1
=_Efau P'Eodv

space

(since P=0 outside v)

1

space

(E¢ due to free charges only. Ey=—VV)

1 1
=5 fau (V-VfP)dv—Ejm (V-P)V; dv

space space

1 1
=§ fsurface (VfP)-n da+ Ej all prf dv
at infinity space

(because — V-P = puouna = P»)

1
=0+ 5 fvprf dv

(since p, and P are zero outside V)

1 1
=Efvprf dv= E Lpr,, dv

(since it is immaterial whether the free charges are consid-
ered as field generating and bound charges as field sensing or
vice versa).
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Retardation and relativity: The case of a moving line charge
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The electric and magnetic fields of a line charge of finite length uniformly moving along its axis are
derived by using retarded field integrals and also by using transformation equations of the special
relativity theory. Both derivations yield the same field equations, although the derivation methods
are drastically different. In particular, whereas transformation equations generally associated with
Lorentz length contraction are crucial for the relativistic derivation, Lorentz contraction is not used
in the retarded field derivation. On the other hand, although the retarded field derivation is based on
the idea that retardation in the propagation of electromagnetic effects is a fundamental
electromagnetic phenomenon, the relativistic derivation does not take retardation into account. An
examination of the two solutions indicates that the field equations obtained classically and
relativistically are identical because retardation is implicit in relativistic transformations. © 1995

American Association of Physics Teachers.

I. INTRODUCTION

It is well known that the electric and magnetic fields of an
electric point charge movmg with constant velocity m a
vacuum can be derived by using classical electrod namics'~
as well as by using the special relativity theory.>~’ However,
if one compares classical and relativistic derivations, one dis-
covers a surprising discrepancy between them. First, whereas
the most crucial physical effect upon which classical deriva-
tions are based is the retardation in the propagation of elec-
tric and magnetic fields (or potentials), relativistic deriva-
tions make no reference to retardation. Second, whereas an
indispensable element in relativistic derivations are transfor-
mation equations generally associated with Lorentz length
contraction, classical derivations do not take Lorentz con-
traction into account. Yet, at least for a point charge, both
classical and relativistic derivations yield the same field
equations.
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There can be no doubt that retardation is a real and a most
significant phenomenon. How, then, can it be ignored in rela-
tivistic derivations? And why can Lorentz length contraction
be ignored in classical calculations involving linear dimen-
sions of moving charges without making the results of the
calculations incorrect?

Quite clearly, the answer to both questions should be ob-
tainable from a sufficiently extensive analysis of the relativ-
istic and classical methods of determining electric and mag-
netic fields of moving charge distributions. The following
considerations can be used as a foundation for such an analy-
sis.

It is well known that although in his famous 1905 article®
Einstein based his special relativity theory on the principle of
the independence of the speed of light on the motion of the
emitting body (his “Second Postulate™), the theory can be
based on Maxwell’s electromagnetic equatlons % On the other
hand, Maxwell’s equations (for fields in a vacuum) can be
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derived from the retarded integrals expressing electric and
magnetic ﬁelds of time-variable charge and current
distributions!%!

L o), 1 dled)
" 4me, —rT rc or |
1 1T |
_47reoczj7[5 dv (1)
and
[3] 1 40J] ,
=n [7 rCW]Xfudv’ @
or from
1 3J
1 [VP Tat}
E=- f dv’ 3
41e r
and
1 V’'x
=4_j[__J_]dv’ 4)

In these equations, the square brackets are the retardation
symbol indicating that the quantities between the brackets
are to be evaluated for the retarded time t' =¢—r/c, where ¢
is the time for which E and H are evaluated, p is the electric
charge density, J is the current density, r is the distance
between the field point x, y, z (point for which E and H are
evaluated) and the source point x’, y’, z' (volume element
dv'), r, is a unit vector directed from the source point to the
field point, and c is the velocity of light.

