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The electromagnetic field associated with a uniformly accelerated charge is studied in 
some detail. The equivalence principle paradox that the co-accelerating observer measures 
no radiation while a freely falling observer measures the standard radiation of an accelerated 
charge is resolved by noting that all the radiation goes into the region of space time in- 
accessible to the co-accelerating observer. 

I. INTRODUCTION 

The question of whether a uniformly accelerated charge radiates has been the 
subject of a long series of papers with some distinguished authors reaching the 
conclusion that it does while others, equally distinguished, reach the conclusion 
that it does not. The most careful treatments are those of Fulton and Rohrlich [I] 
and Coleman [2] both of whom concluded that the charge does in fact radiate. They 
both use Minkowski coordinates to describe the motion of the particle with Fulton 
and Rohrlich giving a careful discussion of the definition of radiation showing that 
the energy radiated is precisely that which one expects from an accelerated particle 
(see, e.g., Jackson [3]) 

dE 2 e2 9 -zzz- _ -UO 
dr ( 1 3 4Tr CJ 0.1) 

where dE/dT is energy radiated per unit proper time of the particle, zi2 is the square of 
the 4-acceleration of the particle and Heaviside-Lorenz units are employed (V . E = p). 

There are two arguments which have been used to suggest that this immediate 
(and correct) conclusion is wrong. First, the radiation reaction on the charge is 

2 e2 1 m&l = _ ----(pg - ii@> 
3 47r c3 (I.3 
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and, for a particle undergoing uniform acceleration, 

d” $I = - uw = g2uu 
dr2 

(I.31 
ti2 = g2 = constant 

hence the radiation reaction vanishes and the motion of the charge is unaffected by the 
radiation which it emits. The paradox is discussed by Fulton and Rohlich [ I] and more 
fully by Coleman [2] who points out that, in the point particle limit in which the 
radiation reaction (1.2) is valid, the sum of the radiation field energy and the energy of 
interference between the radiation field and the (Lorentz transformed) Coulomb field 
do in fact remain constant. Hence there should be no radiation reaction. 

The other argument involves the equivalence principle and runs as follows: By the 
equivalence principle, a uniformly accelerated frame must be indistinguishable from a 
gravitational field. However, a charged particle at rest in a static gravitational field 
cannot radiate, hence a uniformly accelerated particle cannot radiate. 

Fulton and Rohrlich argued that a uniform gravitational field is unphysical and, 
since one must determine whether radiation is present by measurements made at 
large distances from the charge, the global static gravitational field idealization is not 
appropriate for discussing the question. Otherwise put, the equivalence principle is a 
local principle, not one which can be applied globally. 

Coleman, on the other hand, argues that the principle of equivalence asserts not 
only that there should be no radiation, but that there should be only a Coulomb field 
for a uniformly accelerated charge measured by a uniformly accelerated observer. 
He then notes that Fulton and Rohrlich’s field satisfies this condition, hence the 
principle of equivalence is valid. The way out of the paradox is, then, to deny that the 
concept of radiation is the same in the accelerated and unaccelerated frames. 

This observation too is incomplete. A brief review of the static gravitational field 
is given in Section II. The most important point, the significance of which has not 
always been fully appreciated, is that a uniformly accelerated observer has an event 
horizon. As may be seen by looking at Fig. 1, no matter how long he waits. the 
observer moving with the charge will never receive any information about half of the 
space-time (regions II and III). Because he is asymptotically approaching the speed 
of light, one quarter of the space-time (region III) is everywhere space-like with 
respect to the observer’s world line and another quarter of the space-time (region II) 
can receive light signals from the observer but cannot send light signals to him. 

As a result of the existence of the event horizon and the fact that the observer 
cannot send signals to region IV, if one transforms to coordinates with respect to 
which the uniformly accelerated observer is at rest, those coordinates can only cover 
region I. There are coordinate singularities at the boundaries of region I with regions II 
and III. The metric in region I is static in that the uniformly accelerated observer sees 
no change with respect to his time 7. However, the time coordinate measures the 
observer’s position along the hyperbola and the observer has a different velocity 
for each time. Thus, changes in time (T) are changes in velocity and the time translation 
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FIG. 1. The straight lines indicate the null planes z = ft. The uniformly accelerated observer 
whose path is indicated (0) can receive signals from regions I and IV and can send signals to regions 
I and II. Region III is everywhere spacelike with respect to the observer’s world line. 

invariance is the invariance of the Minkowski coordinates under Lorentz transfor- 
mations. One may naturally extend these coordinates to regions II, III, and IV by 
requiring that changes in the coordinate 7 be the changes under Lorentz transfor- 
mations just as in region I; the resultant metric in regions II and IV is independent of 7 
(invariant under Lorentz transformations) but the invariant hyperbolic cylinders are 
spacelike surfaces and 7 is a space coordinate. The other coordinate, 2, which is the 
space coordinate in region I is the time coordinate in region II and the metric does 
depend on 2. There is no time independent coordinate system for region II in which 
a uniformly accelerated charge in region I is at rest. 

