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Radiation Damping in a Gravitational Field* 
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The validity of the principle of equivalence is examined from the point of 
view of a charged mass point moving in an externally given gravitational 
field. The procedure is a covariant generalization of Dirac’s work on the 
classical radiating electron. Just as Dirac’s calculation was kept Lorentz in- 
variant throughout, so the present calculation is maintained generally covar- 
iant throughout. With the aid of b&tensors, which are nonlocal generaliza- 
tions of ordinary local tensors, the manifest general covariance of each step 
is achieved in an elegant and useful way. The Green’s functions for the scalar 
and vector wave equations in a curved manifold are obtained and applied to 
the derivation of the covariant LiBnard-Wiechert potentials. The computa- 
tion of energy-momentum balance across a world tube of infinitesimal radius 
surrounding the particle world-line then leads to the ponderomotive equa- 
tions including radiation damping. 

Because of the nonlocal electromagnetic field which a charged particle 
carries with itself, its use as a device to distinguish locally between gravi- 
tational and inertial fields is really not allowable. One should be prepared to 
find an explicit occurrence of the Riemann tensor in the ponderomotive equa- 
tions, leading to the result that acceleration by a “true” gravitational field 
can produce bremsstrahlung, thereby causing a reactive force in addition to 
the force of inertia. It is remarkable, however, that such an explicit occur- 
rence does not happen. The particle tries its best to satisfy the equivalence 
principle in spite of its charge. It is only prevented from doing so (i.e., from 
following a geodetic path) because of the fact that, contrary to the case 
of flat space-time, the electromagnetic Green’s function in a curved space- 
time does not generally vanish inside the light cone, but gives rise to a “tail” 
on any initially sharp pulse of radiation. The ponderomotive equations have 
exactly the same form as Dirac found for the flat-space-time case except for 
the addition of an integral over the entire past history of the particle, repre- 
senting the effect of the “tail.” 

INTRODUCTION 

An important part of the development of any physical theory is the testing of 
its consequences against its original physical foundations. In the development of 
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the general theory of relativity this part plays an anomalously large role for the 
simple reason that the theory has progressed experimentally so little beyond 
these foundations. Two experimentally established principles, the principle of 
equivalence and the principle of the covariance of physical laws, form the basis 
for the general theory. The concept embodied in the principle of equivalence is 
a “local” one which, when combined with the covariance concept, leads to the 
introduction of curvilinear coordinate systems and nonvanishing intrinsic curva- 
ture into the description of space-time. 

In its simplest form the principle of equivalence states that a gravitational 
force cannot be distinguished from an inertial force by any experiment which 
is conducted on a purely local basis. While this principle is certainly valid to a 
high degree of precision, and may even be valid with absolute precision for neutral 
matter, there is some question as to whether it can be absolutely valid for mat- 
ter which carries an electrical charge. To put the question in physical terms, 
imagine a charged particle located in empty space at a great distance from any 
gravitating masses. If a force is exerted on the particle it will begin to accelerate, 
and we know from the laws of classical electrodynamics within the framework of 
the special theory of relativity, which is valid under the above circumstances, 
that the particle will radiate, producing a reactive damping force in addition to 
its mechanical inertial force. Let us next bring the particle to rest in a static 
gravitational field which exerts a force equal to that to which the particle was 
previously subjected in empty space. Although the particle experiences the same 
force in both cases it would be absurd to suppose that it continues to radiate 
under the latter conditions. 

There is, however, a catch here: It is well known that an accelerating charged 
particle, in fact, does not suffer a reactive damping force as long as its absolute 
acceleration is uniform, i.e., constant in magnitude and direction.* It is therefore 

* Note added in proof: A contribution to the old and much-debated question of the inter- 
pretation of this phenomenon has recently been made by T. Fulton and F. Rohrlich (private 
communication). These authors give a Lorentz invariant asymptotic definition of the rate 
of radiation from a charged particle which, for arbitrary particle motion in flat space-time, 
reduces to the usual expression involving the square of the absolute acceleration. They sug- 
gest therefore that the absence of the reactive force in the case of uniform acceleration does 
not imply absence of radiation but merely a special behavior of the internal (nonasymp- 
totic) field energy of the particle which supplies a compensating term in the energy balance 
equation: the so-called “acceleration energy” which, in the cases of usual experience, aver- 
ages out to zero. 

The problem of giving a similar asymptotic definition of the rate of radiation in a curved 
space-time is much more difficult, and it seems most unlikely that the total radiation in this 
case possesses a simple correlation with the absolute acceleration. Nevertheless, only that 
part of the radiation which is so correlated is considered in the present article, and the 
reader should be cautioned that the term “bremsstrahlung” as used herein refers only to the 
radiation which has its immediate local reflection in the departure of the particle motion 
from geodetic. It is quite possible that the t,otal asymptotic radiation has generally an ad- 
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better to turn the problem around and imagine the particle in an unaccelerated 
state. If the particle is far from gravitating matter it can be said to be in a state 
of uniform motion, in which it does not, of course, radiate. If the particle ap- 
proaches a strong gravitational field, however, the notion of “unaccelerated 
state” is changed into a different notion, namely, that of a “state of free fall.” 
Does a change of notion now cause the particle to begin to radiate? If a charged 
particle does not radiate when at rest in a gravitational field, does it also refrain 
from radiating when falling freely? Or can a charged particle be used, at least in 
principle, as a local entity which distinguishes between gravitational and inertial 
forces? 

On the basis of physical intuition it would seem reasonable to suppose that a 
charged particle does, in fact, radiate when deflected by a gravitational field, 
Le., that bremsstrahlung can be produced by gravitational as well as electromag- 
netic forces. This is the problem which will be attacked in the present paper. 
Before describing the procedure to be used we should point out at once that the 
idea of using a charged particle to distinguish locally between gravitational and 
inertial fields is, of course, cheating. A charged particle carries with it an electro- 
magnetic field, which is by no means local. A gravit,ational field can be readily 
distinguished from an inertial field by experiments carried out over an extended 
region, that is, by experiments which measure field gradients. The gradient of a 
field is a second derivative of a potential. In the general theory of relativity the 
potential is the space-time metric, and second derivatives of the metric are ex- 
pressed uniquely in a covariant manner by the components of the Riemann 
tensor which describes the intrinsic space-time curvature or, alternatively, the 
‘%rue” gravitational field. We should therefore not be surprised if, when radia- 
tion reaction is included, we find the Riemann tensor entering explicitly into the 
dynamical equations of a charged particle moving in a gravitational field. 

The surprising thing is that the Riemann tensor does not so enter, at least to 
the extent to which the essentially classical calculations of t,his paper are valid. 
This does not, however, mean that electro-gravitie bremsstrahlung does not 
occur. It does. But it has its origin in a more subtle phenomenon having to do 
with the failure of Huygens’ Principle, when taken in the narrowest sense, in a 
curved space-time. As has been ,pointed out by Hadamard (1) , a plane or spher- 
ical sharp pulse of light, when propagating in a curved 4-dimensional hyperbolic 
Riemannian manifold, does not, in general, remain a sharp pulse, but gradually 
develops a “tail.” It is this phenomenon which is responsible for the electro- 
gravitic bremsstrahlung. 

ditional component which can somewhat picturesquely be described as arising from the 
“static” Coulomb field of the particle, which can be “shaken loose” in bits as it sweeps over 
the “bumps” in space time. Owing to the difficulty of obtaining asymptotic forms for the 
Green’s functions involved, however, no attempt has so far been made to analyze this com- 
ponent. 
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The picture, then, is the following: The charged particle tries its best to satisfy 
the equivalence principle, and on a local basis, in fact, does so. In the absence 
of an externally applied electromagnetic field the motion of the particle deviates 
from geodetic motion only because of the unavoidable tail in the propagation 
function for the electromagnetic field, which enters the picture nonlocally by 
appearing in an integral over the past history of the particle [see Eq. (5.26)]. 
Physically, the tail may be pictured as arising from a sort of scatter process, 
with the ‘:‘bumps” in space-time playing the role of scatterers, which allows the 
radiation field originating in the particle, which normally “outruns” the particle, 
to act directly back on the particle in an anomalous fashion. 

In this paper the gravitational field itself is given no dynamical properties; the 
geometrical structure of space-time is regarded as fixed. It is not supposed that 
Einstein’s empty-space field equations are satisfied; the results hold for a com- 
pletely arbitrary metric. The calculation is patterned directly on Dirac’s famous 
paper on the classical radiating electron (2). Just as Dirac’s calculation was kept 
Lorentz invariant throughout, so the present calculation is maintained generally 
covariant throughout. The authors believe that this procedure is unique for this 
type of calculation (i.e., determination of higher order terms in ponderomotive 
equations) and would like to call attention to some of its features. By being kept 
manifestly covariant at every step the calculation avoids undue complexity in 
spite of the fact that no special coordinate systems are introduced. The authors 
believe, in fact, that the complexity is no worse than that involved in similar 
calculations with special coordinates, and may even be somewhat less: Because 
of the ability of the covariant procedure to keep separate aspects of the problem 
always quite distinct, the authors would finally like to suggest that it may be of 
use in other calculations where the gravitational field itself is dynamically in- 
volved. 

