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ABSTRACT

According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic
universe behave like mini-universes with their own cosmological parameters. This is an excellent
approximation in both Newtonian and general relativistic theories. We estimate local expansion
rates for a large number of such regions, and use a scale parameter calculated from the volume-
averaged increments of local scale parameters at each time step in an otherwise standard cosmological
N -body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable
parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the
first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of
structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein–
de Sitter setting closely tracks the expansion and structure growth history of the ΛCDM cosmology.
Due to small but characteristic differences, our model can be distinguished from the ΛCDM model
by future precision observations. Moreover, our model can resolve the emerging tension between
local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements
to the simulation are necessary to investigate light propagation and confirm full consistency with
cosmic microwave background observations.
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1 INTRODUCTION

Gravitation being the only effective force on the largest
scales, cosmological evolution is governed by general relativ-
ity (GR). To zeroth order, the homogeneous and isotropic
Friedmann–Lemâıtre–Robertson–Walker (FLRW) solutions
of Einstein’s equations drive the expansion and growth
history of the Universe. The concordance ΛCDM model
(e.g., Planck Collaboration 2016) posits an unknown form
of energy with negative pressure and an energy density
about 10123 off from theoretical expectations. The ΛCDM
paradigm reproduces most observations, although, to this
day, no plausible candidate for dark energy has emerged
and some tensions remain (see Buchert et al. 2016, for a re-
cent comprehensive review). Most notably, the latest local
measurements (Riess et al. 2016) of the Hubble constant are
up to 3.4σ high compared to the value derived from Planck
observations (Planck Collaboration 2016) of the cosmic mi-
crowave background.

The ubiquitous presence of clusters, filaments, and voids
in the cosmic web manifestly violate the assumed homo-
geneity of ΛCDM. Given the non-linear nature of Ein-
stein’s equations, it has been known for a while that lo-
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cal inhomogeneities influence the overall expansion rate,
whereas the magnitude of such backreaction effect is de-
bated. In particular, Green & Wald (2014, 2016) argued
that the effect of inhomogeneities on the expansion of the
Universe is irrelevant, while Buchert et al. (2015) disputed
the general applicability of the former proof. More recently,
Giblin, Mertens & Starkman (2016) used numerical relativ-
ity to show the existence of a departure from FLRW be-
haviour due to inhomogeneities, beyond what is expected
from linear perturbation theory. Nevertheless, the spectac-
ular successes of the homogeneous concordance model sug-
gest that any effect of the inhomogeneities on the expansion
rate should be weak, unless it mimics the ΛCDM expan-
sion and growth history to a degree allowed by state of the
art observations. In this spirit, we present a statistical non-
perturbative algorithm, a simple modification to standard
N -body simulations, that provides a viable alternative to
dark energy while it can simultaneously resolve the Hubble
constant puzzle.

In the late-time non-linear evolution of the Universe,
coarse graining and averaging are both problematic (see
Wiltshire 2007a, 2011, and references therein). The complex-
ity of Einstein’s equations prevents direct numerical mod-
elling of backreaction, which ideally would require a general
relativistic simulation of space-time seeded with small ini-
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tial fluctuations. Such an ideal simulation would contain a
hierarchy of coarse graining scales describing the space-time
of stars, galaxies, galaxy clusters, intra-cluster medium and
dark matter, etc., and their metric would be stitched to-
gether in a careful manner (see Wiltshire 2014, for a dis-
cussion of the hierarchy of coarse graining scales). As fluc-
tuations grow due to non-linear gravitational amplification,
space-time itself becomes complex, and even the concept of
averaging becomes non-trivial.

Despite the difficulties, Buchert (2000, 2001) and others
(Buchert & Räsänen 2012) realized that backreaction can be
understood in a statistical fashion through the spatial aver-
aging of Einstein’s equations on a hypersurface, leading to
the Buchert equations. Second-order perturbative solutions
to the equations are given by Kolb et al. (2005) and Räsänen
(2010), while Wiltshire (2007a,b, 2009) presents an analyti-
cal solution to a two-scale (voids and walls) inhomogeneous
universe.

