This concerns at least the Planck mass, the cosmological Lambda-
term and the parameters of the Higgs potential. It would be interesting to
study whether parameters of action (4) are primary ones indeed. In this
section it is shown that a 2-step reduction [12], (d + n + 4)-dim space →
(n+ 4)-dim space → 4-dim space, provides additional opportunities.

Another aspect is connected to existence of moderately small parameters
like the electron mass to the proton mass ratio, ratio of the in�aton mass
to the Planck mass and so on. One can notice that the primary parameters
such as gi in Fig.1 are also quite small. This may be considered as a defect of
the approach developed here. As shown below 2-step reduction can improve
the situation signi�cantly.

To proceed, consider a theory with Lagrangian

S =
mD−2
D

2

∫
d4+nZddw

√
|G4+n+d|f(R) (29)

The manifold M = M4×Vn×Vd is slightly more complex than previous one.
Coordinates w describe new d-dim extra space Vd with a metric Gd(w).

Suppose that the Ricci scalar Rd of the extra space Vd satis�es inequality

Rd � R4+n.
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Then approximate equality f(R) ' f(Rd(w)) takes place and classical equations
similar to (8) can be obtained by variation action (29) with the Lagrangian
f(Rd(w)). If a metric Gd(w) is a solution to this equations the action is
reduced to

S =

∫
d4+nZ

√
G4+n

∑
k

ãkR
k
4+n(Z) (30)

ãk = πmD−2
D

∫
dw
√
Gd

f (k)(Rd)

k!
, d = 2 (31)

in 4 +n-dim manifold. The form of this action is identical to the geometrical
part of action (4) where the parameters ak are supposed to be fundamental
ones. Essential di�erence between expressions (4) and (30) is that parameters
(31) depend on the geometry of Vd space and one can �t them to desirable
values in the same manner as it was done for the observable parameters. Let
us demonstrate it on the base of our initial parameters u1, u2 and R0 which
have been considered as primary parameters up to now.

In the case of quadratic gravity (10) with

f(R) = u1(R−R0)
2 + u1 = a0 + a1R + a2R

2

there are three parameters to be determined - ã0, ã1, ã2 from formula (31)

ã0 =

∫
dw
√
Gd(a0 + a1Rd + a2R

2
d)

ã1 =

∫
dw
√
Gd(a1 + 2a2R

2
d) (32)

ã2 =

∫
dw
√
Gda2.

The Lagrangian of the reduced action has the form

f = ã0 + ã1R + ã2R
2 ≡ ũ1(R− R̃0)

2 + ũ2 (33)

Due to evident connections

ũ1 = ã2, ũ2 = ã0 −
ã21
4ã2

, R̃0 = − ã1
2ã2

(34)

parameters u1, u2, R0 depend on additional conditions as well.
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Average scalar curvature 〈R〉 of 2-dim space must be much smaller than
m−2D to permit classical behavior. This is the only important reason to choose
the parameter R0 to be rather small. The value R0 = 10−3 was postulated in
previous sections. If it is a primary physical parameter it may be considered
as a defect of the model. But now this parameter depends on the geometry of
extra space and hence on boundary conditions. Its smallness can be substantiated
in the same way as discussed in previous sections. More de�nitely, one should
determine those boundary conditions rπ for which inequality

R0 = − ã1
2ã2
� 1 (35)

holds.
As a numerical example let us choose speci�c values for the primary

parameters a0 = 0.25, a1 = −1.2, a2 = 0.5. Numerical calculations reveal that
the secondary parameter R0 of the reduced space intersects zero if boundary
condition varies in the interval

r(π) = 1.406÷ 1.411. (36)

Thus, we may choose the varying parameter R0 in (10) arbitrarily small
assuming that it is a secondary parameter obtained as a result of the �rst
step of reduction. This result will be used in next section.

5 Second example. Hierarchy problem

The lesson of section 3 is as follows: there exists a continuous set of secondary
parameters, the Λ terms, and each of them is observed in an appropriate
universe. It was proved that this set contains a subset with cosmological
constants arbitrarily close to zero.

Another problem is the smallness of the Higgs vacuum average v. For
our Universe, the ratio v/MPl = vobs/MPl = 246/(1.22 · 1019) ' 2 · 10−17

is small parameter that needs an explanation. The question is whether we
are able to solve this problem applying the same idea. To this end, let us
use the extra space with interval square (2) and time-like coordinates of the
extra space [13]. The shortage of many-time idea and its solution is discussed
in [14�16]. In the following we suppose that the idea is correct and substitute
the minus signs in (12) by plus signs. The in�uence of the Higgs �eld to the
extra space metric is supposed to be negligible.
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Consider a Lagrangian LH of proto-Higgs �eld H

LH = {∂AH+GAB∂BH − U(H+H)} (37)

U = b2
(
H+H

)
+ b4

(
H+H

)2
.

The only conditions imposed on the primary parameters are b2 > 0, b4 > 0.
A constant U(H = 0) is assumed to be inserted into the function f(R), (10).

Equation of motion derived from the Lagrangian is

�4+nH = b2H + 2b4
(
H+H

)
H. (38)

As in previous case let us seek for the solution in the form

H(Z) = H(x, θ) = χ(x)W (θ) (39)

where the function χ(x) relates to the Higgs �eld and the function W (θ)
represents its extra space part.

