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We show that the matrix elements of the conventional symmetric energy-momentum 
tensor are cut-off dependent in renormalized perturbation theory for most renormalizable 
field theories. However, we argue that, for any renormalizable field theory, it is possible 
to construct a new energy-momentum tensor, such that the new tensor defines the same 
four-momentum and Lorentz generators as the conventional tensor, and, further, has 
finite matrix elements in every order of renormalized perturbation theory. (“Finite” 
means independent of the cut-off in the limit of large cut-off.) We explicitly construct this 
tensor in the most general case. 

The new tensor is an improvement over the old for another reason: the currents 
associated with scale transformations and conformal transformations have very simple 
expressions in terms of the new tensor, rather than the very complicated ones they 
have in terms of the old. 

We also show how to alter general relativity in such a way that the new tensor becomes 
the source of the gravitational field, and demonstrate that the new gravitation theory 
obtained in this way meets all the experimental tests that have been applied to general 
relativity. 

1. INTRODUCTION 

In any local field theory, the energy-momentum tensor is an important object; 
knowledge of its matrix elements is needed to describe scattering in a weak external 
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gravitational field. Therefore, it is desirable for the energy-momentum tensor to be 
renormalizable; that is to say, for its matrix elements to be cut-off independent.’ 
(Of course, the matrix elements at zero momentum transfer are finite, since these 
are simply connected to the total energy and momentum. Likewise, the first 
derivatives at zero are finite, since these are connected to the Lorentz generators. 
But we know nothing a priori about higher derivatives). 

Our principal result is that for any renormalizable field theory, it is possible to 
find an energy-momentum tensor whose matrix elements are finite. However, this 
energy-momentum tensor is not always the conventional one. For example, for 
the simplest renormalizable quantum field theory, described by the Lagrangian’ 

2 = &aup, aup) - gpo2y2 - X,,ea, (1.1) 

the conventional tensor, 

T,, = q&g, 8°F - g,,~, (14 

does not have finite matrix elements even to lowest order in A. However, the 
modified tensor, 

0,” = Tuy - g(a,a, - guvry) ?2 (1.3) 

has finite matrix elements to all orders in A. Note that this tensor defines the same 
four-momentum and Lorentz generators as the conventional tensor. 

In Section 2 we prove that the matrix elements of the tensor (1.3) are finite to all 
orders in A. In Section 3 we extend this result to an arbitrary renormalizable 
interaction of massive scalar, spinor, and vector field (we exclude massless fields to 
avoid considerations of infrared divergences). We have written Section 2 as clearly 
as we can, giving the details of every step in the proof. Section 3 is much more 
telegraphic in style, with many details suppressed. 

Our proof is not rigorous.l& The reason is this: in order to disentangle efficiently 
overlapping divergences, we use the renormalization procedure of Bogoliubov, 
Parasiuk, and Hepp (BPH) [l]. The validity of this procedure has been rigorously 
proved only for a special cut-off, one so strong that any polynomial interaction 
(not just a renormalizable one) is made finite. Unfortunately, our proof also uses 
certain consequences (Ward identities) of the conservation of O,, , 

ae,, = 0. (1.4) 

1 Throughout this paper, “finite” and “cut-off independent” mean “possessing a finite limit 
as the cut-off goes to infinity, in every order of renormalized perturbation theory.” 

2 We use a metric such that the signature of the metric tensor is (f - - -). 
la Note added in proof! Indeed, our arguments have recently been criticized by K. Symanzik 

(private communications). In Appendix 4, we discuss the alterations needed in the definition 
of the energy-momentum tensor if these criticisms are valid. 
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This equation is not valid in the presence of the BPH cut-off. If there were a proof 
of the BPH theorem for the conventional Feynman cut-ofL3 our proof would be 
rigorous. This is because the Feynman cut-off can be derived from a Lagrangian, 
with the aid of regulator fields [2]. For this reason, the arguments given in Section 2 
should properly be considered as merely heuristic, since the regulator fields are not 
explicitly taken into account. The correct arguments are given in Section 3, which 
treats theories involving an arbitrary number of fields, some of which may be 
regulator fields. The Lagrangian form enables us to write an energy-momentum 
tensor that is conserved, even in the presence of the cut-off. This tensor is not 
strictly given by (1.2), but contains additional terms involving the regulator fields. 
In Section 4 we check, by an explicit calculation, that the matrix elements of this 
tensor go to a finite limit as the regulator masses go to infinity, to lowest order in h. 

In the remainder of the paper we discuss some properties of the new energy 
momentum tensor (1.3). In Section 5 we show that this tensor is a particularly 
natural one to use if one is interested in the scale transformation properties of 
fields, and explain how this is connected with the criterion of renormalizability. 
We also make some remarks on the representation of generators of conformal 
transformations; these are irrelevant to the main body of our work, but flow 
naturally from our formalism, and may be of interest in another context.4 In 
Section 6 we discuss some consequences of assuming the new tensor is in fact the 
source of gravitation, and show how to alter the gravitational Lagrangian so this 
is indeed the case. 

Two appendices contain fuller discussions of points treated scantily in Section 4. 
A third appendix is a brief discussion of the equal-time commutation relations of 
the components of the new energy-momentum tensor. 

2. A SINGLE SCALAR FIELD WITH QUARTIC SELF-INTERACTION 

1. The Trace of a,, 

In the theory described by the Lagrangian 

3 Actually, the cut-off we use in Section 4, when we do explicit calculations, is a slight modifica- 
tion of the Feymnan cut-off; the regularized propagator falls off as k-s, rather than k-“. 

4 The possibility that scale and conformal transformations are approximate symmetries of 
the S matrix is a recurrent theme in high-energy physics. Some modem treatments of this idea are: 
G. Mack and A. Salam, Ann. Phys. 53,174 (1969); D. J. Gross and J. Wess, Cem Preprint Th 1076 
(1969); and L. S. Brown and M. Gell-Mann (in preparation). We would like to thank Dr. Gross 
for several enlightening discussions of conformal invariance. 
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The equation of motion 

q 2g, + po2y + 4&Y3 = 0, (2.3) 

implies that 
O&U = po2cp2. (2.4) 

Notice that this object is much “softer” than the trace of the conventional energy- 
momentum tensor; it involves fewer fields and fewer derivatives. This “softness” 
will be important to our proof. We remark that Eq. (2.4) remains true if we redefine 
both the right and the left hand sides by subtracting their vacuum expectation 
values. (This corresponds to neglecting all disconnected Feynman diagrams for 
which one component is a vacuum-expectation-value diagram.) We shall always 
make such a redefinition in everything that follows; however, to avoid complicating 
our notation, we shall not indicate it explicitly. 

2. Ward Identities and Trace Identities 

We define the position and momentum-space Green’s functions by 

Gyxl a-- x,) = (0 1 Ty’(x,) 1.. $(xn) IO:?, 

and 

GY P1 -.* Pn)(27+ 64(P1 + *.* + Pn) 

= 
s 

dax, . . . d”x, eiQ.% . . . ei”n’“nG(n)(xl . . . x,), 

(2.5a) 

(2Sb) 

where the prime denotes the renormalized fields. To study the matrix elements of 
the energy-momentum tensor we add to the Lagrangian (2.1) an additional term: 

where $,,” and $ are arbitrary c-number functions of space and time. We define 

and 

iFfn)(x; x, -I. x,) = ___ 
of 

G’“‘(xl a.. x,J /8=o . 

