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We formulate an axiomatic scheme. designed to provide a framework for a general. 
rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal’s 
extension of Schwarzschild space-time, as well as Minkowski space-time. The scheme is an 
adaptation of Wightman’s to this class of manifolds. We infer from it that, given an arbitrary 
field (in general. interacting) on a manifold X, the restriction of the field to a certain open 
submanifold X”‘, whose boundaries are event horizons. satisfies the Kubo-Martin-Schwinger 
(KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof 
of a generalised Hawking-Unruh effect. Further, in cases where the tieid enjoys a certain PCT 
symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to 
these results is an analogue, that we prove, of the Bisognano-Wichmann theorem IJ. Math. 
Phys. 17 (1976), Theorem 1 ). We also construct an alternative scheme by replacing a 
regularity condition at an event horizon by the assumption that the field in X1” is in a 
ground. rather than a thermal, state. We show that, in this case, the observables in X’ I’ are 
uncorrelated to those in its causal complement, X’-‘, and thus that the event horizons act as 
physical barriers. Finally, we argue that the choice between the two schemes must be dictated 
by the prevailing conditions governing the state of the field. 

1. INTRODUCTION 

The formulation of quantum theory in an algebraic form, that is applicable to 
systems with finite or infinite numbers of degrees of freedom, has provided the 
framework for rigorous versions of both field theory and statistical mechanics (cf. 
Refs. [2-7 I). Moreover, a mathematical connection between quantum field theory 
and classical statistical mechanics has been established, whereby the problem of 
constructing quantum fields in Minkowski space is essentially reduced to a statistical 
mechanical one [ 8, 91. 

A quite different interconnection between quantum theory, statistical mechanics 
and general relativity has been suggested on the basis of Hawking’s idea that the 
gravitational field due to a Black Hole can thermalise ambient quantum fields 
1 10-141. This idea, though not yet rigorously established. ’ is particularly interesting 

’ The principal limitations in rigour and generality of Refs. 1 l&14 1, for example, are that (a) they are 
based on formulations of quantum fields. with intinite numbers of degrees of freedom. within the Fock- 
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from the statistical mechanical standpoint, since it implies that a quantum field may 
be thermalised by secular forces, e.g., certain gravitational ones, whereas the 
traditional view is that thermalisation arises essentially from the action of stochastic 
forces. 

The object of the present article is to construct a framework for a rigorous general 
theory of quantum fields on a class of manifolds that includes Kruskal’s extension of 
Schwarzschild space-time, as well as Minkowski space-time: a preliminary sketch of 
this framework was given in Ref. [ 151. We formulate it as a system of axioms, that 
are essentially adaptations of those proposed by Wightman [5,6] for fields in flat 
space-time, and are thus designed to represent the minimal conditions for the 
existence of relativistic quantum fields on the manifolds concerned, together with 
certain regularity assumptions. From these axioms, we infer that, given an arbitrary, 
in general interacting, quantum field on a manifold X of the specified class, the 
restriction of the field to a certain open submanifold, X(+), whose boundaries are 
event horizons, satisfies the Kubo-Martin-Schwinger (KMS) thermal equilibrium 
conditions [ 16-181 (formally, (A(r)B) = (BA(r + @I)), where A, B are arbitrary 
observables, and A(r) is the time-translate of A). This amounts to a rigorous, model- 
independent generalisation of the Hawking-Unruh thermalisation effect [ 10, 111. 
Furthermore, we show that, if the field on X enjoys a global PCT symmetry, then the 
PCT operator is simply the conjugation2 which, in a standard formulation [ 18, 191, 
governs the KMS conditions in X (‘) The key to these results is an analogue, that we . 
prove, of the Bisognano-Wichmann Theorem -[ 1 b, Theorem 11. Clearly, the results 
signify that the KMS conditions play a central role in determining the global 
properties of the field on X. In addition to the scheme just discussed, we also 
formulate an alternative one, in which a certain regularity condition at an event 
horizon is replaced by the assumption that the field in X(+) is in a ground state. This 
latter scheme is shown to imply that the observables in X’+) are uncorrelated to those 
in the causally complementary region, Xc-), which signifies that the event horizons 
act, in a certain sense, as physical barriers. We argue that a choice between the two 
schemes must depend on the prevailing circumstances governing the state of the field. 

We emphasise here that all our results are obtained on an axiomatic, rather than a 
constructive, basis. What we prove is that these results are consequences of axioms 
that represent general demands of quantum theory and relativity, as applied to fields 
on a specified class of manifolds. These axioms should therefore be applicable to 
quantum fields on a Black Hole background, for example. On the other hand, we do 
not address ourselves in this article to the problem of constructing field theoretic 
models that satisfy the axioms. 

Let us now discuss both the geometry and the field quantisation in more specific 

Hilbert representation, that is generally applicable only to finite systems (cf. [3, Chap. 11); and (b) they 
are restricted to free massless fields [l&13] and perturbative treatments [ 141, of interacting ones [ 141, 
even though the validity of such treatments is known to be extremely dubious [5, p. 1661. 

*A conjugation is an antilinear transformation, J, of a Hilbert space R, such that J2 = I and 

c!x Jd = (& l-1. 
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terms. The space-time manifolds we consider are of the form X = R* X Y (pointwise 
x = (t, w; y)), with metric given by the formula 

ds* =A@* - w2, y)(dt* - dw*) - B(t2 - w*, y) da2(y), (1.1) 

where A, B are positive-valued, smooth functions on R x Y and du2(y) is a positive 
metric on Y. We define XC*) to be the open submanifolds on X given by w > 1 t ( and 
w < --(tl, respectively. Thus X’*’ are isometric with R, X R X Y (pointwise (<, t; y)). 
with 

w=<coshs, t = r sinh 5, (1.2) 

and 

ds2 =A(-t2, y)(t’ dr* - dy*) - B(-t’, y) do*(y). (1.3) 

One sees readily that our formulation of X, X’*’ covers the case where X’*’ are the 
exterior and interior Schwarzschild manifolds and X is their Kruskal extension (cf. 
[20, 211) as well as the case where X is Minkowski space and X’*’ are the Rindler 
wedges. 

It follows from (1.1) that t is a time-coordinate for X, though the time-translations, 
I + t + constant, are not, in general, isometries of the manifold. However, it follows 
from (1.1) that these translations do become isometries3 when restricted to the 
surfaces E, E’, given by w f t = 0, respectively, i.e., a/& is a Killing vector on E, E’: 
and further, these surfaces correspond to the past and future event horizons, respec- 
tively, for X’+’ (cf. [20, 211). From (1.3), we see that z is a time coordinate for X’ ’ ). 
and that time-translations, r -+ r + constant, are isometries of these submanifolds. 
Indeed, by Eqs. (1.1) and (1.2), they are the restrictions to X’*’ of the isometries of 
X given by the generalised Lorentz transformations, t -+ t cash b + w sinh b. 
w + w cash b + c sinh b. 