In order to maintain general covariance in a calculation in which nonlocal 
questions are involved, it is essential to introduce a generalization of ordinary 
tensors, which we shall call n-tensors. An n-tensor is a set of functions of n space- 
time points, each member of which is labeled by a set of indices each running 
from 0 to 3, and which transforms under a coordinate transformation like an or- 
dinary tensor, with the difference that the transformation coefficients do not all 
refer to the same point, but rather to the n separate points, each point being 
associated with a subset of the set of all indices on the n-tensor. It is probable 
that for nearly all practical applications it suffices to consider 2-tensors, or, as 
we shall call them, b&tensors,’ associated with only two points. In Section 1 the 
elementary theory of bi-tensors is outlined and important kinematical examples 

1 This terminology is not to be confused with that which has also been applied in the 
study of antisymmetric tensors, i.e., use of the term bi-vector to mean 6-vector, with corre- 
sponding generalization to tensors of higher order. [See, for example, the work of Schouten 

(Sj.1 
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are introduced. In Section 2 the propagation functions and Green’s functions 
for the covariant scalar and vector wave equations are studied and their needed 
properties derived. In Section 3 the Lagrangian for an electromagnetic field 
interacting with a charged particle is introduced and a brief resume is given of 
the fundamental equations of electrodynamics including the conservation equa- 
tions. The retarded and advanced fields, as well as the associated fields useful in 
connection with the scattering problem, are introduced. The generalized co- 
variant Lienard-Wiechert potentials and field strengths are then obtained. 
Section 4 is devoted to the construction and kinematics of a hyper-tube of in- 
finitesimal radius surrounding the world line of the particle. Finally, with the aid 
of covariant expansion techniques introduced in preceding sections, the energy- 
momentum balance of the particle is computed in Section 5 by int,egrating the 
stress tensor over the hyper-tube. The ponderomotive equations, including radia- 
tion damping, then follow after a classical mass renormalization. 

In these calculations the charged particle is assumed to have no spin. The 
inclusion of spin and magnetic moment is of little interest in an electrodynamic 
test of the equivalence principle, for it is known (4) that spinning neutral par- 
ticles already deviate from geodetic motion by terms involving the Riemann 
tensor explicitly, which is an expression of the fact that spin is a nonlocal me- 
chanical phenomenon. 

The present calculations, being entirely classical, do not, of course, touch the 
problem of the influence which quantum phenomena may have on the testability 
of the equivalence principle. Furthermore, no application is made of the present 
results to the problem of a charged particle at rest in a static gravitational field, 
nor is there consideration of the problem of damping due to gravitational m&a- 
tion which arises when one studies the truer state of affairs which exists when the 
gravitational field as well as the electromagnetic field is given dynamical proper- 
ties and when account is taken of the fact that the metric is actually singular 
at the location of the particle owing to the particle’s gravitational self-field. It is 
hoped that the two latter problems may be investigated in future publications. 

1. BI-TENSORS* 

The simplest example of a bi-tensor is the product of two local vectors, A“(z) 
and B,(z), for example, taken at different space-time points, 2 and z: 

CC,(z,x> = AP(2)Bdz). (1.1) 

* After this paper was written the authors learned that bi-tensors had previously been 
considered by Ruse (f.2) and Synge (1.9). The latter authors have not, however, developed 
the theory in the detail needed for the purposes of the present work. In particular, the 
theory seems never previously to have been applied to the study of covariant Green’s func- 
tions. 
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We shall here adopt the convention that indices taken from the letters cr to K in 
the Greek alphabet are always to be associated with the point z, while indices 
taken from A to w are always to be associated with the point x. The coordinates 
of the points themselves will thus be expressed, for example, as Z” and z”. 

The coordinate transformation law for the bi-tensor in (1.1) is given by 

(1.2) 

Generalization to bi-tensors with additional indices is obvious. The usual opera- 
tions, such as contraction and covariant differentiation, may be immediately 
extended to bi-tensors, with obvious precautions: e.g., contraction may be per- 
formed only over indices referring to the same point, and in taking covariant 
derivatives one should ignore all indices except those which refer to the variable 
in question. Covariant derivatives may be taken with respect to either variable. 
Thus, using a dot followed by an index to denote covariant differentiation, we 
have 

cpw = C”,,” + r,,“C”, , (1.3) 

C” a,8 - - CPa.# - rap7cpy ) (1.4) 

where the comma denotes ordinary differentiation and r is the affinity. We do 
not indicate explicitly the point at which a local quantity such as the affinity is 
to be taken when the indices themselves suffice for this purpose. Indices gen- 
erated by covariant differentiation at different points commute, while the usual 
commutation laws involving the Riemann tensor hold for indices referring to 
the same point. 

One of the points, either x or z, may have no indices associated with it, in which 
case the bi-tensor in question transforms like the product of an ordinary local 
tensor at one of the points and a scalar at the other. The bi-tensor may even be 
an invariant, bearing no indices, in which case we refer to it as a &scalar. We 
may also introduce &densities, of which the most elementary example is the 
four-dimensional delt’a function: 

d4)(x,2) = 6(x0 - z0)6(x’ - 2’)6(2 - 2*)6(x3 - 2”) = 6’4’(z,x). (1.5) 

The delta function may be regarded as a density of weight w at the point x and 
weight 1 -- w at the point z, where w is arbitrary. For the sake of symmetry we 
shall choose w = x and write the transformation law of the delta function in 
the form 

(1.6) 
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Of fundamental importance in the study of the nonlocal properties of space- 
time is the bi-scalar of geodetic interval, denoted by s(x,z), which gives the mag- 
nitude of the invariant “distance” between x and z as measured along a geodesic 
joining them. The basic properties of s(x,z) are expressed in the defining equa- 
tions 

gpys.,s., = g%.&.@ = fl, (1.7) 

lim s = 0. (1.8) 
z--s 

Here g”’ is the contravariant metric, and if its signature is taken as ( - + + +) 
then the interval between x and z is said to be space-like when the + sign holds 
in (1.7) and time-like when the - sign holds. The bi-scalar s itself is here taken 
non-negative. The locus of points x for which s = 0 is said to define the light cone 
through z. The relation between the light cone, the surfaces s = constant, and 
the unit vectors s .,, is pictured in Fig. 1. 

The geodesics emanating from a given point may, at a sufficient distance, begin 
to cross one another. In this region the bi-scalar of geodetic interval becomes 
multiple-valued. There will, however, generally be a region close to the given 
point in which the geodetic interval is single valued. We confine our attention, 
in the following, to this neighborhood. We note, in passing, the obvious symmetry 
relation. 

s(x,z) = s(z,x). (1.9) 

FIG. 1. Geodetic structure of space-time 
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The geodetic interval, in the single-valued region, can be used as the structural 
element of a number of covariant expansion techniques which play an important 
role in the following sections. In order to avoid “branch point” problems it will, 
however, be more convenient to work with the quantity 

u = *gs2 7 

which satisfies the equations, 

>$,,g”“u .gT.” = ~ga%.au.p = u, 

lim fl = 0, 
z+z 

(1.10) 

(1.11) 

(1.12) 

and which is positive for space-like int’ervals and negative for time-like ones. 
Suppose, now, we have a bi-tensor, say Tar6 , whose indices all refer to the same 
point z. If Tea is sufficiently differentiable it is possible to expand it, about x in 
the covariant form 

TUB = Aup + Aa~3~u.y + %A,&.+a + O(s3), (1.13) 

where the coefficients Asp , etc., are ordinary local tensors at z. In order to deter- 
mine these coefficients in terms of the covariant derivatives of T,b, however, it 
is necessary to have some information about the covariant derivatives of C. This 
can be obtained by repeatedly differentiating Eq. (1.11). We get 

u.y = g a-8 a.dY.fiy ) (1.14) 

U.-y6 = ga8(Gda.fir + U.&J.&, (1.15) 

U.-p% = gaS(Gd&3y + u.aGJ.gyr + U.,,U.@y6 + U.,(Y.~y&), (1.16) 

u .ysry = guB(u.a*c*u.*v + u.,a.u.f9yr + u.&u.t9ve + u.,au.#Yyrr + u.arp.19v6 

+ u.Mu.Bvar + ~.UpJ.,c~L% + u.au.gvbcr). 
(1.17) 

Now Eq. (1.11) itself tells us that 

lim u.~ = 0. (1.18) 
Z’Z 

In fact, it is clear that u., is of the same infinitesimal order as s, as z -+ z. Setting 
2 = z in E:qs. (1.14) to (1.18), making use of the identities 

U.6-p + U..-/6 = %.,a, + Rrd a.r , (1.19) 

u4yr.t + U.f-& + u.p& 

= 3a.va.r + (R,cyvu.,) .r + (RG-,’ u.J.. + RSev” ~.,,a + Rs,a’ u-y,, , 
(1.20) 

which follow from repeated use of the law for commuting indices induced by co- 
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variant differentiation, and recalling the algebraic identities satisfied by the Rie- 
mann tensor, we infer 

lim U.a@ = Qq¶ ) (1.21) 
ST+.? 

lim a.,flr = 0, (1.22) 
Z--Z 

hm u.~,~~s = g(R.,,a + Ram). (1.23) 
o-zz 

Our convention for the Riemann tensor is 

R ’ MY = rr,& - rr& + ry;rca6 - ryaCr& 
Returning now to expansions ( 1.13)) we see that 

(1.24) 

Ao,p = lim Tup , (1.25) 
z-z 

A abr = lim Tab.? - Adeu, (1.26) 
z+z 

Amaya = lim Ta,sra - Aa,w - -4,sy.a - Aapa.7. (1.27) 
z-z 

Although we shall never need to push our expansions farther than this, it is clear 
how one would proceed to obtain higher order terms. We note here the particu- 
lar expansions 

a.,~ = gas + %Rrr',t fl.yU.6 + o(S3), (1.28) 

u.o.py = f$(&yit + Ro6&.a + O(s2), (1.29) 

4.~476 = ~(Ra7,96 + R,6~7) + o(s). (1.30) 

When we are faced with the problem of expanding a bi-tensor whose indices 
do not all refer to the same point we cannot, of course, use the above techniques 
unless we introduce a device which “homogenizes” the indices, i.e., which trans- 
forms the given bi-tensor into a new bi-tensor all of whose indices do refer to 
the same point. The most natural such device is to use what we shall call the 
K-vector of geodetic parallel displacement, denoted by gPa(x,z). A quantity of fun- 
damental importance in its own right, this bi-vector is determined by the defining 
equations 