The Fourier transforms of these objects, r,,(k; p1 ... pJ and r(k; p1 *s-p,), are 
defined as in Eq. (2.5b). 

Ordinary perturbation theory gives all these functions as sums of Feynman 
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diagrams; Nambu [3] has shown that such sums can be written as T* products; 
in our case 

and 

P) = (0 1 T*O&) y’(x,) ... y’(x,) j 0) LAY (2.8a) 

I-) = (0 ) T*&y2(x) y’(x,) **I cp’(x,J I 0). (2.8b) 

The T* product is the same as the T product for a set of undifferentiated fields; 
for an expression involving derivatives, however, the T* product is defined to be 
the T product with the derivatives placed outside the time-ordering symbol. Thus, 
to give a definite example, 

T*R&) &Y(Y)) = %z%yT(d4 du>)- (2.9) 

We are now in a position to derive Ward identities-expressions for k,,ru”. 
These are obtained in the standard way, by calculating the divergence of (2.8a), 
using the canonical commutators, 

b&, 0, dY, 01 = --a36 - Y), (2.10) 

and taking the Fourier transform. Note that the extra term in Eq. (2.2) does not 
contribute to these identities, because of the definition of the T* product. The 
result is 

kd-‘L’(k; p1 .-. p,) = -i C (p, + k)VG’“‘(p, + k,p, *.* P,) (2.11) 
P 

where the sum is on cyclic permutations of the indices 1 to IZ. 
A useful corollary of the Ward identities is obtained by differentiating with 

respect to k and setting all momenta equal to zero: 

.F$(O; 0 -a. 0) = -i(n - 1) guYG(lt)(O *.. 0). (2.12) 

Equation (2.4) also places restrictions of the r’s, which we call “trace identities”. 
Since it is necessary to bring the derivatives inside the time-ordering symbol 
before one can use the equations of motion, these identities also have commutator 
terms. Their form is 

guvr:)(k ; p1 . ..p.J = Fn)(k;pl +a* p,) - i C GYk + pl , p2 *** PJ. 
P 

(2.13) 

3. BPH Renormalization 

The main result of Bogoliubov, Parasiuk, and Hepp [l] can be stated in the 
following way: Suppose one begins with a Lagrangian that is a polynomial in 
fields and their derivatives, and calculates Green’s functions in the usual Feynman 
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perturbation theory. Eventually, at some stage in the expansion, one will encounter 
divergent (cut-off dependent) one-particle-irreducible5 diagrams, of superficial 
degree of divergence d.6 At this stage, one adds extra terms to the Lagrangian, 
the so-called counter-terms. These terms will involve as many fields as the diagram 
has external lines, and up to d derivatives. (For example, in a theory with quadrati- 
cally divergent meson self-energy diagrams, the extra terms will be of the form ~3 
and 2p~ %uy.)’ The coefficients of these terms are chosen to cancel the first d terms 
in the Taylor expansion of the divergent diagrams about the point zero (the point 
at which all external momenta vanish). When this is done, the resultant perturbation 
expansion has a finite limit in every order. This completes our statement of the 
BPH theorem. 

For an ordinary renormalizable theory, the counter-terms required are of the 
same form as the terms in the original Lagrangian. The total Lagrangian (the 
original Lagrangian plus the BPH counter-terms) is therefore of the same form as 
the original Lagrangian. If we rescale the fields so that the kinetic term is of 
standard form, we can identify the coefficients of the other terms as bare masses, 
coupling constants, etc. Thus, in this case, the content of the BPH theorem is the 
comforting statement that the Green’s functions for appropriately resealed fields 
can be made cut-off independent, provided the bare masses and coupling constants 
are chosen in an appropriate cut-off-dependent way. The coefficients of the 
corresponding terms in the original Lagrangian are much like the physical masses 
and coupling constants as usually defined, except that they are the values of 
one-particle-irreducible Green’s functions at the point zero, rather than at some 
astutely chosen mass-shell point. 

For our purposes, it will be useful to define the concept of “a set of operators 
closed under renormalization”. In any renormalizable field theory, let A, ... A, be 
a set of monomials in the fundamental fields and their derivatives. Let us change 

the original Lagrangian of the theory by adding to it an additional term: 

(2.14) 

where the 9’s are arbitrary functions of space and time. Let us define I’F’as the 
Fourier transform of the variational derivative of the n-point Green’s function 
in the fundamental fields with respect to ya, evaluated at f, equals zero. (r:’ will 

5 A Feynman diagram is said to be one-particle irreducible if it is connected and if it remains 
connected if any one internal line is cut. 

6 The superficial degree of divergence of a diagram is given by d = 21 - 4 V + P + 4, where I 
is the number of internal Iines, V the number of vertices, and P the number of momenta appearing 
in the numerator of the Feynman integral, either from propagators or from derivative interactions. 

i The BPH theorem would require ‘p02p, in addition, but this is equivalent, upon integration. 
to a, FapF. 
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be a function of particle labels, spin indices, and n + 1 external momenta, of which 
n are independent.) The BPH theorem tells us that the r’s can be made finite if we 
add appropriate counter-terms to the Lagrangian. If these counterterms are also 
in the set A, +.* A, , we say the set is closed under renormalization. 

It follows from the BPH theorem that, given a set of operators closed under 
renormalization, we can find a set of cut-off-independent functions RF), such that 

(2.15) 
b 

where the c’s are constant, possibly cut-off-dependent, coefficients. Further, 
the c’s are completely determined if we know the terms of order d or less in the 
Taylor expansions about the point zero of these r’s to which there correspond 
diagrams of superficial degree of divergence d. In particular, we can choose the R’s 
such that for each R, , only one of these Taylor coefficients is nonzero. 

4. The Finiteness of the Trace 

Simple power-counting shows that the operator C$ is, all by itself, closed under 
renormalization. This can also be seen by remembering that, in the Xv4 the only 
superficially divergent diagrams are those with two external lines, which are 
quadratically divergent, and those with four external lines, which are logarithmi- 
cally divergent. Adding a coupling with $, as in Eq. (2.6) to any internal line 
introduces an extra propagator, and reduces the degree of divergence by two. 

Thus, Eq. (2.15) degenerates to 
j-(n) = &Cd. (2.16) 

We normalize such that R@) is one at the point zero. Thus 

rye; 0, 0) = c. (2.17) 

However, it follows from Eqs. (2.12) and (2.13) that 

P(0; 0, 0) = -2iG(2)(0, 0). (2.18) 

Since G is finite, c is finite, and all T(n) are finite. (Notice that the “softness” of the 
trace was crucial here. If we had used the trace of the conventional energy- 
momentum tensor, we would have had to add many terms to form a set of operators 
closed under renormalization. We then would have had too few Ward identities 
to determine all the unknown coefficients.) 

5. The Lust Step in the Proof 

Simple power-countings shows that the following set of symmetric tensors is 
closed under renormalization: 

(2.19) 
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This can also be seen by observing that these operators involve the same fields, 
and the same number of derivatives, as the terms in the Lagrangian (2.1). Since 
only these properties, and not the scalar or tensor character of the operators, 
enter into power-counting, the same calculation that shows that the theory is 
renormalizable shows that this set is closed under renormalization. 

