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The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary
spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is
broken at the quantum level in the presence of a background classical gravitational field with a nontrivial
Chern-Pontryagin invariant, in parallel with the chiral anomaly for massless Dirac fermions. Among the
physical consequences, the net polarization of the quantum electromagnetic field is not conserved.
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Introduction.—It has long been known that the source-
free Maxwell equations in four dimensions are manifestly
invariant under duality rotations of the electromagnetic
field Fμν → Fμν cos θ þ ⋆Fμν sin θ, where ⋆Fμν is the dual
strength tensor. It was proven in Ref. [1] that this trans-
formation is indeed a symmetry of the action—at the level
of the basic dynamical variables ~A, and for an arbitrary
spacetime—and the associated conserved charge was iden-
tified. This symmetry extends to the quantum theory in
Minkowski spacetime. The goal of this Letter is to analyze
whether the duality invariance persists in quantum field
theory in curved spacetimes or, as for the chiral invariance
of massless fermions, the presence of spacetime curvature
induces an anomaly.
If the symmetry exists and leaves the vacuum state

invariant, vacuum expectation values of operators that
reverse sign under a discrete duality transformation, such
as FμνFμνðxÞ ¼ 2½~B2ðxÞ − ~E2ðxÞ�, must vanish. However, it
has been found in Ref. [2] using adiabatic renormalization
that this is not the case for a spatially flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime,

hFμνFμνi ¼ 1

480π2

�
−9RαβRαβ þ 23

6
R2 þ 4□R

�
; ð1Þ

where Rαβ is the Ricci tensor and R is its trace. This result
signals a breaking of the duality symmetry. On the other
hand, the same approach produces a vanishing value of
hFμν

⋆Fμνi ¼ −4h~E · ~Bi in FLRW spacetimes. Given its
pseudoscalar character, this quantity is expected to be
proportional to the Chern-Pontryagin invariant density
Rμνλσ

⋆Rμνλσ , where ⋆Rμνλσ ¼ 1=ð2 ffiffiffiffiffiffi−gp ÞϵμναβRαβ
λσ , which

vanishes in FLRW backgrounds. This was indeed worked
out in Ref. [3], finding that

hFμν
⋆Fμνi ¼ 1

48π2
Rαβλσ

⋆Rαβλσ: ð2Þ
Although these results are suggestive, to establish the

existence of an anomaly one needs to go a step further and

analyze the extension of the classical conservation law to
the quantum theory. This was the strategy followed to prove
the existence of the chiral anomaly for spin-1=2 fermions
interacting with an external electromagnetic [4] or a
gravitational field [5] in the late 1960s. The purpose of
this Letter is to build a similar formalism for the electro-
magnetic field. Even though the gauge freedom adds new
difficulties, the analysis brings out an interesting formal
relation between the electromagnetic and fermionic dynam-
ics that happens to be of great utility. We show that
Maxwell equations in radiation gauge can be rewritten
as spin 1 Dirac-type equations βμ∇μΨ ¼ 0, where Ψ is a
two-component object made of the potentials of the self-
and antiself-dual parts of the electromagnetic field (these
components describe right and left circularly polarized
waves, respectively), and the matrices βμ are spin 1 analogs
of the familiar γμ matrices for spin-1=2 fermions. Duality
rotations are then generated by β5, which is defined in the
standard way (see below). The extensive theoretical machi-
nery developed to derive the fermionic chiral anomaly can
then be extended to the electromagnetic case. In particular,
following the well known Fujikawa method [6,7], we show
that the duality anomaly originates in the failure of the
measure of the path integral to respect the symmetry of the
action. In the rest of the Letter we spell out the details of
the analysis and summarize the interesting relation with
other mathematical structures and the physical conse-
quences of the anomaly.
We follow the convention ϵ0123 ¼ 1 and metric signa-

ture ðþ;−;−;−Þ.
Duality symmetry and Noether charge.—A detailed

analysis of the duality symmetry of the classical, source-
free Maxwell theory was presented in Ref. [1] (see Ref. [8]
for an earlier work), and the reader is referred to these
references for details. At the level of the electromag-
netic potential, duality rotations are implemented by the
transformation δAμ ¼ θZμ, with θ an infinitesimal param-
eter. Zμ is a vector field that, on shell, must satisfy
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∇μZν −∇νZμ ¼ ⋆Fμν, and can be understood as a nonlocal
function of the basic variables Aμ [9]. By taking the exterior
derivative, one can see that the transformation above
reduces to the more familiar form δFμν ¼ θ⋆Fμν on shell.
The associated conserved current can be obtained from the
Lagrangian density, and reads