“I 
Qpcl.Yg u-2 = 0, ~,ua.Bg5yu., = 0, (1.31) 

lim gPr” = I&*, (1.32) 
Z+Z 

from which its geometrical significance may be at once inferred. Equations (1.31) 
state that its covariant derivatives vanish in the directions tangent to the 
geodesic joining x and z, while Eq. (1.32) states that it reduces to the Kronecker 
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delta (or the ordinary metric tensor if both indices are in the same position) 
when the two points coincide. It is therefore evident that the result, for example, 
of applying g,,r” to a local vector A, at the point z is to obtain the local vector 
A,, at the point x which is generated from A a by parallel displacement along the 
geodesic from x to z. Extension to the geodetic parallel displacement of local 
tensors of arbitrary order is obvious. In particular, the relations 

- a-8 Sr Qv Saa = cl,, 1 
-p -Y 
9 019 8Srv = Sue , (1.33) 

-(I 
QP u.m = -u.p, -P g “U.P = -u., ) (1.34) 
- -“a 
Srd = P > 6’ Srd7 - -P8 = 6 8 a 7 (1.35) 

follow immediately from the geometrical interpretation. 
The uniqueness of &a may be inferred from the fact that for fixed z the first of 

Eqs. (1.31) may be integrated along each geodesic emanating from z, the initial 
value of gru being set by ( 1.32). The second of Eqs. (1.31) may alternatively 
be used, by holding x fixed and integrating to x. This reciprocity is expressed by 
the symmetry relation 

L(v) = &P(Z,X>. (1.36) 

Returning now to the covariant expansion problem, suppose we have a bi- 
tensor, say T,, , whose indices refer to different points. We first “homogenize” 
it through application of the parallel displacement bi-vector: 

Tas = ciPaTpo, (1.37) 

and then expand the result according to the previously outlined method. Now, 
however, we should like to express the expansion coefficients in terms of the co- 
variant derivatives of the original bi-tensor T,, instead of Tao . Therefore we 
must study the covariant derivatives of &, . Repeatedly differentiating Eq. 
(1.31)) we get 

0 = a.w.~*g8Ya., + gpwgf%.,s, 

0 = chw78Y~.~ + Ll.8dg8Yu.y. + &la./3eg8?xy~ + &a.~g%.y& 

Setting x := z we then infer 

lim &W@ = 0, 
z+z 

(1.38) 

(1.39) 

(1.40) 

(1.41) 

and hence 

lim Top7 = lim g”,Td., , 
z-e z-x 

lim T .py6 = lim (B”J’,,+,~ + Wbae Td. z+z z-v 

(1.42) 

(1.43) 



230 DEWITT AND BREHME 

Tensor densities as well as t,ensors may be subjected to a geodetic parallel dis- 
placement by means of the bi-vector g,,OL, p rovided one also introduces its deter- 
minant 

B = IQIIDII. (1.44) 

This determinant is a bi-scalar density, having weight 1 at the point x and weight 
-1 at the point z. It satisfies the equations’ 

tipgpvu.” = 0, i.,ga%.@ = 0, (1.45) 

lim I = 1, (1.46) 
z-z 

which are consequences of Eqs. (1.31), (1.32). Equations (1.45) and (1.46) 
have the unique solution3 

where 

8(x,2) = g”2(x)g-“2(2) = irl(z,x), (1.47) 

9 = -Id* (1.48) 

The result, now, of making a parallel displacement of, say, a vector density A, 
of weight w along the geodesic from z to x is given by 

A, = bgpaA, . (1.49)’ 

Extension to the general case is obvious. 
Another determinant of fundamental importance in the theory of geodesics 

is given by4 

D = -l&I, (1.50) 

D,, = -(~.~a . (1.51) 

D is a bi-scalar density of weight 1 at both x and z. It is nonvanishing, at least 

* Here we make use of the definitionf., = f,, - w r,,,’ f for the covariant derivative of a 

density f of weight w. 
3 This solution also follows from an explicit representation of the parallel displacement 

bi-vector in terms of vierbeine, viz., 

8w - = A#&@) L(8) . 

Here the X.(b) are a set of four mutually orthogonal unit vectors at the point z, and the 
A,,(@) are obtained from these by parallel displacement along the geodesic from z to 2. The in- 
dices in parentheses are “bein” indices. 

4 This determinant, originally introduced by Lipschite (6)) has been generalized by Van 
Vleck (6) for application to Hamilton-Jacobi theory (of which the theory of geodesics is 
just a special case) and its relation to quantum mechanics and the WKB approximation. 
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when x and x are sufficiently close together, since, by taking the appropriate co- 
variant derivatives of Eqs. ( 1.34) and making use of ( 1.21) and ( 1.32)) one finds 

lim Dra(2,z) = g,,(z). (1.52) 
z+z 

The bi-vector D,, therefore has an inverse D-’ Pu, satisfying 

D,aD-’ ‘01 = a,‘, D1lmD-lpe = 6,‘. (1.53) 

It is not difficult to see that D becomes singular at points where the geodesics 
emanating from x begin to cross one another. It is only necessary to note that D 
is the Jacobian of the transformation from the variables za, x’ which specify the 
geodesic between x and z by means of its end points, to the variables zQ, (T., 
which specify it by means of one of its end points and a tangent vector at that 
point having a length equal to the length of the geodesic. If the tangent vector 
u.a is varied, the resulting variation in x” is given by 

6x’ = -D-l pa&r., . (1.54) 

When D-’ = 0, or D = 00, it is possible to choose a finite variation in (T., which 
produces no variation in x’. It is evident that this must occur in regions where 
the geodesics begin to cross. It can be shown, in fact, (7) that the loci of points 
at which D-’ = 0 are the envelopes of the family of geodesics emanating from z. 
These envelopes, familiarly known as “caustic surfaces,” are generally three 
dimensional, although degenerate forms having a smaller number of dimensions, 
including zero (focal points), can occur. 

In nonsingular regions the behavior of the determinant D is directly related to 
the rate at which the geodesics from z are converging or diverging. An important 
quantitative law can be obtained by repeated differentiation of Eq. (1.11)) which 
yields 

u., = g P B.fiU..vo, (1.55) 

u.su = gPvu.pao-.ya + g~yu.pu.,,, . (1.56) 

The last equation may be rewrit’ten in the form 

D,, = gPvDpav.vc -I- gpv~.,tDaa.v, (1.57) 

which, on multiplication by D-’ uLI, gives 

D-‘(Da.‘)., = 4. (1.58) 

This equation may be recast in terms of the arc length s along each geodesic: 
P u. p = 4 - s d(ln D)/o!s, (1.59) 

from which it may immediately be inferred that D decreases or increases along 
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each geodesic according as the rate of divergence of the neighboring geodesics, 
which is measured by u.“~, is greater or less than 4, the rate in flat space-time. 

Instead of working directly with D, which is a bi-density, it will sometimes be 
more convenient to work with the bi-scalar 

A = g-ID, (1.60) 

where 

g = -lgLml. (1.61) 

Evidently 

g(z,z) = gl’“(z)g”“(Z> = g(z,s), (1.62) 

and therefore Eq. (1.58) may equally well be written in the form 

A-‘(Aa!).,, = 4. (1.63) 

For purposes of covariant expansion we introduce the bi-tensors 

DUB = g’QQ,a , D-’ a8 = g/D-’ r8e (1.64) 

Their expansion coefficients are determined by the limiting behavior of the co- 
variant derivatives of D,, , which may be obtained by repeatedly differentiating 
the first of Eqs. (1.34) : 

DrB = gfia.jv.or + Qpar.,~, (1.65) 

D -Q 
P8-Y = gjl .pyU.Q + lipa.p.u, + Qpa.yu..8 + c7Pa~.Qar, (1.66) 

D -Ia 
r8 4 = gp .mu., + ~pQ.8ru.Q6 + Bpa.i36a.my + Qlrti.pu.cr76 + &a.rau.mi3 

+ &Q.Y~.Q8* + BpQ.6u.a8y + f7p*u.&a * 
(1.67) 

Setting 2 = z, and making use of Eqs. (1.18), (1.21), (1.22), (1.23), (1.40), 
and (1.41)) we well as the algebraic identities satisfied by the Riemann tensor, 
we infer, in addition to Eq. (1.52), the equations 

lim DrB.r = 0, (1.68) 
Z’Z 

lim Dro.ra = 1b.n h,“( - Wcrr~a + Waw,), z-+z er 

whence, using (1.42) and (1.43)) we get 

lim i&9 = gufl, 
P* 

1imD -0, =8-t - s+s 

lim D)op.ra = -%(R.rm + Ram), 
z-s 

(1.69) 

(1.70) 

(1.71) 

(1.72) 
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and hence 

a)rrs = gorti - %RaY;cv.~ + O(s”>, (1.73) 

Finally, noting that D-’ Or’ = sap + ?4RaYo6~+s + W3). (1.74) 

1 B,B [ = g-l (z) I-’ D = g-’ D zz A, 

we have the expansion 

(1.75) 

A = 1 - >~R’+~.acr.~ + 0(s3), 

our convention for the Ricci tensor being 

Rmp = gY6Raroa , R = gma Rap. 

2. GREEN’S FUNCTIONS 

(1.76) 

(1.77) 

In this section we look for solutions of the covariant scalar and vector wave 
equations : 

g’“4.c” = 0, (2.1) 

g”” A,‘.“” + R,” A” = 0. (2.2) 

We study the scalar equation first. Following Hadamard (Ref. 1, p. 166) we 
try to find a so-called “elementary solution” which, in the case of 4-dimensional 
space-time, is a bi-scalar having the form 

(2.3) 

where u, v, and w are bi-scalars which are free of singularities and satisfy the nor- 
malization condition 

lim u = 1. (2.4) z-r? 

With use of Eqs. (1.11) and (1.63) of the preceding section, a straightforward 
computation gives 

(242 gp”G(.L).pv = -u-~ ge”(2u.p - uh’A.&.” 

+ u-‘[2v + g”“(2v., - uh-‘A&.” + gp”u.,,“] (2.5) 

+gP”v.)lvlnIuI +gC”w.PY. 