Our principal axioms for a real scalar field (for example) in X are that the field is 
a Hermitian operator-valued distribution cp in a Hilbert space .X, possessing a unit 
vector Y such that (a) 2 is generated by the application to Y of the polynomials in 
cp, smeared out against a suitable class of test-functions, (b) o(x) and o(x’) inter- 
commute if x and x’ have spacelike separation, and (c) there is a strongly continuous 
unitary representation U, in ;F”, of a Lie group of isometries of X, such that 

U(g)Y= Y and U(g) (D(x) vg-‘I= CPW). (1.4) 

These specifications of the field have their analogues in the Wightman scheme for 
fields in Minkowski space. However, there is an important difference between the 
cases where G includes time-translations, as when G is the proper Poincare group and 
X is Minkowski space, and those when it is not. For, in the former cases, one may 

’ Thus, putting u = w - I and u = w + t, the surface E corresponds to u = 0 and on [his surface the 
transformations u + u + constant, or equivalently, t + t + constant are isometries. 
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define the Hamiltonian H as -ih x the generator of the one-parameter subgroup of 
U(G) that corresponds to time-translations; and then one may assume the spectrum 
condition that H is positive, i.e., that Y is a ground state. This condition plays a 
crucial role in the theory of fields in Minkowski space, since it permits certain 
analytic continuations of the Wightman distributions (Y, 9(x1) +.. 9(xk) Y) and 
thereby leads to powerful general results, e.g., the PCT and Spin-Statistics Theorems 
[5,6]. On the other hand, in the general case where time-translations are not 
isometries of X, one cannot similarly deline a Hamiltonian and therefore one lacks a 
spectrum condition that implies an analytic continuation4 of the distributions 
W 9(x,) -.a v)(xdW. H owever, the situation is greatly improved by the fact, noted 
above, that the restriction of time-translations to the event horizon E are isometries. 
This fact presents us with the opportunity of introducing an axiom to the effect that 9 
induces a field v)~ on E, for which time-translations are unitarily represented in an 
appropriate subspace of Z’ and the associated Hamiltonian is positive (spectrum 
condition!). In this way, we obtain a field theory on E that is essentially analogous to 
the Wightman theory. The introduction of certain dynamical postulates then enables 
us to extend the field theory from E to X’*’ and to X. 

The material of this article will be organised as follows. Section 2 is devoted to a 
brief summary of the algebraic formulation of quantum statistical mechanics, in a 
form that is directly applicable to our later requirements. This includes a specification 
of the KMS conditions in terms of a conjugation operator, as well as a discussion of 
their physical significance. 

In Section 3, we shall formulate Wightman fields in flat space-time from the 
standpoint of uniformly accelerated observers. In view of Einstein’s Principle of 
Equivalence, this is tantamount to formulating quantum fields subjected to 
gravitational forces, that correspond to uniform accelerations. We show that these 
forces induce an Unruh thermalisation effect. This result can be understood from the 
following simple argument. The Bisognano-Wichmann (BW) theorem [lb, 
Theorem l] for an arbitrary Wightman field in Minkowski space, X, tells us that the 
restriction of the vacuum state Y to the Rindler wedge, Xc+), satisfies the KMS 
condition, at a specified temperature, w.r.t. the Lorentz boosts t + t cash b + w  sinh b, 
w + w  cash b + t sinh b. Therefore, as restrictions of these boosts to X’+’ correspond 
to time-translations, r + r + constant, for uniformly accelerated observers, it follows 
easily that the BW theorem implies the Unruh effect, Furthermore, one sees from the 
explicit form of that theorem that the conjugation involved in the KMS condition, for 
the state relative to the accelerated observer, is just the PCT operator, corrected by a 
spatial rotation through K about the axis Ow. 

In Section 4, we shall specify our axioms for the field on X, for the general case 
when time-translations are not necessarily isometries of the manifold. As explained 
above, these axioms lead to a field v)~, induced by 9 on E, that carries the essential 
properties of a Wightman field, including a spectrum condition. 

’ In our previous note on the subject, we made an ad hoc assumption, no longer needed in our present 
treatment, of an analytic continuation of these distributions 115, condition (C.2)). 
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In Section 5, we prove analogues of the Reeh-Schlieder, PCT and BW theorems 
for 9E by means of adaptations of the methods used to prove those original theorems 
for Wightman fields. 

In Section 6, we derive the Unruh effect for the field in X’+‘, as a consequence of 
the results of the previous Section, supplemented by either an assumption concerning 
the stability of the state in X’+’ or a dynamical one, signifying essentially that the 
field in X’+’ is determined by that on E, i.e., that E behaves as a characteristic5 
surface for the dynamics in X (+). We then show that, if q enjoys PCT symmetry 
w.r.t. the space-time inversion (t, w; y)+ (-t, --w; JJ), and if E corresponds to a 
characteristic surface (in the sense indicated above) for the global dynamics of the 
field, then the PCT conjugation is just the one governing the KMS condition for the 
Hawking-Unruh effect in X’+‘. 

In Section 7, we consider an alternative quantisation scheme, based on the 
replacement of axiom (AS) of Section 4, which essentially postulates the regularity of 
the field at the event horizon E, by the hypothesis that the restriction of Y to X”’ is 
a ground state w.r.t. the Hamiltonian governing time-translations r + r + constant. 
We show that, in this case, the observables in the regions X’+) and X’-’ are mutually 
uncorrelated. In the case of a Schwarzschild Black Hole, this would mean that the 
surface of the Schwarzschild sphere was not only an event horizon but also a 
physical barrier separating its interior and exterior regions. 

In Section 8, we summarise our results and also argue that the choice between the 
quantisation scheme of Section 7 and that of Section 4 must generally be based on 
considerations of the circumstances governing the state of the system. 

Throughout this article, we shall use the standard symbol R, R, and C to denote 
the real line, the positive and negative reals, and the complex numbers, respectively. 
The symbols D and 9 will denote the usual spaces of L. Schwartz, and C,,(R) will 
denote the set of complex-valued, continuous functions on R that vanish outside some 
bounded region. We shall use the symbol := to signify equality by definition. 

2. QUANTUM STATISTICAL PRELIMINARIES 

We shall devote this Section to a summary of standard definitions and results, that 
serve to generalise quantum statistical mechanics to systems with possibly infinite 
numbers of degrees of freedom. For general expositions of the subject, see Refs. 
[3,4], and also [23-251 for treatments of bounded observables. 

Thus, we take the observables of a quantum system to be the self-adjoint elements 
of a *-algebra &’ of operators (i.e., an algebra closed w.r.t. the adjoint mapping 
A + A *) in a Hilbert space 2, with common dense domain .Z that is stable under 
.&. It should be noted that, in the case of an infinite system, this representation of the 
observables is generally inequivalent to the standard one of Fock [ 3.41. The states of 

’ We use the term “characteristic” rather than “Cauchy” here because E is a null surface (cf. Ref. 
122. Theorem 3.2.11). 
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the system are assumed to correspond to the density matrices in Z, the vector states 
being the particular ones for which the associated density matrices are one- 
dimensional projectors. The dynamics of the system is taken to be given by a strongly 
continuous unitary representation V of the additive reals, R, in SF, such that X is 
stable under V(R) and J is closed w.r.t. the transformations A + V(t) A V(-t). The 
Hamiltonian of the system is then ZX, where iK is the generator of V(R). 