jμD ¼ 1

2
ðAν

⋆Fμν − IμνZνÞ; ð3Þ

where Iμν ¼ 2Fμν þ ffiffiffiffiffiffi−gp
ϵμναβ∇αZβ, which satisfies Iμν ¼

Fμν on shell. This current is gauge dependent and nonlocal in
space. However, the integral on a spatial Cauchy hypersur-
face of its “zero component” produces a well defined, gauge
invariant conserved charge QD, which physically accounts
for the difference in amplitude between left and right
polarized components of the electromagnetic radiation.
This quantity is often called the optical helicity, and it is
the Noether generator of duality transformations.
Note that the first term in Eq. (3) is proportional to the

Pauli-Ljubanski vector Kμ ≡ −Aν
⋆Fμν used in Ref. [3] to

compute hFμν
⋆Fμνi ¼ −2h∇μKμi. This vector is not con-

served, already at the classical level. Moreover, the spatial
integral of K0 is related to the so-called magnetic helicity
[10], which does not generate electromagnetic duality
transformations. The second term in Eq. (3), − 1

2
IμνZν, is

needed for the current to be conserved in the classical
theory and the associated charge to generate duality
rotations. The evaluation of h∇μj

μ
Di, which turns out to

be equivalent to −hð∇μFμνÞZνi, requires us to deal with an
operator different from Fμν

⋆Fμν and FμνFμν. Consequently,
a different calculation needs to be elaborated in order to
analyze the electromagnetic duality in the quantum theory.
Weyl-type representation of Maxwell’s equations.—

Before moving to the analysis of the above conservation
law in the quantum theory, we rewrite Maxwell’s equations
in a convenient form for our purposes. We first describe the
formalism in Minkowski spacetime and then generalize it
to other geometries.
Maxwell’s equations in the absence of charges and

currents in Minkowski spacetime decouple when written
in terms of the complex fields ~H� ≡ 1

2
½~E� i~B� with ~E and

~B the electric and magnetic fields, and take the form

~∇ × ~H� ¼ �i
∂
∂t ~H�; ~∇ · ~H� ¼ 0: ð4Þ

Using the familiar transformation properties of ~E and ~B
under the Lorentz group, it is straightforward to show that
~Hþ and ~H− transform according to the (1,0) and (0,1)
representations, respectively. Under a duality transforma-
tion ~E→ cosθ~Eþ sinθ~B, ~B → − sin θ~Eþ cos θ~B, we have
~H� → e∓iθ ~H�. Hence, ~Hþ and ~H− are the self- and antiself-
dual parts of the electromagnetic field, respectively.
Interestingly, duality rotations on ~H� resemble conventional

chiral rotations in the Dirac theory. Moreover, Eqs. (4) can
be rewritten as

ðαaÞb i ∂aHiþ ¼ 0; ðᾱaÞb i ∂aHi
− ¼ 0; ð5Þ

(the bar denotes complex conjugation), where the spacetime
indicesa,b run from0 to 3, and the internal index i runs from
1 to 3 [note that ~Hþ belongs to a three-dimensional complex
space associated with the (1,0) Lorentz representation, and
analogously ~H− with the (0,1) one]. Equations similar to
Eq. (5) were also written in Refs. [11,12]. The components
of the ðαaÞb i matrices can be extracted from Eq. (4), and it
can be checked that they satisfy the following properties

αðaαbÞ≡1

2
½ðαaÞciðαbÞcjþðαbÞciðαaÞcj�¼ ηabδi

j;

α½aαb�≡1

2
½ðαaÞciðαbÞcj−ðαbÞciðαaÞcj�¼−2½þΣab�ij; ð6Þ

where þΣab is the generator of the (1,0) representation of the
Lorentz group, and ηab is the Minkowski metric. Note the
analogy with the properties of the σμ ¼ ðI; ~σÞ matrices that
appear in the Weyl equations (~σ are the Pauli matrices) for
massless spin-1=2 fermions.
Equations (5) are equivalent to the more conventional,

manifestly Lorentz-invariant equations ∂�
a Fab ¼ 0, due to

the fact that the matrices ðαaÞb i provide an isomorphism
between ~Hþ and the self-dual part of Fab, þFab ¼
ðαaÞb i Hiþ, where �Fab≡ 1