It is clear therefore that the basic electromagnetic relations
of the specml relativity theory should be compatible w1th
Egs. (1)—(4).* However, as was first recogmzed 27 Liénard,?
and as has been recently demonstrated directly,>'* the actual
computation of the electric and magnetic fields of moving
charges from retarded integrals requires the use of “re-
tarded” length of the charge under consideration. The re-
tarded length, also known as the “effective” length, is dif-
ferent from the actual length of the charge because the field
signals received at a point of observation at a particular
“present time” ¢ are sent out from the trailing end and from
the leading end of the moving charge (distances r; and r,
from the point of observation) at different retarded times
ti=t—ry/c and t;=t—r,/c. As a result, the field of the
charge appears to originate not from the actual volume oc-
cupied by the charge, but from its effective volume. But how
is the effective volume of the movmg charge taken into ac-
count in relativistic calculations?'> The fact that relativistic
and classical expressions for the fields of a uniformly mov-
ing point charge are identical (at least in their form and sym-
bols) appears to indicate that the effective volume of the
charge is implicit in the special relativity theory. On the other
hand, the actual volume of the charge distribution constitut-
ing the “point” charge does not enter into relativistic calcu-
lations (although it is used in classical calculations). There-
fore, a point charge may not be suitable for a definitive
comparison of the relativistic and classical solutions. A more
appropriate object for such a comparison is a charge of finite
dimensions.

In accordance with the above considerations, the compat-
ibility of classical and relativistic computations of the elec-
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Fig. 1. A line charge of line;i‘r?density \ is moving with constant velocity v.
The retarded positions of the trailing and leading ends of the charge are x,
and x,, respectively. The present positions of the two ends are Ly and L,,
respectively. The distance between the trajectory of the charge and the x axis
is R. The point of observation P is at the origin. The retarded, or effective,
length of the charge is longer than its true length.

tric and magnetic fields of moving charge distributions is
investigated in this paper by using a line charge of finite
length uniformly moving along its axis.

IL. DIRECT CLASSICAL SOLUTION

Consider a line charge of finite length, cross- sectlonal area
S, uniform charge density p, and linear charge density A\=p$
moving with constant velocity v parallel to the x axis of a
rectangular system of coordinates in the negative direction of
the axis at a distance R above the axis (Fig. 1). Let the point
of observation P be at the origin. What is the electric field at
P at the time ¢ when the leading end of the charge is at a
distance L, from the y axis, and the trailing end is at a
distance L from the y axis? ‘

To find the electric field of the moving charge by using Eq.
(1) or Eq. (3), we need to know the retarded position of the
charge corresponding to the time for which the field is com-
puted.

First, let us determine the retarded position x, of the lead-
ing end of the charge corresponding to the time ¢, that is, the
position from which the leading end sends out its field signal
which arrives at P at the time ¢. If the retarded distance
between P and the leading end is r,, then the time it takes
for the signal to travel from the leading end to P is r,/c.
During this time the charge travels a distance v(r,/c). There-
fore, at the moment when the leading end sends out its field
signal, the position of the leading end is

x2=L2+r20/C. (5)

Next, let us find the retarded position x; of the trailing end
of the charge corresponding to the time ¢. If the retarded
distance between P and the trailing end is 7, , then the time it
takes for the signal to travel from the trailing end to P is
ry/c. During this time the charge travels a distance v(r,/c).
Hence, at the moment when the trailing end sends out its
signal, the position of the trailing end is

x1=L,+rv/c. ()]
A. The x component of the electric field

We are now ready to find the electric field of the charge by
using Eq. (1) or Eq. (3). The easiest way to find the x com-
ponent of the electric field of the charge under consideration
from retarded integrals is to use Eq. (3). According to this
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equation, the x component of the field is due to the x com-
ponents of [V’p] and [dJ/o¢] of the moving charge. For the
line charge under consideration, these components exist only
at the leading and trailing ends of the charge and are the
same as for the moving charged prism discussed in two re-
cent publications:>** [V'p],=p/w for the leading end and
[V'pl,=—p/w for the trailing end [a)/ot],=—vip/w for
the leadmg end, and [d)/at],=v?p/w for the trailing end,
where w is the thickness of the surface layer of the charge
(this is the actual thickness, not the retarded one; for an
explanation of the difference between the two thicknesses
see Ref. 3). Since the surface layer of the charge may be
assumed as thin as one wishes, the retarded volume integral
in Eq. (3), as far as the x component of the field is con-
cerned, reduces to the product of the integrand and the vol-
ume of the surface layers of the leading and trailing ends of
the charge at their retarded positions. For the leading end,
this volume is, using the asterisk to indicate values evaluated
at retarded positions,>!*

wS

wyS= T yirac’ )
and for the trailing end it is
N wS
wiS= = vyire’ 8
The x component of the electric field is therefore
pS(1—-v?/c?) 1
2 417€ (rz[l—(rz-v)/rzc]
1 .
e ©
or
A1 —v%/c? 1
= ( 47760/ : (rz—xzv/c rl—xlv/c)' (10)