The electromagnetic field produced by the charge is discussed in Section III where 
it is shown that the retarded field is restricted to regions I and II, plus a delta function 
field restricted to the null surface separating regions I and II from regions III and IV. 
The delta function field which is necessary for the field to satisfy Maxwell’s equations 
may be understood by considering a charge which initially has a constant velocity of 
approach and begins its uniform acceleration at some finite time. The limit in which 
the velocity of approach goes to the velocity of light and the time at which the 
acceleration began goes to minus infinity produces the field of the uniformly acceler- 
ated charge in regions I and II. Further, the initial Lorentz transformed Coulomb field 
goes over into the delta function field in that limit. 

The resultant field has a number of unusual properties. In region I the field is 
precisely the retarded field of the accelerated charge, including the appropriate 
radiation field with the l/r behavior where r is the radius of the future light cone of the 
charge. In region I the field is also precisely the advanced field of the accelerated 
charge including the inflowing radiation with its l/r’ behavior where r’ is radius of the 
backward light cone of the charge. That is, at every point in region I, the field may be 
viewed as either the retarded (Coulomb plus outgoing radiation) field or the advanced 
(Coulomb plus incoming radiation to be absorbed) field of the charge. No mea- 
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surements within region 1 can distinguish the alternative interpretations. Furthermore, 
within region I the radii of the light cones are restricted so that the observer cannot 
consider a limit of large r so as to readily distinguish the Coulomb field from the 
radiation field. 

There is a paradox here. The field was calculated as the retarded field, complete 
with incoming radiation. However, the backward light cone, sufficiently extended, 
reaches into region IV where there is no field. Where did the radiation come from? 
The answer is the delta function field along the null surface separating regions I and IV. 
The field in region I cannot be maintained with a vanishing field in region IV without 
a delta function field on the surface to feed the field in region 1. It is the familiar 
phenomenon of ordinary accelerated charges: after the acceleration, the charge is not 
in the right place to support the original Coulomb field, hence the difference between 
the original and final Coulomb fields is converted to radiation. What is unusual is that 
the resultant radiation is focused back onto the world line of the particle. 

The situation in region I may be summarized as follows: The field at a given point 
may be regarded either as the Coulomb field plus outgoing radiation field of the charge 
at the intersection of its world line with the backward light cone OY as the Coulomb 
field plus incoming radiation field of the charge at the intersection of its world line 
with the forward light cone of the field point. If the radiation field is defined to be 
one-half the difference between the retarded field and the advanced field, there is 
no radiation. If one identifies the radiation by the l/r dependence of the field along the 
light cone one cannot decide whether the radiation is retarded or advanced and, 
furthermore, one cannot remain within region I and let r become large enough for 
the radiation field to dominate. Thus, the observer whose measurements are restricted 
to region I will not be able to decide whether there is any radiation and may conclude 
that all the radiation is absorbed and reemitted by the charge. Thus, there is 
consistency with the conclusions of the accelerated observer whose measurements 
are restricted to region I and who only detects a Coulomb field, with no radiation 
at all. 

The situation is region II is quite different. There is no coordinate frame covering 
the region in which the accelerated charge is at rest and the metric static. As a result, 
one cannot argue that an accelerated observer finds no radiation. Further, if one 
calculates the field, one again finds that it is a Coulomb field going as I/v3 plus a 
radiation field going as l/r. There is outgoing radiation which cannot be interpreted 
as incoming radiation because region II is outside the backward light cone of the 
charge. The radius of the light cone can now be made arbitrarily large and the radiation 
field can be made very large compared to the Coulomb field. The radiation is certainly 
present and may be identified by any of the standard methods. There is, however, a 
subtlety. The field in region II is invariant under reflection in the plane through the 
point where all four regions meet and the replacement of the charge e by -e. 
Thus, the field in region II may be regarded as either the field due to a uniformly 
accelerated charge, e, in region I or as the field due to a uniformly accelerated charge 
-e in region III; no measurements restricted to region II can ever distinguish the 
two situations. 
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FIG. 2. Under reflection in z and e + -e, the fields in Region 11 are invariant and the charge 
in Region 1 becomes a charge --e in Region III. 

