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The equations of motion for charged particles are derived from the geodesic hypothesis in the five-dimensional Kaluzaa 

Klein theory. It is shown that even within this purely classical framework the theory does not describe low mass charged 

particles, and that in the background of a Kaluza-Klein monopole, the long range scalar field has striking observable conse- 

quences for electron motion, even at very large distances. 

Kaluza-Klein theory [ 1,2] (for a good recent re- 
view see ref. [3]) provides a geometrical framework 
for the unification of gravity with the other funda- 

mental interactions. The basis for this is that the gauge 
fields A, can be viewed as the local expression for the 
connection one-form of a fibre bundle E on spacetime 
M,, with fibre invariant under the action of the gauge 
group, G. In the Kaluza-Klein approach, the dy- 
namics of the gravitational and gauge fields on M4 
emerge from the vacuum Einstein equations, iAB = 0, 
for the pseudo-riemannian metric gAB on the (4 + N)- 

dimensional manifold, E. The unobservability (at least 
at the present time) of the extra dimensions is account- 
ed for by postulating that the fibres of E are compact 
manifolds with mean curvature of the order of the 
Planck length (-lO-33 cm). It is well known, however, 
that serious problems occur when one tries to incor- 
porate low mass, charged matter fields within the 
Kaluza-Klein framework [4] . If one assumes that 
such matter fields couple minimally to the higher-di- 
mensional metric (i.e. obey a higher-dimensional 
Klein-Gordon equation), then the fields acquire a 
huge mass (of the order of the Planck mass -lO-5 g) 

after dimensional reduction. Despite much work [5], 
this problem has not as yet been satisfactorily solved. 

The purpose of this letter is two-fold. First, we 

shall show that the “large mass problem” emerges in a 
purely classical context if one correctly analyzes the 
consequences of assuming that charged test particles 

traverse geodesics of the five-dimensional Kaluza-Klein 
metric. Our analysis clarifies the origin of this problem 

and shows it to be essentially kinematical: the rest 
frame (in five dimensions) of a particle with charge e is 
in relative motion to that of an electrically neutral ob- 
server, and the “Lorentz transformation” from the for- 
mer frame to the latter transforms the invariant mass 
& of the test particle to an effective mass (k2 + e2/ 

167rG) . l/2 The large size of the effective mass is a 
direct consequence of the magnitude of the physically 
observed e2/16nG - ( 10e6 g)2. Note that this dis- 
cussion does not require fixing the internal radius to 
be small, although this related result follows when one 
tries to explain charge quantization in terms of five-di- 
mensional quantum mechanics [3] or field theory. 

Secondly, we shall examine in some detail the mo- 
tion of charged particles in the background of the re- 
cently discovered Kaluza-Klein monopole [6-S]. We 
will demonstrate that the long-range scalar field causes 
the effective mass of an electron to vary out to dis- 
tances of the order of lo3 km. Moreover, at even great- 
er distances from the monopole, the scalar force domi- 
nates all other interactions by many orders of magni- 
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tude. Although it is well known [7] that this scalar 
field might cause problems if it does not acquire a 
mass due to quantum corrections, the huge ratio of 
the scalar effects to the other forces has not been pre- 

viously pointed out. 
In the following, we will consider only a five-dimen- 

sional Kaluza-Klein theory and defer the generaliza- 
tion to higher dimensions to subsequent work. Hence 
we start with a pseudo-riemannian manifold (M,$) 
where M is a smooth five-dimensional manifold and g 
= gAABdxA 0 dxB is a metric with signature (-++++). 

The indicesA, B, . . . E (0, 1,2,3,5}, while Greek in- 

dices P, Y, . . . E (0, 1,2,3). Tensors on M will always 

be hatted. We will set c = 1, but preserve all other con- 
stants explicitly since they play a crucial role in the 
final results. 

