12.3

Relativistic Electrodynamics

12.3.1 Magnetism as a Relativistic Phenomenon

Unlike Newtonian mechanics, classical electrodynamics is already consistent with special
relativity. Maxwell’s equations and the Lorentz force law can be applied legitimately in
any inertial system. Of course, what one observer interprets as an electrical process another
may regard as magnetic, but the actual particle motions they predict will be identical. To
the extent that this did nor work out for Lorentz and others, who studied the question in the
late nineteenth century, the fault lay with the nonrelativistic mechanics they used, not with
the electrodynamics. Having corrected Newtonian mechanics, we are now in a position
to develop a complete and consistent formulation of relativistic electrodynamics. But I
emphasize that we will not be changing the rules of electrodynamics in the slightest—
rather, we will be expressing these rules in a notation that exposes and illuminates their
relativistic character. As we go along, I shall pause now and then to rederive, using the
Lorentz transformations, results obtained earlier by more laborious means. But the main
purpose of this section is to provide you with a deeper understanding of the structure of
electrodynamics—Ilaws that had seemed arbitrary and unrelated before take on a kind of
coherence and inevitability when approached from the point of view of relativity.

To begin with I’d like to show you why there had to be such a thing as magnetism,
given electrostatics and relativity, and how, in particular, you can calculate the magnetic
force between a current-carrying wire and a moving charge without ever invoking the laws
of magnetism.!* Suppose you had a string of positive charges moving along to the right
at speed v. I’ll assume the charges are close enough together so that we may regard them
as a continuous line charge A. Superimposed on this positive string is a negative one, —X
proceeding to the left at the same speed v. We have, then, a net current to the right, of
magnitude

I =2xv. (12.75)

14This and several other arguments in this section are adapted from E. M. Purcell’s Electricity and Magnetism,
2d ed. (New York: McGraw-Hill, 1985).
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Figure 12.34



Meanwhile. a distance s away there is a point charge ¢ traveling to the right at speed 1 < v
(Fig. 12.34a). Because the two line charges cancel. there is no electrical force on g in this
system (S).

However. let’s examine the same situation from the point of view of system S. which
moves to the right with speed u (Fig. 12.34b). In this reference frame ¢ is at rest. By the
Einstein velocity addition rule, the velocities of the positive and negative lines are now

vp = — 0 (12.76)
l Fvu/c-

Because v_. is greater than v, the Lorentz contraction of the spacing between negative
charges is more severe than that between positive charges: in this frame. therefore. the wire
carries a net negative charge! In fact,

At = £ (y+) A, (12.77)

where

1
YE = (12.78)
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and g is the charge density of the positive line in its own rest system. That’s not the same
as x. of course—in § they're already moving at speed v, so

= yho. (12.79)
where
1
v16—uve/es

[t takes some algebra to put y4 into simple form:

1 ¢ Fuv
VI = = 4 B I B
Vi (%(v T2 Foufe)? VI Fuv)? - e Fu)?
2 Fuv I Fuv/c’
- cFe L lFwe (12.81)
Vet = uD(et =) VIi—u=/es

Evidently. then. the net line charge in S is

. . . . —2auv
Aot = A + 1 = /,()()/+ — )/7) = ? (1282)
N —u=/c-

Conclusion: As a result of unequal Lorentz contraction of the positive and negative lines,
a current-carrving wire that is electrically neutral in one inertial system will be charged in
another.

Now. a line charge 4y sets up an electric field

Atot

27egs
so there is an electrical force on g in S, to wit:

- AU qut
F=gE=— . (12.83)
TEeTs /1 —ul/c?

But if there’s a force on ¢ in S, there must be one in S: in fact, we can calculate it by using
the transformation rules for forces. Since g is at rest S, and F is perpendicular to u, the
force in S is given by Eq. 12.68:

T - AV qgU
F:\ffl—ztz/c‘zF:— ! au

(12.84)

S —.
TEpe= §

The charge is attracted toward the wire by a force that is purely electrical in S (where the
wire is charged, and ¢ is at rest), but distinctly nonelectrical in § (where the wire is neutral).
Taken together. then. electrostatics and relativity imply the existence of another force. This
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“other force™ is. of course. magnetic. Intact. we can cast Eq. 12.84 into more tamiliar form
by using ¢ = (egpo) ™) and expressing i in terms of the current (Eq. 12.75):

ol
F=—qgu|{—]|. (12.85)
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The term in parentheses is the magnetic field of a long. straight wire. and the force is
precisely what we would have obtained by using the Lorentz force law in system S.