The last section is devoted to a discussion of the energy flows which exhibit the 
properties which one immediately infers from the preceeding discussion including the 
outgoing energy flow in region II. There is however, one additional point which is not 
so obvious. The full radiation reaction vanishes, hence there is no net flow of energy 
into the electromagnetic field. This is verified; however, there is a net flow of energy 
into the radiation field which is exactly compensated by a decrease in the energy of 
interference between the continuous retarded field and the delta function field along 
the null surface separating regions I and II from regions 11 and IV. 

II. STATIC GRAVITATIONAL FIELD 

The metric associated with a static gravitational field has been discussed in several 
places (see, e.g., Rohrlich [4] and Misner, Thorne, and Wheleer [5]); the arguments 
are summarized here for completeness. The space is assumed to be invariant under 
time translations and under the Euclidean group, E, , of translations and rotations 
in the plane. As a result, the most general metric is 

ds2 = -V(z) dT2 + A2(z) dz2 + B2(z)(dx2 + dy2) (11.1) 

however, the function A may be set equal to one by a change of variable, 

z-+5= s 
’ di? A(f) 

and the non-zero curvature components are 

R;,r = -(4”/4), 

R’ = R&, = 
- $b’B’B 

CT 7r 
+ 

R;mec = R& = -(B”/B) 

R;,ry = -(B’)2. 

(11.2) 
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In order for the space to be equivalent to a flat space, the curvature must vanish, 
hence 

B’ = 0 = d”, 9 = (1 + &a, B=l 
and 

ds2 = -(I + gLJ2 dr2 + dc2 + dx2 + dy2 (11.3) 

is the most general coordinate system. The coordinates x, y and T have been scaled 
so that C$ = B = 1 at 5 = 0 and g is an arbitrary constant which turns out to be the 
proper acceleration of a body sitting at 5 = 0. For the purposes of this work, it is 
convenient to translate the coordinates 

so that the metric becomes, 

ds2 = -g2Z2 dr2 + dZ2 + dx2 + dy2 (11.3) 

which is related to the Minkowski coordinates by the transformation 

z = Z cash gr, t = Z sinh gr. (11.4) 

This transformation does not cover the entire space. The z - t plane is shown in 
Fig. 1 and the coordinate transformation in each of the regions is 

z = Z cash g7, 

z = Z sinh gr, 

z = -Z cash gr, 

z = -Z sinh gr, 

t = Zsinhgr I 

t = Zcoshgr II 

t = -2 sinh gr III 

t = -Z cash gr IV 

with the metric 

ds2 = c(-g2Z2 dr2 + dZ2) + dx2 + dy2 

(11.5) 

(11.6) 

where 

I 
1 x in I, III 

E= 
-1 x in II, IV. 

These coordinates are known as Rindler coordinates [6]. 
Region I is the region of space time such that the uniformly accelerated observer 

at Z = g-l can both receive signals from any point and send signals to any point. 
The set of points from which the observer can receive signals is 

t < max{ g-l sinh g7 - [(g-l cash g7 - z)” + ~~1~1~) = z 
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or z - t > 0, and the set of points to which the observer can send signals is 

t > min(g-1 sinh g7 + [(g-l cash g7 - 2)” + p”]““) = -z 

or z + t > 0. 
As seen by the uniformly accelerated observer, a world line which crosses the 

boundaries of region I, z = it, does so at the time (for the observer) 7 = + co; also, 
it takes an infinite time, T, for a signal emitted from the world line as it crosses the 
future boundary, z = t, to catch up with the observer, and a signal must be emitted 
in the infinite past to meet the world line as it enters region I. The observer attributes 
the strange behavior of light and other freely falling bodies to the extremely strong 
gravitational field which produces a future event horizon at Z = 0 (z = t) so that 
there is an infinite red shift for signals emitted from there. 

The coordinates associated with the general static metric, Eq. (11.3), cover the entire 
space only if one translates Z - g-l + Z and takes the limit g + 0 in which case it 
becomes the Minkowski metric which is globally static. If g # 0, the metric only 
applies to a portion of the space, Z, However, as a consequence of having required 
that the curvature vanish, the metric is simply a coordinate transformation of the 
Minkowski metric. The metric is invariant under 7 translation; in terms of the 
Minkowski coordinates (z, t), these are simply the Lorentz transformations: under 
T-7+01, 

2 f t + (z + t) e*g=. (11.7) 