@,, is a linear combination of the operators in the set (2.19). Therefore, by 
Eq. (2.15), there exists six sets of finite functions, RgL , such that 

r;’ = c c,R;;; . (2.20) 
a 

Furthermore, we may choose the R’s such that 

rf2’(k;~, , P,> = g,& + c2q2 + c,k2) + c&J,, - gJ2) + c5q,q, + . . . . U” (2.21) 

where the triple dots indicate cubic terms and higher, and 

4 = Pl - P2 . (2.22) 
Also, 

r;yo; 0, 0, 0, 0) = csgu, . (2.23) 

We will now show that all the c’s are finite, and complete our proof of the 
renormalizability of O,,, . The Ward identity (2.11) tells us that k@I’L,) is finite. 
Therefore, 

(~1 + w2 + CA21 kw + c,(q . k) qu (2.24) 

is finite, as is 
c,k, . (2.25) 

Extracting coefficients of independent vectors, we find that all the c’s are finite. 
except perhaps for c4 . 

However, the results of the preceding subsection, together with the trace 
identity (2.13), implies that gUvrE) is finite. Therefore, 

4(c, + czq2 + c,k2) - 3c,k2 + c,q2 (2.26) 

is finite. This, together with the preceding result, enables us to deduce the finiteness 
oft,. 

3. A GENERAL RENORMALIZABLE FIELD THEORY 

1. Ldzgrangians 

In this section, we shall extend the results of the preceding section to the most 
general renormalizable field theory. Our methods will be essentially the same as 

59515911-4 
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before: we construct an energy-momentum tensor with a “soft” trace, and use 
Ward and trace identities to show that it is renormalizable. The algebra will be 
much more complicated, though, because we have to keep track of a larger number 
of fields. 

The most general renormalizable field theory involves a set of spinless fields, 
a set of Dirac bispinor fields, and a set of vector fields. We will denote these 
by ya, P, and A,“, respectively, where the index a runs through the appropriate 
range in each case. The Lagrangian is the sum of a free part and an interaction 
part, 

u=,Epo+9pI. (3.1) 
The free part is given by 

% = Pup, aa+p - g(po2)o pp + +P(iPy, - mea) 4 

- $(a,A,a - 8yAM@)2 + &kfz)a A,“A““, (3.2) 

where the sum over repeated indices is implied, and where we have assumed that 
the fields have been redefined by a linear transformation, if necessary, to put (3.2) 
into standard form. The interaction part is given by 

gl = &q= + jj=by=rpbF~ f ;t=bc”q=vbc@pld 

+ gabca,@#b#c + ihabc@y5#btpc + eabc@yu$bAuc 

+ 2f Obc(a”~a) ~J~A,” + f abcfaderpbcpdAucA“e. (3.3) 

The numerical coefficients in this expression are the unrenormalized coupling 
constants. In general, the only restriction on these couplings is that the vector 
mesons must couple to commuting conserved currents; thus, the transformations 

(3.4) 

must be a symmetry of the Lagrangian for every a, and two such transformations 
must commute. Of course, in special cases, symmetry principles, like isospin 
conservation or parity invariance, may place further restrictions on these couplings. 

Some of these fields will be regulator fields. Depending on the regulator formalism 
one uses, these fields will either have imaginary coupling constants in their inter- 
actions or, alternatively, contribute to (3.2) with a sign opposite to that which we 
have displayed. Either of these devices serves to insure that the propagator for the 
regulator field has the desired negative sign. It is crucial that the regulator fields, 
and their contribution to the energy-momentum tensor, be included at every step. 
Otherwise, the Ward and trace identities, vital to our calculation, would not be 
true in the presence of the cut-off. 
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Although the Lagrangian (3.1) describes a renormaiizable theory, the vector 
meson part is not in a good form for systematic renormalization theory; the meson 
propagator it implies, 

(3.5) 

is badly behaved for high k. This difficulty can be eliminated by introducing 
auxiliary scalar fields. For simplicity, we will review this procedure for the case of 
a single vector meson interacting with a single Fermion; the generalization is 
trivial. We begin with an initial Lagrangian (in the sense of Section 2.3) of the form 

(3.6) 

where A is the auxiliary field, and 

67” = A, + p-l&A. (3.7) 

It is possible to show, as a consequence of current conservation, that this 
Lagrangian defines the same on-the-mass-shell S matrix as does the Lagrangian 
without the auxilliary field A. The effective vector propagator, the propagator 
for dil , is 

- k,kJk2 Duv = guvk2 _ 
P2 * 

This is well-behaved at large k. 
Another consequence of current conservation wilI also be of use to us: the 

only counter-terms generated by the Lagrangian (3.6) are of the form of the last 
three terms-the first two terms in (3.6) receive no additions. 

2. Energy-Momentum Tensors and Their Traces 

The conventional energy-momentum tensor is most simply expressed if we 
assemble all of the fields in the theory into a vector ‘p. The momentum vector, 
xp is defined by 

+ = a5qa(a,(p). (3.9) 

The spin matrix, C,, , is defined by the transformation properties of the fields 
under an infinitesimal Lorentz transformation, 

b = x,a,cp - x,a,v + c,,~. (3.10) 
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With these definitions, the conventional symmetric energy-momentum tensor [4] 
is given by 

We are now in a position to state our main result: There exist constants ca such 
that 

tw = T~V - g(afiav - gqyg + •)(~a + l ) (3.12) 

has finite matrix elements in all orders of renormalized perturbation theory.* 
In general, the E’S are cutoff-dependent. Of course, in particular cases, symmetry 
principles may tell us that some of the E’S vanish. For example, for a parity- 
conserving Lagrangian, the E’S associated with pseudoscalar fields vanish. Likewise, 
for an isospin-conserving Lagrangian, those associated with fields on nonzero 
isospin vanish. 

Straightforward (and very tedious) calculation shows that 

@,* = (P,,~)~ ya@ + m,,a$&h + (Mo2)@ AwaAUa - ~bc~a~bqP - 3arQ@ + l n2qP. 
(3.13) 

Note that we do not use the equations of motion to rewrite the last term. 
Equation (3.13) is valid for the Lagrangian (3.1); it does not include the contri- 

butions from the scalar fields auxiliary to the vector meson fields. However, 
in the remainder of this section, we will ignore there terms, and, when counting 
divergences, treat A,” as if it were 0Z,,a. We show in Appendix I that we make no 
errors in doing this. 

3. Ward Identities, Trace Identities, and Supplementary Conditions 

Just as before, we add an additional term to the Lagrangian (3.1), 

Y + dp + o,,p f o,*.f, (3.14) 

where OAA is given by Eq. (3.13). As in Section 2.2, we can define Green’s functions, 
which we denote by I’L:.S*t) and r(7***t), where r, s, and t, respectively, denote 
the numbers of spinless, Dirac, and vector fields in the corresponding T* product. 
These functions depend on (r + s + t + 1) four-vectors, of which (r + s + t) 
are independent, on (r + s + t) field-labeling indices, on s spinor indices, and 
on t tensor indices. To avoid monstrous equations, we will, in the remainder of 
our discussion, only display explicitly the dependence on those variables which are 

* This is not, of course, the unique solution to the problem of finding a finite energy-momentum 
tensor. For example, another solution is P(P) eMV , where P is any polynomial that has the value 
one at zero. 
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relevant to the argument. For these functions, we can derive Ward and trace 
identities. The explicit form of these equations is as complicated as it is 
unenlightenening;s therefore, we will merely state here that they can be used to 
show that kur,, is finite, as is the difference between gfiyrUy and r. Also, by 
differentiating the Ward identities, we can show that all the rLLy’s are finite at the 
point zero. 