The proto-Higgs action acquires the form

S ' πmD−2
D

∫
d4xdθ

√
|g||G| ·

{W (θ)2∂µχ(x)+gµν∂νχ(x) + χ(x)+χ(x)Gθθ(∂θW )2

−b2W (θ)2χ(x)+χ(x)− b4W (θ)4[χ(x)+χ(x)]2} (40)

after substitution (39) into (37). This expression is true if the metric GAB is
diagonal matrix as it is in our case. Classical equation for the function W (θ)
obtained from action (40) has the following form

�2W (θ) + b2W (θ) = −2b4χ
+(x)χ(x)W (θ)3 (41)

where inequality (6) is taken into account. The value χ(x) is of the order of
observed vacuum average χ(x) ∼ vobs � 1 so that nonlinear term may be
omitted that gives the equation

cot(θ)∂θW (θ) + ∂2θW (θ) + 2b2r(θ)
2W (θ) = 0. (42)

"Wrong"sign before the last term appears due to the time-like character of
the extra space coordinates.
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Suppose that a solutionWs(θ) to equation (41) is known. Then integrating
out extra-coordinates θ in action with Lagrangian (40) we obtain the proto-
Higgs part of the action

SH =

∫
d4x
√
g(x){K∂µχ(x)+gµν∂νχ(x)

−B2χ(x)+χ(x)−B4[χ(x)+χ(x)]2} (43)

where

K = πmD−2
D

∫
dθ
√
|G(θ)|Ws(θ)

2

B2 = πmD−2
D

∫
dθ
√
|G(θ)|

[
b2Ws(θ)

2 −Gθθ(∂θWs)
2
]

(44)

B4 = πmD−2
D

∫
dθ
√
|G(θ)|Ws(θ)

4.

Final transformation

h(x) ≡
√
Kχ (45)

leads to known form of the Higgs action

SH =

∫
d4x
√
g(x){∂µh(x)+gµν∂νh(x) + (46)

λv2h(x)+h(x)− λ[h(x)+h(x)]2}

where

λ ≡ 4B4

K2
, v2 ≡ − B2

Kλ
. (47)

The Hierarchy problem is reduced to the following: the right hand sides
of expressions (47) depend on random additional conditions caused by space-
time foam so that they form continuous set of universes {U} with di�erent
secondary parameters λ and v. Observed value of the Higgs vacuum state
(vobs ∼ 10−17 in the Planck units) is very close to zero. Therefore, if the set
{v} includes v = 0 with its vicinity, our Universe might belong to set {U}.
Next step is devoted to prompt realization of this statement.

Equation (42) with additional conditions W (π) = Wπ; W ′(π) = 0
describes the behavior of extra part of the proto-Higgs �eld. Its solution
Ws(θ) depends on additional condition Wπ and the Lagrangian parameters

15



Ðèñ. 2: The Higgs vacuum average square vs. the parameter R0. u1 =
100, u2 = 10−7, b2 = 10−2, b4 = 0.1.
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R0, u1, u2. Let us use the results of previous section and allow variation of
the parameter R0 leaving the other parameters constant. Therefore the values
K,B2, B4 and v are also functions of R0. Numerical simulations presented in
Fig.2 indicate that the curve intersects zero value at R0 ' 0.068.

It means that a set of universes with arbitrary small positive Higgs
vacuum state do exist. For our Universe v/MPl ' 2 · 10−17 and hence it
belongs to this set.

Numerical results obtained at the end of sections 3,4 and 5 strongly
depend on the choice of primary parameter values and hence should be
considered as an illustration of the approach. Numerical simulations indicate
that main results are mostly insensitive to variation of this values because it
can be compensated by an alternation of additional conditions.

6 Discussion

Nowadays, nobody wonders why the properties of our planet are so suitable
for life just because enormous variety of di�erent planets is known to exist.
The same argument can be applied to the physical properties of our Universe.
We would not wonder why the observed physical characteristics are so suitable
for life if there were a huge variety of di�erent universes. As was discussed in
the Introduction the key issue is that this variety should have the cardinality
of the continuum.

The general picture is as follows. Quantum �uctuations of metrics generate
universes with di�erent numerical values of physical parameters λ. Our universe
is one of those universes. More precisely, every physical parameter λ, the
electron mass me for example, is a functional λ[G] of extra space metric G.
Therefore, the set of all metrics G generates a set of values of the electron
massme[G]. Speci�c valueme = 9, 1093829210−31kg, observed in our universe,
is a representative of the set.

Under this approach, the justi�cation of the observed parameter value

means a solution of the inverse problem of �nding a suitable extra space

metric. For example, one should prove that there exists a metric G∗ for
which me[G∗] = 9, 1093829210−31kg. In general, the purpose seems di�cult
to ful�ll if a set of metrics is discrete. However, if a set of di�erent metrics
has the continuum measure the task is greatly simpli�ed.

For example, if the observed parameter λsmall is very small it is enough
to prove that a set {λ[G]} includes the value λ[G∗] = 0. In this case, if the

17



set has the cardinality of the continuum, then there exists such a metric G+

for which λ[G+] = λsmall≪ 1.
In this paper, the formation mechanism of continuous set of universes with

di�erent physical parameters is elaborated. It is also proved that there exists a
continuous subset of universes described by small physical parameters such as
the cosmological constant and the electroweak scale. Evidently our Universe
belongs to this subset. There is no necessity to invent special mechanisms to
explain the smallness of this parameters.

Models based on the extra space idea are described by primary physical
parameters of Lagrangian. Some of them should be �ne tuned to solve a
problem in question which may be considered as the defect of a model.
Meanwhile 2-step reduction considered in section 4 can signi�cantly smoothen
the problem.
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