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We propose that the state of the universe does not spontaneously violate CPT . Instead, the
universe after the big bang is the CPT image of the universe before it, both classically and quantum
mechanically. The pre- and post-bang epochs comprise a universe/anti-universe pair, emerging from
nothing directly into a hot, radiation-dominated era. CPT symmetry selects a unique QFT vacuum
state on such a spacetime, providing a new interpretation of the cosmological baryon asymmetry, as
well as a remarkably economical explanation for the cosmological dark matter. Requiring only the
standard three-generation model of particle physics (with right-handed neutrinos), a Z2 symmetry
suffices to render one of the right-handed neutrinos stable. We calculate its abundance from first
principles: matching the observed dark matter density requires its mass to be 4.8×108 GeV. Several
other testable predictions follow: (i) the three light neutrinos are Majorana and allow neutrinoless
double β decay; (ii) the lightest neutrino is massless; and (iii) there are no primordial long-wavelength
gravitational waves. We mention connections to the strong CP problem and the arrow of time.

Introduction. Observations reveal that, seconds af-
ter the Big Bang, the universe was described by a
spatially-flat radiation-dominated FRW metric (plus tiny
gaussian, adiabatic, purely-growing-mode scalar pertur-
bations described by a nearly-scale-invariant power spec-
trum; and, so far, no primordial vector or tensor per-
turbations) [1]. This is a clue about the origin of the
universe, but what is it trying to tell us? The conven-
tional view is that, in order to explain these simple initial
conditions, one should imagine that the radiation domi-
nated era we see was preceded by an earlier hypothetical
epoch of accelerated expansion called inflation.

In this Letter (and a longer companion paper [2]) we
take a different view. Ignoring perturbations for the mo-
ment, the metric we see in our past is strikingly sim-
ple and analytic: gµν = a2(τ)ηµν where ηµν is the flat
Minkowski metric, and the scale factor a(τ) is just pro-
portional to the conformal time τ . If we take this metric
seriously, and follow a(τ) ∝ τ across the bang, we find
that the analytically extended FRW background with
−∞ < τ < ∞ suddenly exhibits a new isometry: time
reversal symmetry τ → −τ . It thus becomes possible
to adopt the natural hypothesis that, contrary to naive
appearances, the state of our universe does not sponta-
neously violate CPT .

In this Letter we explore the hypothesis that CPT is
unbroken, explain how it provides novel explanations for
a number of the observed features of our Universe, and
point out some predictions that will be tested in the com-
ing years. In particular, we find it yields a remarkably
economical explanation of the cosmological dark mat-
ter: if the Universe is in its preferred CPT -symmetric
vacuum, late-time observers see heavy sterile neutrinos
emerging from the bang, for the same reason that distant
observers see Hawking radiation emerging from a black
hole. In our opinion, this provides the most elegant and
compelling dark matter model currently available.

Spacetime (Background and Perturbations). In
this Letter we work at the level of QFT on curved space.
Before turning to the state of the QFT, in this section
we first consider what (C)PT says about the spacetime
itself at a purely classical level [3]. Thus, we treat the
metric and the radiation fluid using general relativity:
The line element may be written in standard ADM

form: ds2 = −N2dτ2 + hij(dx
i + N idτ)(dxj + N jdτ).

To describe our universe (a flat FRW spacetime plus
small scalar, vector and tensor perturbations), we use
“comoving gauge” so that the xi = const threads are
normal to the τ = constant slices (N i = 0), and the
threads follow the stress-energy flow so that (for scalar
perturbations) the momentum density T i

0 also vanishes.
Then we can write the lapse as N = a[1 + φ], and hij

as hij = a2[(1 + 2R)δij + 2γ
(0)
ij + 2γ

(1)
ij + 2γ

(2)
ij ], where

a = a(τ) is the background scale factor, R is the “co-
moving curvature perturbation,” φ is another scalar per-
turbation related to R by the Einstein equation, and we
have split the traceless perturbation γij into its scalar,

vector and tensor parts: γ
(0)
ij , γ

(1)
ij , γ

(2)
ij [4, 5].