We make the standard assumption that M possesses 
a Killing vector i = a/ax5, and decompose the metric 
as follows 

&&%xB =g/&xUx” t $(A dxp t dx5)2 , (1) P 

where h* =gS5 = @_I * and A, = gM5/X2. Note that 
x5 is taken to be a dimensionless angular variable of 
period 2n. 

With the above ansatz, the five-dimensional gravita- 
tional action,i, decomposes as follows 

= -=&“Gd4x(i - ;A2F,,vF’v), (2) 

where d is the five-dimensional gravitational constant, 

F/lv=A, Y -A, ~ and we have dropped a surface 

term. We now identify the physical constants and 
fields by invoking the following correspondence prin- 
ciple: when h(x) = X, = const. we must recover the 

Einstein-Maxwell theory, with action 

I= &j- fid4x[R -(16&/4)F,~“] , (3) 

where & is the physical electromagnetic field strength 
and G is the four-dimensional gravitation constant. 
This yields the standard associations 

2nh,/16& = 1/167rG (4a) 

and 

(4b) 
Note that the above correspondence principle does nor 

fm X,, which can only be determined when charged 
matter fields are coupled to the gravitational action in 

eq. (2) ]3,71 . 
For simplicity, we make the standard assumption 

[3,7] that test particles in the Kaluza-Klein theory 
follow five-dimensional geodesics. The relevant five-di- 

mensional geodesic equation is 

(5) 

where fi is the invariant mass of the test particle, 
fi& is the Christoffel symbol constructed from iAB, 
and dS is the five-dimensional element of arc length 

In the above e = 1 for timelike geodesics, 0 for null 

defined by 

geodesics and -1 for spacdlike geodesics. After dimen- 

-eds’* = gA,dxAdxB . (6) 

sional reduction, we find with the help of eq. (1) that 
eq. (5) splits as follows: 

h(X*A,,d.x’/dS t A2dx5/dS) = const =b , (7) 

d*x” P dxp dxy -- 
ti* 

+I& dj ds^ 

where 6 = $5A dx*/dj is the momentum of the test 

particle in the fifth direction, I’$ is the Christoffel 
symbol associated with g,,, and Fpv is defined in eq. 
(4b). It is important to note that the geodesic postulate 
uniquely futes the coupling of the test particle to the 
scalar field. One of the main successes of the original 
Kaluza-Klein theory is the fact that eq. (8) correctly 
reproduces the Lorentz force when X = X, provided 
that 6 is associated with the charge of the test particle 
as follows [2] : 

B=qk&fiGz. (9) 

At this stage q and A, are still arbitrary. As Klein [2] 

originally pointed out, one can ftu X, by requiring 
that charge quantization q = ne follow from angular 
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momentum quantization Cfi) = nA in the fifth dimen- 

sion. This yields 

A, = fiJiZZ/e - 1O-32 cm. (10) 

We wish to emphasize that this is an additional assump- 
tion which is quite compelling but nonetheless unnec- 
essary for the phenomenological description of classical 
charged particle motion. 

In eq. (8) ds^ is the five-dimensional line element 
which is not in general the same as the four-dimen- 
sional line element defined by *’ 

ds2 = -g,,,,d.x%l.x”. (11) 

Moreover, a neutral clock, with fi = 0, necessarily mea- 
sures ds and not ds^, so that as long as physical measure- 
ments are performed with neutral clocks and rods, s 
must be used to parametrize the motion of test par- 
ticles **. From eqs. (1) and (7) we find that *3 

-edi = -ds2 + (/j2/X2r;12)di2 , (12) 

so that eq. (8) transforms to the following: 

d2x” _+I+ ~p~V_ 4 dxV 

ds2 pv ds ds 
FP 

meff v ds 

q2 ca A,, 
-- 

+me2ff 167rG x3 
(13) 

In eq. (13) we have defined 

m,ff=n?ds/ds^ = [eti2 t(q2/16rG)h.$/X2]1/2.(14) 

Thus, the net effect of the change of parameters is to 
replace the invariant mass, r&, of the test particle by an 
effective mass: meff. ‘This, effective mass arises due to 
the “Lorentz transformation” relating the rest frame 
of a neutral observer to the rest frame of the charged 

*r In the following we consider only geodesics which are time- 

like when projected to four dimensions. 
** We would like to thank K. Kuchar for clarifying this point. 

