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The equations of motion of a charged particle moving in a general Riemannian space 
are derived. A vierbein treatment is adopted in contrast to the tensorial procedure of 
Dewitt and Brehme [see Ann. Phys. (N. Y.) 9, 220 (1960)] with a subsequent simplifica- 
tion of computations referring to the world tube. The resulting equations of motion 
differ from those of Dewitt and Brehme by the inclusion of terms involving the Ricci 
tensor. This discrepancy appears to be due to an error on the part of the above authors, 
which is discussed in the text. 

INTRODUCTION 

Before embarking on any theory of the electron it is necessary to state to which 
model the analysis applies. In the work that follows we will be considering a point 
model for the electron in which we have the field equations holding all the way up 
to the electron’s center, which would then appear as a point of singularity. 

In this simple model the difficulty now arises that if we accept Maxwell’s theory, 
the field in the immediate neighborhood of the electron has an infinite mass. A 
possible line of attack to overcome this difficulty is to modify Maxwell’s theory so 
as to make the energy of the field around the singularity finite, however this leads to 
great complexity. 

Proceeding from the opposite point of view, Dirac (I) retained Maxwell’s 
theory to describe the field right up to the point of singularity, and then surmounted 
the difficulties associated with an infinite energy by a process of direct omission or 
subtraction of unwanted terms. Thus he obtained a theory that could be used to 
calculate all the results obtainable from experiment, rather than a model for the 
electron. 

Hadamard (2) pointed out the fact that a plane or spherical sharp pulse of light, 
when propagating in a curved four-dimensional hyperbolic Riemannian manifold, 
does not, in general, remain a sharp pulse, but gradually develops a “tail.” This 
effect originated from the fact that the vector and scalar wave equations had solu- 
tions not only on the null cone but also inside the timelike portions of the null cone. 

In the covariant generalisation of Dirac’s work, De Witt and Brehme (3) utilized 
this result of Hadamard’s to show that in a general Riemannian manifold electro- 
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gravitic bremsstrahlung occurred in addition to the usual radiation-damping 
effects. This interaction having its origin in the failure of Huygens’ principle, was 
then found to modify the ponderomotive equations to the extent of an integral 
over the whole past history of the particle. They interpreted the “tail” as a sort of 
scatter process, with the “bumps” in space-time playing the role of scatterers that 
allow the radiation field originating in the particle, which normally “outruns” the 
particle, to act directly back on the particle. 

Although gravitational fields cannot be distinguished from inertial fields by any 
experiment conducted on a purely local basis, they can be distinguished over an 
extended region by experiments which measure field gradients, i.e., which measure 
the second derivative of the potential. In general relativity the potential is the 
space-time metric, and the second derivatives of the metric can be expressed uni- 
quely by the components of the Riemann tensor, which describes the “true” 
gravitational field. It would therefore not be surprising if, when radiation reaction 
is included, we find the Riemann tensor entering explicitly into the dynamical 
equations of a charged particle moving in a gravitational field. The surprising 
result obtained by De Witt and Brehme was that the Riemann tensor made no 
such appearance. 

This paper gives a vierbein formalism of radiation damping that possesses 
distinct advantages when compared with the tensorial treatment. With the aid of 
the propagated vierbein, a natural coordinate system is developed and all relevant 
tensorial equations are resolved into equations invariant with respect to coordinate 
transformations. This procedure tends to simplify the working especially in the case 
of computations referring to the world tube, and enables one to draw a striking 
analogy with the corresponding treatment in flat space-time. As we shall see later, 
the results obtained here differ from those of De Witt and Brehme in that the 
Riemann tensor makes an explicit appearance in the equations of motion which, 
as stated before, was a physically expected result. (This difference appears to be 
due to a computational error on their part and will be discussed later in section 
V.) 

Section I is essentially a resume of De Witt and Brehme’s investigation using 
vierbein techniques. A quasi-Cartesian coordinate system with varying base point 
is developed, and these coordinates, rather than the derivative of the characteristic 
function, are used as the springboard for the covariant expansion techniques. In 
Section II we refer the vector wave equation to the components of the vierbein, and 
the resulting wave equation is solved in terms of invariant (“bein” index) Green’s 
functions whose properties are then derived. The Lorentz invariant form of the 
equations of classical electrodynamics can be obtained in two ways. We can 
construct the Lagrangian for a structureless point particle in terms of invariant 
field quantities and apply the principle of stationary action for independent varia- 
tions in the dynamical variables x(=) and Ata) (position and vector potential) 
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referred to the vierbein, see Sciama (4). However in Section III we give a direct 
conversion of the well-known tensorial equations in order to preserve a direct 
comparison with the work of De Witt and Brehme. In Section IV we find that our 
choice of coordinate system enables us to give a very simple, essentially flat space, 
formalism for the construction of the world tube. Finally, in Section V, we compute 
the energy-momentum balance of the particle by integrating the stress tensor over 
the surface of the world tube. The equations of motion, including radiation 
damping, then follow after a classical mass renormalization. 