Next, to treat spinors and CPT , just as we switch from
the wave operator � to its “square root” (the Dirac op-
erator D/ ), we switch from the line element ds2 to its
“square root” (the tetrad ea). Thus, we write ds2 =
ηabe

aeb, where ηab = diag{−1, 1, 1, 1} is the Minkowski
metric, and choose a local Lorentz gauge where the tetrad

one forms ea = eaµdx
µ are e0 = −N dτ and ei = h

1/2
ij dxj .

The spacetime is (C)PT symmetric in the sense that the
tetrad geometry according to an observer who moves for-
ward along the xi = const thread is identical to the
tetrad geometry according to an observer who moves
backward along the thread and reverses the spatial one
forms ei → −ei. Equivalently, the tetrad at time τ after
the bang is the reverse of the tetrad at the corresponding
moment before the bang along the same thread:

eaµ(τ,x) = −eaµ(−τ,x). (1)
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Let us unpack the implications of this simple constraint:

i) Background geometry: Eq. (1) implies that the scale
factor is odd, a(−τ) = −a(τ), with a ∝ τ near the bang
(as in the radiation era).

If this picture is correct, so that the bang is a topolog-
ically enforced singularity, cosmological models in which
a(τ) undergoes a nonsingular bounce at a minimum scale
factor amin > 0 are misguided.

ii) Scalar perturbations: In fourier space, neglecting
anisotropic stress,R satisfiesR′′+2(z′/z)R′+c2sk

2R = 0,
where c2s = δp/δρ is the sound speed, k is the comoving
wave number, z2 ≡ a2ǫ and ǫ = (a′/a)′/(a′/a)2−1. Near
the bang, where a ∝ τ and c2s = 1/3, the general solu-
tion is R(k, τ) = τ−1[A(k) sin(cskτ) + B(k) cos(cskτ)].
The condition (1) then sets B(k) = 0, eliminating the
mode that is singular at the bang, and selecting the well-
behaved mode that approaches a constant as τ → 0.

This is precisely the boundary condition responsible
for producing the famous oscillations seen in the CMB
power spectrum, with the correct phases. This observed

phenomenon, usually attributed to inflation, is alterna-

tively explained by a symmetry argument.

Also note that density pertubations grow as we get
further from the bang in either direction, and hence the
thermodynamic arrow of time points away from the bang
in both directions (to the future and past). The possibil-
ity that the thermodynamic arrow of time might reverse
is an old one (going back to the debates between Boltz-
mann and his contemporaries [6]), and has been invoked
more recently in several interesting contexts [7–12].

iii) Vector perturbations: Neglecting anisotropic stress,
the gauge-invariant vector metric perturbation σg satis-
fies σ′

g + 2(a′/a)σg = 0 [4], so σg(k, τ) = C(k)/τ2 near

the bang. In our chosen gauge, σg ∝ γ
(1)
ij

′, so Eq. (1) im-
plies that σg (and hence the primordial vorticity, which
is tied to σg by the 0i Einstein equation) vanishes, again
in agreement with observations.

iv) Tensor perturbations: neglecting anisotropic stress,

γ
(2)
ij satisfies γ

(2)
ij

′′ + 2(a′/a)γ
(2)
ij

′ + k2γ
(2)
ij = 0 so that

γ
(2)
ij (k, τ) = τ−1[Aij(k) sin(kτ) + Bij(k) cos(kτ)]. Now

(1) sets Bij(k) = 0, eliminating the mode that is singular
at the bang and selecting the mode that is well behaved.