Let Y be a unit vector in X that is invariant under V(R) and cyclic w.r.t. JZZ’, i.e. 
A?Y is dense in A?. The invariance of Y under V(R) implies that KY = 0. Y is 
termed a ground state, or zero temperature state, if K is positive: it is termed a 
thermal state, for (non-zero) temperature T= (k/3)-‘, if it satisfies the KMS 
condition, which may be expressed in the following form [ 18, 19, 261: 

(exp(- $/SK) A Y, exp(- $?hK) BY) = (B * Y, A * Y), VA,BEd. (2.1) 

Equivalently, this condition may be written as 

J exp(- $IhK) A Y = A * Y, VAEd, (2.2) 

where J is a (unique) conjugation of A?, i.e., an antilinear transformation of Z such 
that 5’ = 1 and (Jf, Jg) E (g, f). W e note here that, once it is given that Y is a 
thermal state, Eq. (2.2) determines J and /3 uniquely [ 191, and furthermore a ground 
state can never satisfy that formula. 

The ground and thermal states comprise the equilibrium states. We remark here 
that the characterisation of equilibrium according to the prescriptions given here is 
founded on a variety of stability arguments that serve to justify the original 
hypotheses of Gibbs [27, 281. We also point out that even thermal states, which carry 
entropy, do indeed correspond to vectors in appropriate representation spaces [3,4]. 

3. FIELDS IN MINKOWSKI SPACE 

In this section, we take X to be Minkowski space (pointwise x = (x(O) = ct, x(I), 
xc*), xt3))) and G to be the proper Poincare group of transformations of X. In 
particular, we define T(R) and L(R) to be the one-parameter subgroups of G, 
corresponding to time-translations and Lorentz boosts, respectively, according to the 
formulae 

and 

T(t)(x”‘, x(l), xC2) ) x(3)) F (x(O) + ct, x(l), xt2), x(3)) (3.1) 

L(~)(x’~‘, x(l), xC2), xC3)) = (x(O) cash r + x(l) sinh r, x(l) cash t + x(O) sinh r, xC2), xC3)). 

(3.2) 

We define XC*’ to be the open submanifolds of X given by x(l) > Ix(‘)] and 
x(l) < -Ix(‘)], respectively. Thus X’*:’ are both stable under L(R). 
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We formulate quantum fields in X according to Wightman’s scheme [S, 6). For 
simplicity, we confine ourselves here to real scalar fields, though an analogous 
treatment of other fields would lead to the same results (cf. Comment (4) at the end 
of this section). Thus, we represent a field in X by a quadruple (X, cp, Y, U), where 
X is a Hilbert space, o a linear mapping6 of the Schwartz space .U’(X) into the 
operators in F, Y a unit vector in R that is cyclic w.r.t. the algebra .v’ of 
polynomials in (p(f) 1 f E .Y(X)}, and U a strongly continuous representation of G 
in p, such that the following axioms’ are fulfilled. 

(W. 1) rp(f,) ... v)(&) Y is strongly continuous w.r.t. each of the elements 
f’,..., fk of 3 (X). 

(W.2) o(f)* = q(J‘) on .dY (Hermiticity!). 

(W.3) U(g)Y== Y and U(g) p(f) U(g-‘) = I, with f, := f(g ‘s), 
Vf E .2 (X), g E G (couariunce!). 

(W.4) p(f,) and cp(f2) commute on .@‘Y if the supports off,, fi have space- 
like separation (locality!). 

(W.5) Y is a ground state w.r.t. the time-translational group f(R) := U(T(R)); 
i.e., the infinitessimal generator of p(R) is i x a positive operator (spectrum con- 
dition!). 

The following classic theorems are consequences of axioms (W.l-W.5). 

PCT THEOREM 15.61. There is a unique conjugation J, of F such that 

Jodf,) ... dfk)Y= v(f;) ... p(f:)‘K 

Vf, ,..., f, E .Y (X), 

where 

f+(X) := “7-x). 

REEH-SCHLIEDER THEOREM (5,6,29]. Let A be a arbitrary open subset of X, 
and let -W’(A) be the subalgebra of &’ given by the pol.vnomials in (q(f) ( f E i (X); 
supp f CA}. Then .&(A) Y is dense in 3. 

BISOGNANO-WICHMANN THEOREM [la, b Theorem 11. Let iK be the 
injkitessimal generator of L^(R) := U(L(R)). Then 

J,bee-“KAY= A*Y, VA E s’(X’+‘), 

’ Here p(f) corresponds to what may heuristically be regarded as a pointwise-defined field. co(s). 
smoothed out against f, i.e., v(f) = I dx v(x) f(x). 

’ We omit the axioms of clustering and of uniqueness of the vacuum, since they will not be needed 
here. 
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where Jo is the PCT conjugation, p  ̂= U(p) and p is the partial inversion x(*’ + --xc*), 
x(3) + -x(3). 

We now seek to characterise the state Y from the standpoint of a uniformly 
accelerated observer, O,,, . For this purpose, we represent X”’ in Rindler coordinates 
(C 5, xc*‘, x(~)), where {, r run through R, and R, respectively, and 

x(O) = r sinh r; x(” = ( cash r. (3.3) 

The Minkowski metric for X(+), when expressed in these coordinates, takes the form 

ds’ = r*dr* - dt;’ - (dx’*‘)* - (dxt3’)*. (3.4) 

Thus, r is a temporal coordinate. Moreover, the curves on which <, x(*), xc3) are 
constant correspond to trajectories of uniform acceleration Q along Ox”’ [20, 
Chap. 61, with 

a = c*/<. (3.5) 

By (3.4) and (3.5), the proper time t, on such a trajectory is given by 

r, = (r/c = +a. (3.6) 

The asymptotes to the trajectory lie in the boundaries, x(‘) i x(O) = 0, of Xc+), which 
are the past and future event horizons, respectively, for an observer O,,, that 
accelerates uniformly in the Ox”’ direction. 

Let L(+)(R) be the one-parameter group of isometries of X’+ ’ corresponding to 
time-translations for O,,, , i.e., 

L’+‘(r)(<, r’, x(2’, x(3’) = (<, 5’ + 5, x’*‘, x(3’). (3.7) 

Thus, by (3.2), (3.3) and (3.7), L’+‘(r) is the restriction of L(r) to Xc+). On 
combining this observation with the Reeh-Schlieder and BW theorems, together with 
the definition of thermal states in Section 2, we immediately obtain the following 
result. 

PROPOSITION 1. The restriction of the state Y to -4f(X(+‘) is a thermal one 
satisfying the following KMS condition w.r.t. the time-translation group L’+‘(R) 
(:=U(L(R)) fir O,,,. 

J exp(-lrK’ “)A Y = A * Y, VA E d(x’+‘), (3.8) 

where iK’ + ) is the generator of E’+ '(R), 

J= Jo& 

Jo is the PCT operator, and p  ̂the unitary representative of the partial inversion 
xw + -x(*), x(3) + -x(3)* 
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Comments. (1) This Proposition signifies that Y, which is a ground state for an 
inertial observer (axiom (W.5)), corresponds to a thermal one for O,,,. Further, on 
comparing Eqs. (2.2) and (3.8), one sees that the temperature of the state is h/27&. 
This is not the observed temperature, however, since it is based on the time T, rather 
than the proper time 5,. In fact, the temperature observed by O,,, will take the value 
T, , corresponding to a resealing of time from t to ra. i.e., by (3.6) 

T, = Aa/2xkc. (3.9) 

This is a rigorous generalisation of Unruh’s result [ 111 for fields in flat space-time. 

(2) In view of Einstein’s Principle of Equivalence, one can interpret this result as 
signifying that a gravitational field, corresponding to a uniform acceleration a in flat 
space-time, thermalises the field to a temperature ha/2nkc. 