I. CONSTRUCTION OF THE CHARACTERISTIC FUNCTION 
AND THE PROPAGATED VIERBEIN 

Let P(x) and P’(x’) be two points of space-time joined by a geodesic J? If, as we 
shall assume, I’ is unique for the points P and P', then the Characteristic function, 
denoted by 0(x, x’), is a function of these two points and defined by the equations 

~g%.pu.” = CT, I I +g” ” U.+‘U.” = u, (1.1) 

lim CT = [u] = 0, 
Z’+Z (1.2) 

where gr” is the contravariant metric tensor at P, dots denote covariant differentia- 
tion, and dashes refer to quantities evaluated at P'. Hereafter the bracket notation 
of (1.2) will be used to denote the coincidence limit of the function contained 
[c.f. Synge (S)]. 

The coincidence limits of the covariant derivatives of the Characteristic function 
are obtained by repeatedly differentiating (1.1) and using (1.2), we find 

b.,l = 0, (1.3) 

[u.J = gw 3 U-4) 

b.,“Kl = 0, (1.5) 

our convention for the Riemann tensor being 
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Using these results and covariant expansion techniques we can form the expansions 

U-F” = glLy + QRpKyPu.Ku.p + O(?), (1.7) 

u-p,,, = +&v + R,PvJ 0.p + W2), (1.8) 

u’PKP = W,wp + RppvJ + O(s), (1.9) 

where “S” is the measure of the geodesic PP'. 
Consider now the timelike world line of the particle on which the proper time 

T’ acts as parameter. At a point TV construct an orthonormal vierbein whose timelike 
component is the four-velocity, z?,(T,,), of the particle. Under Fermi-Walker 
transport, this component remains tangential to the curve [see Synge (5).] The 
combination of this with the orthogonality relation produces the result that our 
construction also provides us with an orthonormal triad orthogonal to the particle 
world line. If pp’ are the vierbein components, the law of Fermi-Walker Transport 
along the particle world line can be written 

D& = /.L&W, i= 1,2,3, (1.10) 

where D = a/&’ is the absolute derivative. The boundary condition at r,, is 

(1.11) 

At a given point, Z,,(T), on the world line, construct a geodesic to the point “x”, 
(Fig. 1). Introduce on this geodesic an orthonormal vierbein, hy’, which is propa- 
gated under Fermi-Walker transport along the geodesic according to the laws 

gYoh~)(S).yu.o = 0, (1.12) 

lim h”(s) = &)(T’), (1.13) 
8-d 

where “s” is the measure of the geodesic and “0” is its Characteristic function. We 
have now induced an orthonormal vierbein at the field point “x” in terms of a 
given vierbein, p,!“‘(Z(To)), and Fermi-Walker transport, first along the world line 
then along the connecting geodesic. We raise and lower the covariant components 
of the vierbein with use of the metric tensor in the following manner 

(1.14) 
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TO Vv0RLD LINE 

PARTICLE 
WORLD LINE 

‘GEODESIC WITH 
CHARACTERISTIC 
FUNCTION G=fS’ 

FIG. 1. Construction of the field point. 

The conditions for orthonomality can be written as 

&P”(B) = %%43) = VW 7 
where 

(1.15) 

7~) = v+@) = diag(1, 1, 1, -l), (1.16) 

a diagonal invariant matrix with the elements indicated; it satisfies the relation 

71 by) rl(By, = 4A (1.17) 

the right-hand side of (1.17) being the Kronecker delta. 
The “bein” indices on the vectors have no tensorial meaning but nevertheless 

we shall raise and lower the indices by means of the T-matrix. Thus we define 

X(dP = ,I’“B’q,) 3 A’“’ = +@)h(@, P 7 (1.18) 

and deduce by (1.17) 

xl;,, = q(upPP, h&l = 71(&p. (1.19) 

Now (1.15) may be written more neatly as 

jy )jp = 0: P 6 fl R1 (1.20) 

595/47/I-10 
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and it is an algebraic consequence of this that 

hf ,jp = 0 ” 6 p Y  * (1.21) 

We next define the invariant “coordinates” of the point “xl’ with respect to the 
vierbein at z,(S), by the relation 

xL4 = -g ~la)p ‘P 9 (a = 0, 1,2, 3). (1.22) 

These quasi-Cartesian coordinates become Fermi and Optical coordinates when 
the geodesic is orthogonal to the particle world line and null, respectively. 