Note that, for each type of perturbation – scalar, vec-
tor, and tensor – the condition (1) “protects” the geome-
try near the bang by precisely eliminating the dangerous
singular modes that would cause the breakdown of linear
perturbation theory and destroy the smooth (Weyl) char-
acter of the singularity. In this way of looking at it, the
elimination of the singular modes is not a consequence of
a boundary condition at τ = 0, but is instead enforced
by the symmetry between past and future.

v) UŪ pair: Eq. (1) implies eaµ(0,x) = 0. If we
combine this with Stueckelberg’s observation that an
anti-particle is a particle whose worldline proper time
runs counter to the time in the embedding spacetime

[13, 14], it becomes natural to reinterpret the contract-
ing half of our universe as an anti-universe (whose in-
trinsic proper time runs counter to the natural time-like
coordinate in the embedding superspace, i.e., the scale
factor), so that our CPT -invariant universe is reinter-
preted as a universe/anti-universe pair (UŪ), emerging
from nothing! This interpretation continues to be useful
when spinors and anti-particles enter the story: e.g., the
matter/anti-matter asymmetry on one side of the bang is
the opposite of the asymmetry on the other side [2]. To
convert this suggestive, semi-classical picture into a fully
quantum one (as Feynman did with Stueckelberg’s idea)
is an important task, beyond the scope of this Letter.

CPT Invariant Vacuum. Now we turn from the
spacetime to the state of the QFT living on it.

In Minkowski spacetime, there is a unique vacuum that
respects the Minkowski isometries (more precisely, space-
time translations, Lorentz transformations, and CPT ).
But in a generic curved spacetime, the choice of vacuum
is ambiguous: different observers will naturally define dif-
ferent, inequivalent vacua, so that the zero particle state
according to one observer will contain particles according
to a different observer [15]. In particular, in an ordinary
FRW spacetime, the isometries (spatial translations, spa-
tial rotations, and parity) are not enough to determine
a preferred vacuum, and comoving observers at different
epochs will disagree. But, as we explain in this section,
if the FRW background also has an isometry under time
reversal τ → −τ , then there is a preferred vacuum that
respects the full isometry group (including CPT ).

Consider a spinor Ψ with mass m > 0 on a flat FRW
background ds2 = a2(τ)[−dτ2 + dx2]. Its Lagrangian is

L =
√−g[iΨ̄eµaγa∇µΨ−mΨ̄Ψ] (2a)

= iψ̄∂/ψ − µψ̄ψ. (2b)

In the first line, we have the usual curved space Dirac
operator [15]; in comoving/conformal coordinates, the
tetrad is eµa = (1/a)δµa , and γ

a are the 4×4 Dirac gamma
matrices. In the second line, we introduce the Weyl in-
variant spinor field ψ(τ,x) and its effective mass µ(τ):

ψ ≡ a3/2Ψ, µ ≡ am, (3)

with ∂/ ≡ γµ∂µ the flat-space Dirac operator, and partial
derivatives ∂µ with respect to xµ = {τ,x}. The resulting
equation of motion is

(i∂/ − µ)ψ = 0. (4)

Note that, since a(τ) is an odd function of τ , so is µ(τ).

To quantize, we expand ψ(x) in a basis of solutions of
Eq. (4), ψ(k, h, x) and ψc(k, h, x):

∑

h

∫

d3k

(2π)3/2
[a(k, h)ψ(k, h, x)+b†(k, h)ψc(k, h, x)]. (5)
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Here ψ(k, h, x) ∝ eikx is the solution with momentum
k, helicity h, and “positive frequency”; ψc(k, h, x) ≡
−iγ2ψ∗(k, h, x) is the charge-conjugate (“negative fre-
quency”) solution; and a(k, h) and b(k, h) are parti-
cle and anti-particle annihilation operators, which sat-
isfy the usual fermionic anti-commutation relations:
{a(k, h), a†(k′, h′)}={b(k, h), b†(k′, h′)}=δ(k− k′)δh,h′ ,
all other anti-commutators vanishing.
But in a general curved spacetime, there is no canoni-

cal choice for which solutions have “positive frequency,”
and observers in different regions will make inequiva-
lent choices: e.g. in FRW the positive frequency so-
lutions ψ− and ψ+ chosen, respectively, by observers
in the far past (τ → −∞) or far future (τ → +∞)
exhibit positive frequency behavior in these two lim-
its, respectively: ψ±(k, h, x) ∼ exp[−i