A particle at rest at Z = Z, in sector I of the (Z. T) coordinate system, has the 
Minkowski trajectory 

or 

z = z. cash gT ,  t = Z, sinh g T  

24” = $ = gZ,(cosh gT, sinh gT)  $ 

where X is the proper time of the particle. But, 

thus, 

and 

dr 1 -- 
a - gz, 

duu -= 
dh $ (sinh g 7, cash gT)  = U” 

0 

(11.8) 

and the square of the proper acceleration, aw, is 1/Zo2. The (essentially unique) 
coordinate frame describing a static gravitational field indeed has bodies at rest in it 
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undergoing constant acceleration in an inertial frame. However, bodies located at 
different points undergo different accelerations: it is not possible to find a single 
static coordinate system in which bodies at rest at different points undergo the same 
proper acceleration because two bodies experiencing the same proper acceleration 
do not maintain the same proper distance. 

To understand this, note that the rest frame for an accelerated observer is simply 
T = constant, and the distance to a point at Z’, T is just 1 Z - Z’ 1. If two bodies 
start out at rest but initially separated by Z,, , their trajectories are 

z1 = g-l cash g7, 

I, = g-l sinh g7, 

& = (q2 - t,2)1/2 = g-1 

z2 = ilo + g-l cash gr2 

t2 = g-l sinh gr2 

z, = (z2” - tz2)l12 
(11.9) 

= (g-2 x Zo2 i- 2g-lZo cash gT,)li2 

Thus, the distance between the particles is 

L(T) = -+[(g-” + lo2 f 2g-‘lo cash gT2)lj2 - g-l]. 

If particle 1 is chasing particle 2, (+), it never even gains; the lead as measured by its 
co-accelerating observer is always increasing. On the other hand, if particle 1 is 
leading particle 2, (-), its lead as measured by its co-accelerating observer is increasing 
but only until the square root vanishes at which point Lm,, = l/g > I,, . This limit 
occurs at infinite proper time for particle 1 as the second particle’s world line crosses 
the Z = 0 surface between regions I and Il. As seen by the leading particle the 
following particle lags further behind, asymptoting to a distance g-l. 

III. THE UNIFORMLY ACCELERATED CHARGE 

The electromagnetic field associated with a uniformly accelerated charge has been 
discussed in many places: Fulton and Rohrlich [l], Born [7], Pauli [8], and Bondi 
and Gold [9]. A brief review will be given here. The Litnard-Wiechert potential for 
a particle of charge e moving on the world line x(X) is given by [3] 

A“(x) = k (= dh’ $ (A’) t9(t - x0(X)) 6((x - ~(2))~) 
s 

(111.1) 

where, for a uniformly accelerated charge, 

x(X) = 0 = y(A), t = g-l sinh gX, z(h) = g-l cash gh 

dxu 
- = (cash gh, 0, 0, singh g/Q. 
dA 
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The vector potential is most simply calculated in Rindler coordinates, (11.5), 

A, =$A,+EA, 

egZ m 
I 271. -x 

CIA cash g(T - A) 13(, - A) 6( g-” + p2 + Z2 - 2Zg-l cash g(T - A)) 

z > /tl 
egZ w  =-~ 

I 23r -a 
C/A sinh g(T - A) S( g-2 + p2 - z2 - 2zg-l sinh g(T - A)) 

t>lzl 

=O t+z<O (111.2) 

where p2 = .x2 + y2. Thus, 

-(eg/4v)(g-2 + p2 + Z2)/[(g-” + p2 + Z2)2 - 4g-2.Z2]1/2, z > / t j 
A, = -(eg/4n)(g-2 + p2 - a?“)/[(g-” + p2 - z2)2 + 4g-2g2]‘j2, t > 1 z / 

0, t+z<O (111.3) 

and, similarly, 

at az 
AZ=zazA”+zA, 

r - e/4rrZ, z > ItI 
= --e/4=.2, t> /z/ 

0, t+z<O 
(111.4) 

hence, 

it =~AT+&AZ= -(z/gZ2)A,+(t/Z)Az 

= (e/4n-Z2){[zg( gp2 + p2 + Z2)/2R] - t) O(t -t 2) 
(III.5) 

where 

and 
22 = 3 - f2 

Further 
R 3 (g/2)[(g-2 + p2 + Z2)2 - 4g-2Z2]‘/2. 

A” = (e/4rrZ2)([tg(g-2 + p2 + Z2)/2R] - z} e(t + z). 

The electromagnetic fields may be obtained from the potentials, 

(111.6) 

13, = ~2 = -appt - aAt/az 
= (e/4?r)[g(Z2 - gp2 - p2)/2R3] e(t + z) 

FOP = EP = -vv,At 

= (e/W(tw/R3) e(t + z) 

~ZP = -& x B z -VV,AZ 

= (e/4m)(pgt/R3) e(t + ~1. 