Using (l.l), (1.21), and (1.22) we see that our coordinates satisfy the relation 

x(=)x(*) = cJ.$%7.“X~,) = gP”CL,a., = 20. (1.23) 

Corresponding to (1.3)-(1.6), we can obtain knowledge of the vierbein propagation 
along the geodesic by differentiating (I. 12); we find 

X’“’ P.Y&J.” + X(e)p.ydp = 0, (1.24) 

X’“’ p~“pp.y + x(“)p.vpfJ.vq + x($&7.; + h(‘),.,a.“,, = 0, (1.25) 

from which it follows that 

V)J = 0, (1.26) 

[A’“’ wpl = ~Rvpg?‘k,‘a’, (1.27) 

after use has been made of the identities satisfied by the Riemann tensor. The 
particle traces out a world line in space-time given by a set of functions z,(T’). 
Dots over the z’s will be used to denote absolute covariant differentiation with 
respect to the parameter T’. Thus 

P = dz*/dr’, (1.28) 

(1.29) 
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Use of absolute covariant derivatives enables us to write the /-derivatives of any 
scalar function 4 of the z’s in the covariant forms 

4 = gyp, (1.31) 

d; = &.p%” + &p, (1.32) 

(1.33) 

‘$ = 4 .,",pi;p~"&%p + 5~.,,Y~"~" 

+ qi,&%"iJ" + 4c$.,"7%" 

+ 3&j?%" + $.,‘2’“, etc. (1.34) 

The quantities (1.28), (1.29), and (1.30) will be referred to the vierbein components 
with the notation 

*(a) = ,p~‘h’“’ 
P ’ (1.35) 

&) = .&j(o) 
P ’ (1.36) 

*.yd = -;./Lp eL , etc. (1.37) 

Using the expansions (1.7)-(1.9), (1.26) and (1.27), and Eqs. (1.31)-(1.34), and 
repeatedly differentiating (1.22), we can obtain expansions for the absolute T’ 
derivatives of the invariant “coordinates” of the point “x” as follows 

&“) = &) _ QRp"P%."o.pt"~) + O(s3), (1.38) 

D2x’“’ = &a) + $R,","a.,f"dY(') + O(s'), (1.39) 

D3xM = --‘g G) + O(s). (1.40) 

Similarly from (1.37), using (1.26) and (1.27), we find 

D.8 = ,d") + ~RyP$%%"ctp + O(?), (1.41) 

p*(a) = *g(=) + O(s). (1.42) 

Of course, since 7’ measures proper time along the particle world line, the following 
relations hold: 

gGP,&” = -1; (1.43) 
g,$&:” = 0; (1-W 

g2”‘z” = 
-gfis” = 42. (1.45) 
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A b&scalar of fundamental importance in the theory of geodesics is given by 

A = - j -u.,,f, I * I I@‘“’ ~L,(x)l 

= -g-l I -a.@‘6 I) (1.46) 

where 

f(x, z) = g’yx) gl/2(z) = f(z, x), (1.47) 

is a bi-scalar density of weight 1 at both x and z. The dashes in (1.46) refer to 
evaluation at the field point X. An important qualitative law concerning the bi-scalar 
d can be obtained by repeatedly differentiating (1. l), first with respect to the field 
point and then with respect to the particle point, thus 

I , 
U.p’Cd = g” p u.,‘,u.p’~’ + I , go p u.o’u.p’p’a . 

If u.-lp’= is the inverse of u.~‘~ satisfying 

a.--lP’%. Y’OL = 8;; , a.-l”‘Bu. wl-J = &,a, 

then (1.48) can be written in the form 

4 = 1 -u.v’p 1 (I -u.p’ar 1 U.“‘>$ . 

Also, noting 

g..* = g,u, - p,v,j g - 0, I 
CL’) -_ 

we see from (1.46) and (1.50) that the bi-scalar fl satisfies the equation 

A-l(Au.p’).; = 4. 

(1.48) 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

This equation determines the amount by which A decreases or increases along 
each geodesic according as the rate of divergence of neighboring geodesics, 
measured by u.P’~, , is greater or less than 4, the rate in flat space-time. 