We propose a non-perturbative, multi-scale statistical
approach to study strong backreaction based on the gen-
eral relativistic separate universe conjecture, which states
that a spherically symmetric region in an isotropic uni-
verse behaves like a mini-universe with its own energy
density Ω = 1 + δ (Weinberg 2008). The conjecture was
proven by Dai, Pajer & Schmidt (2015) for compensated
top hat over- and underdensities. In the quasi Newtonian
framework, the separate universe conjecture is widely used
in successful spherical collapse models (Bernardeau 1994;
Mohayaee et al. 2006; Neyrinck 2016). We build on this con-
jecture to estimate the expansion rate as the volume aver-
age of local expansion rates, avoiding the calculation of any
geometric quantities such as the average curvature of the
universe. Our algorithm neglects tidal forces, but the scales
over which averages are calculated are solidly grounded in
Newtonian physics, simplifying the interpretation of our re-
sults. We show that under our algorithm, the non-Gaussian
distribution of matter arising from the non-linearities of the
cosmological fluid equations causes the expansion rate to
decrease at a slower rate than normally calculated from the
global Friedmann equations, thereby mimicking the effect of
dark energy.

In our scheme the coarse graining scale is an ad-
justable, phenomenological parameter corresponding to the
best “particle size” to use when modelling the evolution of
the Universe. When the coarse graining scale approaches
the scale of homogeneity, our model, obviously, shows no ef-
fect: in this limit it is equivalent to the global Friedmann
equations. Approaching very small scales, the assumptions
of the model progressively break down due to the increasing
anisotropy around, and inhomogeneity inside, the spheri-
cally symmetric regions. Somewhere between the extremes,
there is an optimal scale that we expect to be around the
size of virialized structures detached from the Hubble flow,
therefore on the order of 109 − 1013M�. The coarse grain-
ing scale is a semi-nuisance parameter to be fit, analogous
to halo model parameters. While in this work we use a sin-
gle, redshift-independent, comoving coarse graining scale, in
principle, the optimal scale could depend on the state of the
Universe and its constituents and thus, on redshift.

〈
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Figure 1. Top: Standard cosmological N-body simulations evolve
the Friedmann equations using the average density. Since the to-

tal mass is constant the scale factor increment is independent of
density fluctuations. Bottom: We calculate the expansion rate of

local mini-universes and average the volume increment spatially

to get the global scale factor increment.

2 INHOMOGENEOUS MODEL BASED ON
THE SEPARATE UNIVERSE CONJECTURE

Cosmological N -body simulations integrate Newtonian dy-
namics with a changing GR metric that is calculated from
averaged quantities. There is a choice in how the averaging
is done:

Standard approach: Traditional cosmological N -body
simulations use the Friedmann equations with the average
density (calculated as the total mass of particles divided by
the volume) to determine the overall expansion rate at each
time step. Implicit in this approach is the calculation of the
average density, since the total mass of particles is constant,
and so is the average comoving density.

Average Expansion Rate Approximation (AvERA) ap-
proach: Using the separate universe conjecture and neglect-
ing anisotropies around spherically symmetric regions, we
calculate the local expansion rate on a grid from the Fried-
mann equations using the local density, and then perform
spatial averaging to calculate the overall expansion rate. The
algorithm exchanges the order of averaging and calculating
the expansion rate and, due to the non-linearity of the equa-
tions, the two operations do not commute, see Fig 1.

Our collisionless cosmological N -body simulation
code (Rácz, G. et al. 2017, 2016) applies the Delau-
nay Tessellation Field Estimation (DTFE) method
(Schaap & van de Weygaert 2000) to estimate the local
density ρD from the discrete particles. The output of DTFE
is the density field on a regular grid of small cubes with
equal volume D. The code can compute the average scale
factor increment of an inhomogeneous universe as described
above, but it can also reproduce the standard ΛCDM
simulation results obtained with Gadget2 (Springel 2005)
when executed with the same initial conditions.

We estimate the expansion rate from the local average
density

Ωm,D =
ρD
ρc,0

, (3)

using the matter-only Friedmann equations

HD =
ȧD
aD

= H0

√
Ωm,Da

−3
D + (1− Ωm,D)a−2

D . (4)

Note that Eqs. 3 and 4 are identical to the Newtonian spher-
ical collapse equations which provide a surprisingly accurate
description of the full dynamics (Neyrinck 2016), and form
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the basis of other successful approximations, such as halo
models and the Press–Schecter formalism.