(III.7) 
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These fields satisfy Maxwell’s equations for z + t > 0 and, trivially, for z + t < 0. 
However, as was pointed out by Bondi and Gold [9], they do not satisfy Maxwell’s 
equations along the null surface t + z = 0, 

a,Ptv = -4°F~~ = - [e4g2/47r(l + g2p2)2] S(z + t) 

a,e = 0 
(111.8) 

The expression for the electromagnetic field is correct except along the null surface 
where the expression for the vector. potential (III.I), is singular. Since the charge 
world line is invariant under Lorentz transformations along the z axis, the resultant 
field must also be invariant. The only field, AF ~“, which is invariant and restricted 
to the null surface z + t = 0 is of the form 

AF~F~” = 0 

AF@ = -AF@ = p&p) 6(z + t) 

a, AP = -a, AP = $2 p%(p)] 6(z + t) 

av AP = 0. 

Then, F@v = Fuv + AP will satisfy Maxwell’s equations provided 

(111.9) 

(111.10) 

or 
44 = (2eg2/W + gzp21) 

and the full electromagnetic field is, 

FtZ = (e/47r) g{(Z2 - g-2 - p2)/2R3} o(z + t) 

FtP = (e/W p((gzlR3) @ f t) + (2g2/[1 + g2pel) @z + t)I 
FZP = (e/47r) e{(gt/R3) e(z + t) - (2g2/[1 + g2p21) &z + t)). 

(111.11) 

The origin of the delta function field may appear somewhat obscure. It may be 
understood by considering the field of a charge which has not always undergone 
uniform acceleration. Let the charge be at rest at z = l/g for t < 0 and undergo 
uniform acceleration after that. Then the field is simply the Coulomb-field of the 
charge outside the forward light cone of the point at which the acceleration started 
and is the held of the uniformly accelerated charge, fl, inside the light cone, 

Ft” =L(‘- ‘is),(,p,, I 
47r r3 

e d22-g-2--pZ)e(t-rr) 
4Tr 2R3 

Ftp = 2 -$ O(r - t) + -& !$ e(t - r) 
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);:/‘:.. 
0 

FIG. 3. (a) The world line of a particle initially at rest and subsequentIy undergoing uniform 
acceleration. (b) The Lorentz transformed line. In both cases the forward light cone of the spacetime 
point at which the acceleration starts is shown. The field inside the light cone is that of the uniformly 
accelerated charge; outside the light cone, the field is the (Lorentz transformed) Coulomb field of 
the unaccelerated charge. 

where 
r z [p” + (z - g-1)2]1/2. 

If the field is now Lorentz transformed so that the charge has a negative initial 
velocity when the acceleration starts 

z -+ z cash 01 + t sinh 01, t -+ t cash o? + z sinh CC, 

the fields become, 

(z cash 01 + t sinh 01 - g-r) FtZ _ e 
47 r3 

d(r - t cash 01 - z sinh rx) 

e m2 - K2 - p3 I 
4i-r 2R3 

O(t cash 01 + z sinh 01 - r) 

Ftp = 5 P ‘;ih O1 O(r - t cash 01 - z sinh CX) 

+ e s e(t cash 01 + z sinh 01 - r) 

Fzp _ e P sinh 01 
47l 

7 O(r - t cash 01 - z sinh CX) 

+-&sB(tcoshn+zsinha:-r) 

where 
r = [p” + (z cash 01 + t sinh 01 - g-1)2]1/2. 

(III. 13) 

In the limit 01 -+ co, the time at which the uniform acceleration began goes to - co 
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and the initial velocity of approach goes to c. In that limit any point with z + t > 0 
lies inside the forward light cone of the point at which the acceleration started, 

I cash 01 + z sinh 01 - r - g-l + U(P) > 0 

while any point with z + t < 0 lies outside the light cone, 

t cash 01 + z sinh 01 - r - 2(t + z) ea - g-1 < 0. 

The value of the field inside the light cone, being invariant under the Lorentz transfor- 
mations, does not depend upon 01, hence, for z + t > 0, the field simply goes over 
into the field of a uniformly accelerated charge. For z + t < 0, the field is the limit 
of the Lorentz transformed Coulomb field but r - -&(z + t) en t g-l, hence the 
field vanishes as I+~ and there is indeed no field for z + t < 0. The null surface 
z + t = 0 is more complicated. There, r - g-I(1 + g2p2)lj2 and the field becomes 
infinite; also the integral of the field over t from - cc to the light cone is 

s ~~tB(r--cosha-zsinhar)F’“=-~~~(_ 
--m T tcosh&zsinha 

e 3 2g -0 
* - % sinh 01 1 A- gzp2 - a-am 

and 

I 
m dt 0(r - t cash a: - z sinh OI)[P & P] 

-co 
e 0 

24 -SF 4g2p/[ 1 + g$J2] I 

hence there is a delta function at the null surface and the fields given in (III. 11) are 
reproduced. The delta function field is the original Lorentz transformed Coulomb 
field of the charge “before” it began its acceleration. 