Finally, using (1.7), (1.26), and (1.27), we see from (1.46) that A has the expansion 

A = 1 - +R~‘~‘u.,p.,~ + O(s3), (1.53) 

our convention for the Ricci tensor being 

R,, = goLRwvn > R = gpvR, . (1.54) 
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Il. SOLUTIONS OF THE INVARIANT WAVE EQUATION 

In this section we look for solutions of the vector wave equation referred to the 
components of the propagated vierbein and given by 

&cA,.yog”u + R;‘-4} = 0. (2-l) 

To do this we first introduce the invariant components of A, evaluated on the 
vierbein and given by 

4,) = &q4, (2.2) 

with the dual relations 

From (2.3) we have 

A, = A(&‘. (2.3) 

g’“A,*, = A(,) ,(By)X’y’“h~B’X~’ + A(,)h’“‘,.,’ 

+ A~,,,(B){2X(B)uh(~)~.” + A’p’,.“h’,“‘}. (2.4) 

Substituting (2.3) and (2.4) into (2.1) we can write the invariant wave equation in 
the alternative form 

Following Hadamard (3) we look for an elementary solution of the form 

and using (1.23) we compute 

(2.6) 

(2.7) 
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m&d = 0, (2.9) 

then combining (2.6~(2.8) we see that the vector wave equation (2.5) can be 
written as 

+ ~-l(m%d + %c) + @%6.~.~pJJy~ + WR.“~,@)) 
+ mw) loi3 I u I + fww)l = 0. (2.10) 

In order for this expression to vanish the coefficient of the logarithmic factor must 
vanish everywhere, and the coefficients of the singular factors u-2 and u-r must 
vanish at least on the light cone. This is achieved most simply by taking the coeffi- 
cient of u--2 to vanish everywhere so that we have 

To find the complete solution to (2.11) we require some knowledge of the diver- 
gence of the vierbein. We find this in the following manner: 

RhB) = @!%jd - rl@%@y) 

= 0.“” - 4, 
from (1.23). 

Comparision of this equation with (1.52), gives the identity 

(2.14) 

A@’ y Y. u,(p) FE -A-l&u.’ = -klA,,,u,@! (2.15) 
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This is a most interesting equation; it shows that we can use the propagated 
vierbein, instead of the bi-scalar d, to determine the rate of divergence of neigh- 
bouring geodesics. A result of this form was to be expected possibly, since each 
geodesic is determined uniquely by the vierbein and an associated direction, the 
equation (2.15) is notably of the second order in the geodesic distance. The 
appropriate normalisation condition for the invariant tics,) is 

bwl = WSr) . (2.16) 

Equations (2.11) and (2.16) serve to define ucs,) uniquely. Noting the relation (2.15) 
we find 

%<) = ~l’Zrltsd * (2.17) 

The solutions, for ucSC) and WC,,) , of Eqs. (2.12) and (2.13) are most easily obtained 
by expanding the functions in a power series 

(2.18) 

and obtaining the recurrence formulas for the coefficients. However, it will suffice 
for our purposes to note that the limiting condition on ZI(~S , as obtained from 
(2.11) and (2.17) with 

rl’~+w,t&, = - wmd + W), (2.19) 

from (1.53) and (2.18), can be written, with use of (1.2), (1.3), (1.26), and (1.27), as 

%,) = -HqL”~‘i,,4& - Q&d + w. (2.20) 

The elementary Green’s function, given by (2.6), therefore takes the form 

from which the symmetric Green’s function, which is a solution of the inhomoge- 
neous wave equation, can be obtained by moving into the complex plane. We 
introduce the Feynman propagator 

GT8<, zx & I!%$ 
u + zo + %d lodu + io> + W(s3 3 I 

and then separate it into real and imaginary parts 

(2.22) 

(2.23) 
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Using the formal identities 

(CT + iO)-1 = 9’0-1 - %+8(a), (2.24) 

log(0 + 2.0) = log ] u ] + 7&(--a), (2.25) 

where 

(2.26) 

we find for the “symmetric” Green’s function, GcsG) , 

Gsr) = &-Y W2md+) - w~(->>. (2.27) 

We now define the various Green’s functions 

G;,e,t,(x, z) = 2GW, 4 Gdx, 4, (2.28) 

G~~CG 4 = 2’4~ &4l Gdx, 4, (2.29) 

Gs,) = G% - 6:; 3 (2.30) 

where Z(x) is an arbitrary space-like hypersurface containing x, and &Y(x), z] = 
1 - 19[z, Z(x)] is equal to 1 when z lies to the past of L’(x) and vanishes when z 
lies in the future. These various Green’s functions satisfy the equations 

Go,, = W;$ + G%), (2.31) 

ff(‘%,,) = WG:$> = W% = -rlcsc,I 
-l/2*(4) 

9 (2.32) 

W%c,) = 0, (2.33) 

and the symmetry properties 

Gdx, 4 = -Gtrdz, 4, (2.34) 

GI;~kx, z) = G%k 4, (2.35) 

Gs&, 4 = Gdz, 4, (2.36) 

%d(X, 4 = %& 4. (2.37) 