The volumetric expansion of mini-universes is the cube
of the linear expansion, assuming statistical isotropy. Ignor-
ing the boundary conditions and the local environment of
touching Lagrangian regions, one can average the volume
increment of the independent domains to get the total vol-
ume increment of the simulation cube, i.e. the global in-
crement of a homogeneous, effective scale factor, c.f. Eq. 2.
This is equivalent to neglecting correlations between regions
and non-sphericity caused by tidal forces, not unlike in the
case of halo models. The statistical approach means that
we can avoid stitching together regions of space-time. We
use a global simulation time step size and, while the cor-
responding infinitesimal changes of local redshift may vary
from region to region, the expansion rate is averaged in every
simulation step, hence distances and velocities are rescaled
homogeneously using the effective scale factor. As a result,
similarly to standard N-body simulations, time is kept ho-
mogeneous and in one-to-one correspondence with redshift.

We ran simulations with up to 1.08·106 particles of mass
M = 1.19 ·1011M� in a volume of 147.623 Mpc3. The initial
redshift was set to z = 9 for both the standard ΛCDM and
the AvERA simulations. At this redshift, backreaction and
the effect of Λ are both expected to be negligible. Since we
focus on the expansion rate, Zel’dovich transients from the
late start are insignificant. Initial conditions were calculated
using LPTic (Crocce, Pueblas & Scoccimarro 2006) with a
fluctuation amplitude of σ8 = 0.8159 which is defined as-
suming the ΛCDM growth function. The initial expansion
rate was set to match the current value of H0 = 67.74 km/s

Mpc

(Planck Collaboration 2016) for the ΛCDM model, yielding

Hz=9.0 = 1191.9 km/s
Mpc

. Except for the value of Λ, AvERA
simulations were run with parameters derived from the lat-
est Planck CMB observations.

As a consistency test, the initial conditions exactly re-
produce the ΛCDM expansion history when inhomogeneities
are not accounted for and Λ is non-zero. Similarly, with Λ =
0 and homogeneous expansion, the initial conditions repro-
duce the expansion history of a flat, matter only (Ωm = 1,

ΩΛ = 0) FLRW model with H0 = 37.69 km/s
Mpc

. Fig. 2 sum-
marizes the main results of our paper, where the expansion
history a(t), the Hubble parameter H(t), the redshift z(t)
and the average density ρ(t) are plotted for the AvERA
model (blue), ΛCDM (red) and EdS (green) with the same
initial conditions at z = 9. The evolution of the parame-
ters from AvERA mimic ΛCDM remarkably well, while the
EdS model deviates more and more at later epochs. We em-
phasize that, despite the overall similarity, there are small
numerical differences between the former two models which
can be tested in future high precision observations.

As it was mentioned before, in AvERA simulations the
expansion history and the resulting present day Hubble pa-
rameter depend on the particle mass, which corresponds to
the coarse graining scale. To explore the effects of the coarse
graining scale, we executed simulations with different parti-
cle masses between 1.17 · 1011 − 3 · 1012M�. The resulting
z = 0 Hubble parameters, as a function of particle mass, are
summarised in Tab. 1. The sensitivity of H0 to the coarse
graining scale is relatively minor: a factor of 10 change in
the particle mass causes about a 10 per cent change in the
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Figure 2. The expansion history of the universe. Clockwise from

the upper left, we plot the scale factor, the Hubble parameter,
the matter density and the redshift as functions of the simulation

time t, i.e. the age of the universe. See the text for a discussion.

present time Hubble parameter, see Fig. 4. The detailed in-
vestigation of this effect will be presented in a future paper.

3 COMPARISON WITH OBSERVATIONS

Given the close similarity of the expansion history of the
AvERA model with that of ΛCDM, and the fact that linear
growth history is driven by the time evolution of the expan-
sion rate, the AvERA model provides an adequate frame-
work for the interpretation of many observations support-
ing the concordance model, despite the fact that the current
version of the simulation is not suitable yet to compute light
propagation across the curved space-time regions. Luckily,
luminosity distance at low redshift (but beyond the statis-
tical scale of homogeneity) is primarily determined by the
expansion history and is only slightly sensitive to curvature.
In what follows, we do not attempt to fit any data, we simply
plot our fiducial model with different coarse graining scales
against select key observations.

