
NOTES AND DISCUSSIONS

Kronig–Penney model with the tail-cancellation method
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The Kronig–Penney model of an electron moving in a periodic potential is solved by the so-called
tail-cancellation method. The problem also serves as a simple illustration of the tail-cancellation
method itself. ©2001 American Association of Physics Teachers.
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The Kronig–Penney model serves to illustrate the form
tion of energy bands in a periodic solid and appears a
pedagogical example in many textbooks in elementary s
state physics. The model is generally solved either by ma
ing the boundary conditions for the wave functions at the c
boundaries,1 by a plane-wave expansion of the wave functi
in the reciprocal lattice space,2 or even by the somewha
more involved T-matrix method.3

In this note, we point out that perhaps the simplest way
solving the problem is by using the tail-cancellation con
tion, which has been used extensively in the solution of
band structure problem in realistic solids.4 The solution
therefore serves as a simple illustration of the tail-c
cellation method as well.

The Schro¨dinger equation for a one-dimensional solid i

2
\2

2m

d2C~x!

dx2
1U~x!C~x!5EC~x!, ~1!

where the potential is periodic with lattice constanta:

U~x!5 (
n52`

`

V~x2na!. ~2!

Consider first a single potential well, where the potentia
V(x) in the central cell,2a/2<x<a/2, and zero elsewhere
Once we find a solutionf(x) to this potential for a given
energyE, the wave function for the solidC(x) may be con-
structed by taking a linear superposition of such functio
centered in different cells, with the coefficients given by t
Bloch theorem, i.e.,

C~x!5(
n

eiknaf~x2na!, ~3!

wherek is the Bloch momentum. Now, sincef(x) already is
a solution of the Schro¨dinger equation in the central cell, th
‘‘tails’’ of the functions f(x2na) coming from other cells
must interfere destructively inside the central cell~and hence
inside any other cell!. Thus we have the condition

(
nÞ0

eiknaf~x2na!50 ~4!

for all values ofx in the central cell. This is the so-calle
‘‘tail-cancellation’’ condition. The problem therefore boil
down to finding the solutionf(x) for a given energy for a
single potential well and then applying the tail-cancellati
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condition. If the condition can be satisfied then we have
solution for that energy, otherwise not.

We now apply the method to the Kronig–Penney mod
For a single potential well, the most general solution of t
Schrödinger equation for the energyE is given by

f~x!5Af1~x!1Bf2~x!, ~5!

where f1 and f2 are the two independent solutions wi
energyE. These solutions extend in all space and for the c
of the one-dimensional potential may be written in terms
the transmission and reflection coefficients:

f1~x!5eiKx1re2 iKx, x<2a/2

5teiKx, x>a/2 ~6!

and

f2~x!5te2 iKx, x<2a/2

5e2 iKx1reiKx, x>a/2, ~7!

where\2K2/2m5E. Notice that the above wave function
are simply the ‘‘tails’’—we don’t really care at this poin
how the wave function looks inside the cell itself, i.e., f
uxu<a/2. Once the energy is obtained, the wave funct
inside the cell~and hence everywhere! may be obtained by
integrating the Schro¨dinger equation.

Substituting the expression forf(x) from Eqs.~5! to ~7!
in the tail-cancellation condition Eq.~4!, equating the coef-
ficients ofe6 iKx to zero, and eliminating A and B, we obtai
the following condition:

~r 22t2! f 1 f 22t~ f 1 f 2* 1 f 1* f 2!2 f 1* f 2* 50, ~8!

where f 6[ f (K6k) and f (k)5(n51
` eikna.

The last sum is over a series of oscillating terms. T
oscillation can be traced to the fact that the plane-wave-
tails in Eqs.~6! and~7! continue undamped to infinity. If we
keep a finite number of termsN in the summation, then the
second term in the numerator of the resultf (k)5(eika

2eik(N11)a)/(12eika) oscillates rapidly between21 and
11 asN→` with the average value zero. It turns out th
taking this average value yields the correct answer for
problem at hand.

A more careful way of evaluating the sum is to take t
limit
512p/ © 2001 American Association of Physics Teachers



ng

in
n

he
s

e
n.

-

on
–

J.

ix
f ~k!5 lim
N→`,m→0

(
n51

N

e~ ik2m!na5
eika

12eika
, ~9!

where the limit has been taken in such a way thatma!1 and
mNa@1. Physically this corresponds to a small dampi
term e2muxu in the two basis functions Eqs.~6! and ~7! such
that the amplitudes of the plane-wave tails damp out at
finity but do not change appreciably over the length of a u
cell.