(3) The conjugation J, arising in the KMS condition for the field observed by 
0 act, is simply the PCT operator Jo, corrected by the partial inversion p”. Thus J is 
the PCT conjugation associated with the restricted inversion x(O) --) -.y”“, 
x”’ 4 -,$I’. 

(4) The results discussed here stem directly from the PCT, RS and BW theorems 
and therefore may be generalised, like those theorems (cf. [S, 6, lb]) to arbitrary 
quantum fields in Minkowski space. 

4. FIELDS IN CURVED SPACE-TIME 

Let X (=R2 x Y) be a manifold which, together with its submanifolds X’*’ and E, 
conforms to the specifications of Section 1 (cf. Eqs. (l.l)-(1.3)). We define L(R). 
L’ *j(R) to be the one-parameter groups of isometries of X, X’* ‘, corresponding to 
Lorentz-like boosts and Rindler-like time translations, respectively, according to the 
formula 

L(r)(t, w; y) = (t cash t + w sinh r. w cash r + t sinh r; y) (4.1) 

and 

L’*‘(r)(r, r’; y) = (6 r + 5’; Y). (4.2) 

Thus, by (1.2), (4.1) and (4.2), L’*‘(s) is the restriction of L(r) to X’*‘. We note 
again that, in view of (l.l), the time-translations, f  + f + constant, are not generally 
isometries of X. 

Since the event horizon E is the submanifold of X on which t + u’ = 0, it follows 
that E = R X Y and that the points of E are given by the coordinates (t, .v). By ( 1.1) 
and (4.1). E is stable under L(R), and the restriction LE(r), of L(r) to E, is given by 
the formula 

LE(r)(t, y) = (tee’, 4’). (4.3) 



210 GEOFFREY L. SEWELL 

Since, by (l.l), a/at is a Killing vector on E, this manifold is also equipped with a 
one-parameter group of isometries, T,(R), coresponding to time-translations: 

T&(t’, v) = (t + t’, Y). (4.4) 

Let E’*’ be the subsets of E in which c >< 0, i.e., the regions of E lying on the boun- 
daries of X(*), respectively. Then it follows from (4.3) and (4.4) that E’*’ are both 
stable under L,(R), but not under T,(R). 

We formulate a quantum field on X by a natural adaptation of the Wightman 
scheme, For simplicity, we again confine the analysis to a real scalar field, but in fact 
our main results may be generalised to arbitrary fields in X (cf. remarks at the end of 
Section 8). Thus, we take a quantum field on X to correspond to a quintuple (F, 27, 
sp, Y, t), where F is the space P(R’) @ @(I’) of test-functions on X (=R2 x Y), 
where 9 and .?2 are the Schwartz spaces; Z is a Hilbert space; v, is a linear 
mapping of ST into the operators in P, Y is a unit vector in 8 which is cyclic w.r.t. 
the algebra d of polynomials in {p(F) 1 FE F}; and e(R) is a strongly continuous 
unitary representation of R in Z, such that the following axioms are satisfied. 

(A.l) CJ$& @ g,) em. cp(& @ g,J Y is strongly continuous w.r.t. f, ,..., fk E 
Y(R’) and g, ,..., g, E g(y>; and hence, by the nuclearity of the Schwartz spaces, 
there is a unique sequence of continuous linear functionals 
(9(RZk) @ GZ(Y”)], define by the formula 

W(k’(f, 0.h ‘** of,; gl @ g, *” @ gk) 

= (PT dfi 8 8,) -” dfk@ gkjyl) vfl~**~~fk E WR2), g,v- 

VW (o(F)* = v(F) on M’ Y (Hermiticity !). 

(A.3) E(r) Y = Y and m co(F) &r) = rp(FJ 

with 

F,(x) := F(L(-r)x)(covariance w.r.t. L(R)). 

{Wck’lkEN) on 

(4.6) 

(4.7) 

(A.4) #‘,) and e$F2) intercommute on dY if the supports of F, , F2 have 
space-like separation (locality!). 

These axioms have already been proposed, and discussed in some detail for linear 
fields on globally hyperbolic manifolds, by Isham [3 11. 

In general, we cannot supplement (A. 1 )-(A.4) by a spectrum condition analogous 
to (W.5): for, unless the time-translations, t-+ t + constant, are isometries of X, there 
is no possibility of even defining a unitary representation of a time-translation group 
and thereby obtaining a Hamiltonian. In order to compensate for this deficiency, we 
introduce the following axiom, designed to yield a field on the submanifold E, which 
does have a time-translational isometry group, r,(R). 

(A.5) Let (hi.,},..., {hkan} be k arbitrary sequences of positive g(R)-class 
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functions such that 1 &z,,,(t) = 1 and supp hj,n + (0) as n + co; and for Fi E 5. := 
.9’(R) @ 9?(Y), let Fj,n be the element of .P defined by 

&(t, w; y) = Fp(+(t - w); y) h;Jt + w), (4.8) 

where 

(4.9) 

Then cp(F,*,) ... CJJ(F~,~) Y converges strongly, as n + co, to a multiiinear vector 
function QE(F, ,..., Fk), such that 

(a) @de, 0 g, - ek @ gk) is strongly continuous w.r.t. e, . . . . . e, E I (R ) and 
g, *..., g, E ic’( Y); and 

(b) there exist F,,..., F, E .iT, such that @,(F, ,.... Fi. Fit ,.T . . . . . F,,,) is not 
constant w.r.t. 7 where 

F,,,(G) := F,(L,(-7)x,), t’F E “; . .I-, E E. (4.10) 

Comments. (1) This axiom essentially defines a sense in which o induces a field 
oE on E, in accordance with the formal prescription ~~(t. v) = - (a/&) q~(t, 4; J%) (cf. 
Proposition 2. below). Here the derivative w.r.t. t stems from the presence of F:” in 
(4.8). F,!“, rather than Fj, was used in this latter equation so as render it invariant 
under the isometries x + L(t)x, x, + LE(s)x, of X and E, respectively (cf. proof of 
(E.3) in Proposition 2, below). 

(2) In view of the difficulty of constructing a non-trivial field in a curved space- 
time, for which (A.5) could be checked, it is perhaps worth mentioning that this 
assumption can be confirmed by direct calculation for a free massive field in two- 
dimensional Minkowski space. 

PROPOSITION 2. Assuming (A.2-AS), there is afield on E, specified by the quin 
tuple (,i7,, .yE, pE, Y, eE), where XE = .7(R) @ G’(Y), .PE(3!P) is a subspace of‘ Y. 
v)~ is a linear mapping of 3$ into the operators in ,&., ‘P is cyclic w.r.t. the algebra 
.d> of polynomials in {q,(F) 1 FE &}, and L,(R) is a strong@ continuous, non 
trivial unitary representation of R in XE, such that 

@#‘, . . . . . FJ = &F,) 1.. v~(F,J !I’, VF, . . . . . F, E ?; . (4.11) 

and the following conditions are fulfilled. 

(E.1) Me, Og,) ... pE(e, @ gk) y is strongly continuous br'.r.t. e, . . . . . e, E 

.w’(R) and g, . . . . . g, E U(Y). 

(E.2) w,(F)* = pp,(F) on L13E II/. 