Equation (10) gives the electric field in terms of the re-
tarded position of the charge. We shall now convert it to the
present position of the charge (that is, the actual position of
the charge at the time ¢). First, we note that, by Eq. (5),

Li=x3—2x,ru/c+riv?/ct (11)

Next, we write the denominator of the first fraction inside the
parentheses of Eq. (10) as
ry—xv/c=[(r,—x,v/c)?]"?
= (r%— 2rxv/c +x§v2/c2)1/2. (12)
Adding and subtracting x? and r3v%/c? to the right side of
Eq. (12), we then have
ra—xs0/c=(ra~2rx,v/c+xw%c?+x3—x3
+r§v2/cz—‘r§z}2/cz)1/2. (13)

Let us now collect the terms on the right side of Eq. (13) into
three groups

x§~2r2x2v/c+r%v2/cz, (14)

r3—x3, 15)
and

x2v?/c?—r3v?/c2. (16)
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By Eq. (11) the first group represents L3; the second gro 2p
is simply R* (see Fig. 1); and the third group is —R%v?/c”.

Similar relations hold for the denominator of the second
fraction inside the parentheses of Eq. (10). Therefore, Eq.
(10) transforms to:

_)\(l—vz/c2) 1
** 4meR | (LYR*+1-v¥/c?)17?

1
T (LYR*+ 1—u2/c2)1/2}’ 17

where only the present time quantities appear.

B. The y component of the electric field

The easiest way to find the y component of the electric
field of the charge under consideration by means of retarded
field integrals is to use Eq. (1). Only the first integral of Eq.
(1) makes a contribution to the y component of the field,
because dJ/dt has no y component.>'* Separating this inte-
gral into two integrals, we then have

1 [p] 1

1 9
R do'— [p] .

dmey) e of R4V
(18)

The first integral in Eq. (18) is the same as for a stationary
charge, except that the integration must be extended over the
retarded (effective) length of the charge. Designating the
contrlbutxon of the first integral as E;, and noting that
r=(x"2+R*", we obtain

p ,
f’jR dv

Ey: - 47T€0

pS 1 R ,
=_4'rreo o (x'2+R%)32 dx (19)
2

or

5 A
™ 47egR

X1 X2
(xf+R2)”2 (x§+R2)”2

___A (’2_ _z) 20)

47T€0R ry rp

In order to evaluate the second integral of Eq. (18), we
must determine the value of the derivative d[p]/dt.

Let us suppose that some stationary charge distribution p
is given as a function of position coordinates x’,y’, and z’.
If this charge distribution moves with velocity v, it becomes
the same function of x"—v,t, y'—v,t, and z' ~v,¢. If the
charge distribution moves and is expressed in terms of the
retarded time ¢’ =¢—r/c, it becomes the same function of
x'—v (t=r/c), y'—v,(t—r/c), and 2’ —v (t—r/c), or

[o]=plx'—v (t—r/c),y’ —v,(t—r/c),

z'—vz(t—r/c)], (21)

where v, , v, and v, are now the components of the veloc-
ity of the charge at the retarded time (and therefore at the
retarded position) of the charge. It is this latter function
whose derivative appears in the second integral of Eq. (18).

In order to evaluate this derivative, we must take into ac-
count that the distance r changes as the charge moves. The
rate of change of this distance at the retarded time is
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gr o(rr)'? 2r-(ar/dt') 1w
o' 2em

(Note, with increasing t', r increases, so that for the charge
under consideration Jr is opposite to v). As we shall pres-
ently see, to find the derivative appearing in Eq. (18), we
also need the derivative d¢'/dt expressed in terms of r and v.
This derivative can be found as follows. Differentiating
t'=t—r/c, we have

(22)

o' d(t—r/c 1 or ot

e @)
or

o' 1

ot 1+(ar/at)lc, (24)
which, with Eq. (22) bgcomes

o' 1

= 25
ot 1—(r-v)/rc (25)