Finally it should be pointed out that (2.13) and (2.18) leave I++,(~~) arbitrary in the 
solution for w(~,) which corresponds to adding to Go) any singularity free solution 
of the wave equation. However this arbitrariness disappears in the solution for the 
symmetric Green’s function Gtss) . 
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III. THE VECTOR POTENTIAL 

The dynamical equations for a structureless point particle of charge “e” and 
“bare” mass m, , interacting with an electromagnetic field F,, in a space-time of 
arbitrary fixed metric, are given in nonrationalized relativistic units by 

(3.1) 

(3.2) 

and the corresponding law for the stress density of the system 

Tpy = 0, .Y (3.3) 

where.p is the current density and 

F,, = 4, - A,.,, . 
In the Lorentz gauge, 

gp”A,.,. = 0, 

substitution of (3.4) into (3.2) yields the equation 

-4,ja = g1’2(g”“AY, + RV@A”), 

(3.4) 

(3.5) 

(3.6) 

or, upon introduction of the vierbein propagated between z and x, 

-4rj’“’ = g112ff(A(“)), j’~’ = j”h’“’ 
P ’ 

of which particular solutions are given by 

(3.7) 

(3.81 

(3.9) 

yielding the retarded and advanced proper fields of the particle 

Ft:k”, = (Ay’.“,” - A;::) &&, 

=A 
ret 
@).(a) - A;:;,Q, + &%cc,~idY’u., - ~?J, 

&$ = <A:: - A:py”> %XI;B) 

=A 
adv 
(B).(d - &?(,, + A$%&dY’,., - ~(y)fiJ- 

(3.10) 

(3.11) 
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It can be easily shown that the solutions (3.8) and (3.9) satisfy the Lorentz 
condition corresponding to (3.5). 

The total field may be expressed in the alternative forms 

(3.12) 

which serve as definitions for the fields F,‘,n,, and F$ . Another useful form is 

The fields PQ,, and Ft$t may be expressed in terms of potentials & and Af$’ 
which are defined by integral expressions of the form (3.8) and (3.9), involving the 
functions G,,, and G(,,) , respectively. The various fields thus defined satisfy 
the equations 

1Il 
out [ 1 

in 
[ 1 

in 
out out 

free free free 

F 
rad t&p) 

da) + F 
[ 1 rad (“@j+$‘&,~,‘“’ + F rad ‘“B’,\cp,“.v = 0. (3.18) 

Substituting the explicit forms (2.26)-(2.28) and for the current density 
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and designating retarded and advanced by “-” and “+” respectively, we get 

= fe s” {A1’2q(,8) S(a) - q&-?-CT)} s?@) dr’, (3.20) 
7z 

where Q is the value of the proper time at the point of intersection of the world 
line of the particle with arbitrary spacelike hypersurface Z(X) containing x. 

Changing the variable of integration from T to 0, noting that 

u, = 0(x, T&“) > 0, (3.21) 

0(x, z(-+ cc)) = - co for non-“runaway” trajectories, (3.22) 

da = u,(,,+‘dT’ = bd+, (3.23) 

and defining the advanced and retarded proper time T +  , of the particle relative 
to the point x by 

we find 

u(x, z(‘i)) = 0, 

7-t > 7.~9 3-e < 72, (3.24) 

These are the invariant forms of the covariant Lienard-Wiechert potentials referred 
to the components of the propagated vierbein. 

The corresponding field strengths can be obtained from (3.10) and (3.1 l), with 
use of (3.20) and the properties of the Dirac delta function, we find 

+ 
wY~f(Y)%) - %& (Y) U,@) 

Da I 7'-7* 
F e jim (U&J,(,) - q,,) .(d 2;“’ dT’ 

r* 

(3.26) 
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Finally, it should be made clear that (3.25) and (3.26), were derived under the 
assumption that u is single-valued. Even though this may be true for the leading 
terms, which involve the behaviour of the particle only at the retarded and advanced 
proper times, it will not generally be true for the “tail” terms involving integrations 
over the whole past or future history of the particle. However, since the wave 
equation is linear, the superposition principle holds, and it is clear that the approp- 
riate ~(9 to use in the “tail” terms is the sum of the U’S for all different geodesics 
between x and z, each term in the sum representing the contribution of an 
elementary wave. 

IV. THE WORLD TUBE 

In this section we construct a three-dimensional hypersurface about the world 
line of the particle, the world tube, generated by a small sphere surrounding the 
particle as time varies. In the vierbein notation of Section I, the generating sphere 
of radius t, as time varies, produces a hypersphere defined by 

20 = ~(~~)X(“)X’~) = 8, (4.1) 

r)(,8)x’~w’ = 0, (4.2) 

the second equation arising from the orthogonality of the spatial components of 

FIELD POINT X“’ 

WORLD TUBE 

FIG. 2. The world tube. 