We now write the transmission coefficient in terms of t
phase-shifth, t5utueih, so that the reflection coefficient ha
the well-known general formr 56 i ur ueih. Substituting Eq.
~9! into Eq. ~8! we get the desired result

cos~Ka1h!

utu
5coska. ~10!

This is the standard transcendental equation for the mod5

which we derived here from the tail-cancellation conditio
For a periodic array ofd functionsV(x)5gd(x), Eq. ~10!

takes the form
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KaD sinKa1cosKa5coska, ~11!

where the well-known result, utu5cosh and tanh
52mg/\2k, for the transmission coefficient of the delta
function potential has been used andP[mag/\2.

In summary, we have shown how the tail-cancellati
condition can be applied to the solution of the Kronig
Penney model.
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shown in Fig. 1. In this case, one of the beams goes dire
to the photodiode and the other, extracted with the be
splitter BS1, is retarded in an optical fiber before being
rected, with a beam splitter BS2, to the photodiode~I have
omitted in the drawing possible positioning of lenses!. In the
space between the two beam splitters, additional beam s
ters, or a partially reflecting mirror, can be placed if it
desired to compensate for the transmission losses of the o
beam. This setup amounts to a slight simplification of t
apparatus but is essentially the same experiment. A real
provement of the experiment is obtained with a further mo
fication of the setup. For this, we can eliminate the seco
beam splitter~BS2! and place the end of the optical fiber
the top sideof ~BS1! in order to feed the reflected part int
the photodiode. Notice, however, that thetransmittedpart
can make~with proper alignment! a second turn along the
optic fiber with the corresponding time delay 2t. This would
cause second-order dips in the spectral analysis, separat
half of the separation of the first-order dips. Perhaps hig
order dips can also be observed.

a!Electronic mail: dltorre@mdp.edu.ar
1A. P. Alford and A. Gold, ‘‘Laboratory measurement of the velocity
light,’’ Am. J. Phys.26, 481–484~1958!.

2L. Basano and P. Ottonello, ‘‘A simple demonstration of the Alford–Go
effect using a diode laser and optical fibers,’’ Am. J. Phys.68, 325–328
~2000!.
An experimental demonstration1 has been presented in this
journal2 using a diode laser, two optical fibers, a photodiode
and a wave analyzer. This demonstration is very simple an
has the didactic value of clearly presenting important optica
concepts. In this note I propose a simplification of the ex
perimental apparatus that, as a further advantage, should
low the observation of the Alford–Gold effect in a more
interesting way.

In their experimental demonstration, L. Basano and P. O
tonello use two optical fibers although the same can be
achieved with justone optical fiber, as is schematically

Fig. 1. Experimental setup. DL5diode laser; BS1, BS25beam splitters;
PD5photodiode; WA5wave analyzer; OF5optic fiber.
513p/ © 2001 American Association of Physics Teachers
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shows the numerical calculation for the 1s state of muonic
lead, which is in agreement with the results of Ref. 1. Go
agreement is also obtained for the higher muonic state
lead.

The numerical integration approach used here require
initial energy guess to generate a trial solution. This se
value can be provided by the point-nucleus expression
the energy—En52mZ2/2n2. This initial energy value will
generate a wave function which does not satisfy the rig
hand boundary condition because it is much too low fo
-

Fig. 1. Numerical integration of the
radial equation for the 1s state of
muonic lead using parameters pro
vided in Ref. 1.
I would like to suggest an alternative solution to the inter
esting finite-nucleus problem recently discussed by Tibur
and Holstein,1 and previously by Zablotney.2 While these
authors solve this problem by matching interior and exterio
solutions to Schro¨dinger’s equation at the nuclear radius, it is
also possible to obtain solutions by direct numerical integra
tion of the radial equation in a single integration procedure3

Figure 1, which is aMATHCAD 5.0 worksheet, demonstrates
how easily this can be accomplished.MATHCAD’s graphical
interface displays the calculation clearly in its entirety, un
encumbered by arcane programming language. The figu
514p/ © 2001 American Association of Physics Teachers
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muonic system in which the muon spends considerable t
within the nucleus. The energy value is adjusted upward
til the right-hand boundary condition is satisfied~see Fig. 1!.
The large difference between the seed value and the
energy value~218.916 vs210.413 MeV for the 1s state!
demonstrates the significance of the finite size of the nuc
for muonic atoms.

The fine structure corrections outlined by Tiburzi and H
stein @their Eqs. ~16!–~18!# can be easily added to th
MATHCAD worksheet~omitted here for the sake of brevity!,
r
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using traditional numerical algorithms, so that a thorou
comparison of theory and experiment can be made.
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zero, by symmetry. To ensure continuity we chooseq0

5q1 . What remains is a set ofN linear equations for theN
unknown charges.