See also ref. [9]. 
*3 Alternatively, let dx-‘l/ds^ be the tangent vector field to the 

geodesics oftAB, such that ;gAB(&A/&)(&B/&) = 1, 

where ; E (- 1, 0, 1) is the indicator of &A/&. Then if we 

write d.xA/& = cfd#/ds, dx5/G) and insist thatg&dxp/ 

ds)(dx”/ds) = -1, it follows thatfis (up to a sign) uniquely 

determined to be G/h* - ;)r/*, which is equivalent to eq. 

(12) above. 

particle. These two frames are m relative motion be- 
cause charge is associated with momentum in the 
fifth dimension. Note that meff is not constant unless 
h = h, = const. This will play an important role in 
the later discussion, but for now let us assume that 
meff - const = mef&,). We now identify meff(h,) 

with the observed mass, mq, of the charged particle 
and set q = e, so that 

mq 
= (&r2 + e2/16nG)‘j2 . (15) 

Since e2/16nG =&VP, x 10 -6 g, it is impossible to 
describe a test particle with charge e and effective mass 

less than the Planck mass, unless the test particle follows 
a space-like geodesic in five dimensions (E = -1). This 
is precisely the “large mass problem” of Kaluza-Klein 
field theory, although in a somewhat different and per- 
haps more intuitive form. Let us again stress that this 
result does not require fixing A, 

The Kaluza-Klein monopole is a static solution of 
the five-dimensional Einstein equations tiAB = 0. For 
our purposes, it is most convenient to use coordinates 
(t, r, 0, cp, x5) in which the metric gAB is given by *4 

gA&XAdXB 

= -dt2 t (1 tM/p)2dr2 + r2(de2 t sin20 dq2) 

t [4Mr/(p t M)] “(f cos 0 dq t dx5)2 , (16) 

where p2 = 2 r +M2 withM a constant. We can easily 

read off the four-dimensional space-time metric gpv, 
the electromagnetic field strength tensor F,,“, and the 

scalar field h from the above five-metric: 

g TV = diag(-I, (1 +M/P)~, r2, r2, r2sin2t?), (17) 

F32 = -sin20 F -23 =gsin O/r2 , 

F/=0, otherwise , (18) 

h = 4Mr/(p +M) , (19) 

where the magnetic charge g = f X,/dm, and from 
eq. (19) we see that X, = 4M. The parameter M, which 
determines the “mass” of the monopole is therefore 
fixed by X,. Note that the standard choice for A, 

*4 In our notation, x5 replaces $1/2 in ref. [6]. 

412 



Volume 106A, number 9 PHYSICS LE’lTERS 31 December 1984 

given in eq. (10) above guarantees that the Dirac 
charge quantization condition, eg = &r/2, is satisfied 
withn= 1. 

We now wish to examine the geodesic motion of 
an electron in the background of a Kaluza-Klein 
monopole. To accomplish this we must choose e = -1 
in eq. (15) and “fine tune” ti so that mq = m, = 0.5 
MeV. Although this procedure poses grave conceptual 
difficulties, it is nonetheless worthwhile to examine the 
resulting phenomenology. When eqs. (17)q 19) are 
substituted into eq. (13) the resulting equations of 
motions are: 