None of this depends on the values we assign to the E’S. We now fix P by 
demanding that 

WO.O)(k; k) = l-(1,o,o)(O, 0) + O(k4). (3.15) 

We will refer to this set of equations as supplementary conditions. 

4. Finiteness of the Trace 

Straightforward power counting shows that the set of operators 

is closed under renormalization. (The last term is necessary to close the set, 
for a cubic interaction can produce a quadratic divergence in P*O*O). This is the 
reason why we need, in general, the E terms in the energy-momentum tensor.) 
Thus, just as in Section 2, we can establish that the matrix elements of @,A are 
finite if we can show that (1) PO,O), I’(2,0,0), P3,0+O), r(“.2*o), and r(“.o,2) are finite 
at the point zero, and (2) the second-order terms in the Taylor expansion of P.O.O), 
about the point zero are finite. The first of these is a consequence of the Ward 
and trace identities; the second follows from the supplementary conditions. 

5. The Final Step in the Proof 

Let us consider the set of all tensor operators constructed from (1) four BosonlO 
fields and no derivatives, (2) three Boson fields and up to one derivative, (3) two 
Boson fields and up to two derivatives, (4) one Boson field and up to two derivatives 
(5) two Fermion fields, one Boson field, and no derivatives, (6) two Fermion fields 
and up to one derivative, or (7) one vector field and three derivatives. Simple 
power-counting shows that this set of operators is closed under renormalization. 
The energy-momentum tensor is a linear combination of operators in this set. 
Thus, by arguments which should, by now, be familiar, we can prove the finiteness 
of the matrix elements of O,, if we can show that certain coefficients in the Taylor 
expansions of certain I’Uy’s about the point zero are finite. We can show this if we 
can express these coefficients in terms of k”I’L>sat) and glLYI’L:.8*t’, which we already 

9 For the benefit of the curious, we give them in Appendix 2. 
lo As usual, “Boson” means either a spinless field or a vector field. 
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know to be finite. To show that such an expression exists, it suffices to show that 
the corresponding system of linear equations has a unique solution. 

Thus the proof reduces to solving the following homogeneous problem: Given 
that 

kur(r,&t) = 0 LAY 3 (3.17) 

and 
gwp,s,t) = 0 IL” , (3.18) 

prove that the necessary Taylor coefficients in the expansion of I’k8*t’ about the 
point zero vanish. 

The problem is readily solved for those terms which are of zero-th or first order 
in k. Let 

By Eq. (3.18) 

l-‘($81t) = Au, + Auv,k” + O(k2). (3.19) 

k”A,, = 0. (3.20) 

Since k is arbitrary, this implies that 

Likewise, 

This implies that 

A,, = 0. 

A kvkA=O. wk 

A WA = -4.~. 

(3.21) 

(3.22) 

(3.23) 

However, we also know that 

A WA = &A . (3.24) 

These two equations imply that 

A WA = - A VAU 
= A Auv 

(3.25) 
= -4d 
= 0. 

Thus, we need only investigate in detail those Green’s functions whose Taylor 
coefficients of second order or higher are needed. These are: 
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(1) ,$O*? This was done in Section 2. 

(2) r$“*“‘. This is the same algebra as the preceding case. 

(3) r/$o*2). Here we need only investigate the terms of second order in k. 

r:::;fYk; p1 7 P,> = aguvg# + Wgi,ngy, + gvsi,J 

+ ck,k,g,, + dkAk,g,,v 

+ 4’dmw + kvkng,,) 

+fbWw~v + kkx,,), (3.26) 

where we have restored the suppressed dependence on tensor indices, but not on 
field-labeling indices. By Eq. (3.17) 

k2gADk,(a + c) + k2gv,W + 4 + k2gvAk,@ +f) + MMd+ e 4-f) = 0. (3.27) 

Hence, 

By Eq. (3.18) 

e=f=-b 

d = 2b 

c= --a. 

gA,k2(4a + 26 + 4 + k,k,(c + 4d + 2e + 37 

Combining this with the preceding equation 

3a + 2b = -a + 4b = 0. 

Hence, 
a=b=O. 

(4) q!.OJ). Here we need to go to third order. 

(3.28) 

r,$J)(k; k) = ak2(kugvA + k,,g,J + bk2k,g,,,, + ck,,kJ, . (3.31) 

There are no second-order terms with the proper transformation properties. 
By Eq. (3.17) 

Hence, 

ak4g,, + (b + c) k2k,kA = 0. 

a = 0, 

c = -b. 

(3.32) 

(3.33) 
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By Eq. (3.18), 

Hence, 

(4b + c) k2k, = 0. 

b=c=O. 

(3.34) 

(3.35) 

This solves the homogeneous problem and completes the proof. 

4. A SAMPLE CALCULATION 

In this section we shall verify the theorems of Section 2 to lowest nontrivial order 
in perturbation theory. We shall choose a cutoff such that the meson propagator is 

W2) = & - 

2 

k2 "' Ml2 - 

2 

k2 .? M22 ' (4.1) 

where 

and 

Cl2 + c22 = 1, (4.2) 

C~“fk?12 + c22M22 = p2. (4.3) 

Such a cutoff can be effected by introducing, in addition to the scalar field F, 
two regulator fields [2], ?1 and y2 , and choosing the initial Lagrangian (in the 
sense of Section 2.3) to be 

where 

64 = &(auq auq - p2v2) - wdh a33 - ~2~32) 
- w,~,, apv2 - M,~YJ~~ - A@, 

@ = v + Cl% + c29)2* 

(4.4) 

(4.5) 

The renormalization counter-terms change the Lagrangian: 

(4.6) 

where a, b, and c are cutoff-dependent. By the usual interpretation, these counter- 
terms have the following physical meanings: 

and 

Z=l+a, (4.7) 

po2 = Z-Yp2 + b), (4.8) 

h, = Z-2@ + c). (4.9) 
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According to our theorems, if we define the energy-momentum tensor 

then this object has finite matrix elements. Also, 

@,u = p2y2 - M12q+2 - M22q22 + bsP2. (4.11) 

We will now attempt to verify these assertions to first order in h. 
Before we can do this, we must calculate the renormalization constants to first 

order in X. To this order, a and c vanish; b is determined by the condition that 
it must cancel the first-order self-energy diagram (Fig. 1) at the point zero. Thus, 

b = 
* d4q 

-12Uj WC 
1 Cl2 c22 

q2 _ p2 - q2 _ Ml2 - q2 _ M22 . 
(4.12) 

FIG. 1. The mass renormalization counter term to order A. 

(a) 

” 
I \  

(b) 

(cl 
FIG. 2. The corrections of order h to the one-meson matrix element of the energy momentum 

tensor. The tensor itself is represented by a cross, and carries off momentum k. Internal momenta 
are oriented such that they go around the loop clockwise. 