RADIATION DAMPING. I 157 

the vierbein with respect to the four velocity of the particle at time 7. The A+) used 
here are the special coordinates defined in section 1 by the relation 

$4 zz --a.,+‘~i). (4.3) 

Let a~(~) be an arbitrary displacement, of the point x(~), within the hypersphere 
defined above; see Fig. 2. This variation produces a corresponding displacement 
in the proper time r’, which we denote by &‘. Writing D = 6/&‘, the variation 
of Eqs. (4.1) and (4.2) are 

~/(~~)xWix’~) + ~~,a~x’~)Dx’~W = 0, 

7j(~$X’“W) + qc,,NDx’“’ + ~~~o)x(~)DWB.’ = 0. 

By (4.2) we also have 

Tcmba,x’“‘Dx’a’ = &D(qcmB,x’“‘x’B’) = Da = u.$~ = -x(,)f’=) 

and hence (4.4) and (4.5) may be written in the form 

7)(,$,,(43X’~ = 0, 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Now (4.7) shows that the normal to the surface is in the “direction” of the invariant 
bein vector xfoL) and (4.8) shows that if we split up “ax” into a part 6,x orthogonal 
to z+) and a part 6,x parallel to ,@) the magnitude of 6,x is 

) 6,x I = -(~~&‘~QDx’~’ + ~c,a)x’“‘Dl’~)} d#. (4.9) 

The three-dimensional “area” of an element of the surface is equal to the two- 
dimensional area, dS say, of an element of a section of the surface by a three dimen- 
sional plane orthogonal to kc”), multiplied by the element / 6,x j parallel to +). 
Thus the “directed” invariant element of the surface of the hypersphere can be 
written 

dC’=’ = / x(~) 1-l I 6,x / x’a)dS. (4.10) 

Using (4.3) and noting that the determinant of the propagated vierbein is gV, 
we have 

1 XC”) I = gv,, (4.11) 

which when combined with (4.9) gives for the “directed” invariant surface element 

d.JW = -+g-1/2 (~~pr~~‘~)D.$” + y(&+‘)Dx”‘) x’a’dS dT’. (4.12) 

Since we shall be interested in the case when the tube radius E becomes 
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infinitesimally small it will suffice to use expansions in powers of E in evaluating 
expressions (4.9) and (4.12). Writing 

$= --(J .P *‘“p-g ,gP, .P (4.13) 

we have from (1.7) 

4 2 = 1 + X(&x - +RpYpK&Ya~yu.. + O(E’), (4.14) 

and using this with (1.38)-(1.41), and (1.43) we find that (4.12) has the expansion1 

d&Q’ = mg-1/2 cc 0 -1 1 + x( ,$“’ _ 1R P K*P$‘a 9 “!.l .pu (0 x(‘=) dS d+ + O(2) 

= ~g-l/2E-lK2x(d dS dr’ + O(e5). (4.15) 

In the calculations of the next section we shall not actually integrate over the 

WORLD LINE 

FIG. 3. The “cap” of the world tube. 

1 This is linked with the expression obtained by Dewitt and Brehme (3) through a length 
scale factor, which can be derived by defining the variation in the field point, from (4.3) by the 
relation 

gxw = -qi=) (fi, ,8*‘@‘, 

the overbar relating to their coordinate system. Then, since we are dealing with arbitrary 
variations, the ratio of lengths in the different coordinate systems will be given by 

px(=)I 
- = A, 
1 siiy 

where A = I -u,(~‘&. 

Thus (4.15) will contain the factor A-‘. 
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entire world tube. In fact we shall integrate only over an infinitesimal portion of 
it, plus the “caps” at the ends given by the geodetic cross sections T’ = constant. 
We shall therefore need an expression for the surface elements of the caps. 
This three-dimensional invariant bein-vector surface area can be broken down 
into the two-dimensional area dS, defined by the intersection of the hypersphere 
with the three-dimensional surface 7’ = constant, multiplied by the increase, de, 
in the radius of the hypersphere. The normal to this area, as given by (4.6), is 
Dx’“). Thus for the “directed” area of the caps we have 

dP = f / Dx(~) 1-l Dx’“l’dS de. (4.16) 

The plus and minus sign is attached to the caps lying in the future or past of “7” 
in order to preserve continuity of direction of the surface element relative to the 
interior of the tube. 