meffdt/ds = const , 

d2r 

ds2- 

q2 =- & $ [1+(Ig (yq 
2 

meff 

d2tI +J dr de 

ds2 
- -- 

rds ds 
2 

4 g sin 6 dq =--_-- 
meff r2 ds 

t q2 
M (p tIkQ2 dr d0 

2 16nG pr3 
-- > 

meff 
ds ds 

d2q + 2 drdcp cos 8 d0dq --- 

ds2 r dsds sin 19 ds ds 

= 4 4 de 
m,ff&&ds 

t q2 M (pti%Q2drdp 
- - -%z* 2 
meff 

16sG pr3 

we can express rneff to first order in (X,/r) as 

meff = m, [ 1 + 2y2@4/r2) (p +M)] ‘I2 

= me{1 + (-y2A,/2r) [l + O&Jr)]} ‘I2 , (24) 

where we have defined the dimensionless quantity 

y= (e/m,)/diGZ- 1020 . (25) 

We therefore find the remarkable result that meff is 

not well approximated by its constant asymptotic 
value, me, until 

(20) 

r>-f2h,/2-103km. (26) 
A second interesting result can be obtained by ex- 

amining the static acceleration due to the scalar force 
which appears on the right-hand side of eq. (21). We 
consider only the limit defined by eq. (26), so that 
this acceleration is approximately: 

a s.c N y2M/r2 . (27) 

At a distance of 10’ km from the monopole, this ac- 

(21) celeration is still approximately 1 O9 cm/s2. Again we 
find that the large number y = (e/m&/-causes 
the scalar field to have a huge effect far from the mono- 
pole, despite the fact that X is very small. 

To summarize, we have shown that the large mass 
problem in Kaluza-Klein theory is present even in the 
classical limit of test particle motion. It is a direct con- 
sequence of the local five-dimensional Lorentz struc- 
ture of the theory and the empirical fact that (c, 

(22) n l g 

wq)/ 

16n is a ar e number for elementary particles. We 
have also shown that this same large number leads to 
bizarre effects in the presence of a Kaluza-Klein mono- 
pole. Even at very large distances from the monopole, 
the effective mass of an electron is not constant, and 
the scalar force swamps all other forces by many orders 
of magnitude. This analysis emphasizes the need for 
caution when dealing with numerics in higher-dimen- 
sional field theories. Despite the small size of the inter- 

(23) 
nal dimensions, they can nonetheless have macroscopi- 
tally observable consequences at the classical level. 

We shall present a detailed analysis of these equations 
elsewhere but for the present we wish only to empha- 
size the more striking features which emerge. Firstly, 
eq. (20), which is the Kaluza-Klein analogue of par- 
title energy conservation, reinforces the interpretation 
of meff as an effective mass. Moreover, using eq. (14) 

We would like to thank K. Kuchar, J.W. Moffat, 
M. Perry and R. Sorkin for helpful discussions. One 
of us (G.K.) acknowledges the financial support of the 
Natural Sciences and Engineering Research Coun, 1 of 
Canada. 

413 



Volume 106A, number 9 PHYSICS LETTERS 3 1 December 1984 

References 

[l] Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Math. Phys. 

(1921)966; 

0. Klein, 2. Phys. 37 (1926) 37. 

[ 21 D. Toms, in: An introduction to Kaluza-Klein theories, 

ed. H.C. Lee (World Scientific, Singapore, 1984). 

[3] 0. Klein, Nature 118 (1927) 516. 

[4] E. Witten, Nucl. Phys. B186 (1981) 412. 

[5] S. Weinberg, Phys. Lett. 138B (1984) 47. 

[6] R.D. Sorkin, Phys. Rev. Lett. 51 (1983) 87. 

[ 71 D.J. Gross and M.J. Perry, Nucl. Phys. B226 (1983) 29; 

M.J. Perry, Phys. Lett. 137B (1984) 17 I. 
[8] D. Pollard, J. Phys. Al6 (1983) 565. 

[9] M.A. Tonnelat, Les theories unitaires de l’electro- 

magnetisme et de la gravitation (Gauthier-Villars, Paris, 

1965) p. 179. 

414 