FIG. 2(a). The first-order correction to the zeroth-order tensor. 
FIG. 2(b) AND 2(c). The zeroth-order matrix elements of two first-order terms in the tensor. 
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We may now calculate the one-particle matrix element of (4.10). The relevant 
Feynman diagrams are shown in Fig. 2. Figure 2a shows the contribution from the 
first correction to the zeroth-order parts, Fig. 2b that from the b@ term and 
Fig. 2c that from the A@* term. (If we had normal ordered the Lagrangian, the last 
two terms would not have been present; however, in this case, Eq. (4.11) would not 
have been true). The last two terms cancel; thus, the two-particle matrix element is 
given by 

d4q Mu”= 24iAjm\; ah? + 6” - hL”kl .G7 + 4 - A + Qbw” - gwk2) 
w - P2)[4 . (9 + k) - P21 

- c,yp2 -+ M12) - c22(p” 4 M22) , I (4.13) 

where the last two symbols represent integrands identical to the first, but with p 
replaced by M1 and M2, respectively. Note that to this order, the amplitude 
depends only on the total momentum transferred, k. Therefore, with no loss of 
generality, we can take the external lines to be on the mass shell, and the trace 
identity takes the simple form 

g”‘M,y = M, (4.14) 

where M is the matrix element of (4.11). 
Now, 

guvM,y = 24iA j & 1 -q . (q + k) + 2p2 - ik2 
(q2 - tL3Kq + k2) - ~~1 

- c1y,2 -+ M12) - c22(p2 + Ma21 . I 
But, by Eq. (4.1 l), 

Thus, 

b = -6iA I-$$ 
I 

(q2 - p2) + Kq + k12 - p21 
(4’ - p2Mq + k12 - p21 

- cl2&2 --t M12) - c22&2 --t M22) . I 

guvMuy = 2b + 24ih i -A!%- 1 
2 

CW* (q2 - p2M:+ W2 - p21 

- c12(p2 + M12) - c2”(p2 + M22) . 
I 

(4.15) 

(4.16) 

(4.17) 

This is precisely M. Thus, we have explicitly verified Eq. (4.11). 
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If we evaluate (4.17) at the point zero, we find that 

M(0) = 2b - 2pz@b/t3p2) - 2M12(3b/aM12) - 2M,2(ab/aM22). (4.18) 

This is zero, since b has the dimensions of mass squared, and p2, M12, and Mz2 are 
the only parameters that are not dimensionless. Thus, if we define the convergent 
integral 

then, 

W2/P2) = g2 j g$z @2 _ p2)[(;; ,4)2 _ fL2] 
(4.19) 

M(k2) = jf dx[F(x/p2) - c~“F(x/M1”) - c,~F(x/M,“)]. (4.20) 

As the regulator masses go to infinity, this becomes 

M(k2) = jez dx[F(x/p2) - F(O)]. (4.21) 
0 

This establishes the finiteness of the trace. 
By Lorentz invariance, all that remains is to establish the finiteness of (4.12) 

for p f v. In this case, 

M,w = k,k, 1 dx s s 0 
$$T [h - x(1 - x)l{[q2 - p2 + k2x(1 - x)1-” 

- c12(‘p2 + M12) - c2”(p2 -+ M22)}, (4.22) 

where we have introduced a Feynman parameter and shifted the integration vector 
in the standard way. Since 

s 
’ dx[& - x(1 - x)] = 0. 
0 

(4.23) 

the integral vanishes at the point zero. The finiteness of (4.22) then follows by the 
same arguments as were used for the trace. 

An interesting featurell of this calculation is that the contribution of the regulator 
fields to the trace, Eq. (4.1 l), does not go to zero as the regulator masses go to 
infinity. This is because the terms involving the regulator fields are themselves 

I1 We have not here examined the interesting question of whether or not it is possible to express 
the trace of the energy momentum tensor in the renormalized theory purely in terms of the 
renormalized physical fields with no reference to the regulator fields. We are indebted to K. 
Wilson for a discussion of the properties of the trace of the energy momentum tensor in a 
renormalized field theory. 
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multiplied by the regulator masses. Thus, the very equation with which we began 
our analysis, in Section 2, 

o,u = p&l2 (4.24) 

is in no sense an acceptable equation in the renormalized theory. This does not 
affect our proof, of course, since what we need for the proof is not this equation 
but its generalization in the presence of the regulator fields, Eq. (4.11). 

5. SCALE INVARIANCE AND CONFORMAL INVARIANCE 

In this section we shall show that the new energy-momentum tensor which we 
have introduced is a very natural object to consider if one is interested in the 
transformation properties of a field theory under scale transformations and 
conformal transformations. This is a viewpoint that has no apparent relation with 
the criterion of renormalizability; nevertheless, as we shall demonstrate, a con- 
nection does exist. We shall also make some remarks about the representation of 
the generators of conformal transformations which are not relevant to the main 
body of our work, but which follow naturally from our analysis, and which 
may be useful in another context.4 

1. Scale Transformations 

As in Section 3.2, we assemble all the fields in a field theory into a vector, y. 
A scale transformation is a transformation of the form: 

7: c&c) + eD’(p(e3), (5.1) 

with D some matrix and T some real number. The set of all such transformations, 
with fixed D and arbitrary 7, form a group. The infinitesimal transformation is 
of the form 

Scp = DV + x‘&cp. (5.2) 

The theory is invariant under scale transformations if the change in the Lagrangian 
induced by (5.2) is a total divergence. This means 

w  = 49 + x”&s? 

= q&(xu9). (5.3) 

In particular, the Lagrangian (3.1) obeys this condition, if we set all nondimension- 
less coupling constants (including the masses) equal to zero, and if we choose D 
to be a matrix that multiplies every Bose field by 1 and every Fermi field by 3/2. 
These numbers are the conventional dimensions of such fields; for this reason D is 
sometimes called “the dimension matrix”. 
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If the condition (5.3) is obeyed, we can use the standard formula to get an 
expression for the conserved current associated with scale transformations: 

J” = +’ *k++X~L? 

= IT” - Dcp + TP - XAaAql - xu”Y 

z xw - DRY + x,7-$ 

where Tz” is the canonical energy-momentum tensor, 

TuA = ,+I . 
e aAcp - p9. 

We note that if the Lagrangian does not obey (5.3) but instead obeys 

&.Y = au(xudp) + A, 

where rl is defined by this equation, then the conservation equation, 

a,Ju = 0, 

is replaced by 

a,Ju = A. 

For the particular case of the Lagrangian (3.1) 

A = (p,,2)a p’~” + m,$,,P~ + (Mo2)a A,“/W - Igabc@vbplc - 3a=@. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

As we shall see, the similarity between this and Eq. (3.13) is no coincidence. 
Equation (5.4) is reminiscent of the canonical expression for the currents 

associated with the angular-momentum tensor, 

MAW = x”T2~ - xvTu + ,$ . ~uvcp (5.10) 

In the case of angular momentum, it is possible to build a new set of currents, 

~AUY = xuTA~ _ xvTAu 3 (5.11) 

where T”” is the symmetric energy-momentum tensor, defined by Eq. (3.11). 
The currents (5.11) are not the same as the currents (5.10); however, they are also 
conserved, and upon integration, yield the same total angular momentum. It is 
natural to ask if something similar can be done for Eq. (5.4)-if it is possible to 
defined a new energy-momentum tensor Ouy, such that 

J” = @u” 7 (5.12) 



62 CALLAN, COLEMAN, AND JACKIW 

obeys Eq. (5.8), and such that the space integral of the time component of (5.12) 
is the same as that of the time component of (5.4). 