(E.3) L(7) is the restriction to cPE of L(7), and further 

E,(7)~,,(F)e,(-,)=,,(Fr), VFE.?J;, (4.12) 
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(E.4) (Pi and pE(F2) intercommute on s&‘~ !P if the supports of F,, F, have 
space-like separation. 

(E.4)’ p,(e, 63 g,) and q,(e, 0 gz) intercommute on s’~ Y if the supports of e, 
and e, are disjoint Gfurther locality condition!). 

Before proving this Proposition, we supplement (E.l)-(E.4)’ by the following two 
assumptions, that are made feasible by the fact that a/at is a Killing vector on E and 
thus T,(R) is an isometry group for that manifold. 

(ES) There is a strongly continuous unitary representation, FE, of R in flE 
such that 

with 

FE(f) Y= Y and f+,(t) v)EW %-0 = v,,(F”‘) (4.13) 

F”‘(x ) .= F(T E - E (-t)x E ) (covariance w.r.t. T,(R))!). (4.14) 

(E.6) The self-adjoint operator KE, in XE, given by (-i) x generator of FE(R), 
is positive (spectrum condition!). 

Note. In the special case where X is Minkowski space, (ES) and (E.6) follow 
from (AS) and the Wightman axioms, together with a mild continuity assumption. In 
this case, KE is the restriction to ZE of A-‘(H + cP”‘), where H is the Hamiltonian 
and PC’) the momentum along Ox(‘). 

Proof of Proposition 2. Let XE be the linear span of the vectors GE(F, ,..., F,J, 
and let ZE be the closure of XE. Since QE is linear in each of its arguments, we may 
define a linear mapping qE of ;rE into the operators in ZE, with common domain 
XE, according to the formula 

co#‘d @AFzv.., F,J = @#I ,..., FjJ; c@J Y= @#I)- (4.15) 

Hence (4.10) is satisfied, dE Y(z&) is dense in ZE, and (E. 1) follows immediately 
from (A.5) and (4.10). 

By (A.5) and (4.10), 

and 

(4.17) 
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Condition (E.2) follows easily from (A.2) and (4.16). (E.4), on the other hand. 
follows from (A.4) and (4.17), together with the fact that, since supp hj,n -+ (O} as 
n -+ co, Eq. (4.8) signifies that the space-like separation of the supports of F, and F, 
ensures the same for those of F,,, and F,,, for large enough n. 

By (I. 1). the points (tl , w, ; y,) and (tz, w2 ; yJ have space-like separation if 
1 w, - wzl > /t, - t,l. Hence, as w = -f on E, one may easily infer from (4.8) that. if 
the supports of e, and e, are disjoint, then h,., and k2., may be chosen so that. for 
F, = e, @ g, and F, = e, @ g,, the supports of F,,, and ?2,n have space-like 
separation for every finite n. Hence, (A.4) and (4.17) imply (E.4)‘. 

In order to establish (E.3), we note that, by (1.2). (4.7). (4.9) and (4.10) 

Fj,n,T(fq W; Y) = (Fj,,)‘“(f(t - w); y) L”.,(t + ~‘13 (4.18) 

gn,,(t) := e’h,(fe’). (4.19) 

Therefore, for each 7 E R, the sequence (Ln,,} has all the properties required of h,, in 
(AS), and thus (4.16) implies that we may replace Fi, Fi.i.n by Fi,,. Fi,,,,, respec- 
tively, in (A.5) and (4.10). Hence, using (A.3) 

= i(r) yl,(F,) .s. cp,(F,) Y. 

Consequently, as -a(“E Y is dense in Xi, this latter subspace is stable under E(R), and 
the restriction eE(R) of L(R) to -ZE satisfies (E.3). Finally, it follows from (4.11) and 
condition (b) of (A.5) that E,(R) does not reduce to the identity, i.e. this group is 
non-trivial. I 

5. FIELDS ON E 

In this section, we shall assume the properties (E.l-E.6) for oE and thence deduce 
the following three theorems, which are analogues of the Reeh-Schlieder, PCT and 
Bisognano-Wichmann theorems, in that order. 

THEOREM 3. Let Z be an open interval in R, and let .dfI(Z) be the algebra of 
po/vnomiais in {qE(e @ g) I e E .%(R), supp e c I; g E g(Y)}. Then .dE1([) Y is dense 
in FE. 

THEOREM 4. There is a (unique) conjugation JE of cI such that 

JAW,) ... &F,c) Y= rp,(F,t) ... cp,V’:) K VF, ,.... F, E ,-7;. (5.1) 
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where 

F+(t, y) := F(-t, y). (5.2) 

THEOREM 5. Let dk*:” be the algebra of polynomials in {q,,(F)F E FE; 
supp F c E’*‘}. Then Y is cyclic w.r.t. x?‘F:” in &“,, and 

JE exp(+rrKE) A, Y = A,*Y, VA, E sfL*‘. (5.3) 

Comments. (1) Since E’+’ is stable under L,(R) (by (4.3)), it follows from 
Theorem 5 that Y satisfies the KMS condition w.r.t. L,(R) for the restriction of oE to 
EC+), at temperature A/2nk. 

(2) The conjugation JE appearing in this condition is just the PCT operator of 
Theorem 4, without any correction corresponding to a spatial inversion for Y, since 
this does not arise here. 

The proofs of these theorems follow similar lines to the corresponding ones for 
fields in Minkowski space. They are based on a treatment of the continuous 
Wightman-like functionals WLk’, on 9(Rk) @ @(Y”), which may be defined, in view 
of (E.l) and the nuclearity of the Schwartz spaces, by the formula 

For fixed g E g(Yk), we define WkT’, to be the tempered distribution given by 

Wit),(e) = w’,“‘(g; e), Ve E Y(Rk). (5.5) 

It follows by standard arguments [5,6] from the TEE(R) invariance of Y that Wkf,‘, 
corresponds to a tempered distribution ?%A([;‘) (E9’(Rk-‘)) according to the 
formula 

yyik-1) 
E.8 (t I,..., tk-,) = w;T\(tI + t, *** + t,, t, + “- + t, ,..., tk). (5.6) 

Furthermore, the spectrum condition (E.6) implies that wg; ‘) is the boundary value 
of a function analytic in the tube Tk- I := {(z, ,..., zk-,) E Ck-’ ) Im z, , Im z2 ,..., 
Im zk-, < 0}, i.e., 

PA;,“(e) = 1 
13 

.,!iz-,,a f dt, .a. dtk-,@fgl)(tl + ik, ,..., tk-, + iAkml) e(t ,,..., tk-,), 

VeE S“(Rkp'> (5.7) 

Likewise, for P E ZE and g, ,..., gk E g(Y), we define the tempered distribution 
P(k) E 9’(Rk) by the formula E.g 

@!,),(e, @ e, .a- @ ek) = tFy vEtel @ 8,) “’ dek @ gk) u?? (53) 
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and note that I?::‘, is the boundary value of a function that is analytic in Fk := 

i(z ,,...r z,)ECkI(-z*,q-Z* ,... ,Zk-,-ZJETkJ. 

Proof of Theorem 3. In view of Eq. (5.8), it suffices to prove that, if the 
restriction of IV;:‘, to .y(Zk) is zero for all g, ,..., g, E U(Y), then p= 0. In fact, this 
result may be inferred, using precisely the method of proof of the Reeh-Schlieder 
theorem [5, 6, 291, from the above-noted fact that @jK is the boundary value of a 
function that is analytic in Tk. I 

In preparation for the proofs of Theorems 4 and 5, we note that, by (4.3). 