In order for this expression to vanish the coefficient of the logarithmic factor 
must vanish everywhere, and the coefficients of the singular factors a-’ and 6-1 
must vanish at least on the light cone, while the term g’” w.,” must make up the 
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difference off the light cone. This is achieved most simply by taking the coefii- 
cient of g-2 equal to zero everywhere so that we have 

g”‘(2u., - uA-’ A.&.” = 0, (2.6) 

g P” V./A” = 0, (2.7) 

and by computing v and w in the form of expansions: 

v = 2 v,un, w = 2 w,un. 
n=O YZ=O 

(2.8) 

Substituting these expansions into (2.7) and the equation 

2v + g”“(2v., - VA-‘A.&.” + g”“u.,,v + ag”“w.,” = 0, (2.9) 

and making use of (1.11) and (1.63), we find the following recurrence formulae 
for the coefficients: 

vo + g’“(vo .,, - f.jv& A.,&.” = -Mg”” u.,” , (2.10) 

?A, + (n + l)-‘gp”(vn .p - >$J,,A-~ A.&.” 

= - >f+c’( n + 1 )-I gP”vn-l 
(2.11) 

‘P” > 

wn + (n + l)-‘g’“(wn .P - xw,A-’ A.&.” 

= -$@(n + l)- l g lJ” wn-l .Ic” - (n + I)-%, (2.12) 

+ >~n-“(n + 1>-’ gF”vn-l .p” ) 

with n = 1,2,3, . . . . Each of these equations may be integrated along each geo- 
desic emanating from the point z, and all the v’s are thereby uniquely determined. 
It is to be noted, however, that the w’s are not uniquely fixed, since wo remains 
completely arbitrary. This arbitrariness corresponds to the possibility of adding 
to G(l) any singularity-free solution of the wave equation. Hadamard (1) has 
shown that the series (2.8) converge uniformly inside the region for which u is 
single valued, provided the metric is analytic, and Riesz (8) has extended the 
proof to a broad class of nonanalytic cases. 

Equation (2.6) may likewise be integrated along each geodesic emanating 
from z. Its validity along each geodesic, however, is equivalent to the validity 
everywhere of the equation 

u-‘u., = %A-’ A.,, , (2.13) 

which, with the boundary condition (2.4), has the unique solution 

u = A112. (2.14) 
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When this solution is substituted into (2.10) and use is made of the expansion 
( 1.76)) one finds 

lim v = lim ~0 = j!,fgR. (2.15) 
z--z 2-s 

The Green’s functions for the wave equation can be obtained from Hadamard’s 
“elementary solution” G(l) by moving into the complex plane. The procedure is 
familiar from quantum field theory. One introduces the “Feynman propagator”’ 

+w 
> 

and then separates it into real and imaginary parts: 

GF = G(l) - z&7 

Using the well-known formal identities 

1 
u + io 

= 6 ; - 7&(a), 

In (a + i0) = In 1 (T ] + 7r2%( -a>. 

(2.17) 

(2.18) 

(2.19) 

where 

0 for u < 0, 
e(u) = (2.20) 

1 for u > 0, 

one obtains, for the “symmetric” Green’s function e, 

t? = (SP)-‘[A”~ 6(u) - -ue( -u)]. (2.21) 

Three important properties of this function will immediately be noted. Firstly, 
it is independent of the bi-scalar w and is hence unique. Secondly, it vanishes 
for space-like separation of the points z and z, i.e., for u > 0. Thirdly, although 
it has the same delta-function singularity on the light cone as in the case of flat 
space-time, it does not generally vanish inside the light cone. The bi-scalar v 

6 One must exercise caution, in the present context, in calling this function the “vacuum 
expectation value of a time-ordered product of massless scalar field operators” in a curved 
space-time with fixed metric. In order to do this one must first define the “vacuum,” and this 
requires a convention about asymptotic boundary conditions, particularly in view of the 
fact that the given metric is not required to be time independent, and hence can create 
pairs of scalar photons. An explicit analysis of the propagator into positive and negative 
frequency components can only be made on the basis of perturbation theory, and this re- 
quires the use of some sort of adiabatic switching hypothesis in which space-time is imagined 
to be flat in the remote past. Only when such boundary requirements are met will the func- 
tion w be well-defined. 
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represents the “tail” of the Green’s function, which, as was mentioned in the 
Introduction, is nonvanishing in a curved manifold. 

By examining the behavior of the symmetric Green’s function in the region 
where x is close to z, and comparing it with the behavior of the corresponding 
function for a flat space-timep it is easy to see that it satisfies the covariant gen- 
eralization of the inhomogeneous wave equation satisfied by the latter function, 
namely 

f (TJ,, = -g--112 A(4), (2.22) 

Moreover, the function C? can, just as in the flat-space case, be separated into 
“retarded” and “advanced” parts satisfying the same equation: 

I$ = $#-t + Gadv), (2.23) 

gwGret.p” = guy @‘d”rrv = _ g-‘/2 ,$4), (2.24) 

with 

GyX,Z) = 2e[E(s),z]s(r,z), (2.25) 

GadV(x,z) = 2e[x,z(z)]8(2,2), (2.26) 

where Z(x) is an arbitrary space-like hypersurface containing x, and O[Z(X) ,z] = 
1 - O[z,E(x)] is equal to 1 when x lies to the past of Z(Z) and vanishes when 2 
lies to the future. The fact that the retarded and advanced Green’s functions are 
defined directly in terms of “past” and “future” deserves special emphasis in 
the present context. When space-time is curved it is generally not possible to 
define these functions in terms of “incoming” and “outgoing” waves, because a 
wave which starts out, for example, as “outgoing” may find eventually that a 
portion of itself has become “incoming” owing to “scattering” by the space-time 
curvature, which is described by the “tail” function v. 

The various Green’s functions serve to give integral definitions of particular 
solutions of the general inhomogeneous wave equation 

g1’2 glrv f#B.lr” = -j. (2.27) 

Thus 

qiyx) = 1 Gyx,x)j(z) d4z, (2.28) 

ddv(x) = / Gad’(x,z)j(z) d4z. (2.29) 

The “source” j(x) is here taken as a scalar density. The Green’s functions may 

@ For example, by introducing geodesic normal coordinates at, z. 
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also be used to define a solution of the homogeneous wave equation, relative to 
the sourcej(x), namely 

c#?‘“(x) = -1 G(x,z)j(z) d4.z, (2.30) 

where 

G = Gadv - G=et, (2.31) 

g”G - 0. .)I” - (2.32) 

A very important property of the function G is its ability to express the covariant 
generalization of Huygens’ principle : 

dz) = s, g1~2Md~%(4 - ~.d~M~,z)ls”‘(~> d& . (2.33) 

Here the value at an arbitrary point z of a function $ satisfying the homogeneous 
wave equation is expressed in terms of Cauchy data ($I and 4.,) on an arbitrary 
space-like hypersurface Z having directed surface element (vector density) dZ, . 
The proof of this relation may be carried out either by choosing Z so as to pass 
through x and comparing the singular behavior of G., on Z with its behavior in 
the flat-space case, or, formally, by changing the surface integral into a volume 
integral with the aid of Gauss’ theorem. Following the latter procedure we have, 
for z lying to the past of Z, 

9Gz> := - LIBt g”2(x>g”‘(x>[~(x>G’“t.,o - c#~,,(x)G’“~(x,z)].~ d4x, (2.34) 

and, for z lying to the future of Z, 

&) = -. lfutur’ g”2(x)g”‘(x)[~(x>G”d’ .,,(x,z) - c#~.,(x)G”~‘(x,z)l., d4x. (2.35) 

The validity of these equations follows immediately from (2.24) and the wave 
equation satisfied by 4. 

Because 4 satisfies the wave equation and because the Cauchy data on z may 
be taken completely arbitrarily, we may infer from Eq. (2.33) that G satisfies 
not only the equation (2.32) but aIso the equation 

go8 G.a8 = 0. (2.36) 

However, since there is only one unique function, namely - G( x,x), having the 
properties of G(x,z) and satisfying this equation, we infer from this the sym- 
metry properties 

G(x,.z) = -G(z,x), (2.37) 
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Gret(x,z) = Gadv(q), (2.38) 

B(z,x) = B(z,z), (2.39) 

2J(v) = dw), (2.40) 

which would be difficult to obtain directly from the defining equations (2.10) 
and (2.11). These symmetry properties permit one to reexpress the generalized 
Huygens’ principle in the form 

dx> = s, &‘“(dE(~,z>~.&> - Ckw>dz)ls”%> c&. (2.41) 

We turn now to the vector wave equation. The procedure is entirely analogous 
to the foregoing. One introduces an “elementary solution” of the form 

G (1) f  + zo,, 
> 

, (2.42) 

where the functions u,, , v,, , w,,, are now bi-vectors. Expanding v,, and w,, in 
series 

VW = go vn fi‘lun, q&a = 2 n wn #au , (2.43) 
"k-0 

and inserting everything into the equation 

g”” G(l)pppc + R,” G(l)“= = 0, (2.44) 

one obtains the following equations for u,, and the v’s and w’s: 

gyc(2upa.” - u/ A.u)~.o = 0, (2.45) 

vo,w + gyo(~o~m.v - %~o,aA-’ A.v)u., = -%/i(gYuupa.va + Rr”uvJ, (2.46) 

v, ,,a + (n + 11-l g”‘(un pa.” - %u, ,dl A.v)u., 

= -Xn-‘(n + l)-l(g”“un--l ,,a.“., + R,,“vn-I “ml, (2.47) 

wn pa + (n f l)-‘gvB(wn Ira.v - Mw, ,,A-’ A.y)u.., 

= -%n-‘(n + l)-l(g”uwn-l,,~.v~ + Rr”wn-I “d (2.48) 

- (n + 1)-l v, pa + %n”(n + l)-l(g’” h-1 Ira.pr + R,’ vn-I 4, 

with n = 1, 2, 3, * * * . Again w. pn is arbitrary. 
The appropriate normalization for the bi-vector U,,= is obviously 

lim upa(~,z) = g&z>. (2.49) 
-61 
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With this boundary condition we find, upon taking note of (1.31), that Eq. 
(2.45) has the unique solution 

u ,‘,a = A”’ &a . 