We shall show that a sufficient condition for this to be possible is that 

where & is some tensor. Later, we shall show that this condition is also a necessary 
one, that a scale-invariant theory be conformally invariant. Eq. (5.13) is satisfied 
by the most general renormalizable interaction, (3.1), with 

aul = 4 guAcpapz. (5.14) 

We now turn to the explicit construction of OUV. From the definition of T”“, 

The last term is the divergence of an antisymmetric tensor; therefore, we may 
discard it without affecting the conservation of the current or the space integral 
of its time component. Thus, we redefine the current to be 

(5.16) 

Let us write P as the sum of a symmetric and an antisymmetric tensor: 

OU” = ““+” + of. (5.17) 

By the same reasoning as before, we may drop the contribution of the antisymmetric 
part to Eq. (5.16), and redefine the current as 

J” = x,Tu” + a,,uy. (5.18) 

We now define 

0~" = Tfiv + *aAapxAppv, (5.19) 

where 

xAPuv = gaoq” _ gA”Op _ gAv*y + guv,:, _ QgADguvo& + ~gAugov*;;h: . (5.20) 

The added term is symmetric and divergenceless; it makes no contribution to the 
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total four-momentum, nor to the total angular-momentum tensor. From the 
definition of @u, 

The third term is the divergence of an antisymmetric tensor; therefore, we may 
drop it, and redefine the current as 

because the second and third terms cancel. This is the desired result. 
The energy-momentum OuV, (5.19), becomes our energy-momentum tensor (3.12) 

when arrv is taken to be (5.14). (More properly, it is our tensor if we replace vu by 
ya + E’“. However, we always have the freedom to make such a change of variables 
for scalar fields.) Our energy-momentum tensor was selected to have a “soft” 
trace-one that involves operators whose Green’s functions have low degrees of 
divergence, and whose counter-terms can therefore be controlled by the Ward 
identities. These “soft” operators are precisely those terms in the Lagrangian 
which break scale invariance. However, by Eqs. (5.22) and (5.8), 

auj u = A = @ u u * (5.23) 

This explains why we have arrived in this section at the same energy-momentum 
tensor we found, by apparently quite different arguments, in Section 3. 

2. Conformal Transformations 

The conformal group is a group of transformations on Minkowski space, 
defined as the connected part of the smallest group containing the Poincare group 
and the inversion in a unit hyperboloid. It is a fifteen-parameter Lie group, 
isomorphic to the noncompact classical group S0(4,2). Ten of the fifteen group 
generators are the usual Poincare generators; the other five consist of the generator 
of infinitesimal scale transformations 

6xu = -xp, (5.24) 

and four generators obtained by inverting infinitesimal translations, 

acvxu = - 2X’“X” + guvx2. (5.25) 

The four transformations (5.25) are called infinitesimal conformal transformations; 
if a dynamical theory is invariant under such transformations, we say it is con- 
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formally invariant. It is easy to see that the commutator of an infinitesimal 
conformal transformation and an infinitesimal translation is a linear combination 
of infinitesimal Lorentz transformations and the infinitesimal scale transformation; 
thus, a Poincare-invariant theory which is also conformally invariant is necessarily 
scale-invariant. 

We wish to represent these transformations as linear transformations on a set 
of fields. Since the origin of coordinates is left unchanged, fields at the origin must 
go into fields at the origin. Thus, 

h(O) = Dv(O), (5.26) 

and 
S,“(P(O) = mm (5.27) 

with D and the K’s some matrices. The algebra of the conformal group implies that 

[D, K”] = K”, (5.28) 

or, equivalently, 
e+Dq&+‘r = ebb< (5.29) 

Thus, the K’s must be nilpotent. This does not necessarily mean they vanish, 
since there is no reason to assume they are diagonalizable; however, we will 
restrict ourselves, in the sequel, to the case in which they do vanish, 

K” = 0. (5.30) 

The transformation properties of fields at arbitrary points are now determined by 
the known commutators of (5.24) and (5.25) with translations: 

8~ = DT + x%,<p, (5.31) 
and 

6 o’“‘p = (2xLLxy - g““x”) L&J + 2xUD9 + ~x,C“~~. (5.32) 

The first of these is just Eq. (5.2) again. 
We shall now investigate the conditions such that a given Lagrangian describes 

a conformally invariant theory. By the preceding equations, 

(5.33) 
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Now, as a consequence of Lorentz invariance, 

(5.34) 

Likewise, since every conformally invariant theory must be scale-invariant, we 
must have, as a consequence of Eq. (5.3), 

(5.35) 

Therefore, 

s,u9 = (2x”x” - gu”x2) a”9 + 4x55? + 2TP * Dv + 2Yr” * W”cp 

= a,[(2xpx” - gLL”x2)9] + 2~ - Dv + 12~” . P”~. (5.35) 

Thus, for conformal invariance, two independent conditions must hold: Eq. (5.3) 
which expresses scale-invariance, and 

where 0~” is some tensor.12 
This is the same as Eq. (5.13). This should be no surprise, for Eq. (5.13) is the 

condition that the scale current can be written as 

If this can be done, scale invariance implies that 

o,u = 0. (5.38) 

But if this is true, then we can define four other conserved currents 

a JU" = 0, (5.39) 

I2 A slightly less general form of this condition has been given by Mack and Salam and also by 
Gross and Wess (footnote 4). As we have remarked, the condition holds for all renormalizable 
theories; in addition it is valid for all theories of fields with spin 0, 8 , and 1, if the kinetic energy 
is of standard form, and if there are no derivative couplings. A simple example of a theory for 
which it does not hold is given by the theory of a vector-scalar mixture described by a single 
vector field, Be , for which the Lagrangian contains a term proportional to (iWBJ2. We emphasize 
that U,,(X) must be a local function of the fields; otherwise the standard boundary conditions in 
Hamilton’s principle are not sufficient to ensure that adding a divergence to the Lagrangian does 
not change the equations of motion. 

595/59/I-5 
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where 

J”” = (2x”x” - gu”x”) OVk (5.40) 

It is easy to check that these four currents are the conserved currents associated 
with invariance under the four conformal transformations. 

We conclude this section with a final remark13 about the relevance of our 
tensor Ofiy to conformal transformations. Consider a conformally invariant theory, 
such as the massless scalar field with a v4 self-coupling; i.e., the theory given by 
(l.l), (1.2), and (1.3) with p0 2 = 0. Even though conformal transformations are 
symmetry operations in this theory, one may verify by use of (5.32) that Tu” as 
given by (1.2) does not transform covariantly under these transformations; i.e., 

6,“T”‘(O) # 0. (5.41) 

On the other hand when the variation of @‘, as given by (1.3), is computed from 
(5.32) one does find a covariant transformation law 

8cw~(o) = 0. (5.42) 

6. GRAVITATIONAL INTERACTIONS 

1. Observable Gravitational Efects 

It is only when we consider gravitational interactions that the full physical 
import of the energy-momentum tensor emerges, for it is the source of gravity, 
to lowest order in the gravitational coupling. To demand that our O,, be the 
source of gravity is to demand that all gravitational effects be finite, to lowest 
order in the gravitational coupling and to all orders in all other couplings. (Of 
course, this does not guarantee that all gravitational effects are finite to all orders 
in the gravitational coupling. To attempt to fulfill this condition would lead us into 
the thorny problem of the divergences of quantized general relativity.) 