Griffiths and Li2 solved this system numerically forN up
to 100, and persuaded themselves that the linear charge
sity was approaching a nontrivial limiting form—fairly fla
in the center, but with spikes at the ends (x561). They
were seduced by extraordinarily slow convergence asN

Fig. 1. Linear charge density on a needle, as a function of position.
calculation was done using 2N11 point charges equally spaced on th
interval from 21 to 11, and requiring that the net force on each char
~except the end two! vanish. The total charge on the needle is 1.~a! Solid
line: N516 384; dashed line:N532. ~b! Expanded view of the right end
this time the dashed line isN51024.
Jackson’s paper1 supports an emerging consensus2 that the
linear charge density on a conducting wire is uniform, in th
zero radius limit. This is easily proved for the special case o
an ellipsoid, but Jackson demonstrates that it holds rega
less of shape. This conclusion is so counterintuitive that w
decided to reexamine the original numerical studies,3 based
on discrete charge distributions, that appeared to confirm t
more plausible hypothesis that the charge accumulates pr
erentially near the ends.

We placeN charges at equal spacing on the interval 0
,x<1:

q1 at x151/N,

q2 at x252/N,

¯

~1!qn at xn5n/N,

¯

qN at xN51

~and equal charges at the corresponding points on21<x
,0!, together with a single chargeq0 at x050. We then
adjust the charges so that the Coulomb force on each of the
exceptqN ~which is subject to an extra confining force! is
zero:

(
j 51

N
qj

~n1 j !2 1
q0

n2 1 (
j 51

n21
qj

~n2 j !22 (
j 5n11

N
qj

~ j 2n!2

50 ~n51,2,...,N21!, ~2!

subject to the constraint

q012(
n51

N

qn51 ~3!

~the scaled total charge on the wire!. This does not determine
the charge at the center—the force onq0 is automatically
515p/ © 2001 American Association of Physics Teachers
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→`, as we can see from Fig. 1, which extends the calcu
tion out to N516 384: AsN increases, the charge densi
approaches 1/2, except at the very ends, which occup
decreasing portion of the length and contain a diminish
fraction of the total charge.

In Fig. 2 we plot the charge density at the center (l(0)
5Nq0) as a function ofN, to demonstrate the~painfully slow!
approach to 0.5. Jackson shows that the natural expan
parameter isL21, whereL[ ln(4c2 /a2), with 2c the length
of the wire anda its characteristic ‘‘radius,’’ and he sugges
that for the discrete model this translates toL;2 lnN. In
Fig. 2 the solid line is a best fit of the form

l~0!5P11
P2

ln N
1

P3

~ ln N!2 ; ~4!

for our data~with N ranging from 32 to 16 384! P150.500,
P2520.152, andP3520.123.

In Fig. 3 we plot the charge density at the ends of the w
(l(1)5NqN), as a function ofN. It seems clear that this
quantity increases without limit—in fact, our data are w
represented by the functional form

Fig. 2. Charge density at the center of the needle, as a function ofN. Dots
represent the numerical results. The solid line is the best fit of the f
l(0)5P11P2 /ln N1P3 /(ln N)2 ~for N ranging from 32 to 16 384!, which
occurs forP150.500, P2520.152, andP3520.123. Evidentlyl~0! ap-
proaches the uniform density value of 0.5, asN increases.
516 Am. J. Phys., Vol. 69, No. 4, April 2001
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l~1!5FQ11
Q2

ln N
1

Q3

~ ln N!2G ln N, ~5!

with Q150.0719,Q250.912, andQ3520.874~solid line!.
Nevertheless, these ‘‘rabbit ears’’ inl(x) are of decreasing
significance asN→`, in the sense that they occupy a dimi
ishing portion of the total length and contain a smaller a
smaller fraction of the total charge.
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Fig. 3. Charge density at the ends of the needle (x561), as a function of
N. Dots represent the numerical results. The solid line is the best fit of
form l(1)5@Q11Q2 /ln N1Q3 /(ln N)2#ln N, which occurs for Q1

50.0719, Q250.912, andQ3520.874. Evidentlyl~61! diverges asN
increases.
PREPARATION?

Gibbs began his lectures on thermodynamics with the Carnot cycle, which he always got
wrong. After getting thoroughly mixed up he concluded the first lecture with an apology, and in
the second lecture he gave it letter perfect. It was in this way he introduced entropy, rather than in
the formal way in the ‘‘Heterogeneous Substances’’.

E. B. Wilson, a student of J. Willard Gibbs, as quoted by Clifford Truesdell in J. Serrin~editor!, New Perspectives in
Thermodynamics~Springer, New York, 1986!, p. 107.
516Notes and Discussions