The Feynman propagator therefore takes the form 

(2.50) 

l/2- 

GFW = & :+gz + v,, Mu + iO> + w,, 
> 

, (2.51) 

which, upon being separated into real and imaginary parts, 

GFp. = G(‘),,, - 2i&,, , (2.52) 

gives, for the symmetric Green’s function 

&, = (~s)-‘[A”~ &J(a) - v,,0( -u)]. (2.53) 

The appearance of the parallel-displacement bi-vector as a factor in the delta- 
function term shows that at the front of an initially sharp pulse of electromagnetic 
radiation the polarization vector is propagated in a parallel manner along the 
null geodesics.’ The “twist” in the polarization, produced by the appearance of 
the Ricci tensor in the vector wave equation as well as by curvature scattering 
effects, takes place only behind the front, in the “tail” region which is described 
by the bi-vector v,, . 

Because of the “twist” effects the structure of the bi-vector v,, is more com- 
plicated than that of the function v in the case of the scalar wave equation. In 
order to determine its limiting behavior as x + x we make use of the expansion 

u,,, = [l - &RBr a.j~.~ + O(s3)]gpa. (2.54) 

From Eq. (1.41) we may infer that 

&.a.~ = 44&&o%, + O(s'), (2.55) 

g,m.~r = %c%&ra6 + O(s) , (2.56) 

and, by symmetry in x and z, 

B,m.vr = ~&%c&; + O(s). (2.57) 

Therefore 
“I 

g uJm.vLl = -%o,mR + O(s), (2.58) 

7 The determinant AlIz obviously describes the anomalous “crowding” or “thinning out” 
of the elementary waves.emanating from z, due to curvature-induced deviations of 0.~~ 
from the value 4. The exponent W arises from the fact that energy and momentum, which 
locally are the actually conserved quantities, are quadratic in the field amplitudes. 
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and, substituting this result into (2.46), we find 

lim o,, = lim vo pa = -?&,BULxo - %gaaR). 
Z’L 2-2 

(2.59) 

For later use we record here also the expansions 

u ,,a.~ = (-~&i,6R~a,2 - ?%wR~~b.r + O(s2), (2.60) 

Upa+y = - %d Rwr - %&d-h + O(s), (2.61) 

which follow from (2.54) and (2.55). 
We define, as before, the various Green’s functions 

Pt&m(x,Z) = am(x) ,zlQk&v>, (2.62) 

Gadv,m(qz) = 2e[z,z(z)l&4d, (2.63) 

G,, = GadV,,a - Gretpa , (2.64) 

satisfying the equations 

Gpa = $$i(Ptpa + Gadvco), (2.65) 

g’” &m, + R,Y 8,, = g’” G”tpa.vs + R,’ Gretm 

= g’” Gadvpu.,, + RpY Gadvyo = -g-“2 & sc4), 
(2.66) 

g’” G,m .v., -I- R,‘G,, = 0. (2.67) 

Integral solutions of the general inhomogeneous vector wave equation, as well 
as the generalized Huygen’s principle for the homogeneous equation, will be given 
in terms of these functions in the next section. By proceeding exactly as in the 
scalar case one can derive the symmetry properties 

G,,(w) = -G,&z,s), (2.68) 

Gretpa(x,z) = Gadvm,,(z,~), (2.69) 

d,a(4 = c&z) , (2.70) 

%z(w) = bL(w) * (2.71) 

Finally, we may establish an important relation between the bi-scalar and bi- 
vector Green’s functions. For this we need the easily verified identity 

(g-‘/2 gpa $4’) .Ir = -(p p) .a .. (2.72) 

Taking the covariant divergence of the first of Eqs. (2.66), we find, after com- 
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muting indices and making use of the algebraic properties of the Riemann tensor, 

( p d4) ) . a = g’” apa.“ca + (R”, c,, .c 

= g’” Blrg.pyg . 
(2.73) 

From the properties of em.,, and arguments of uniqueness we then infer 

-P G 0l.p = - G., , (2.74) 

and hence 

@et’ a.p= - Gret.m , Gadv P 
a.p = - 

Gadv 
.a, G’ t2.p = -G., , (2.75) 

which follow from (2.74) because the derivative of the step function 0 which 
intervenes in t,hese latter equations can make a contribution only when x = z 
at which point #‘rr O.,, = - O., . 

3. EQUATIONS OF CLASSICAL ELECTRODYNAMICS 

The Lagrangian density for a structureless point particle of charge e and “bare” 
mass mO , interacting with an electromagnetic field F,, in a space-time of arbitrary 
fixed metric, is given in nonrationalized units by 

d: = -moc2 
s 

( -g~gXaiB)1’zS(4) d7 + e 
s A,i”6’4’ dr - ( 16?r)-‘g”2F,,F”Y, 

(3.1) 
=C 

s 
L0,f4’ d7 + c-‘A,j” - (16r)--Igl’*F,,~Fpy, 

where c is the velocity of light and 

F,, = A,., - A,., , (3.2) 

LO = -m&( -g&“fs)“2, (3.3) 

j’ = ec 
s 

j112gSa ,&(4) &. 
(3.4) 

The particle traces out a world-line in space-time given by a set of functions 
Z”(T), where T is an arbitrary parameter which increases monotonically as the 
particle goes to the future. Dots over the z’s denote differentiation with respect to 
this parameter. Multiple dots will be used to denote repeated absolute covariant 
di$erentiation with respect to r. Thus 

‘a x = dx*/dr, (3.5) 
a z = dia/dr + rSrDl is i’, (3.6) 
0 z = dZ”/dr + rBru is ir, etc. (3.7) 
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These structures all transform like contravariant vectors. Use of absolute covari- 
ant derivatives allows one to write the r-derivatives of any scalar function f of 
the z’s in the manifestly covariant forms 

j = f.* i”, (3.8) 

J = f.4 X” is + f .* P, (3.9) 

f = f& i” ia iy + 3f .*@ 2” ia + j.* I”, 
.i. 
j = f .*flg i” is iy 2 + 5f .*flr 2” 8 iy + f .& ia ia 9 

(3.10) 

+ 4j.a.9 2” 2 + 3j.=p E” tS + f..: z’“, etc. (3.11) 

The action functional for the system is given by 

s = c-l/d: d4x, (3.12) 

where the integration is to be extended over the region between any two space- 
like hypersurfaces. If variations in the dynamical variables za and A,, are taken 
which vanish on these hypersurfaces then the action suffers the variation 

6X = 
J 

( -mmog,~.$ + ec”‘Fap b)Sza dr 

+ c-l / [ - ( 4a)--lg1’2Fp”.y 

(3.13) 

+ c-‘j’]SA, d4x, 

provided, as will henceforth be assumed, 7 is taken to be the proper time of the 
particle, so that 

g*@ 5” 2 = -c2, (3.14) 

g*p iais = 0, (3.15) 
.* -.@ gag2 2 = -g&i@ E -i2. (3.16) 

Application of the stationary action principle yields the dynamical equations 

m0Z” = ee-’ FQo i’, (3.17) 

g112 F”‘., = 4ir c-l *j”. (3.18) 

Although Eq. (3.17) is the correct equation to give the motion of a charged 
particle in a given electromagnetic field which has no dynamical properties, and 
Eq. (3.18) is the correct equation to give the production of an electromagnetic 
field by a given current density j’ which has no dynamical properties, together 
they lead to the well-known difficulty that the quantity Fab appearing on the right 
of (3.17) is divergent when given by (3.18). For the moment, however, we pre- 
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tend ignorance of this fact and proceed in an entirely formal way. Firstly it will 
be noted that (3.17) is consistent with (3.15) owing to the antisymmetry of 
FI,a . Secondly, we note that since 

FPY.vI1 = >s( Ryp” .F”’ + Rvllvq F’“) = 0, (3.19) 

the current density j’ must be conserved. This, however, is automatically guaran- 
teed by the form of expression (3.4) ; for, using the identity 

($‘2 gjfia g(4)) ‘Ir = - (p ($4’) .(I ) (3.20) 

which is an alternative form of (2.72)) we have 

‘!J 
3 .p = -ec 

s 
$(pp).a & = -m 

s 
(j(pp) = 0. (3.21) 

The only assumption which has been made in setting the final expression equal 
to zero is that space-time is open in the time direction so that the world point of 
the particle becomes arbitrarily remote from any given space-time point provided 
one goes sufficiently far into the past or future, i.e., toward the limiting values of 
the parameter T. For an arbitrary parameter these limiting values may be arbi- 
trary, but for the proper time they are, of course, f a,, and will frequently be so 
indicated. 

The stress density of the system is given by 

T’” = T,“” + Tp“‘, 

TF”” = (4*)-l g”‘( F’b F”” - xg”” F,, Fur). 

Using Eqs. (1.40) and (3.20) and the identity 

F w.s -I- Fvr.p -I- Fc,,.v = t R,,vr + Rv,’ + Rev;) A, = 0, 

we find, in virtue of the dynamical equations, 

TpPV.p = -mot 
1 

fa ja,$($‘2$4)).B d7 = m& 
s 

$‘2g”a ia!gc4’ d7 

=e 
s 

$I2 B”~ p6 if16c4) dT = C’ F’, j”, 

TplrV.. = (47r)-’ g”2[Fpq F”“., - %+“‘(F~w + Fw, + Fw~)F”‘Tl 

= -c-l FHcj-, 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

from which we obtain the conservation law 

T’” .Y = 0. (3.28) 
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In order to make use of this conservation law to obtain the true ponderomotive 
equations, including radiation reaction, we must obtain explicit expressions for 
the electromagnetic field by solving Eq. (3.18). In order to solve Eq. (3.18)) we 
must choose a special gauge. If, in the gauge transformation 

A*, = A, + A., , (3.29) 

we choose the gauge parameter to satisfy 

g”” A.,, = -A”., , (3.30) 

i.e., if we take, for example, 

A(2) = / d(x,x’)Aa”‘.,~(x’)g”2(2’) d4x’, (3.31) 

then A*, will satisfy the covariant Lorentz conditions 

A*’ .# = 0. (3.32) 

We shall assume such a gauge transformation already to have been carried out. 
Then we may rewrite Eq. (3.18) in the form 

-4,&j” = -g1’ZgPbgY7(A,.w - A,.,,) 

= g”2(g’” A“.vc + R“,A’), 
(3.33) 

of which particular solutions are given by 

&et,(z) = 47r c-l 1 G=Q(x,~‘)j”‘(x’) d4z’, (3.34) 

Aadv,,( s) = 4n c-l 
s 

GBdVpv (x,x’) j” (2’) d4x’, (3.35) 

yielding the retarded and advanced proper fields of the particle: 

pre‘el PV = Aretplr - A=t,,.y , (3.36) 

Fadv - Aadvy.# - Aadv,w . w - (3.37) 

It is easy to see that the solutions (3.34), (3.35) satisfy the Lorentz condition 
(3.32). One simply makes use of the identities (2.75) and (3.21), and performs an 
integration by parts. 