We are now ready to find i p)/d¢. Differentiating Eq. (21)
and taking into account that in the case under consideration
the only component of the velocity is v, , we have

ool _ dp) _a(t=ric)
at  dt—ric)y ot
_ el o dlp) o
S W=l a T a Ve (26)
or, replacing v, by —v and using Eq. (25),
ap] v dlp]
ot |1—(r-v)/rc] ox' " @7)

We can now compute E,,. Substituting Eq. (27) into Eq.
(18), we have

Eo = 1 f v dlp]
27 Amegc)] rP—r(r-v)ic ox'

where all the quantities refer to the retarded position of the
charge. Since p is constant within the charge, the derivative
d[p]/dx' =0 within the charge, so that the only contribution
to d[p]/déx’ comes from the surface layer of the charge,
where p changes from p (inside the charge) to 0 (outside the
charge). Let the thickness of the surface layer as seen at the
retarded position of the charge be w1 for the trailing end and
w} for the leading end.>'* We then have 9[p]/dx’ = — p/w}
for the trailing end and 3[p]/dx' = p/w3 for the leading end
of the moving line charge. The electric field E,,, is therefore

R dv’, (28)

vp/wy )

R
E2y=—4we0cf722—r2(r2-v)/c b2

;R f vp/wi dv} ' (29)
dmegc) r2—ri(r;-v)/c 1>

where the integration is over the surface layers of the leading
and trailing ends of the charge at the retarded positions of the
charge. Since the thickness of the surface layers is much
smaller than ry and r,, we can replace the integrals, as be-
fore for E ., by the products of the integrands and the vol-
umes of integration (the volumes of the respective surface
layers). Using Eqs. (7) and (8), we then have
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vp/wy

*
wyS
rg_rz(rz'V)/C 2

*
— o — - WS,
rl—rl(rl-v)/c 1 :|

AUR 1 1
- daregc | ry(ro—x,v/c)

R i
Ey=- 4reyc [

vp/wi

| o

r1(r1—xlv/c)

Adding Egs. (20) and (30), we obtain for the y component of
the field

E Nx R%v/c X3 R%v/c
v 47"50R;1_ ri(ri—xle) ry ryry—xwlc)|
B A [x(ri—xw/c)—R%/c
- 477'60R rl(rl—xlv/c)
x,(r,—xv/c)—R%/c (1)
ro(r,—x5v/c) ’
or
A xr1—xjv/c—R%/c
Ey== 4meR ri(ri=xv/c)

x2r2—x§v/c—R2v/c} 2
rao(ra—xpv/c) '

But x2v/c+R%*v/c=riv/c and xiv/c+R%/c=riv/c.
Therefore,

B A (xﬁ*rlv/c xz—rzv/c. 33)

Ey__47T€0R r2—x2v/c
Now, by Eq. (6), x;—rv/c=L,;, and by Eq. (5),
X,—ru/c=L,. Substituting L, and L, into Eq. (33) and
transforming the denominators to the present position quan-

tities by means of Eqgs. (11)—(16), just as we did in Eq. (10),
we finally obtain

ri—~xwlc

I L,
Y 4megR? | (LY/R*+1-0v3/c?)?

Ly
(LYR*+1 -vz/cz)m]' G4

C. The magnetic field

Although we could find the magnetic field of the moving
line charge from Eq. (2) or from Eq. (4), it is much simpler
to find it from the electric field of the charge. As is shown in
Ref. 3 on the basis of Egs. (3) and (4), the magnetic flux
density field B of any uniformly moving charge distribution
is always

B=(vXE)/c?, (35)

where E is the electric field of the moving charge distribu-
tion. Therefore, the magnetic field of our moving line charge
can be easily found from Eqs. (17), (34), and (35). Since the
computation is trivial, we shall omit it here.

III. DIRECT RELATIVISTIC SOLUTION

We shall now find the electric field of the moving line
charge by using transformation equations of the special rela-
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tivity theory. Let us suppose that the charge is at rest in a
reference frame 2" which is moving with velocity v relative
to a reference frame 3, along their common x axis in the
negative direction of the x axis. Let the origins % and 3’
coincide at =0, and let the position of the charge in 3 be
the same as the “present position” of the charge shown in
Fig. 1. Viewed from the 3, frame, the charge appears then to
move with velocity v in the negative direction of the x axis.
In the 3. frame, where the charge is at rest, the x component
of the electric field of the line charge is!'®