We shall also need expansions for the retarded and advanced proper times at 
which the quantities appearing in (3.26) are to be evaluated. Introducing 

s* = 7 - 7* = O(E), (4.17) 

and recalling the defining equation (3.24) we have 

0 = a + S*k + 4s l % + @+3’;; + -+~S,,~;;~ + O(@), (4.18) 

where u and its derivatives are here to be evaluated at the points x and z. Making 
use of equations (1.31)-(1.34) and the expansions (1.7)-(1.9) and taking note of 
(1 A), (1.45), (4. l), (4.2), (4.13) and the symmetry properties of the Riemann tensor 
we find that Eq. (4.18) becomes 

. ..(u) 0 = +e2 - @*2ic2 + $3*3u*(,, z - &S*42 + O(2), (4.19) 

from which we obtain, on inverting the series, 

43) s* = *Uc-l(l & &U,(,)Z - &E2S2) + O(E4). (4.20) 

Finally we record the expansions 

1 Do I&* = ir + 6,s + $3, 2. + gs,“‘,’ + O(E”) 

= -S*K2(1 - +s*a*(,,z ..-(OL) + gs*t”) + O(E4), (4.21) 

---(cc) 
1 Du I;;‘=,, = -s6;‘K-2(1 + +s*a*(,, z - @*22) + O(E2). (4.22) 
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V. THE EQUATIONS OF MOTION 

The conservation law (3.3) expresses the energy balance between the field and 
the particle. For practical application this differential characterization must be 
replaced by an integral one. The difficulty arising from the fact that J Tpyd4x is not 
an invariant, nor even a vector, can be overcome in a natural way by replacing 
(3.3) by the invariant equation 

A’“’ TP 
P ,” = 0. (5.1) 

The integral representation, J h(a)TFY,yd4x, arising from (5. l), is an invariant “bein” 
vector and consequently it is permissable to apply Gauss theorem and embark on 
a theory parallel to that of flat space. If we now let Z denote the surface of the 
world tube between two proper times TV and r2 , and denote by ZI and Zl, the 
corresponding “caps,” and by V the interior of the tube enclosed by Z, Zr and ZZ , 
we may write 

o= 
s 

X’*‘TP” ddx 

v p 
.Y 

= (j, + j, + j,) XI”‘T’“” dZ: - j, h(a)p.vT’=’ d4x. (5.2) 

Let us now take the limit E --+ 0. The integrals over ZI, ZZ and V will then retain 
contributions only from the particle stress density; and if, furthermore, we take 
the fixed point z to lie on the particle world line at a proper time T between TV and 
TV , we then have, assuming 71 < T2 and making use of (4.16) and 

j+“j+‘T~ = m. 
P ZJ 

gl/2&d,#’ a(4) dTt 
3 (5.3) 

the expression for the particle stress density, from (5.2) 

The next step is to let TV and TV approach 7. Denoting their infinitesimal separation 
by dT we see that (5.4) becomes 

0 = m ~2’~) dT + Lim 0 s 
h’“‘Tp” dZ 

64 45 p 
"I (5.5) 

which can be written, using the notation 

(5.6) 
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The remainder of this section will be devoted to the computation of the second 
term in (5.7). We must first get the retarded and advanced proper fields (3.26) in 
the form of expansions. Noting 

~.,4w’(x> = --o.,%,(z) = Xc%’ > (5.8) 

we begin by computing 

Ia .,4::,wl,LT* = XC,) + S*Dw + @*zD2x(,) + Qs*3D3X(,) + O(E4) 

= X(,) - S*&,, ) - @*22(u) ) - &s*3-i(,) 

- ~S~RI1”PKa~ya~pi;‘XoK 

+ &2R,,p”a$“~PA~m~ , + O(c4). (5.9) 

Here we have used (1.38)-(1.40) with the understanding that all quantities refer to 
the world tube and comma’s separate terms of different orders of magnitude. 
Also, from (1.41) and (1.42), 

IS@’ 1 7’7* = i?’ + S*DiP + +6*2D%@’ + O(2) 

= p ) + g*p ) + gj*2’&,, 

+ &R,P,‘W’a~ph~‘@ , + O(c3). (5.10) 

Using (4.2) we have, from (1.53), (4.22), (5.9), and (5.10), 

I 1 AD d1’2(%3’~.(d - %PA9’) 
Dl7 il 1’=7* 

595/47/I-11 
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From (2.20) and (4.22) we have the expansion 

and from (1.26), (1.27), (1.49), and (4.22) we have 

Finally, using (1.49) and (4.22), we have the expansion 

x {, , - @*RyPcxpPP - gR,,h”‘“w”’ ,} + O(E). (5.14) 

Combining (5.11~(5.14) and using (4.20), we find for the retarded and advanced 
field strengths (3.26) 

where 
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From Eq. (5.15) it follows that the radiation field is everywhere finite. At the loca- 
tion of the particle itself we have, in fact 