∫ τ
ω(k, τ ′)dτ ′] as

τ → ±∞, where k = |k| is the comoving wave number,

and ω =
√

k2 + µ2 > 0 is the comoving frequency. The
“−” solutions may then be expressed in the “+” basis:

ψ−(k, h, x) = α(k)ψ+(k, h, x) + β(k)ψc
+(−k, h, x). (6)

We may adjust the phases of ψ+ and ψ− so that α(k) =
cos λ(k), β(k) = i sin λ(k), and λ(−k) = −λ(k) is real.
The “−” observer’s annihilation operators (a−, b−) are
then related to the “+” observer’s annihilation operators
(a+, b+) by the Bogoliubov transformation

[

a+(+k, h)

b†+(−k, h)

]

=

[

cosλ(k) isinλ(k)
isinλ(k) cosλ(k)

][

a−(+k, h)

b†−(−k, h)

]

. (7)

The observer in the far past (resp. far future) defines
the vacuum to be the state |0−〉 (resp. |0+〉) that is an-
nihilated by all the operators a− and b− (resp. a+ and
b+): a±(k, h)|0±〉 = b±(k, h)|0±〉 = 0. We are in the
Heisenberg picture, so states do not evolve. Note that,
unless sin λ(k) is identically zero, |0−〉 and |0+〉 are in-
equivalent: |0−〉 has no particles according to its own

particle number operator N− = a†−a−, but a non-zero

number according to N+ = a†+a+. Moreover, since a and
b transform as [CPT ]a±(k, h)[CPT ]

−1 = −b∓(k,−h)
and [CPT ]b±(k, h)[CPT ]

−1 = −a∓(k,−h), the inequiv-
alent vacua |0+〉 and |0−〉 are exchanged by CPT , |0±〉 =
CPT |0∓〉, so neither vacuum is CPT invariant.
However, if we define new operators a0 and b0:




a0(+k, h)

b†0(−k, h)



=





cosλ(k)2 ∓isinλ(k)
2

∓isinλ(k)
2 cosλ(k)2









a±(+k, h)

b†±(−k, h)



,

(8)
they transform as [CPT ]a0(k, h)[CPT ]

−1 = −b0(k,−h)
and [CPT ]b0(k, h)[CPT ]

−1 = −a0(k,−h), so the cor-
responding vacuum defined by a0|00〉 = b0|00〉 = 0 is
CPT invariant: CPT |00〉 = |00〉. In fact, there is
a continuous family of CPT -invariant vacua, obtained
by defining (aη(+k, h), b†η(−k, h)) to be a real SO(2)

rotation of (a0(+k, h), b†0(−k, h)) through an angle η

satisfying η(k) = −η(−k). The vacuum defined by
aη|0η〉 = bη|0η〉 = 0 is still invariant under the full isome-
try group of the FRW background including CPT . How-
ever, among this family of “η vacua” the vacuum |00〉
is preferred since it minimizes the Hamiltonian in the
asymptotic “+/−” regions (or the particle number ac-
cording to an early or late time observer) [2].
Now we assume the universe is in the preferred CPT -

invariant vacuum state and consider the consequences:
Neutrino Dark Matter. Consider the standard

model of particle physics (including a right-handed neu-
trino in each generation) coupled to Einstein gravity.
There is only one possible dark matter candidate in this
model – one particle that has not yet been detected and
can have a lifetime longer than the age of the universe
– namely, one of the three right-handed neutrinos νR,1.
This particle appears in two places in the Lagrangian:
the Majorana mass term ν̄cR,iMijνR,j (where Mij is the
3 × 3 Majorana mass matrix) and the Yukawa term
l̄L,iYijνR,jhc (where lL,j is the left-handed lepton dou-
blet, hc = iσ2h∗ is the charge conjugate of the Higgs
doublet h, and Yij is a 3 × 3 Yukawa coupling matrix).
The assertion that νR,1 is exactly stable corresponds to
the statement that the standard model couplings respect
the Z2 symmetry νR,1 → −νR,1. This symmetry sets
to zero the first column of the matrix Yij , whose three
entries Yi1 would otherwise lead the νR,1 to decay.
Thus, in the same limit that νR,1 becomes stable, it