The delta function field can also be calculated directly from the retarded field of 
the uniformly accelerated charge. If the field is carefully treated as a distribution, the 
fields in (111.11) are again reproduced. 

In region Z, z > ] t ) > 0, the fields are just the retarded fields, F, given in (111.7). 
Note that these fields are invariant under Lorentz transformations along the z axis, 
if, 

z’ = z cash 01 + t sinh Q: 

t’=zsinhol+tcoshrx 
(I11.14) 

2’ = 2, then 

Ft’z’(z’, t’) = Ft”(z, t) = & g(Z’z - g-” - p2)/2R3 

Ft’P(z’, t’) = P@(z, t) cash 01 + P(z, t) sinh 01 
(111.15) 

e 
=- 

( 1 
4rr p( gz’/R3) = FtP(z’, t ‘) 
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and 

Fz’p(z’, t’) = P(z, t) cash LX + Ftp(z, t) sinh CI 

zzz 

( 1 
2 p(gt'/R3) = F-y.?, t). 

Also, the fields are invariant under time reversal, t + -t, FfY --t P, FzP + -Fzp. 
However, under time reversal, retarded fields are transformed into advanced fields, 
hence the retarded field is equal to the advanced field. 

The field at the point (p, Z, t) was calculated as the retarded field of some point 
along the world line of the charge. Lorentz transform so that the charge is at rest at 
that point; then 

z=;+rcose p = j5 r sin 0 

and 

t=r 

Z2 = g-2 + 2g-lr cos e - r2 sin2 e 

R = ! [(g-z + p2 + 732 - 4g--222]1/2 = r 

(111.16) 

where r is the radius of the light cone centered on the world line of the charge at the 
instant at which the charge is at rest. The angle f? is the angle between the acceleration 
of the charge and the vector to the field point in the instantaneous rest frame of the 
charge. 

The field along the forward light cone of the point at which the charge is at rest is, 
then, 

5” + f sin OCOS 8 

The terms proportional to l/r2 are the Coulomb field of the charge and the terms 
proportional to (g sin e/r) are the familiar radiation field of a charge undergoing 
acceleration g. The field along the backward light cone is exactly the same, except 
that the magnetic field, Fzp, is opposite in direction. However, the point along the 
backward light cone, A’, is also along the forward light cone of 0’ in Fig. 4 and the 
field there is also the retarded field of 0’ as may be readily verified by Lorentz trans- 
forming the points (A, 0) into the points (A’, 0’). 

As a result the advanced field is equal to the retarded field. The field at any point 
in region I may be interpreted either as the Coulomb field plus outgoing radiation field 
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0 

x 

A 

0’ 

FIG. 4. The field point A is on the backward light cone of 0 and on the forward light cone of 
0’. Points in region II are on the forward light cone of some point on the world line of the charge 
but not on the backward light cone of any point on the world line. 

of the charge at the retarded time, or as the Coulomb plus incoming radiation field 
at the advanced time. 

Although the field in region I is the Coulomb-plus outgoing radiation field, the 
experimental situation is complicated. First, detailed measurements of the field must 
be made to determine that fact; second, the measurements will be consistent with the 
field’s being the Coulomb plus incoming radiation field; third, except very near the 
direction of the acceleration, no limit can be taken such that the radiation field is 
large compared with the Coulomb field and; fourth, the field, as measured by the 
distance to the world line of the charge, does not drop off as l/1 but rather as l/l2 
in region I. To understand the latter two points, note that the forward light cone of the 
point z = l/g, t = 0 at which the charge is at rest is given by (III. 16) and 

but, in region I, 

hence 

(1 &ad i/l Ecouhnb I) = rg sin 0 

0 -c z - t = g-1 + r(cos e - 1) 

(III. 18) 

gr -=I (120s e) 
or 

(111.19) 

which is of order 1 except for 0 very near zero. For 0 very near zero, there is little 
radiation since that is the direction of the acceleration, and, furthermore, the charge 
is accelerated so that the distance to the world line of the charge does not increase 
linearly with r, the radius of the light cone. The distance to the world line is the 
maximum invariant distance, i.e., the distance in the Lorentz frame in which the 
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charge is instantaneously at rest. Thus, to find the distance, Lorentz transform so 
that t = 0; in region I this is always possible and the distance squared is 