The total field may be expressed in the alternative forms 

Fpy = Fin,,v + Fretpv = FoUtCly + Fsdvpp , (3.38) 

which serve as definitions for the fields Fins” and FoUtwv . Another useful form is 

F,, = ~‘=% -I- P,v , (3.39) 
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where 

Prv = &,fi( Fretpv + Fadvpv) ) (3.40) 
pee pv = 45 (Fin,, + FOutpy) 

= Fin,,” + $5 pad,,” = Fout,,y - >5 pdPY , (3.41) 

pad - Fretpy - Fadvlly . cv - (3.42) 

The fields I;“,? and Fredpv may be expressed in terms of potentials A, and Arad,, 
which are defined by integral expressions of the form (3.34) (3.35), involving the 
functions G,,,, and G,,, , respectively. The various fields thus defined satisfy the 
equations 

g’iz J’ret fi”.” = gliz Fadv fiv.” = 9”2 p., = aa &P, (3.43) 

Fin flu .p = Fout W’ .Y = piree w .F = $‘-d pu.y = 0 (3.44) 

Substituting the explicit forms (2.53)) (2.62), (2.63), and (3.4) into Eqs. 
(3.34), (3.35), and, for the sake of compactness, replacing the designations 
“ret” and “‘adv” by “ -” and “+“, respectively, we get. 

A*,, = 4~ e 
s 

01 
G*,, 2 dr 

-CO 

s 

fm (3.45) 

= fe km s(u) - vp. e( -a)]2 dT, 
‘2 

where Q is the value of the proper time at the point of intersection of the world 
line of the particle with an arbitrary space-like hypersurface Z(z) containing 5 
(see Fig. 2). Changing the variable of integration from 7 to u, noting that 

uz = u(x:,z(n)) > 0, (3.46) 

U(X,X(&““)> = --oo for non-“runaway” trajectories, (3.47) 

da = u.a iadr, (3.48) 

and defining the advanced and retarded proper times, T* , of the particle relative 
to the point x by 

ah&*>) = 0, 

T+ > n, r- < 72 
(3.49) 

we find 

s 

*mJ 
A*, = ~e[u,, d(u.p is>-‘]r=f, 7 e II,,, i” dr. (3.50) 

2* 
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These are the covariant LGnard-Wiechert potentials. The corresponding field 
strengths may be obtained by straightforward differentiation, with use of the 
relation 

(uvl + u., ia 7* ./Jr-* = 0, (3.51) 

which expresses the x-dependence of 7% . We find 

F*,,, = Fe{ (uvm g.,, - u,, u.Y)ia(u.~r 2 iy + CT.8 2) (o.* ia)-3 

- [(up, u.,, - upa cr.,)+ i” is + (uva u.,, - u,, a.y)i”](u., i’)-’ (3.52) 

+ (u”o.p - 2hpa.v + V”, u.p - v,, U.“)2(U.&9 ia>-‘)7=r* 
3x.a 

Fe s (vva.,, - ~,,~.~).i~ dr. 
74 

Equations (3.50) and (3.52) were derived under the assumption that u is 
single valued. Even though this may be the case for the leading terms, which in- 
volve the behavior of the particle only at the retarded or advanced proper times, 
it will not generally be true for the “tail” terms involving integrations over the 
whole past or furture history of the particle. However, since the wave equation 
is linear, the superposition principle holds, and it is clear that the appropriate 
bi-vector a,,, to use in the “tail” term is the sum of the v’s for all the different 
geodesics between x and x, each term in the sum representing the contribution of 

FIG. 2. Advanced and retarded proper times 
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an elementary wave.’ Similarly, if the point x is taken in a region sufficiently far 
from the world line of the particle, where the null geodesics (so-called “charac- 
teristics”) emanating from the world line begin to cross, then each leading 
term must be replaced by a sum of terms, one for each geodesic. These modifica- 
tions are perhaps most, clearly indicated by the generalized Huygens’ principle 
for the homogeneous vector wave equation: 

A,(x) = j-, g1’2(x’)[Gpv~(x,x’)AY’.&‘) 

- G,,,w (x,x’)A”(x’)]g”“‘(x’) dz:, . 

Because of the superposition of elementary waves propag&ting from the hyper- 
surface 2’ it is obvious that the correct propagation function to use here as well 
as everywhere else [e.g., in Eq. (2.41)] is the sum, over all distinct geodesics be- 
tween x and z’, of the elementary Green’s function (2.53) ior, in the scalar case, 
(2.21)]. It’ is evident that discontinuities in the field may occur on account of the 
crossing of null geodesics. 

We finally point out that there may be no null geodesics connecting the point 
x to the particle world line. This can happen, for example, if x is located at a suffi- 
cient distance from a ‘?unaway” trajectory, i.e., one in which the particle acceler- 
ates asymptotically to the velocity of light. In this case the LiBnard-Wiechert 
potentials vanish at x. Such cases are, however, of no interest to us here. 

4. CONSTRUCTION OF THE WORLD TUBE 

In order to determine the effect of radiation reaction upon the particle we must 
keep a record of the energy-momentum balance between it and the field. Since 
the ponderomotive equations describe the local behavior of the particle they can 
be obtained only if we keep an instantaneous record in the immediat.e vicinity of 
the particle. To do this we shall construct a small sphere about the particle, across 
the surface of which the energy-momentum flow will be determined. In the course 
of time such a sphere generates a hypersurface in the space-time manifold. It is 
the precise construction of this hypersurface, or world tube, to which we now turn 
our attention. 

We begin by introducing, at a point z on the world line of the particle, three 
unit vectors niu which are orthogonal to each other and to the world line itself :I0 

nia niu = f&j , .a T&Z = 0. (4.1) 

* Since the series (2.8) and (2.43) no longer generally converge in the multiple-valued 
region it is necessary to define the individual v’s by a continuation process. 

9 Through use of the last of the identities (2.75), Gauss’ theorem, an integration by parts, 
and the homogeneous vector wave equation, it is easy to show that this Huygens’ principle 
maintains the Lorentz condition. 

10 Latin indices range over the values 1,2,3. 
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We next introduce a set of direction cosines Q, , satisfying, 

D;Qi = 1, (4.2) 

in terms of which we can specify the direction relative to the ni” of an arbitrary 
unit vector perpendicular to the world line at .z. Then, starting in the direction 
of this arbitrary vector we construct a geodesic from z extending out a fixed dis- 
tance E to a point x. The coordinates of the point z will depend on the direction 
cosines L?i and on the proper time T which identifies the point x. This dependence 
may be indicated explicitly by expressing these coordinates in the form xc( C&T), 
although the arguments a,~ will in practice be suppressed. The locus of all points 
generated in this way for various values of Qi is the “sphere” with which we sur- 
round t’he particle. 

From Eqs. (l.lO), (l.ll), (4.1), and (4.2) we may infer that the bi-scalar c 
which describes the geodesic between x and z satisfies the equations 

a = 54 2, (4.3) 

ff.a = -~rz~,C&, (4.4) 
I 

.a 
u.,z = 0. (4.5) 

A variation 6Qi in the direction cosines produces a variation in the point x which 
is given by 

U.pa 8X' = -C ni, 68i, (4.6) 

or, in virtue of (1.51), 

6~" = t D-’ pa niu 6fii . (4.7) 

A pair of independent variations 6& , 6&; in the direction cosines defines an ele- 
ment dQ of solid angle by the relation 

WidQ = ciik 61Oi 8&k 7 (4.8) 

where Eiik is the 3-dimensional antisymmetric permutation symbol. This solid 
angle defines an element of 2-dimensional area on the surface of the sphere, en- 
closed by the parallelogram formed from the corresponding displacements 
&x“, i&x“. It is not, however, this 2-dimensional surface element which is of prime 
interest to us, but rather a 3-dimensional element of the world tube generated by 
the sphere as the proper time 7 varies. 

A general displacement of the point x on the tube, produced by independent 
variations of 7 and the Oi , may be expressed as a linear combination of &x’, 
&x” and a third displacement 83x’ orthogonal to these two (see Figure 3) : 

g,,&x” &xv = 0, g,,&x” &xv = 0. (4.9) 
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Denoting such a general displacement by 6x’, we have, on varying Eqs. (4.3) 
and (4.5) which defme the tube, and holding E constant , 

0 = u.p 8xfi + u.‘, i” d7 = (T.~ 8x’, (4.10) 

0 = -D,, i” 6x” - ti2 dr, (4.11) 

where 

-a l/2 
K = (-V.,&ip - U.o.2 ) . (4.12) 

Equation (4.10) states that geodesics normal to the world line are also normal 
to the tube. As a check, we may verify Eq. (4.10) directly for the dipslacements 
81x” and &a”. From Eq. ( 1.11) we have 

u.p = g 4 u.pu U.8, 

or 

cpD-% = -u.e. 

Substituting (4.7) into (4.10), we therefore have 

0 = -ee.,naa69i = ~2?&~aL?~njp8i2j = PC&E&, 

(4.13) 

(4.14) 

(4.15) 

FIG. 3. The world tube 
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which must be satisfied in virtue of Eq. (4.2). A similar verification of Eq. (4.11) 
for &x’ and &CJ? (do = 0) follows immediately from (4.7) and the second orthog- 
onality relation (4.1) . 

