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Kronig—Penney model with the tail-cancellation method
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The Kronig—Penney model of an electron moving in a periodic potential is solved by the so-called
tail-cancellation method. The problem also serves as a simple illustration of the tail-cancellation
method itself. ©2001 American Association of Physics Teachers.
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The Kronig—Penney model serves to illustrate the forma<condition. If the condition can be satisfied then we have a
tion of energy bands in a periodic solid and appears as aolution for that energy, otherwise not.
pedagogical example in many textbooks in elementary solid We now apply the method to the Kronig—Penney model.
state physics. The model is generally solved either by match-or a single potential well, the most general solution of the
ing the boundary conditions for the wave functions at the cellSchralinger equation for the enerdy is given by
boundarieg,by a plane-wave expansion of the wave function
in the reciprocal lattice spaceor even by the somewhat d(X)=Ac¢;1(X)+Bpy(x), 5
more involved T-matrix methotl.

In this note, we point out that perhaps the simplest way ofvhere ¢; and ¢, are the two independent solutions with
solving the problem is by using the tail-cancellation condi-energyE. These solutions extend in all space and for the case
tion, which has been used extensively in the solution of thef the one-dimensional potential may be written in terms of
band structure problem in realistic solitisSThe solution the transmission and reflection coefficients:
therefore serves as a simple illustration of the tail-can-

cellation method as well. dr(x)=e"+re KX x<—a/2
The Schrdinger equation for a one-dimensional solid is —telkX,  x=a/2 ©®)
72 d?W(x)
- = and
om gz DOV O=ET (), (1)

dr(x)=te *X  x=<-a/2

where the potential is periodic with lattice constant , A
. =g KxqrelKx  x=a/2, (7)
U(X):n;x V(x—na). () \where#2K2/2m=E. Notice that the above wave functions
are simply the “tails"—we don’t really care at this point
Consider first a single potential well, where the potential ishow the wave function looks inside the cell itself, i.e., for
V(x) in the central cell-a/2<x=<a/2, and zero elsewhere. |x|<a/2. Once the energy is obtained, the wave function
Once we find a solutiorp(x) to this potential for a given inside the cellland hence everywherenay be obtained by
energyE, the wave function for the soli# (x) may be con- integrating the Schiinger equation.
structed by taking a linear superposition of such functions Substituting the expression fef(x) from Egs.(5) to (7)
centered in different cells, with the coefficients given by thein the tail-cancellation condition Eq4), equating the coef-
Bloch theorem, i.e., ficients ofe*'** to zero, and eliminating A and B, we obtain
the following condition:
— ikna
¥ ; e g(x—na), 3 (r2—t2)f f_—t(f f*+f5f_)—f*f*=0, (8)
wherek is the Bloch momentum. Now, sineg&(x) already is
a solution of the Schidinger equation in the central cell, the
“tails” of the functions ¢(x—na) coming from other cells
must interfere destructively inside the central ¢atid hence
inside any other cell Thus we have the condition

wheref.=f(K+k) andf(k)=3_, e,

The last sum is over a series of oscillating terms. The
oscillation can be traced to the fact that the plane-wave-like
tails in Egs.(6) and(7) continue undamped to infinity. If we
keep a finite number of terniy in the summation, then the
e second term in the numerator of the resit)=(e'"®
go e""p(x—na)=0 (4)  —gix(N+Day (1 _gix@) ogcillates rapidly between-1 and

+1 asN—« with the average value zero. It turns out that
for all values ofx in the central cell. This is the so-called taking this average value yields the correct answer for the
“tail-cancellation” condition. The problem therefore boils problem at hand.
down to finding the solutiorp(x) for a given energy for a A more careful way of evaluating the sum is to take the
single potential well and then applying the tail-cancellationlimit
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N eiKa
f(k)=lim > elix wna——
N—o,u—0 n=1 l_eIKa