12 = p2 + (2 - g-y 

where 2 is the Rindler coordinate 

and 

Z = [g-” + 2g-lr cos 0 - r2 sin2 &j1j2 

&(gQ2 = 1 + gr cos c) - [(l + gr cos Qz - ( gr)2]1/2 (111.20) 

however, in region I, 

y = 1 + gr(cos 19 - 1) 

must lie between zero and one, hence, 

4<g02 = gr + y - C&y + ~~1”~ 

and for gr large 
gr - WI2 (111.21) 

which, of course, entails 0 N 0. Thus, either the radiation field is comparable in size 
to the Coulomb field or it drops off with distance to the charge as 

e g sin e e 2 sine 
Ere w=------- wx12 

r 
(111.22) 

and displays the characteristic l/l2 behavior of a Coulomb field. 
The situation in region II is quite different. There the field is the retarded field of 

the charge; the field is unambiguously the retarded field since the advanced field 
vanishes. Further the radius of the light cone may be arbitrarily large for any nonzero 
angle 0. Thus, the radiation field may be made arbitrarily large compared to the 
Coulomb field. Also, there is no Lorentz frame which passes through a field point in 
region II and in which the charge is instantaneously at rest, thus there is no invariant 
distance to the world line of the charge and, since the motion is not bounded, one 
cannot establish a distance to the charge and misidentify the fields as l/P fields. 
Further, there is no coordinate frame in which the charge is at rest, which is static 
and which covers region II; the analytic continuation of the accelerated frame from 
region I to region II yields the coordinates of (11.5) in which the metric is time (Z) 
dependent. In summary, there is no equivalence principle argument against radiation 
in region II nor is there any difficulty in identifying the radiation. It is there and is 
precisely the radiation of the accelerated charge. 

Unfortunately that is not the whole story. The fields in region II given by (111.7) 
are invariant under z + -z and e + -e. However, under that transformation the 
charge e undergoing uniform acceleration in region I becomes a charge -e undergoing 
uniform acceleration in region III: no measurements restricted to region II can 
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distinguish between the Coulomb plus outgoing radiation field of a uniformly 
accelerated charge e in region I and the Coulomb plus outgoing radiation field of a 
uniformly accelerated charge --e in region III ! Observers in region II will proclaim 
the presence of the radiation but be totally unable to determine whence it came! 
The location of the charge in region I is signaled either by 1) the presence of the field 
in region I, 2) the absence of the field in region III, or 3) the delta function field along 
the surface z + c = 0; any one of the three is sufficient to locate the charge in 
region I. 

IV. THE STRESS-ENERGY TENSOR 

Given the electromagnetic fields, the stress energy tensor, 

(IV. 1) 

may be easily obtained. The result is 

Ttt = (d, & [j$ [(p” + g-2 - Z2)2 + 4/W + z”)] e(z + t) 

16g2zp2 + (1 + g2p2)4 
S(z + t) + (, ;f;2;2)2 S(0) S(z + 01 

TtZ = ($) -&- 1% d(z + t) - (1 ys$ S(z + t) 

4g4p2 - 
(1 + g2p2Y 

S(0) S(z + t)/ 

p+)&j g2(p2 +g; - z”) t e(z + t) - (, ;;tp2). S(z + f)i 
(IV.2) 

72” = 2f- L 82 [4(t2 + z”) p2 - (p2 + g-2 - Z2)“] e(z + 2) 
(457) 4?r lw 

g616p2t - 
(1 + g2P2)4 

S(z + t) + 4g4p2 
(1 + g2p212 

S(0) S(z + t)/ 

7-p = (2) & 1% tp2 + g-2 - 2) ze(z + t) + t1 +4”g:p2j3 S(Z + t)) 

TPP = ($) -& 1 -gzzpp + A) ecz + t), 

where r” is the two dimensional unit dyadic in the x - y plane. 
It is straightforward to verify that the stress-energy tensor is conserved, except along 

the world line of the charged particle. The only subtlety occurs in the calculations of 
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the product of the delta function terms of F with the discontinuous terms. There one 
must use 

qz + t) e(z + t)[-..I = gi(z + t)[...] 

in order to obtain a stress-energy which is conserved along the null surface z + t = 0. 
The term arising from the square of the delta function field is formally conserved by 
itself. 