2
ðFab� i⋆FabÞ. Similarly,

−Fab ¼ ðᾱaÞb i Hi
−. Therefore, the ðαaÞb i matrices can also

be thought of as the analog of the σaAA0 or αaα _α maps that relate
spinors and spacetime vectors [13].
Given the divergenceless condition in Eq. (4), we can

now introduce potentials ~A� for ~H�: ~H� ¼ �i ~∇ × ~A�.
In order to isolate the dynamical degrees of freedom we

work in the radiation gauge, ~∇ · ~A� ¼ 0. With this choice,

Eqs. (4) translate to first-order differential equations for ~A�

~∇ × ~A� ¼ �i
∂
∂t ~A�; ~∇ · ~A� ¼ 0; ð7Þ

which turn out to have the same form as Eq. (4). Therefore,
they can also be written as Weyl-type equations

ðαaÞbi ∂aAiþ ¼ 0; ðᾱaÞbi ∂aAi
− ¼ 0: ð8Þ

Notice that first-order differential equations are obtained

at the expense of working with complex fields ~A�, and
therefore duplicating the number of independent variables.
It is not difficult to see that Eqs. (7) are equivalent to
Hamilton’s equations for the canonical formulation of
Maxwell’s theory if we split them into real and imaginary
parts [14]. The familiar second order differential equations

□~A� ¼ 0 arise from Eq. (8) by acting with the operator
ðαcÞbj∂c in the first equation and with ðᾱcÞbj∂c in the
second one, and then using the properties written in Eq. (6).
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The generalization to curved spacetimes follows the
same procedure as for the Dirac case. Namely, Eqs. (5)
for the fields translate to

ðαμÞνi∇μHiþ ¼ 0; ðᾱμÞνi∇μHi
− ¼ 0; ð9Þ

and similarly for the potentials

ðαμÞνi∇μAiþ ¼ 0; ðᾱμÞνi∇μAi
− ¼ 0; ð10Þ

where the αmatrices in curved spacetime are obtained from
the flat space ones by using the vierbein formalism

ðαμÞνiðxÞ ¼ eμaðxÞeνbðxÞðαaÞb i: ð11Þ
The equivalence with the familiar Maxwell equations in
curved spacetimes, ∇μ

�Fμν ¼ 0, is easily shown from
Eq. (9) by taking into account that the covariant derivative
in the above equations satisfies ∇βðαμÞνi ¼ 0.
An even closer analogy with the Dirac equation can be

achieved by combining together the two sets of equations
in Eq. (10),

βμ∇μΨðxÞ ¼ 0; ð12Þ
where we have defined [15]

Ψ≡
�
Aiþ
A−i

�
; βμ ≡ i

�
0 ðᾱμÞνi

−ðαμÞνi 0

�
: ð13Þ

The βμ matrices inherit from the αν matrices the following
properties

β̄ðμβνÞ ¼ −gμνI; ð14Þ

β̄½μβν� ¼ 2

� þΣμν 0

0 −Σμν

�
; ð15Þ

where the parentheses (square brackets} denote symmet-
rization (antisymmetrization), and I is the identity matrix
when acting on Ψ. Furthermore, we can construct the chiral
matrix in the standard way,

β5 ≡−i
ffiffiffiffiffiffi−gp
16

ϵμνσρβ
μβ̄νβσβ̄ρ ¼

�−I3×3 0

0 I3×3

�
;

which can be used to write the duality transformation in the
form of a conventional chiral rotation

�
Aiþ
A−i

�
→ eiθβ5

�
Aiþ
A−i

�
¼

�
e−iθAiþ
eiθA−i

�
: ð16Þ

In analogy with the terminology used for fermions, Ai
�

describe right- and left-handed (circularly polarized) radiation.
The quantum anomaly.—To explore whether the

classical conservation law extends to the quantum theory,
we rely on the well known Fujikawa path integral approach.
Transition amplitudes for the quantized free electromag-
netic field in the radiation gauge can be extracted from the
following path integral [7,16]

hAf; tfjAi; tii ¼
Z

DXDAð1Þ
k DAð2Þ

k eiSM ½A� ð17Þ

(the sum over k is understood), where Að1;2Þ
k represents

the two transverse (linear) polarizations of the potential
field, and SM½A� ¼ − 1