Before proceeding to the explicit construction of the displacement &xp and 
thence to the surface element of the tube, it will be convenient to record a few 
more of the properties of the unit vectors ni”, which follow from Eqs. (4.1), 
when combined with Eq. (3.14)) namely, 

nnia nt = g”fl + c-2 X” g, (4.16) 

E&a2 = c g -l”(z) Gjk %a nja nky ) (4.17) 

~~8~8 nia = -’ c gw1’2(~>~ijk(njm nki3 &s 

+ n&3nkygd + %ynkmg,di6, 
(4.18) 

tear8 niy T&j’ = C -’ g -1’2(Z)eijk(nkp gas - nk, &a)i6. (4.19) 

The latter three equations, involving the 4-dimensional permutation symbol 
eolay6 , are obtained by considering minors of the matrix formed by the four vec- 
tors ni”, X” and observing that the determinant of the matrix itself is equal to 
cg-““(x). It is not necessary for future purposes to specify anthing beyond what 
has already been recorded about the behavior of the unit vectors nia as r varies. 
One can, however, imagine them to be “rotationless.” This condition is expressed 
by the equation 

(I . ni nj, = 0, (4.20) 

which, together with the equation 

rii, i” + ni, ia = 0, (4.21) 

implies 
fii” = c-’ nifl.8 Z”. (4.22) 

The construction of 8~’ now depends on the observation that (4.9), (4.10) 
and (4.11) constitute a set of four simultaneous equations which serve to fix it 
completely. It is not difficult to see that the solution of these equations is given 

by 
i&x“ = - K” M-’ eyurp &xv 82x0 cr., dr, (4.23) 

where 

J/f = c- 131x, 82x, cr.7 D,, i”. (4.24) 

These equations may be reexpressed in terms of the element of solid angle ds2 
by noting, in virtue of (4.7) and (4.8), that 

&Xv 82~s - &Xc 622, = f D-lya D-l,@ ni” ?tj’ Eijk fi,+ dil. (4.25) 
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Introducing the bi-vector of geodetic parallel displacement, and making use of 
the bi-tensor defined in (1.64) as well as Eqs. (1.34), (1.76), (4.4), and (4.19), 
we may now write 

83~’ = 45 E~K’M-’ i’yuT CT.~ D-lym D-lob nip nja ~ijk Qk ds2 dr 

= -35 E2K2M-1 8 g”? EY6er CT.~ fi-laa D)-lrp nia T&j’ Eijk !& dfl d7 

= x e2~‘Mp1 0 A-’ ger ~~86~ DT6 D” a.r nia nj’ Eijk ak ds2 dT 
(4.26) 

= -(J -’ e3 tc2M-’ g112(x) A-’ Q”(&, & - fira Da&” s28 d da d7, 

in which we have used the abbreviation 

0” = 72;OL f& . (4.27) 

Similarly, 

M = c-l e3 g”“(x) A-‘( D,, I)as - & Daol)DY, Z” k’ 0’ d da (4.28) 

The directed (vector density) surface element defined by the independent dis- 
placements 61x’, &x’, 83x’, is given by 

dZ, = e,,uar &xv 82~~ S3xT 

= 2 c-l gf112(x) A-’ &,’ $(D,,& - & &)i” QB dQ Sax’. 
(4.29) 

By substituting (4.26) and (4.26) into (4.29) we can now use the proper time 
7 and solid angle D as integration variables in evaluating integrals over the world 
tube. We shall be interested in the case in which the tube radius e becomes in- 
finitesimally small, and therefore, it will suffice to use expansions in powers of E 
in evaluating expressions (4.26)) (4.27)) and (4.29). From ( 1.74) we have 

and hence 

&3 = gas - ?,& t2 Rrrros V 3’ + O(t”), (4.30) 

L#q !T = f&q + O( c3), (4.31) 

&&= = O(P), (4.32) 

M = -c-l e3 g1’2(x) A-$’ + $$ e2RarSa i” ie Oy8* + O(e3)] dQ2, 

63x@ = .-c-l 3 2 c K M-l g1’2(x) A-’ gPa[g++ - ?+$ E” Raysa fi7 8’ 

+- O( c”)];’ d0 dr 

= c-2K2 gt[i* - $j$ e*(g@ + 2~-~ i” da)RB7,6 X’ f2’ f2’ + O( c”)] dr, 

dZ, = cc-’ g-““(x) A-’ &,IIoL &I[;” Q@ - ia fit” 

- ?& c2( R=+ if - R’,,a Qa)i’ 0’ St + O( c”)] dt2 &x* 

(4.33) 

(4.34) 

(4.35) 

= e 0 * --I ~~ g-“*(x)&a V( 1 + x 2 RBr i-fV> dQ dT + O( 2). 
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In addition to these expansions we shall also need expansions for the retarded 
and advanced field strengths (3.52). As a first step we obtain expansions for the 
retarded and advanced proper times at which the quantities appearing in (3.52) 
are to be evaluated. Introducing 

6, = 7% - 7 = O(E), (4.36) 

and recalling the defining equation (3.49)) we may write 

0 = u + s*+ + 46 6*2 ii + g 6*3(i + >s* 6*4’(r + O(e5), (4.37) 

where u and its derivatives are here to be evaluated at the points x and x. Then 
making use of Eqs. (3.8), (3.9), (3.10), (3.11), and the expansions (1.28), 
(1.29), (1.30), and taking note of (3.15), (3.16), (4.3), (4.5), (4.12), and the 
symmetry properties of the Riemann tensor, we find that Eq. (4.37) becomes 

0 = $$c2 - g6*2K2 + ~8*3u.aEa - gib8*4i2 + O(e5), (4.38) 

from which we obtain, on inverting the series and making use of (4.4)) 

6*2 = e2K-2(l f >dE 2 K -3ga& - $& E2K-4i2) + o(,“), (4.39) 

6, = fd(1 =F 36 eZK-3za& - 354 E2 K-4 5”) + O( E4). (4.40) 

It is noteworthy that the Riemann tensor makes no explicit appearance to this 
order. 

We also need the expansions 

(0% iq,-* = (+)T** 

= i + 6,ii + ~6*“2 + $@Gp’ij + 0(e4) 

= --6*K2 + ~6*2fLm? - s6h3i2 + o(E”) 

(4.41) 

= +K(1f>&2K-3~afim+&2K-4i2)+O(e4) 7 

(u.a ia)-Lr* = =F-l ~-l(l =F $5 c2 K-3 2”i-L - g  ez K-422) + o(e2), (4.42) 

CU., 2) -3,=7* = FE-3 K-“( 1 ?= E2 K-3 zoL !& - 36 C2 K-4 g2) + o( Co). (4.43) 

In the calculations of the next section we shall not actually integrate over the 
entire world tube. In fact, we shall integrate only over an infinitesimal portion of 
it, plus the “caps” at the ends given by geodetic cross sections T = constant. 
We shall therefore need also an expression for the surface elements of the caps. 
Here we may take Q and E as integration variables, and the displacement 8~’ will 
now correspond to a variation in E. It is to be noted, however, that in order to 
preserve continuity of orientation of the surface element relative to the interior 
of the tube, s3xP must be directed inward toward the world line on the positive 
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(future) end of the tube and outward on the negative (past) end. From (4.4) 
we therefore have, on the positive end, 

CT.~= &xc = CL, de or &x’ = -D-l Pa Q2, de, 

which, when substituted into (4.29), gives 

(4.44) 

d&, = -c-l g-“‘@)A-’ D,, 8” c2de dQ, 

and, on the negative end, the same expressions with opposite signs. 

(4.45) 

5. THE PONDEROMOTIVE EQUATIONS 

The energy balance between field and particle is expressed in differential form 
by the conservation law (3.28) which states that the covariant divergence of the 
total stress density vanishes. For practical application this differential charac- 
terization must be replaced by an integral one. In the case of flat space-time, as 
is well known, one integrates the divergence over a space-time volume and then 
uses Gauss’ theorem to replace the volume integral by an integral over a hyper- 
surface. In the presence case, however, one cannot do this since the integral 
J TlrV.y d% is not an invariant, nor even a vector. 

There is, nevertheless, a natural procedure to overcome this difficulty which 
suggests j.tself, namely, to consider the integral JoPa Tp”.” d4x, in which the bi- 
vector of geodetic parallel displacement is introduced in order to refer contribu- 
tions to the integral at the variable point x back to some fixed point z. The latter 
integral il; a local contravariant vector at z, and Gauss’ theorem can be used. If 
we now let I: denote the surface of the world tube between two proper times 
71 and Q :, and denote by 21 and & the corresponding end “caps,” and by V the 
interior of the tube, enclosed by 2, 21 , and 2~ , we may write 

Let us next take the limit E * 0. The integrals over & , Zz , and V will then re- 
tain contributions only from the particle stress density; and if, furthermore, we 
take the fixed point x to lie on the particle world line at a proper time 7 between 
71 and r2 , we then have, assuming 71 < 72 , making use of (3.23) and (4.45)) and 
remembering the sign conditions attached to the latter equation, 
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Here we have made t’he replacement 

L-u. (5.3) 

to emphasize that the integral over the world tube will be computed explicitly in 
terms of an integral over proper time and in integral over solid angle. In passing 
to the limit E = 0 we have, of course, rendered the value of this integral divergent. 
However, since all calculations have been carried out in a covariant manner we 
can isolate the divergent part in an invariant fashion and eventually absorb it in 
a mass renormalization. 

The third step is to let 71 and Q both approach 7. Denoting their infinitesimal 
separation in the limit by dr we see that (5.2) becomes 

0 = moi”dr + :+I: 
s 

&,” T” dZ, . (5.4) 
4* 

The remainder of this section will be devoted to computing the second term of 
this equation. 