also becomes decoupled from all of the other particles in
the standard model, and so might seem to become a poor
dark matter candidate since it is not produced by ther-
mal processes in the early universe. But, in our picture,
these particles have a predictable non-zero cosmic abun-
dance, according to late-time comoving observers like us,
just because the universe is in the CPT -invariant vacuum
|00〉, which differs from our late-time vacuum |0+〉. If the
stable neutrino’s mass has a certain value, it automati-
cally has the abundance, coldness and darkness needed
to match observations. This yields a strikingly simple al-
ternative explanation for the dark matter, different from
previous neutrino dark-matter models based on thermal
or resonant production mechanisms [16–20].
To see this explicitly, note that near the bang, i.e.,

during the radiation era, above the electroweak phase
transition, when a(τ) ∝ τ , the dark matter neutrino has
equation of motion:

(i∂/ − µ)N1 = 0 (µ = γτ). (9)

Here N1 ≡ a3/2(νR,1 + νcR,1) and γ is a constant given
by γ = (mdm/mpl)

√
ρ1, where mdm is the mass of the

right-handed neutrino νR,1, mpl = (8πG/3)−1/2 ≈ 4 ×
1018 GeV is the Planck scale, and ρ1 = a4ρ (the radiation
density times a4) is a constant.
To understand the behavior of Eq. (9), consider the

comoving frequency ω(τ) =
√

k2 + µ2. If ω were inde-
pendent of τ , the solutions would be N1 ∝ ei(kx−ωτ),
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just as in Minkowski space. But since ω does depend
on τ , we turn to the WKB method. Consider the di-
mensionless WKB parameter |ω′(τ)/ω2|: for fixed co-
moving wave number k, this vanishes near the bang (as
|τ | → 0) and far from the bang (as |τ | → ∞), but
reaches a maximum value ∼ γ/k2 at an intermediate
conformal time |τmax| ∼ k/γ. Thus, for wave numbers
k ≫ γ1/2, the WKB parameter is always ≪ 1, WKB re-
mains good and the Bogoliubov transformation between
(a−, b−) and (a+, b+) is trivial: sin λ(k) ≈ 0. On the
other hand, for wave numbers k ≪ γ1/2, WKB is badly
violated, and the Bogoliubov transformation is maximal:
|sin λ(k)| ≈ 1. To see this, consider ω =

√

µ2 + k2: in
the limit k ≪ γ1/2, µ2 dominates and k2 is negligible
unless the mode is far outside the Hubble horizon; so we
can neglect the spatial gradient terms in (9) and solve

(iγ0∂τ − µ)ψ = 0 to find ψ = ψ̂ exp[ikx + i
∫ τ

µ(τ ′)dτ ′]

where ψ̂ = (ξ,−ξ), with ξ a constant 2-spinor. Since
µ(τ) is odd, the solution switches from purely positive
frequency in the far past to purely negative frequency in
the far future (corresponding to |sinλ(k)| = 1).

Thus, for late time observers like us, the num-
ber density ndm of dark matter particles is ndm =
(2πa)−3

∑

h

∫

d3k〈00|N+|00〉 where the matrix element
is |sin (λ(k)/2)|2, so that ndm ∼ (2πa)−3γ3/2 ∼
(2π)−3(mdm/mpl)

3/2ρ3/4, where ρ3/4 ∼ s, the radiation
entropy density. Since the ratio ndm/s is conserved dur-
ing the subsequent expansion, it must match the present
day value ndm,0/s0, where s0 ∼ 2.3 × 10−38GeV3 [21],
ndm,0 = ρdm,0/mdm is the present dark matter number
density, and ρdm,0 ∼ 9.7 × 10−48 GeV4 is the present
dark matter energy density [1]. Thus, we estimate

mdm ∼ [(ρdm,0/s0)(2π)
3m

3/2
pl ]2/5 ≈ few × 108 GeV. A

more precise calculation [2] yields mdm = 4.8× 108 GeV.