E(T) = 7 1 7 1-l = e(T) - t&-T). (5.18) 

On the other hand, for the average of the retarded and advanced fields we have 

h,, = 4rlcadqcaw) - ‘IcwLd~(@4) x -E-3K-1x(“‘*((w) 3 
I 

1. (4 .LJ 
+ gK-3e- 2 x ) 

_ ~E-1~2x("y") 1 (c).*.(w) 
+ &c-x x 

+ terms linear and cubic in the x’s involving the Riemann tensor 

+ ; jl”f’“B’(y, d”(T’) d+ ,I + O(E). 
m 

(5.19) 

By breaking the total electromagnetic field up in the manner of equation (3.13) 
we may now use Eq. (5.19) to compute the stress density on the world tube. Noting 
that P:$F is singularity-free, or at any rate has no singularities arising from the 
particle itself, we may write 

T Cc+’ dx+ = (47r)-1 gl’a{(F Q,)F 
4) -Cyfi) + Ffree(u)tB,F(yfl) + F(a)(8jFfree(yp)j d2cyj 

- (&,F’BY’ + +Ff;;F@“) dZ’“‘} + O(E). (5.20) 

Using (1.43)-(1.45), (4.14), and (4.15) we find, by straightforward computation, 

$‘2(~‘“‘~,~‘yp’ dZ(,,) - &,,,F -@Y’ dz’“‘) 

- “1 
1 -3 e --2~x (Lx' 1. L-s) ) + g,-i ) - $&"'x(B)z 48) + 1..2 (cd he- x x 

+ terms of odd degree in the x’s involving the Riemann tensor 

- @’ j$ f (0’(py)8(Y’(T’) dT’ j E-’ dS dT + O(E), (5.21) 

-free(,) g1/2~*ree(a)(8j+@ d&,, = -eF (B,Z(%-~ dS dT + O(E), (5.22) 

g1’2(~(u’(8~~free(y~’ dz(,, - I&# free-@Y’ dz’“‘) = O(+ (5.23) 
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it is noteworthy that all terms of odd degree in the x’s will be eliminated when 
integration over the surface S is performed. Carrying out the integration we get, 
in fact, 

_ epWd(B)i: la) dr + O(E). (5.24) 

The divergent term in (5.24) has the same kinematical structure as the mass term 
in Eq. (5.7). It therefore has the effect of an unobservable mass renormalisation, 
and with the introduction of the “observed mass” 

Eq. (5.7) takes the form 

in = m, + I$[*ec1e2], (5.25) 

For the purposes of application to physically set boundary conditions in the 
remote past it is more appropriate to work with the field F$,. Referring to Eqs. 
(3.15) and (5.17), we see that Eq. (5.26) becomes 

2. (8) T + ex s 
f(")tp,,#')(+) d+. (5.27) 

-03 

The vector wave equation corresponding to (5.27) can be obtained from the applica- 
tion of the vierbein transport law (1.10) and the definitions (1.35), (1.36) and (1.37). 
Writing “c” for the velocity of light and applying dimensional analysis to the 
resulting equation, we find (5.27) becomes 

where 

(5.28) 

(5.29) 
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[The explicit appearance of the Ricci tensor in the radiation field gives 
rise to a different equation of motion to that obtained by Dewitt and 
Brehme (I). This is due to an incorrect computation on their part. See (I) 
page 225 equation (5.11). The left hand side of this equation should be 
evaluated at the retarded and advanced proper times. If we carry out this 
evaluation, using their notation, we have 

+ L&P@ of &K-l&mRyf’$ IF K-l*u$ 

f ~K-l~s&“~y$Y & &c-%~R;&~Y) + O(e2). 

The last four terms in this expression effect only the radiation field 
quantities, which then take the modified form given here in (5.17).] 

The second term on the right-hand side of (5.28) is the familiar classical radiation 
damping term, while the third and fourth terms arise from the scattering effects of 
space-time curvature. When the incident field vanishes it is evident that radiation 
damping still occurs which prevents the physical solution of (5.28) being ,SU = 0, 
that is geodesic motion. It will be shown later that this is the case even in spaces 
conformal to flat space, with the notable exception of steady-state cosmology. 
Finally we note that the terms involving the Ricci tensor are multiplied by the 
first differentials of the I’S only, and can thus be considered as a direct modification 
of the incident field, rather than an additional contribution to the radiation- 
damping effect. 

It is with great pleasure that I record my gratitude to Dr. C. Gilbert for his help and encour- 
agement throughout this work. 

RECEIVED: August 24, 1967 
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