We must first get the retarded and advanced proper fields (3.52) in the form of 
expansions. With the understanding that all quantities are now to refer to the 
world tube, we begin by computing 

{ppa U.” ia(a.bu is iy + a.0 9) - [(u,, a.,) ..j k” ie + up, u.v 2”](u.r iY)},MI 

= l%a u.y i” ii - [(u,, a.,) .,j ia ia + upa u.u iy k-j7=,* 

= up, u.y i” ii + 6* upa u.v k” ‘5 

+ $$ 6*2[(u,, a.,) .@ 2 .i? ii’ + u,, U.? i”‘Z - (u,a a.,) .& i” 2 2 ii 

- (ura a.,) .&9(2i” 2 + i” i@), - upu U.” 2” ii] 
(5.5) 

+ g 6*3[2(u,, a.,) .)q i” i@‘ii’ - 2(up, a.,) .p(a i” ia iy 2 ii 

- (up, U.” ) +(6 Ia is + 6 2” ta + 2i* z’)ii] 

+ W4). 

Here we have simply carried out repeated differentiations with respect to 7 and 
have dropped certain terms by using the facts that Cr = u..: i” = 0, and that (T.~ 
and (u,, cr.,) .br are of order E. We now use the relations 

5 = -K2, (5.6) 

z = --fimza + O(e2), (5.7) 

‘ii’ = --i2 + O(E), (5.8) 

together with Eqs. (1.34), (1.51), (1.52), (1.64), (2.50), (4.4) and the expan- 
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sions (1.74), (2.60), (2.61), (4.39), (4.40), as well as the expansion 

a.,@-r = - Dvp.r = Bv=(% Rurtt - $5 Ru*&.a + W’), (5.9) 

which foll.ows from Eqs. (1.40)) (1.69)) and (1.70)) to rewrite expression (5.5) 
in the form 

ora &( - cK2 Aliz i” Q8 Z,z e3 K-1 ;” ff Q, BY + $5 e3 K-2 i” i8 Qy zy 

- $5: E 3 K -2 i” Qfl i2 _ ffz c3 X" dRya ii' i6 - >$ e3 6' Raysr iy X6 3' 
- x E3 i“ 2s Rys iY Qs - 34 c3 i" Rflysr iy is fit' - t2 2" iB - $5 e2 i" 20 (5.10) 

+ 55: c3 $Q@ f 45 E3 K-3 ia 26 i2 f 36 e3 K-1 i” t@ Era 87 i6 

~~3K-1~=is~~3K-1Z=28~F~3K-1j=~8) +o(e4). 

Combining this with expansions ( 1.77), (4.42)) (4.43)) and with 

(u+w + v,, u.u)i= = E & gva(- 35 i6 Ra‘%, 

- $@RBYQty - >~ffR"J + $+"O"R) + O(2), 
(5.11) 

which follows from (2.59)) (2.60) and the symmetry of u,, under interchange of 
p and a, and x and z, we find for the retarded and advanced field strengths 

PII” = e(g,, r&j - gyp &a) [EC2 K-l .i” QP + $5 e-l K-3 ia is + g K-5 i” i-228 i2 

- 34 K-3 f ff f 35 K-4 z= is - J,f2 K-1 2” Qfl R + g K-1 Xa R$ ~7 

- 34 K-1 @R@, i” _ x2 K-1 i” ff Rys fir Q6 _ $5 K-1 Rar$ iv fi6 

+ Hi2 K-~~‘?R~~ iyi= - 54 K-3.ia Rp,a,iYi6!T 
(5.12) 

*; s *~f"Br,(~(~),z(~))~rf(~/) d/l 

t O(i 
where 

fpva = vpu.v - vva.p . (5.13) 

We note that, since u certainly becomes single valued in the limit e ---f 0, direct 
use of Eq. (3.52) is valid here; difficulties with multiple-valuedness can occur only 
in the “tail” term. 

From Eq. (5.12) it follows at once that the field PdPv is everywhere finite. At 
the location of the particle itself we have, in fact, 

rad a8 F = F”fl- Ft”@ 
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where 

C(T) = T/I 71 = e(T) - q-7). (5.15) 

On the other hand, for the average of the retarded and advanced fields we have 

P,, = e(& BYa - CL cL,a) 

[ 
-2 e K -1-a @ z Q +~~;i-‘K-“2”iS+~QK-“i”s28~2-~~K-3~p~~ 

+ terms linear and cubic in the Q’s involving the Riemann tensor 
(5.16) 

The first term inside the square brackets, representing the Coulomb field, diverges 
quadratically as e + 0. 

By breaking the total electromagnetic field up in the manner of Eq. (3.39), 
we may now use Eq. (5.16) to compute the stress density on the world tube. 
Noting that the field pfree,,” is singularity-free, or at any rate has no singularities 
arising from the particle itself, we may write 

c-l g,,* T” d 2, 
= (4,&’ gli2[9pa( p, p + pfree tic pus + $i’“, pfr’= Y”) d 2, 

- ( y4 p,, p + 45 pee cr ~)gpadZ,,] + O(e). 
(5.17) 

Using (3.14), (3.15), (3.16), (4.35) and the expansions 
2 K = -o.,$y - -cz @.a z = c” + eQ,i” + O(c2), (5.18) 

K 
-2 = -2 

c - e C-4fi2,.P + O(2), (5.19) 

we find, by straightforward computation, 

c-l g1’2( gPa p’, p dz, - x P,, p g’a d&J 

2 
=e 

[ 

- 48 E-2 Q2” + 35 c-1 c-2 2” - N e-4 2” f a28 + pj c-4 fp 22 

+ terms of odd degree in the Q’s involving the Riemann tensor 
(5.20) 

- ?4c * 
-1 is 

s 
- fafly’ 2’ (/I d7’ 1 d0 dr + O(t), 

c-1 J/2 &a p?free PC p dZ, = -e c-l pfree aaia do dr + O(E), (5.21) 

e-l g1’2(&a P’, pfree “’ dz, - 35 Ffreecr p tj”O dZ,) = O(E). (5.22) 
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We now draw attention to the remarkable fact that, in the expansion of 
g,,= T” dz, , all terms which involve the Riemann tensor and which do not vanish 
as E -+ 0 are, with the exception of the “tail” term, of odd degree in the direction 
cosines. Such terms will all be eliminated when the integration over solid angle is 
performed, and the Riemann tensor will therefore enter into the ponderomotive 
equations only implicitly through the “tail” term. Carrying out the integration, 
we get, in fact, 

1 
; 

J 
0,” ,T”’ dZ, 4 

* 
2 

Li”---i e2 fl m 
(5.23) 

= 2e c2 2c -* s 
f OLByt i”(/) d7’ - f pfree a,.g ia dr + O(B). 

c 1 
The divergent term in (5.23) has the same kinematical structure as the mass term 
in Eq. (5.4). It therefore has the effect of an unobservable mass renormalization, 
and with the introduction of the “observed” mass 

m = m. + lim $5 e2 6-l cP2 7 (5.24) 
a+0 

Eq. (5.4) takes the form” 

-free L1 m 2” = a-‘$’ p 2 + g e2 c-l ia 
s 

cc faBr, .?‘(7/) d7’. (5.25) 
m 

For purposes of application to physically set boundary conditions in the remote 
past it is more appropriate to work with the field FIna@ . Referring to Eqs. (3.41) 
and (5.14), we see that Eq. (5.25) then becomes 

m 2” = ec-’ F’” a B 2 + 35 e3 c-3(f _ c-2 ia t) 

+ e2 12-l is I ’ faar, i”(/) d7’. 
(5.26) 

co 

The second term on the right is the familiar classical radiation damping term. 
When F’” OL B = 0 and space-time is flat, the physical solution of (5.26) is i* = 0, 
i.e., geodesic motion.12 When space-time is curved, however, the presence of a non- 

11 Equation (5.25) may be regarded as the definition of the result of substituting (5.16) 
in Eq. (3.17) and taking the limit e + 0. It is only by the roundabout procedure of comput- 
ing momentum-energy balance and performing a mass renormalization that a meaning can 
be given to the indeterminate expression FDlo is which appears in (3.17) and again in (3.26) 
and (3.27). 

12 There are, of course, also the inadmissible “runaway” solutions. Such solutions pre- 
sumably exist as well in curved space-times. In the case of flat space-time it is known that 
there are circumstances under which all solutions are inadmissible, notably when Finl,” is 
simply the Coulomb field of a static external point charge. [See Eliezer (9).] This represents 
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vanishing “tail” prevents this from generally being a solution, and, as stated in 
the Introduction, radiation damping then occurs even when Fin LIp vanishes. No 
attempt at a detailed analysis of the “tail” term will be made in the present ar- 
ticle. It is hoped that an investigation of some of its effects in the case of a 
static metric can be carried out in a future paper. 

a serious defect of the classical theory, and it persists, as Elieeer (9) has shown, even if the 
point charge is allowed to move under its own dynamics. That is to say, the equations of 
motion for an assembly of two or more point charges mutually interacting through their 
electromagnetic fields, have no physical solutions unless Finrv itself is chosen in a rather un- 
physical way. [See, however, Wheeler and Feynman (IO).] A very interesting although prob- 
ably difficult problem would be to see if this situation continues to persist for the equations 
of a charged particle which moves in the curved space-time produced, according to Ein- 
stein’s equations, by a charged mass point (f1). This suggests the importance, in the n-par- 
ticle problem, of taking into account the dynamical properties of the gravitational field and 
the fact that the metric is actually singular at the location of each particle. 

In the case of a fixed metric the results of the present paper can easily be extended to the 
n-particle problem. Each particle (we may label them by indices A or B running from 1 to 
n) will have its own retarded and advanced fields, FAret,,” and FAadvrv , and Eq. (5.26) will 
hold separately for each particle in the form 

+ e A2c-*ia@ 
s 

rA fy+,&~(+~), z~(~‘))~A~‘(T’) d+‘, 
00 

where 

FA”‘,, = F,, - FAret,,, . 

(Attention should be called to the fact that each particle will have its own proper time, and 
the dots above denote absolute covariant differentiation with respect to the proper time of 
the particle in question.) In practice the physical boundary conditions do not specify the 
fields FAinrv , but rather the field 

In terms of this field the ponderomotive equations become 
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