P
9) (E) sinKa+ cosKa=coska, 11

where the limit has been taken in such a way fhat1 and
t;;lr\lrsjilmxlfhysmally this porresp_onds to a small dampmgwhere the well-known result, [t|=cosz and tany
in the two basis functions Eqgt) and (7) such =—mghk, for the transmission coefficient of the delta-
that the amplitudes of the plane-wave tails damp out at in- i ,t tial has b d aRe 52
finity but do not change appreciably over the length of a unifunction potential has been use magh”. .
cell. In summary, we haye shown how .the taH-canceIIafuon
We now write the transmission coefficient in terms of thef::)ond't'Orl 03n| be applied to the solution of the Kronig—
phase-shift, t=|t|e'”, so that the reflection coefficient has enney model.
the well-known general form= =i|r|e'”. Substituting Eq.

. . @Electronic mail: satpathys@missouri.edu
(9) into Eq. (8) we get the desired result pa’y
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diode laser and optical fibers,” by L. Basano and P. Ottonello
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An experimental demonstratibhas been presented in this shown in Fig. 1. In this case, one of the beams goes directly
journaf using a diode laser, two optical fibers, a photodiodeto the photodiode and the other, extracted with the beam
and a wave analyzer. This demonstration is very simple andplitter BS1, is retarded in an optical fiber before being di-
has the didactic value of clearly presenting important opticalected, with a beam splitter BS2, to the photodidbdbave
concepts. In this note | propose a simplification of the ex-omitted in the drawing possible positioning of lensés the
perimental apparatus that, as a further advantage, should apace between the two beam splitters, additional beam split-
low the observation of the Alford—Gold effect in a more ters, or a partially reflecting mirror, can be placed if it is
interesting way. desired to compensate for the transmission losses of the other

In their experimental demonstration, L. Basano and P. Otbeam. This setup amounts to a slight simplification of the
tonello usetwo optical fibers although the same can beapparatus but is essentially the same experiment. A real im-
achieved with justone optical fiber, as is schematically provement of the experiment is obtained with a further modi-

fication of the setup. For this, we can eliminate the second
beam splitteBS2) and place the end of the optical fiber at
the top sideof (BSJ) in order to feed the reflected part into
the photodiode. Notice, however, that thansmittedpart
can make(with proper alignmenta second turn along the

DL BS1 BS2 PD WA optic fiber with the corresponding time delay. Zhis would
E N / D"D cause second-order dips in the spectral analysis, separated by
half of the separation of the first-order dips. Perhaps higher
OF order dips can also be observed.

3E|ectronic mail: ditorre@mdp.edu.ar

IA. P. Alford and A. Gold, “Laboratory measurement of the velocity of

light,” Am. J. Phys.26, 481-484(1958.

2. Basano and P. Ottonello, “A simple demonstration of the Alford—Gold
Fig. 1. Experimental setup. Dtdiode laser; BS1, BS2beam splitters; effect using a diode laser and optical fibers,” Am. J. P§&.325-328
PD=photodiode; WA=wave analyzer; OFoptic fiber. (2000.
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Comment on “Bound states of a uniform spherical charge distribution—
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I_wou_ldllike to suggest an alternative s_olution to the inter-fshows the numerical calculation for the $tate of muonic
esting finite-nucleus problem recently discussed by Tiburzjead, which is in agreement with the results of Ref. 1. Good

and Holstein, and previously by Za_blot_ne?y.\_NhiIe these  agreement is also obtained for the higher muonic states of
authors solve this problem by matching interior and exteriofjo5q.

solutions to Schréinger’s equation at the nuclear radius, itis 1o 1\ merical integration approach used here requires an
also possible to obtain solutions by direct numerical integra=

tion of the radial equation in a single integration procedure. initial energy guess to generate a trial solution. Th'§ seed
Figure 1, which is a1ATHCAD 5.0 worksheet, demonstrates V&lue can be provided by the point-nucleus expression for

how easily this can be accomplishedaTHCAD's graphical — the energy—E,= —MZZ/_an- This initial energy value will
interface displays the calculation clearly in its entirety, un-generate a wave function which does not satisfy the right-
encumbered by arcane programming language. The figudeand boundary condition because it is much too low for a