We emphasize that the definition of |00〉, and the re-
sulting estimate of ndm, is controlled by CPT symmetry,
not by the detailed physics of the bang itself. In particu-
lar, we have seen that the Bogoliubov transformation is
insensitive to the behavior of a (or µ) near τ = 0, where
the WKB parameter vanishes, and is instead dominated
by the WKB bump experienced by modes of wave num-
ber k ∼ γ1/2 at a proper time t ∼ m−1

dm before or after
the bang (when the temperature is already orders of mag-
nitude below the Planck scale, and the usual radiation-
dominated Friedmann equation should be reliable).

Other Predictions. Several other predictions follow
[2]: (i) The three light neutrino mass eigenstates are Ma-
jorana particles (which will be tested by future neutri-
noless double β-decay searches [22]), and one of them
is exactly massless (which will be tested by future cos-
mological constraints on the sum of the light neutrino
masses [23]). (ii) We have focused on the stable right-
handed neutrino, but the other two (unstable) right-
handed neutrinos are thermally coupled and can explain
the observed matter/anti-matter asymmetry by thermal

leptogenesis [24, 25]. (iii) Since gravitational waves are
massless, the corresponding “+” and “−” vacua agree.
Thus, no long wavelength gravitational waves are pro-
duced by our mechanism.
Discussion. Let us end with a few remarks:
i) Here we assumed a flat, radiation dominated FRW

background. In a forthcoming paper, we explain how this
background arises [26].
ii) In this Letter, we have described the background

spacetime geometry and radiation fluid purely classically,
according to general relativity. A fuller treatment of the
singularity to include the trace anomaly [15] and quan-
tum back-reaction requires semiclassical methods, involv-
ing complex classical solutions along the lines of [27–29].
iii) A fascinating open question is whether current ob-

servations allow the standard model or, more properly, its
minimal extension incorporating neutrino masses, to re-
main valid all the way up to the Planck scale, or whether
new physics is required below this scale. With the mea-
sured central values of the Higgs and top quark masses,
the Higgs quartic self-coupling λ runs to negative values
at an energy scale below the Planck mass [30, 31]; how-
ever a recent analysis suggests that a strictly positive λ
all the way is only disfavored at the 1.5 or 2 σ level [32].
Even if the Higgs effective potential runs negative at large
vev, finite temperature corrections are sufficient to stabi-
lize the Higgs field at zero vev in the very early universe.
There would only be an instability (to a negative-Higgs-
potential bulk phase) at late cosmological times, far to
our future. We find it intriguing that the most economi-
cal possibility, of no new physics, may be viable [33], and
might even explain the dark matter.
iv) We have seen that stability of the dark matter

neutrino νR,1 implies that the Lagrangian has a symme-
try under νR,1 → −νR,1. This symmetry suffers from
no anomalies – not even gravitational anomalies [34].
It is well known that in the standard model, the lep-
ton representations {lL, νR, eR} echo the quark represen-
tations {qL, uR, dR}. (This observation underlies Pati-
Salam grand unification [35], in which the leptons are a
fourth color.) The parallel symmetry in the quark sector,
uR,1 → −uR,1, is interesting for other reasons. Naively,
it forces the bare mass of the up quark to zero which,
in turn, solves the strong CP problem [36]. Unlike the
symmetry we are using, this Z2 symmetry is anomalous
due to the strong interactions; however, if it holds at any
energy and, in particular, at a very high energy scale, this
may be sufficient to solve the strong CP problem [37]. A
deeper understanding of these symmetries will likely re-
quire new insights into the origin of the three generations
in the standard model.
Note added. Shortly after our Letter appeared on

the arXiv, a follow-up paper [38] pointed out that the
ANITA experiment may have already seen evidence for
our dark matter candidate.
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en méchanique ondulatoire,” Helv. Phys. Acta 14, 322
(1941).

[14] E. C. G. Stueckelberg, “Remarque à propos de la création
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