’ A 1 1
Ex_4ﬂ'€0R’ (L{Z/R’2+1)1/2 (Léz/R12+1)1/2 *
(36)

where the primes indicate that all the values are those mea-
sured in X', '

To find the corresponding electric field in the 3, frame, we
use the following transformation equations'’ for E,, R, p,
and L (observe that v is in the negative direction of the x
axis):

E.=E,, (37)

p=7y(p'—vJ)/c?), (38)

R’'=R, (39)

Li=y(L{+vt), (40)
and

Li=vy(Ly+vt), (41)
where

y=1(1-v%/c?)2 (42)

Choosing =0 for the time of observation in 3, and noting
that J,=0 because the charge is stationary in 3, we then
promptly obtain for the x component of the electric field in %,

_AM1-v¥c?) 1
*" 4megR | (LYR*+1—v?/c?)V?

1

(L%/R2+1—v2/cz)”2}’ “3)

which is the same as Eq. (17) that we obtained by using
classical retarded field calculations.

To find the y component of the field of the moving line

charge, we first find the y component of the charge in the 3

frame, where the charge is stationary. From Eq. (34) or by a

direct calculation using electrostatic equations,'® we have
) A L, L]
Y 4mwegR™ (LR 2+ 1)V (LIYR'+1)Y?]

(44)

Using again the transformation %iven by Egs. (38)—(41) and
also the transformation equation'’

E,=y(E,—vB)), (45)
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and taking into account that the charge produces no magnetic
field in 3" (because the charge is at rest there) we immedi-
ately obtain from Eq. (44)

oo L,
Y 47r€4R? (L%/R2+1—v2/cz)”2

L,
(LYR*+1 —vz/cz)l/z}’ e)
which also is the same as Eq. (34) obtained from classical
calculations.
As in the case of classical derivations, there is no need to
do a separate derivation of the magnetic field of the charge,
because Eq. (35) is correct also relativistically.!

IV. SOLUTION IN TERMS OF POINT-CHARGE
FIELD

In 1888, Heaviside,! by using his operational calculus, ob-
tained the following equation for the electric field produced
by a point charge g moving with constant velocity v:

4 (1-v?/c?)
 dmeor [1- (¥ D)sin® 677 "

where r is the distance between the point of observation and
the charge, ¢ is the velocity of light, and 6 is the angle
between r and v. The same equation results from the retarded
potential integral,? from the retarded field integral, Eq. (3),3
and from the relativistic transformation of the electric field of
a stationary point charge.5 -7 We can use Eq. (47) for deriving
the electric field of the moving line charge as a test of the
solutions obtained in Secs. II and I1.2%* Integrating the x
component of Eq. (47) between L, and L,, we obtain for E

@7

N (L (1-v?%c?)

- f 3 YR T  X dx
4mey ), r’[1—(v*/c*)sin” ]
AM1-v?c?) (L x dx

h 4meg L, [Jc2+R2(1—v2/c2)]3/2

_AM1-v%/e?) 1

© dmeR | (L3/R*+1-v?/c?)V?

E.=

1
- (LYR+1 —uz/cz)l/z]' “8

For E,, we similarly obtain

E - A J‘Ll (1-v%c?) Rd
Y 47, Ly r[1-(v¥c?)sin® 9132 x
_ Ml—vz/cz)Rle dx
T 4mey )i, [PHRMA-vA)?

x[ L,

T 4mweoRE | (LYR*+1-02/ D)7

L,
- ) 49
(L3/R*+1 —vz/cz)”z} “9)

These are exactly the same equations that were obtained in
Secs. II and III.
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V. CONCLUSIONS

The fact that our classical and relativistic derivations of
the electric and magnetic fields of the moving line charge
yield the same field equations clearly shows that retardation
in the propagation of electromagnetic effects is implicit in
relativistic electrodynamics. However, the reason why Lor-
entz contraction can be ignored in the classical solution pre-
sented in Sec. IT as well as in the solution presented in Sec.
IV remains unclear.? A further analysis of the obtained equa-
tions is therefore needed.
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MARCONI’S ACHIEVEMENT

Hats off to these inventors in bearskins and bark shoes. The man who first used deftly inserted
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existence.

THE LIMITATIONS OF PHYSICS

What is surely impossible is that a theoretical physicist, given unlimited computing power,
should deduce from the laws of physics that a certain complex structure is aware of its own
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