Integration grid, integration limits, reduced mass, angular momentum, nuclear charge, and
nuclear radius:

n!=600 Rmin:=0  Rmax =.0008 A:=Rm+ax;ﬂ

p:=206771 L:=0 Z:=82 Rn:=1343.10"%

Integration algorithm begins: R, :=if(L>0,0,1) R, =99 t, *=Rmin+ A

2
- T -
i:=2,3.n ERmintid  V_, :=iﬂ[ri_|SRn,.EZ{o|:;-<2'_;nl)r],L_Z]]
. -

[2~Ri_,+[ﬂ;l- 24-(E- Vi_l)]'Ri_l-Az- (1 -?_)-Ri_2
R =k

(fi-1) |
1‘+L)

i

fic1

Fig. 1. Numerical integration of the

radial equation for the 4 state of

muonic lead using parameters pro-
L vided in Ref. 1.

-7
Normalize wave function: i:=0,2.n-2 N :=[4-n~[2[(ri-ki)2+ (v, R +1)’+ (Fip2 Ry +2)2]'§.]]

Enter energy guess: E=-382680 Convert energy to eV:  E-27.2114 = -1.0413-107

1

Plot radial wavefunction: i=0.n  R.=NR

Radial Wave Function for Muonic Lead
T T T

] 1

0 21074 44074 61074 81074
.

1

514 Am. J. Phys69 (4), April 2001 http://ojps.aip.org/ajp/ © 2001 American Association of Physics Teachers 514



muonic system in which the muon spends considerable timasing traditional numerical algorithms, so that a thorough
within the nucleus. The energy value is adjusted upward uneomparison of theory and experiment can be made.

til the right-hand boundary condition is satisfiexbe Fig. 1

The large difference between the seed value and the finalElectronic mail: frioux@csbsju.edu

energy value(—18.916 vs—10.413 MeV for the % statg

demonstrates the significance of the finite size of the nucleus

for muonic atoms.

The fine structure corrections outlined by Tiburzi and Hol-
stein [their Egs. (16)—(18)] can be easily added to the
MATHCAD worksheet(omitted here for the sake of brevity

IB. C. Tiburzi and B. R. Holstein, “Bound states of a uniform spherical
charge distribution-revisited!,” Am. J. Phy68, 640—648(2000.

J. Zablotney, “Energy levels of a charged particle in the field of spheri-
cally symmetric uniform charge distribution,” Am. J. Phy&3, 168-172
(1975.

3F. Rioux, “Direct numerical integration of the radial equation,” Am. J.
Phys.59, 474-475(1997).

Comment on “Charge density on a thin straight wire, revisited,”
by J. D. Jackson [Am. J. Phys. 68 (9), 789-799 (2000)]
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Jackson’s papésupports an emerging conserfstst the

zero, by symmetry. To ensure continuity we choage

linear charge density on a conducting wire is uniform, in the= g;. What remains is a set i linear equations for th&

zero radius limit. This is easily proved for the special case o{ynknown charges.

an ellipsoid, but Jackson demonstrates that it holds regard- Griffiths and L? solved this system numerically fot up

less of shape. This conclusion is so counterintuitive that wgo 100, and persuaded themselves that the linear charge den-

decided to reexamine the original numerical studiessed

sity was approaching a nontrivial limiting form—fairly flat

on discrete charge distributions, that appeared to confirm thg, the center, but with spikes at the ends=(+1). They
more plausible hypothesis that the charge accumulates prefjere seduced by extraordinarily slow convergenceNas

erentially near the ends.
We placeN charges at equal spacing on the interval 0O
<x=1:

at X]_:l/N,
at X2:2/N,

a1
a2

0, at x,=n/N, @

qN at XN:]'

(and equal charges at the corresponding points—dn<x
<0), together with a single chargg, at x,=0. We then

adjust the charges so that the Coulomb force on each of them

exceptgy (which is subject to an extra confining fojcis
zero:

N n—1
=0 (n=1,2,.N—-1), (2
subject to the constraint
N
dot22, p=1 (3)