LE(T)(f, y) = (.Q+yr)t, .I), (5.9) 

where y(R) is the one-parameter group of transformations of R given by 

P(t)t = rep*. (5.10) 

We define ik’(C) to be the group of transformations of C, corresponding to the 
complexifkation of g(R), i.e., 

Y(z)z’ = z’e-‘. (5.11) 

We then define the extended tube TL- I := {(AZ, ,..., AZ,_ ,) 1 A E Y’(C), (z, ,..., zk , ) E 
Tk-~,}, and we define Sk-, to be the subset of T;-, consisting of elements 

( r 1 ,..., rk- ,) for which all the rj’s are real. Thus .PkP, corresponds to the set of Jost 
points of Wightman theory, and one can readily show that Pk _, = R “,- ’ U R k ‘. For 

0 , ‘..., tk) E Rk, with (ti - t, ,..., t,- i - tk) E ,Pk-, , we define 

wfyz * ,.... t,; g, ,..., g/o = %q;l’(f* - t, )...) t,-, - I,), with g = g, @ .. . <$ g,. 

(5.12) 

Thus Wkk’ is the function obtained by unsmearing the distribution, denoted by the 
same symbol (cf. (5.4)) w.r.t. the test functions e. Hence it follows from (E.4)’ and 
the definition of ,Pk _, that I+$:) is invariant under permutations (ti, gi) + (tj, g,i). 

We shall require the following lemma, which corresponds to that of Ref. 15, p. 66 1. 

LEMMA 6. Zf (z, ,..., zk- ,) and AZ, ,..., AZ,- ,) both belong to Tk-. , , with 
A E 9(C), then there exists a continuous mapping A from [0, 1 ] into 9(C) such that 
A(O) = I, n(l) = A and (A(t)z, ,..., A(t)zk-,) E T,-, Vt E (0, 11. 

Proof: By (5.1 I), ip(C) may be identified with the multiplicative group C\{O}. 
Hence it follows from the definition of Tk-, that, if (z, ,..., zk- ,) and (AZ, ,..., AZ, ,) 
both belong to T,-, , then A(EC\(O}) does not lie in R- . Hence, it follows that 
A(t) := t + (I - t)A satisfies all the requirements of the lemma, since, on the one 
hand, the convexity of Tk- i ensures that, if (z, ,..., zk- ,) and (AZ, ,..., AZ,- ,) lie in 
T &ir then so does (A(t)z,,..., A(t)z,) for all t E [0, 11; while, on the other hand, 

595/L41/2-2 
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4) E C\(O) vt E IO, 1 I, since the fact that A e R- precludes the possibility that 
A(t) = 0 for some t in this interval. 1 

Proof of Theorem 4. This is analogous to the proof of the PCT theorem for fields 
in Minkowski space. 

Thus we start by noting that, in view of Lemma 6, the following analogue of the 
Bargmann-Hall-Wightman theorem may be obtained, by means of the argument of 
Refs. $6,301: 2V”g” has an analytic continuation to Ti-,, and this is invariant 
under (zl ,..., zk- 1) -+ (AZ, ,..., AZ,- 1). 

Hence, by (5.12), if (t , ,..., t,) E Rk and (tl - t, ,..., t,- 1 - tk) E S,-, , then 

wp<t , ,..., 1,; g, ,..a, &) = w;)(-t, ,***1 -t,; g, ,**., &?k)- 

Further, as noted after Eq. (5.12), the L.H.S. of this equation is invariant under 
;Jdmt;;;iOnS (ti, g,)+ (tj, gj) and iS therefore alSO eqUd t0 vi)(fk,..., l,; &,.**r g,), 

wLk)(tk,..., t, : gk,..., gl) = wik'(-t, ,***, -t,; g, ?**.3 gk), (5.13) 

which corresponds to the Weak Local Commutativity (WLC) condition for 
Wightman fields. 

The required result now follows by direct analogy with the method used [5,6] to 
infer PCT from WLC for fields in Minkowski space. 1 

The following lemma, which will be needed for the proof of Theorem 5, is 
analogous to Ref. [la, Lemma IO]. 

LEMMA 7. Let {I,,} be the sequence of non-overlapping open intervals in R given 
by I, = (b + (n - l)a, c + (n - l)a), where a, b, c are chosen so that 0 < b < c < a. 
Then 

where 

enK”dKE) %tFI) “’ V)dFk) yy= dKE) $#-‘) “’ V)E(Fi-)) y: 

Vc E C,(R); supp Fj E Ij x Y; j= l,..., k, (5.14) 

F,(-‘(t, y) := Fj(-t, y). (5.15) 

Proof: This is directly analogous to that of Ref. [la, Lemma lo], with (E.4)’ 
playing the role of the Wightman axiom (W.4) and Zj x Y corresponding to the 
domain Rj of Ref. [ la]. 1 

Proof of Theorem 5. This is directly analogous to that of Ref. [la, Theorem 11, 
with Ii x Y corresponding to the domain Rj of Ref. [la] and Theorems 3 and 
Lemma 7 playing the roles of the Reeh-Schlieder theorem and Ref. [la, Lemma lo], 
respectively. I 
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6. FIELDS ON Xc*), X 

Let (D(*’ be the restrictions of cp to Sr’*) := (fEX) suppfcX’*‘}, where X’” 
are the open submanifolds of X defined in Section 1. Recalling that L”*‘(R) are time- 
translational isometry groups of X’*’ (cf. Eq. (1.3), (4.2)), we shall show that the 
axioms (A), supplemented by certain further conditions, imply that the restriction of 
Y to o”’ is a thermal state, whose temperature is determined by the gravitational 
field associated with the metric of Xc’). 

We take the fields on X’*’ to be given by (<PC*‘, o’*‘, Y, e”‘(R)) where P’* ’ is 
the closure of .&‘*)Y, ..d’*’ is the algebra of polynomials in (o’*‘(f) 1 f E F’ (_ ’ I. 
and L’ *’ is the unitary representation of R in P * ’ given by the formula 

L'*'Y= E e'*'(5)rp(*yf)l?*y--r)=cp'*yf7): f*(x):=flL"'(Gr)X). (6.1) 

Thus, by (4.6), (4.7) and (6.1), i(*)(r) is the restriction of t(r) to ,@“‘*‘. Hence, 
denoting the generators of i(R), L’*‘(R) by iK. iK’*‘, it follows from this obser- 
vation and (E.3) that Kc*‘, K, are the restrictions of K to F’*‘. e:, respectively. 

Since, by Theorem 5, ..&L?’ Y is dense in ~Fc and further. by (A.5), the elements of 
CL/‘:+ ) Y may be approximated arbitrarily closely by vectors in .d’ + ’ Y, it follows that 
& c y’ ’ ‘. We consider the possibility of assuming some of the following 
conditions, whose significance will be discussed presently. 

(Cl) <.= P. 

(C.2) 7P;. = l;y-‘+‘. 

(C.3) The restriction of Y to <&‘+) corresponds to an equilibrium state of the 
field on X”’ at some unspecified temperature (possibly zero). 