We shall begin by assuming that our O,, is the source of gravity, to lowest order, 
and explore the consequences of this assumption. Later, we shall show how to 
alter the gravitational interaction such that this is the case. To avoid notational 
complexity, we shall restrict ourselves to the case of a single scalar field with 
quartic self-interaction, discussed in Section 2; the generalization is trivial. 

Let us begin with the process 

a -+ b + graviton, (6.1) 

IS This point was developed through conversations with K. Johnson. 
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with a and b arbitrary states. The matrix element for this process is proportional to 

l “@ I @,v I a> = E”“@ I Tw I a> + &““(q,qv - g,.qW I y2 I a>, (6.2) 

where l is the graviton polarization tensor, and q is the momentum transferred 
to the graviton. For a free graviton, it is always possible to choose a gauge such that 

q&u” = 0, (6.3) 

and 
&L”E 11” z.z 0. (6.4) 

Thus, the last term in Eq. (6.2) vanishes, and, for this process, there is no observ- 
able difference between using our tensor and using the conventional tensor. 

However, the situation is quite different when one considers scattering in an 
external field. For example, to lowest order, scattering in the field of the sun is 
also given by Eq. (6.2) with 

c”“(q) = 
87TGM 
2 6(q0)[6,~6,” - &g’““], 

4 
(6.5) 

where M is the mass of the sun. We thus find that 

?(b / 0,” 1 a) = @“(b I T,,” I a) + $nGMG(q&(b / cp2 I a). (6.6) 

Therefore, in this case, there is an observable effect; we would have obtained a 
divergent matrix element if we had used the conventional energy-momentum tensor. 

2. The Gravitational Lugrangian 

Conventional gravitation theory [5] is described by an action principle of the form 

I = f d4x 4-g [(1677G)-‘R + L&J (6.7) 

where R is the curvature scalar, g is the determinant of the metric tensor, and 
=!$ is the Lagrangian for matter (everything except gravity), with all derivatives 
replaced by covariant derivatives. In our case 

-Em = 4gu" aGv avT - ;po2v2 - x0?? (6.8) 

If we vary (6.7), we find the usual Einstein field equations 

R,” - $g,“R = --8rGT,“, (6.9) 

where Tu” is the conventional energy-momentum tensor. Thus, (6.7) predicts that 
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the conventional tensor is the source of gravity. We wish to alter (6.7) so that the 
source of gravity becomes our new tensor, O,, . 

One obvious possibility is to add a term to 9m that does not change the matter 
field equations in flat space; that is to say, to make a transformation of the form 

9 7n- -%I + %VU, (6.10) 

where Vu is some vector. Unfortunately, this has no effect on the gravitational 
field equations, for the covariant version of this change is 

where the semicolon indicates covariant differentiation. However, 

d-g vu;H = a,(Cg V”). 

Thus this does not change (6.7). 
The proper procedure is to replace (6.7) by the more general form 

(6.12) 

I = 
s 

d4x 1/-g (f(y)R + a%>. (6.13) 

where f is a function we will determine shortly. This leads to the field equations 

4, - i&R = - + [T&v + 2fu:v - kwfA\:,I. (6.14) 

Thus we can obtain the desired lowest-order result if we choose 

(6.15) 

The field equations of matter14 are also changed; they become 

vu;@ = -po2~ - 4h,y3 - +Rq. (6.16) 

If we take the trace of Eq. (6.14), and use Eq. (6.16) to evaluate the right-hand side, 
we hnd 

2fR = ,uo2~2 - $Rv2. (6.17) 

I4 This equation, with zero mass and no self-interaction, occurs in R. Penrose, Proc. Roy. 
Sot. (London) 284A, 204 (1965). Not surprisingly, this paper is a study of conformally-invariant 
equations for massless particles. It also appears in F. Giirsey, Ann. Phys. 24, 211 (1963), as the 
equation for (-9)l/*. 
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This implies that 
R = 87rGp,,%p2. 

Inserting (6.18) in (6.16) we find 

(6.18) 

P)=;~ = --po2qz - (A, + $n-Gpo2) ?3. (6.19) 

Equations (6.16) and (6.19) are mathematically equivalent; their physical 
interpretations, however, are completely different. Equation (6.16) tells us that 
the mass of a particle depends on the surrounding gravitational field; this is in 
obvious violation of the principle of equivalence. Equation (6.19) tells us that the 
only effect of our new gravitation theory is to change, in a universal way, the 
strength of the quartic self-interaction; this is obviously consistent with the 
principle of equivalence. 

Both interpretations are valid, but the second is more useful for comparing the 
results of the new theory with that of general relativity. Together with the fact that, 
in the absence of matter, Eq. (6.14) reduces to Einstein’s field equation, it tells us 
that all the classical tests of general relativity (including the Eijtvijs experiment) 
are met by our new theory. 

APPENDIX 1. SOME REMARKS ON VECTOR FIELDS 

The purpose of this appendix is to prove the assertions at the end of Section 3.2, 
by giving a more careful analysis of the structure of the energy-momentum tensor 
in the presence of vector fields. For simplicity, we restrict ourselves to the 
Lagrangian (3.6); the generalization is trivial. 

The energy-momentum tensor for this theory is given by 

0,” = $A,A, - a&A a”A - &gu,(p2AAA” - a,A SA) + *** ) (AI.1) 

where the triple dots indicate terms in which the fields A,, and A enter only in the 
combination a,, . Such terms need not concern us here, since diagrams in which 
they enter have the superficial degrees of divergence used in our proof. On the 
other hand, the terms displayed explicitly are a possible source of difficulty, because 
of the bad behaviour of the propagator (3.5). 

BY Eq. (3.7) 

0,” = pwuo?” - 1 ,gu,p2@& - p[G& &A + CT” i?,,A - g,,@ aAA] + ... . (Al.2) 

As a consequence of the equations of motion, 

E&A = 0, (Al .3) 
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and 

Therefore, 

a5dt4, = aq = 0. (Al .4) 

aqq ad + Gl" a,A - g,,m a,A] = 0. (Al .5) 

Thus, we can drop this term, and redefine the energy-momentum tensor to be 

But this is the same expression as the original energy-momentum tensor, before 
we introduced the auxiliary fields, except that A, has everywhere been replaced 
by GY,, . Thus we have justified the counting of divergences in Section 3. 

Because of Eq. (A1.3), the terms involving A make no contribution to the matrix 
elements of (Al.l) between on-the-mass-shell states. Thus, these matrix elements 
are finite even if we do not introduce the auxiliary field A; the auxiliary field is 
introduced only to simplify our proof, and does not affect the final result. 