(the scaled total charge on the wir&his does not determine
the charge at the center—the force g is automatically
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Fig. 1. Linear charge density on a needle, as a function of position. The
calculation was done usingN2+1 point charges equally spaced on the
interval from —1 to +1, and requiring that the net force on each charge
(except the end twovanish. The total charge on the needle igd.Solid

line: N=16 384; dashed lind\=32. (b) Expanded view of the right end;
this time the dashed line N=1024.
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Fig. 2. Charge density at the center of the needle, as a functibh Bbts  Fig. 3. Charge density at the ends of the needlle £ 1), as a function of
represent the numerical resuzlts. The solid line is the best fit of the formN. Dots represent the numerical results. The solid line is the best fit of the
N(0)=P1+P3/InN+P3/(InN)* (for N ranging from 32 to 16 384which  form \(1)=[Q;+Q,/INN+Qs/(InN)4InN, which occurs for Q,

occurs forP;=0.500, P,= —0.152, andP;= —0.123. Evidently\(0) ap- =0.0719,Q,=0.912, andQ,=—0.874. Evidentlyr(=1) diverges asN
proaches the uniform density value of 0.5,Niincreases. increases.
—o0, @s we can see from Fig. 1, which extends the calcula- Q2 Qs )

MN1)=| Qi+ =+ —>_|InN,
tion out to N=16384: AsN increases, the charge density (D= QN (INN)?
approaches 1/2, except at the very ends, which occupy @, —0.0719.0,=0.912. andO.= — 0.874(solid line
decreasing portion of the length and contain a diminiShinQ\leve(rgt%ele;ss thé(gczzz “rébbit'ear;[’?’?i((x) are 01E decreas)iﬁg

fraction of the total charge. L . -
g significance adl—«, in the sense that they occupy a dimin-

In Fig. 2 we plot the charge density at the cente(Q) e . ;
=Nqp) as a function oN, to demonstrate thgainfully slow Issnrlglg]erij?rgg%r?fotl‘hti gottgallegﬁ;?gind contain a smaller and

approach to 0.5. Jackson shows that the natural expansion
parameter is\ ~ !, whereA =In(4c?/a?), with 2c the length ACKNOWLEDGMENT
of the wire anda its characteristic “radius,” and he suggests

that for the discrete model this translatesAe-2 InN. In We thank Nicholas Wheeler for illuminating discussions
Fig. 2 the solid line is a best fit of the form of this problem.
P2 Ps dElectronic mail: Griffith@reed.edu
)\(0) a P1+ InN * (|n N)z’ (4) 13. D. Jackson, “Charge density on a thin straight wire, revisited,” Am. J.

_ _ Phys.68, 789—799(2000.
for our data(with N ranging from 32 to 16 384P;=0.500, %R. H. Good, “Comment on ‘Charge density on a conducting needle,’”
P,=—-0.152, andP;=—0.123. Am. J. Phys.65, 155-156(1997); Mark Andrews, “Equilibrium charge

In Fig. 3 we p|0t the charge density at the ends of the wire density on a conducting needlejbid. 65 846-850(1997; Nicholas

. . Wheeler, “Construction and applications of the fractional calculgsfi-
(AM(1)=Ngqy), as a function ofN. It seems clear that this published.
quantity increases without limit—in fact, our data are well 3p. J. Griffiths and Ye Li, “Charge density on a conducting needle,” Am.

represented by the functional form J. Phys 64, 706—-714(1996.

PREPARATION?

Gibbs began his lectures on thermodynamics with the Carnot cycle, which he always got
wrong. After getting thoroughly mixed up he concluded the first lecture with an apology, and in
the second lecture he gave it letter perfect. It was in this way he introduced entropy, rather than in
the formal way in the “Heterogeneous Substances”.

E. B. Wilson, a student of J. Willard Gibbs, as quoted by Clifford Truesdell in J. Séxdito), New Perspectives in
ThermodynamicgSpringer, New York, 1986 p. 107.
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