Comments. (1) In order to relate (C.l) to the dynamics of the system, we first 
note that E is a characteristic surface for classical relativistic wave equations on X. 
i.e.. the solutions of such equations are functions of the values of the wave fields on E 
(cf. [ 22, Theorem 3.2.11). We now point out that (C.1) would follow from the 
assumption of a corresponding property of E in relation to the dynamics of the 
quantum field q, namely that this is determined by oE in such a way that &A. c .B’. 
where SY’;, .cJ’ are the weak cornmutants of M’,‘,, &, respectively. For since 
,v’;. 3 PF, the projection operator from .;it” onto &, this latter assumption implies 
that, for all A E ,Q, 

I/(/- P,)AYll’= ((I- PE)AY, AY)= (A*AY, (I- P,:)Yy) (as P, E .c/; c .:f”) 

=o (as P, Y = Y), 

and therefore, in view of the density of &‘Y in X, P, = I, i.e., Pi = K. 

(2) Condition (C.2) is clearly a weaker condition than (C.I), and can similarly 
be related to an assumption that the field on X(+) . IS determined by that on E in such 
a way that tie;. c .d(+“, the weak cornmutant of &“+‘. 
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(3) Condition (C.3) may be regarded as a consequence of the assumption of 
appropriate stability properties on the state of the field on X’+’ (cf. [27, 28 ] and the 
discussion at the end of Section 2). 

THEOREM 8. Under the assumption of axioms (A.2-A.5), (E.5, E.6) and either 
(C.2) or (C.3), the restriction of !P to thefield on X(+) corresponds to a thermal state 
of temperature h/2xk, w.r.t. the dynamical group E ‘+‘(R); i.e., there is a conjugation 
J of Z such that 

Jexp(-r&‘+‘)AY=A*!?‘, VA E d(+). (6.2) 

Comment. Since, by Eq. (1.3), the proper time for a local observer in X’+’ is 
c-‘(A(--~~, y))“‘r, this theorem implies that the observed local temperature would be 

T = hc/2xk(A(-<‘, Y))“~, (6.3) 

which is a generalised form of the Hawking temperature [lo]. One may interpret this 
result as signifying that the gravitational field associated with the metric of the 
manifold X”) thermalises the field cp” ) so that its local temperature is T. In fact, this 
result is a generalised Hawking-Unruh effect [ 10, 111. 

PROPOSITION 9. Assume (A.2-A.5), (E.5, E.6), (C.1) and the global PCT 
condition, that there is a conjugation J’ of R such that 

(6.4) 

where 

f+(t, w; y) :=7(-t, -w; y). (6.5) 

Then J’ is equal to the conjugation J governing the KMS condition (6.2) for the state 
of the field on X’+‘. 

Comment. The PCT condition (6.4) appears to be feasible as the transformation 
(6 w; Y> + t-t, --w; Y) is an isometry of X. Further, in the special case where X is 
Minkowski space, the result given by Proposition 9 reduces to the relationship 
between the PCT and KMS conjugations, specified in Proposition 1 (cf. Comment 
(3), following the latter Proposition). 

Proof of Theorem 8. (1) Assume (C2) and denote Jr by J. Then note that it 
follows from (A.5) that, for B E _pPk-), 3 a sequence {B,} E d(-’ such that 

s-lim B,Y=BY and s-lim B,* Y=B*Y. (6.6) n-too “+a, 

Further, as X’+’ and X(-j have space-like separation from one another, if follows 
from (A.4) that, for A E d(+), 

(B,*Y:AY3=(A*Y:B,Y3, (6.7) 
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and hence, by (6.6), 

(B*Y,A!q=(A*Y,BY), VA E ,d(+‘. B E .a”;-‘. (6.8) 

Thus, by Theorem 5 and the fact that K reduces to K, on ,e.. 

(A * Y, BY) = (JA Y, enKB Y). VB E ,M’;-y-‘. A E %a”+ ‘. (6.9) 

In view of the stability of ,@‘k--’ under B --) E(r) Bet-r) and the invariance of Y 
under L(R), we may replace BY by E(r) BY in (6.5). and thus obtain the equation 

= (JAY, E(7) enKBY), VA E.9”“. B E.v.‘..- I. rE R. I (6.10) 

Let c  ̂be the Fourier transform of a C,-class function c on R. Then, on multiplying 
(6.10) by ?(r) and integrating w.r.t. r, we obtain the formula 

(A * Y, c(K) BY) = (JA Y, c(K) enKB Y). 

Hence, if A := (c(K) BY, B E .&‘k--‘, c E C,,(R)}, then 

(A*Y, Y’)= (JAY,ezKY’), VY’ EA. (6.1 1) 

Since, by Theorem 5 and (C.2) ,&k-,-‘Y is dense in .y’+‘, it follows from our 
definition of A that this is a dense domain of analytic vectors, and thus is a core. for 
exK in ,?“+). Therefore. by Eq. (6.1 l), JA Y lies in the domain of en’ and 

e”“JAY= A*Y, VA E .d(+‘. 

i.e., 

JemnKA*Y=AY, VA E zf’+‘, 

and this is equivalent to the desired result in view of the fact that K reduces to K’ ’ ’ 
on p’+). 

(2) Assume (C.3), i.e., that Y is a ground or thermal state for v’(’ ). We rule out 
the former possibility by the following reductio ad absurdum argument. If Y were a 
ground state for p(+), then K would be positive in Xc+’ and thus also in ,& 
(c%@‘+‘) since, by Proposition 2, ZE is stable under i(R) and the restriction of K to 
that space is non-zero (i.e., E,(R) is non-trivial). Thus, if Y were a ground state for 
cp” ), it would also be one for (Pi ; but this is not possible, as Y is a thermal state for 
(pE in EC+), by Theorem 5. 

We are left, then, with the alternative that satisfies the KMS condition 

Je- aK’t’AyE Je-““Ay=A*y, VA E .w”+‘, (6.12) 
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where a is some positive number and J is a conjugation of Xc+). We note now that, 
by (4.5), if B E &r)‘, then we may choose a sequence {B,} in J(+’ such that 

s-lim B, Y= BY and 
R-103 

s-lim Bz!P=B*Y. (6.13) 
n-co 

On substituting B, for A in (6.12) and using (6.13), one infers from the fact that 
e-OK is self-adjoint, and therefore closed, that BY lies in the domain of this operator 
and that 

Je-“KBY=Je-“KEBY=B*Y, - VB E dF:+,. (6.14) 

This equation implies that JB* Y = epaKE BY, from which it follows, in view of the 
stability of GZ$ under i(R) and the density of &’ L+’ Y in RE that this latter space is 
stable under J. Thus, Eq. (6.14) is a KMS conditions for Y, as a state of 07E in IF+ ). 
On comparing this equation with (5.3), it follows from the uniqueness of the 
temperature and conjugation operator associated with a KMS state that a = 71 and JE 
is the restriction of J to ZE. I 

Proof of Proposition 9. Since ZE = Z’ (by (C.l)), it suffkes to prove that 
J’ coincides with JE on the dense subset JQE Y of ZE. 

Let F, ,..., FkEsTE and let P,., ,..., Fk,., be elements of jr conforming to the 
specifications of (A.5). Then, on putting& = Fj,n forj = l,..., k in (6.4) and passing to 
the strong limit n --t co, one sees from (A.5) and (4.11) that 

and therefore, by (5.1), J’ coincides with JE on &E Y, as required. 1 

7. AN ALTERNATIVE FIELD QUANTISATION 

We now consider the quantisation of a, according to an alternative scheme, in 
which the regularity axiom (A.5) is dropped and, instead, the following two are 
assumed. 