One of the first and strongest observational proofs of
accelerating cosmic expansion came from type Ia super-
nova distance modulus measurements (Riess et al. 1998;
Perlmutter et al. 1999; Scolnic et al. 2015). Fig. 3 shows
the distance moduli from the observations overplotted with
curves from the EdS, Planck ΛCDM, and our model.
We used the SuperCal compilation (Scolnic et al. 2015;
Scolnic & Kessler 2016) of supernova observations, with
magnitudes corrected to the fiducial color and luminosity,
and set the zero point of the absolute magnitude scale to
match the Cepheid-distance-based absolute magnitudes as
determined by Riess et al. (Riess et al. 2016). Both the
Planck ΛCDM and our AvERA model follow the observed
deviation from EdS. If we choose the coarse graining scale
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Figure 3. The relative distance modulus ∆µ = DM −DMEdS

as a function of redshift. The green line corresponds to the refer-

ence Ωm = 1 flat Universe, while the red curve shows the stan-

dard ΛCDM model with the concordance cosmological parame-
ter set. The observed values from the SuperCal supernova com-

pilation (Scolnic et al. 2015; Scolnic & Kessler 2016), calibrated

using Cepheid distances by Riess et al. (Riess et al. 2016), are
shown with gray errorbars, and their binned values with darker

dots. The result of our second Ωm = 1 AvERA simulation with

a particle mass of 2.03 · 1011M� (see also Fig. 4 and Tab. 1)
is shown in blue. It differs from the homogeneous EdS solution,

and fits better the supernova data than the concordance ΛCDM

model.

such that the local Hubble constant is reproduced (see
Fig. 4), the AvERA model is favoured: χ2

AV = 1347.8 vs.
χ2

ΛCDM = 2485.7, see Fig 3.
The tension between the locally measured (Riess et al.

2016) value of the Hubble constant H0 = 73.24± 1.74 km/s
Mpc

and the estimate from Planck data (Planck Collaboration

2016) H0 = 67.27±0.66 km/s
Mpc

is worthy of special attention,
given that the significance of the difference is over 3σ within
the ΛCDM paradigm. According to Fig. 4 which displays
the high and low z constraints, our model can naturally
incorporate both. In particular, our two highest resolution
simulations that are consistent with the Planck constraints
yield the values of 71.38 km/s

Mpc
and 73.14 km/s

Mpc
for the Hubble

constant, respectively. At the same time, since we calculate
the Hubble parameter as a spatial average over the universe,
we cannot account for the effect of inhomogeneities on H0 on
scales smaller than the statistical homogeneity scale which
could explain the tension between local and CMB observa-
tions.

4 CONCLUSIONS AND DISCUSSION

We have presented a modified N -body simulation where
we estimated the global expansion rate by averaging lo-
cal expansion rates of mini-universes based on the sepa-
rate universe approximation. While we do not attempt to
connect space-time regions or compute light propagation
across curved regions, our approach is equivalent to a non-
perturbative statistical backreaction calculation. Our ap-
proximation neglects tidal forces due to anisotropies, and
has an ambiguity associated with the optimal coarse grain-
ing scale. For a large enough scale, the effect is negligible,
while on small scales anisotropies break the underlying as-
sumptions of the approximation. Since virialised objects de-
tach from the expansion, we expect that the optimal coarse
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Figure 4. Left: The relation between the Hubble parameter
values for the local (vertical axis) and the distant (horizontal

axis) Universe. The horizontal stripe corresponds to the 1σ range
allowed by the most recent local calibration (Riess et al. 2016),

while the vertical one is the 1σ range calculated for z = 9 from

the latest CMB measurements (Planck Collaboration 2016). N-
body simulations started at different H(z = 9) values for the

ΛCDM model (red line) cannot satisfy both criteria (intersection

of stripes), while at a reasonable coarse graining scale our sim-
ulation (blue) fits both observations. Right: The effect of coarse

graining on H0 at a given initial Hubble parameter H(z = 9).

N M
[
1011M�

]
H0

[
km/s
Mpc

]
135,000 9.40 65.4

320,000 3.96 68.9
625,000 2.03 71.4

1,080,000 1.17 73.1

Table 1. Summary of simulation input parameters and the re-

sulting values of H0. In all cases the linear size of the simulation

box was L = 147.62 Mpc and the early epoch value of the Hub-

ble parameter was set to Hz=9 = 1191.9
km/s
Mpc

, complying with
Planck ΛCDM best-fit parameters.

graining scale, treated as a nuisance parameter, is related to
the size of the typical virialised regions.