APPENDIX 2. EXPLICIT FORM OF THE WARD AND TRACE IDENTITIES 

In this appendix we shall give the explicit form of the Ward and trace identities. 
The expressions we shall derive are valid for any field theory in which Eq. (5.36) 
is valid, and in which the fundamental fields commute (or anticommute) at equal 
times. (Note that, in the case of vector fields, the latter condition is true only if 
we use the formalism explained in the preceding appendix. The components 
of cll, are kinematically independent; those of A, are not.) This class of theories 
includes, but is larger than, the class of renormalizable theories. 

We begin by establishing some notation. As in the body of the paper, we assemble 
all of our fields into a vector cp. In the same spirit, we write the n-particle Green’s 
functions, r:), Gtn), and rtn), as tensors. If cp has N components, each of these 
tensors has n indices (in addition to the explicitly displayed Lorentz indices), 
each of which runs from 1 to N. If M is any N x N matrix, the expression 

M(7’)GW (A2.1) 

is to be read as meaning that M acts only on the r-th index of Gtn). 
According to Eqs. (3.11) and (5.19), 

@MY = [VP - a”Q - g”‘Lz + +aA(d ’ PQ)] 
- 8a,w * z”‘cp + XVzAu + Q) + $?aAapxApuv. (A2.2) 
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As we explained in Section 2, the off-the-mass-shell matrix elements of this object 
depend on whether or not we use the equations of motion to explicitly do the 
indicated differentiations. We shall adopt the convention that we shall do the 
differentiations only on the terms enclosed in square brackets. Thus, in the position- 
space definitions of the Green’s functions, these derivatives are within the time- 
ordering symbol; the others are without. This makes the calculation of the Ward 
identity especially simple: For the first two terms, we have to bring the external 
derivative inside the time-ordering symbol; this gives us the divergence of the 
canonical energy-momentum tensor, which is zero. For the third term, we have 
to bring the internal derivative outside; this makes the total expression (apart 
from the first two terms) the divergence of an antisymmetric tensor, which has 
vanishing divergence. Thus we find 

kw$(k; p1 **-p,J = -iC@ + k)yG(n)(~l + kp, ***P,> 
P 

+ $ik” C CjLtGcn)(pl + k, pz ... P,). 
P 

(A2.3) 

For the trace identity, we lust bring the derivatives on the unbracketed terms 
inside the time-ordering symbol. The calculation of the necessary commutators 
can be drastically simplified with the aid of Eq. (5.36). We shall not give the details 
of the calculation here, but merely state the final result: 

g”‘r:‘(k ; p1 . . . p,) = P)(k; p1 *p*p,) - iI D’l)G(“)(k + p1 ,pz “.p ) n . (A2.4) 
P 

None of this has taken account of the E-dependent terms in the final definition 
of the finite energy-momentum tensor, Eq. (3.12). However, since for these terms 
the derivatives are always outside the time ordering symbol, they contribute to 
neither the Ward nor the trace identities. 

APPENDIX 3. EQUAL-TIME COMMUTATION RELATIONS 

If O,, is any energy-momentum tensor, its components can be shown [6,7] 
as a consequence of locality and Lorentz-invariance, to obey the following equal- 
time commutation relations: 

i[Ooo(x, t), W(y, t)] = [OOj(x, t) + OOj(y, t)] aj2P3’(x - y) 

- ai ajx arcY a,l~ y(x,y, t), (A3.1) 
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and 

i[W(x, t), oyy, t)] = [W(x, t) - gwoo(y, t)] ap3’(x - y) 

- akz 3; aiy[~;Zij(x, y, t) - @,T:~~~(x, y, t)] (A3.2) 

where the 7’s are objects which have support only at x = y. 
Schwinger [6] has argued on general grounds that 71 vanishes, and has shown 

explicitly that this is the case for a wide class of theories involving fields of spin 
less than or equal to one, if O,, is the conventional energy-momentum tensor. 
(We have called this object Tuy in the body of the text.) On the other hand, Boulware 
and Deser [7] have shown, as a consequence of the positivity of the metric in 
Hilbert space, that TV can never vanish. 

For the hq4 theory, discussed in Section 2, naive canonical manipulation 
indicates that, for the conventional tensor, both 7’s vanish. (This contradicts the 
Boulware-Deser result, just as the corresponding calculation in spinor electro- 
dynamics gives the false result that the Schwinger term for the electromagnetic 
current vanishes. Here, just as in that case, a more rigorous analysis can easily 
be done for the free theory; it shows that 72 does not vanish, but is only a c number.) 

It is interesting to ask what is the state of the T’S in the same theory, for our 
new tensor. We present here the result of a naive canonical computation: 

and 
T1 = 0, (A3.3) 

.;Zi5 = - &(,ki,Z5 + gk5gZs _ $g”Zg”5) v2(x, t) ~@I(, _ y). 

Although we have not attempted to verify these equations by any more sophisticated 
method of calculation, we suspect that their most prominent feature is indeed true, 
that T2 is a q number. 

Similar canonical q-number T’S appear in any theory for which our tensor is 
not the same as the conventional tensor-that is to say, for any theory involving 
spinless mesons. This is a close parallel to the situation for the canonically- 
calculated Schwinger terms for the electric current, which appear only in theories 
with charged spinless fields. 

APPENDIX 4. REMARKS ADDED IN PROOF 

The proof of the finiteness of the energy-momentum tensor given in the body of 
this paper puts great emphasis on the softness of the trace of this tensor. However, 
our explicit calculation of Sec. 4 shows that this trace is not soft. This has caused 
K. Symanzik (private communication) to suggest that perhaps the proof of renor- 
malizability is in error and the tensor does not, in fact, have finite matrix elements. 
Phrased in another way, the terms involving large regulator masses in Eq. (4.11) 
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may cause difficulties in higher orders of perturbation theory, although they cause 
none in lowest order. 

We do not know, at this time, whether this actually happens; however, to be safe, 
we offer in this appendix an alternative method for constructing the tensor which 
we believe circumvents these difficulties. The construction is as follows: 

(1) Define the naive trace to be that combination of the operators (3.16) whose 
value at the point zero is determined by the Ward and trace indentities. (Notice that 
in the specific calculation of Sec. 4, this would lead to a different answer than that 
we obtained by using regulator fields; the last term in Eq. (4.21) would be missing.) 

(2) Define the functions I’ (2,0.0) by the trace identities, and fix the coefficient of 
the extra term in the energy-momentum tensor involving second derivatives of 
scalar fields by demanding that the term of order k2 in the expansion of these 
functions about the point zero be equal to the corresponding term for the corre- 
sponding functions constructed for the naive trace. If the naive calculation of the 
trace (ignoring the regulator fields) given in Sec. 3 were valid, this would fix the 
coefficient to be l/6. However, in any event, it does fix the coefficient at some value, 
and ensures that the trace has its naive value, at least up to this order in the 
power-series expansion. 

(3) Although, in Sec. 3.5, we used the finiteness of the trace to show that rt’z:’ 
and YjpV7,:” were finite, we did not need to do this; we could have, instead, used the 
Ward identities that come from taking the divergence of the wctor fields. 

With these alterations, the arguments for finiteness of the tensor run along the 
same lines as before, and the need to use the equations of motion to calculate the 
trace is eliminated. 
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