(B.l) 
L(+)(R). 

Y is a ground state of the field o(+) on X’+’ w.r.t. the dynamical group 

(B.2) Y is the only stationary state, w.r.t. L’+‘(R), of the field p(+). 

Note here that (B.l) meets the requirements of dynamical and thermodynamical 
stability for the field on X’+‘, while (B.2) is an ergodic hypothesis [3] and 
corresponds to the assumption of a unique ‘vacuum state’ for that field. 

THEOREM 10. Under the assumption of (A.l-A.4) and (B), the observables in 
x(t) and X’-’ are uncorrelated in the state Y, i.e., 

(‘U,ABY?=(Y,AY3(y,BY), VA E a’(+), B E s’(-). 
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Comment. Since, by (A.4), the algebras &’ (+’ and ,cJ’-’ intercommute, it follows 
that the field algebra -2 for X’+’ U X’-‘, consisting of polynomials in (cp(f) ! f E 5: 
supp f C X’ + ’ U X’-‘}, is isomorphic with ,au”“’ @ ~G&‘-‘. Consequently, Theorem 10 
asserts that, under the specified conditions, the restriction of Y to s? corresponds to 
a product state Y(+’ @ Y(-’ on JZJ’(+’ @~G/-‘. This means that the event horizons 
bounding X”’ and X’-’ now act as physical boundaries. Indeed, in the particular 
case where X is the Kruskal manifold and X’*’ are the exterior and interior 
Schwarschild space-times, respectively, Theorem 10 signifies that the surface of the 
Schwarzschild sphere acts as a physical boundary that prevents correlations between 
the observables of the interior and those of the exterior of that sphere. 

Proof of Theorem 10. Since X”’ and X” have spacelike separation from one 
another. it follows from (A.4) that 

(A*Y,BY)=(B*Y,AY), VA E ,d’+‘. BE .d~‘- ‘. (7.1) 

In view of the stability of L&“i’ under transformations A --$ E” ‘(5) AJ?“‘(-r) and 
the invariance of Y under E’+‘(R), we may replace AY, A *Y by E’ “(5) A Y. 
L(+)(r) A * Y, respectively, in (7.1). Thus 

(L’+‘A*Y,BY)=(B*Y,,(+)(r)AY), VAE.C~‘~‘,BE.~‘-‘.~ER. (7.2) 

Since, by (B. 1), Y is a ground state, w.r.t. E’+‘(R), of the field on X” ‘, the Fourier 
transforms of the left- and right-hand sides of (7.2). considered as tempered 
distributions, have supports in R_ U (0) and R, U (0). respectively. Hence, each 
side of (7.2) is a polynomial in r. and this can only be constant since 
I@‘+‘(r) A*Y, BY)Y)I < IjA*YII IlBYll and is thus bounded. Therefore 

(e(+‘(r)A*Y,BY)=(A*Y,BY), VAE.d’+‘.BE.r~“~‘,rER. (7.3) 

Since F( + ’ is stable under e ‘+‘(R), we may write the L.H.S. of (7.3) as the X’ ’ ’ 
inner product (e”)(r)A*Y, P’+‘BY)= (A*Y, L’t’(-r)P”)BY), where PC” is the 
projection operator from -P’ onto ?“(“. Consequently. as .ti’ ’ ‘Y is dense in, V’ ’ ‘. 
Eq. (7.3) signifies that P “‘BY is invariant under e’+‘(R) and is therefore, by (B.2). 
a scalar multiple of Y, i.e., 

P’+‘BY==Y. with ~=(Y,P’+‘BY)~(P’+‘Y,BY)~(Y,BY). 

Therefore, as the R.H.S. of (7.3) is equal to (A* Y, P’ +‘BY), it follows that 

(A*Y, BY)= (A*Y. Y)(Y, BY). 

i.e., (Y, ABY) = (Y, AY)(Y, BY), as required. 1 
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8. CONCLUSION 

Our principal results are the following. 

(I) In the case of a Wightman field in Minkowski space, the state that 
corresponds to the vacuum for an inertial observer is seen by a uniformly accelerated 
one to be a thermal one at the Unruh temperature, for which the conjugation 
governing the associated KMS condition is simply the PCT operator, modified by a 
certain partial inversion (Proposition 1). In view of Einstein’s Principle of 
Equivalence, this result may be interpreted as signifying that the gravitational field, 
associated with a uniform acceleration, serves to thermalise a quantum field. 

(II) The formulation of a field on a curved space-time X, of the given class, 
according to a scheme analogous to that of Wightman (cf. axioms (A.l-A.4)) is 
limited by the fact that the non-stationarity of X w.r.t. time-translations, 
t -+ t + constant, precludes the assumption of a corresponding spectrum condition. 
However, the fact that a/at is a Killing vector on the event horizon, E, permits the 
introduction of further axioms, (A.5) and (E.5, E.6), which, together with (A.l-A.4), 
implies that the field on X induces one on E that satisfies the natural analogues of the 
Wightman assumptions, including the spectrum condition (Proposition 2). Thus, we 
are able to infer that this induced field satisfies analogues of the Reeh-Schlieder, PCT 
and Bisognano-Wichmann theorems (Theorems 3-5). 

(III) From these results, we deduce that the field on the open submanifold X’+’ 
of X is thermalised to the Hawking-Unruh temperature (Theorem 8), subject to the 
additional assumption that either the dynamics of the system determines this field in 
terms of that on E (cf. (C.2)) or the field on X’+) enjoys suitable stability properties 
(cf. (C.3)). Moreover, under the further assumptions that the field on X satisfies a 
global PCT condition and that the dynamics of the system determines this field in 
terms of its value on E (cf. (Cl)), the PCT conjugation is identical with that 
associated with the KMS condition for the thermal state in X’+’ (Proposition 9). 
Thus, the quantisation of the field in X’+’ and X are essentially governed by this 
KMS condition. 

(IV) We provide an alternative scheme for field quantisation on the manifold by 
replacing (A.5) and subsequent assumptions by axioms to the effect that the field on 
X’+’ is in a vacuum-type state (cf. (B.l, B.2)). According to this scheme, the obser- 
vables in X(+’ and X(-r are mutually uncorrelated (Theorem IO). In the case of a 
Schwarzschild Black Hole, this would mean that the surface of the Schwarzschild 
sphere behaved not only as an event horizon but also as a physical boundary 
separating the systems formed by the fields on its interior and exterior. 

The two quantisation schemes constructed here are clearly based on different 
assumptions for the state Y, and thus the choice between them, in specific cases, must 
be dictated by the prevailing conditions governing the state of the field. In cases 
where the scheme described in (II) and (III) is employed, the construction of a field 
on X may be reduced to that of a field on X”) (or E) in a thermal state at the 
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Hawking-Unruh temperature, together with a dynamical law governing a global 
specification of the field on X in terms of that on X” ) (or E). In the case where 
quantisation is based on the procedure described in (IV), global properties of the field 
depend on the states in X(+) and X’-’ (vacuum on the former submanifold) and 
again a dynamical law governing the global specification of the field in terms of its 
values in A?” and X’-‘. 

Finally, it may be seen that all our results may be generalised. like the original 
Reeh-Schlieder, PCT and Bisognano-Wichmann theorems [.5,6. lb 1. to arbitrary 
fields on the manifolds concerned. 
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