Our modified Ωm = 1 simulation mimics the ΛCDM ex-
pansion history remarkably well. Since growth history is also
driven by the expansion history, we expect that our simula-
tions are consistent with luminosity distance and Hubble pa-
rameter observations constraining dark energy. Present-day
supernova observations are well fit by our model, moreover,
our model naturally resolves the tension between local and
CMB Hubble constant measurements. Detailed fits to obser-
vations, and forecasting for future surveys such as Euclid,
WFIRST, HSC, etc. is left for future work, but it is clear
already from Fig. 2 that if our model is sufficiently different
from the standard w = −1 vacuum energy model, upcom-
ing surveys will be able to confirm or rule it out. We also
note that some of our results are numerically very similar
to the analytically derived timescape scenario presented in
Wiltshire (2007b, 2009), in addition to sharing the separate
universe approximation. Further investigation is yet to be
done to compare the two approaches in detail.

To investigate the validity of the AvERA simulation,
we performed follow-up analytic calculations. If inhomo-
geneities mainly affect structure growth via the expansion
history of the universe, the (near) lognormal approximation
found in ΛCDM simulations should approximate well the
density distribution of the mini-universes. For instance, to
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Figure 5. Left: Evolution of the distribution of 1 + δ during

the AvERA N-body simulation. Right: The normalized line of

sight comoving distance D∗c =
∫ z
0 H0/(H(z′))dz′ at each time

step has been calculated from a matter-only FLRW model with

Ωm corresponding to the actual peak 1 + δ (blue). The curve

deviates from the Ωm = 1 model (green) and closely follows the
ΛCDM model (red).

calculate the longitudinal comoving scale, we calculate the
average

1

Heff(z)
=

〈
1

H(z)

〉
=

∫ ∞
−1

P (1 + δ)
1

HD(1 + δ, z)
dδ, (5)

where P (1 + δ) is a lognormal distribution, and HD(1 +
δ, z) is calculated from Equation 4 with Ω = 1 +
δ. The variance of the lognormal distribution is esti-
mated from σ2

A = 0.73 log(1 + σ2
lin/0.73) (Repp & Szapudi

2017), and 〈log(1 + δ)〉 = −0.67 log(1 + σ2
lin/(2 × 0.67))

(Repp & Szapudi 2017), where σlin is the linear variance of
dark matter fluctuations on the coarse graining scale. The
lognormal PDF is a good approximation and the above fits
are accurate for concordance cosmologies. The result of such
a calculation is shown on the right panel of Figure 5. Details
will be presented elsewhere (Szapudi et.al. 2017 in prep.).

The theoretical calculation is insensitive to the details
of the PDF, i.e. departures from lognormality. We can cal-
culate the effective expansion rate fairly accurately by re-
placing ΩM with its most likely value, i.e. 1 + δ at the peak
of the density PDF on the left panel of Figure 5. This corre-
sponds to approximating the lognormal PDF with a Dirac-δ
function centred on the peak of the distribution. Thus the
physical meaning of these calculations is simple: according to
our approximation, it is not the average but the typical en-
ergy density that governs the expansion rate of the Universe.
At high redshifts, where the distribution is fairly symmet-
ric, the typical value of δ (mode of the PDF) is close to the
average and the Universe evolves without backreaction. At
late times skewness increases, the volume of the Universe is
dominated by voids, and the typical value of δ is negative,
thus effectively ΩM < 1. High density regions, where metric
perturbations are perhaps the largest, are inconsequential
to this effect: what matters is the non-Gaussianity of the
density distribution, in particular, the large volume fraction
of low density regions, as advertised earlier.

The statistical approach we use is spatial (volume) av-
eraging. While averaging is ambiguous in curved space-times
(Wiltshire 2014), note that all astrophysical quantities, most
notably the power spectrum that is used to calculate all
cosmological parameters, are estimated through analogous
statistical procedures. We neglect local anisotropies, and we
assume that those effects average out over time. Neverthe-

less, one could generalize our code to include tidal forces
using elliptical collapse equations for the mini-universes we
consider. This refinement of our calculations would quantify
to first order the effect from tidal forces, but is left for future
work. Our simple model with a reasonable coarse graining
scale yields results that are consistent with the observations,
and the model also has a simple physical interpretation. Fur-
ther studies are needed both on the theoretical front and on
fitting cosmological parameters, nevertheless, our approach
is not only a viable alternative to dark energy models, but
appears to be flexible enough to resolve some tensions in a
natural way.
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