The stress-energy tensor measured relative to the coordinate frame of the uniformly 
accelerated observer does not contain any delta functions (the null surfaces z = &t 
are outside his coordinate patch) and are easily obtained by coordinate transforming 
the continuous parts 

f + { gzZ($ + g-2 - Z2)) 
7T 

(lV.3) 

and 

In the accelerated frame, there is no energy flux, Yz = 0 = Ta, and no radiation. 
As measured in the unaccelerated frame, the situation is more complicated. 

First consider the forward light cone of the charge at the space time point z = l/g, 
t = 0 at which it is at rest (Fig. 5). (See Rohrlich [9].) The light cone is described by, 
(111.16), 

Ttz _ e2 1 g sin2 e 
I 4n 4rr r3 

+ g2 sin2 0 cos l3 
r2 I 

e2 * -g sin 6 cos 0 + g2 sin3 9 p z -P 
47r 477 I r3 I r2 ’ 

(IV.4) 

and the flux out of a sphere of radius r is 

(lV.5) 

exactly the usual result. This determination of the energy flow emanating from the 
charge is non-local in that one must carefully construct a sphere on the light cone 
centered on the line of the particle. 
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FIG. 5. The energy flux through the sphere centered on the world line of the charge is (e44n)j 
(2/3)(g3/cS). The net energy flow through the surfaces z1 and z, , / t 1 < z is zero. There is a net flow 
through the surfaces z,,, , t > / z I; this energy arises from the decreasing energy concentrated on 
the null surface, z + t = 0. 

Let us now calculate, the radiation another way: Calculate the total energy flow 
through a fixed z surface (Fig. 5). We integrate over all p to obtain the rate at which 
energy passes through the surface, then integrate over t to find the total energy which 
has passed through the surface. If z > I/g, then the particle passes through the surface 
and the energy flow includes the particle’s field self-energy, however, if we integrate 
so that we include both the particle’s entering. and it’s leaving, it will enter and leave 
with the same kinetic energy and the two will cancel with the net integral representing 
the negative of the total energy which moved from right to left, plus the energy which 
crossed from left to right, i.e., the particle energy plus radiation energy after the 
particle has been accelerated. It is immediate from Eq. (IV.2) that P is odd in t, 
hence if we integrate from t = --? + 0 to t = z - 0, we obtain zero and there is 
no net flow of energy through the surface in the region of space time accessible to the 
accelerated observer. 

Similarly the net flow of energy through the z2 surface which is not intersected by 
the particle’s world line is zero. Thus, the total energy passing through the surfaces 
accessible to the accelerated observer is zero. 

The remaining two surfaces do have energy passing through them; the energy 
passing through the null surface z = t is 

s s d2p Q dz [Ttt - P](p, z, z) 
22 
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however, exactly the same amount of energy enters through the t = --z + 0 surface. 
Thus, the net energy produced in the region is zero. This is a reflection of the fact that 
the radiation reaction is zero. As much energy is being absorbed by the charge as is 
being emitted. To see this consider a sphere on the past light cone of the charge: the 
Poynting vector is exactly the negative of its value on the future light cone, hence the 
energy flow is into the charge and exactly equal to the subsequent outward flow. 

From where does the inward flow of energy come? It flows into the region t > --z 
from the t = -z surface. For t < -z, there is no stress energy so it does not come 
from there. The stress energy confined to the t = --z surface consists of two terms. 
First, the infinite delta function term which is the square of the delta function field does 
not vary along the surface; the associated energy simply passes through the region 

--.. q , z > ;% . The second, finite, delta function arises from the interference between 
the continuous field in the t > -z region and the delta function field. It varies with 
t(z), becoming smaller as t increases (Z decreases). The energy released propagates 
from the null surface z + t = 0 to the world line of the charge to be absorbed and 
reemitted. 

In any radiation process, one may propose two equivalent pictures: One may say 
that the charge is accelerated and that this acceleration produces the radiation. 
Equivalently, one may say that the charge before its acceleration is supporting an 
electromagnetic field. After the acceleration its state of motion is different, hence it 
will support a different field. However, the field does not change instantaneously into 
the field which the charge in its new state of motion will support. The difference of 
the two fields is propagated away as radiation. 

The release of energy along the delta function is precisely the phenomenon of the 
original Coulomb field being converted to radiation. The energy flow is just sufficient, 
for z > 0, to produce the advanced field of the charge including the radiation 
focussed on the world line of the charge. For z < 0, the energy flow from the z = -t 
surface is the same as that which would be associated with the field produced by the 
charge moving in region III which, as was discussed in the previous section, is exactly 
the same as the field produced by the charge in region I. 
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