4

R
d4x

ffiffiffiffiffiffi−gp
FμνFμν is the Maxwell

action. On the other hand, DX ≡ ð−gÞ2DA0det1=2

½DμDμδð3Þðx − yÞ�, where Dμ is the spatial covariant
derivative. The radiation gauge fixing is implicitly included
in the measure [7]. We now rewrite this expression in
terms of Ψ. To do this, first we recall the relation between

linear and circular polarization Að1Þ
k ¼ Aþ

k þ A−
k and

Að2Þ
k ¼ −i½Aþ

k − A−
k �. Then the functional measure can be

rewritten in the circular basis as DAð1Þ
k DAð2Þ

k ¼ DΨ̄DΨ,
where we have defined Ψ̄≡Ψ†β0. Finally, we arrive at

hAf; tfjAi; tii ¼
Z

DXDΨ̄½A�DΨ½A�eiSM ½A�: ð18Þ

Recall that, despite the notation, the variables Ψ and Ψ̄ are
not Grassmann numbers.
To evaluate the impact of a duality transformation in

the path integral (18) we use again Noether’s theorem.
In quantum field theory and particularly in gauge theories,
the second version of the theorem—in which the infini-
tesimal parameter θ is promoted to an arbitrary function
of space and time subject to appropriate fall-off conditions
at infinity—happens to be more convenient (see, e.g.,
Refs. [7,17]). The variation of the Maxwell action under
a transformation of the basic dynamical variables
δAμ ¼ θðxÞZμ, with δA0 ¼ 0, is

δSM ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
θðxÞ∇μj

μ
D; ð19Þ

where the resulting jμD agrees with Eq. (3). Note that at
the level of the field strength, the transformation implies
δFμν ¼ θðxÞ�Fμν − Zμ∇νθðxÞ þ Zν∇μθðxÞ on shell. This
differs from the transformation used in Ref. [18], where it is
assumed that δFμν ¼ θðxÞ�Fμν.
Quantum anomalies arise from the noninvariance of the

measure in the path integral [6,7]. The transformation
properties of the measure are given by the Jacobian J,
DΨ̄0DΨ0 ¼ JDΨ̄DΨ. Note that the duality rotation leaves
DX invariant. To evaluate J it is more convenient to move
to the Euclidean regime. Now, the fact that the operator
D ¼ βμ∇μ is Hermitian guarantees the existence of an
orthonormal basis Ψn of eigenstates (DΨn ¼ λnΨn) under
the inner product ðΨn;ΨmÞ≡ R

d4x
ffiffiffiffiffiffi−gp Ψ†

nΨm ¼ l2δnm,
where l is an arbitrary constant with dimensions of length;
physical observables are insensitive to its value, so we fix
l ¼ 1. With this, the expression for the Jacobian can be
derived by expanding the fields Ψ and Ψ̄ in terms of this
complete basis, and reads
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J ¼ eþi2
P

∞
n¼0

R
d4x

ffiffiffiffi−gp
θðxÞðΨ†

nβ5ΨnÞ: ð20Þ
From this, the expression for the vacuum expectation value
h∇μj

μ
Di can be obtained by recalling that the path integral is

independent of the name of variablesZ
DΨ̄½A�DΨ½A�eiSM ½A�

¼
Z

DΨ̄½A0�DΨ½A0�eiSM ½A0�

¼
Z

DΨ̄½A�DΨ½A�JeiSM ½A�−i
R

d4x
ffiffiffiffi−gp

θðxÞh∇μj
μ
Di; ð21Þ

and therefore h∇μj
μ
Di ¼ 2

P∞
n¼0ðΨ†

nβ5ΨnÞ. The right-hand
side of this expression is not well defined (it is ultraviolet
divergent) and must be renormalized. We follow a regu-
larization based on the well known heat kernel expansion
(see, e.g., Ref. [17] for details). The kernel of the quadratic
operator β̄μβν∇μ∇ν, whose eigenvalues are λ2n, can be
written as

Kðτ; x; x0Þ≡X∞
n¼0

e−iτλ
2
nΨnðxÞΨ†

nðx0Þ; ð22Þ

where τ plays the role of a regularization cutoff. With this,
we can formally write

h∇μj
μ
Di ¼ 2lim

τ→0
Tr½β5Kðτ; x; xÞ�; ð23Þ

where the trace refers to Ψ indices. The importance of the
heat kernel regularization method relies in the asymptotic
expansion of Kðτ; x; xÞ in the limit τ → 0

Kðτ; x; xÞ ∼ −
i

16π2τ2
X∞
k¼0

ðiτÞkEkðxÞ: ð24Þ

The functions EkðxÞ are local geometric quantities, con-
structed from the quadratic operator β̄μβν∇μ∇ν; they
depend on the metric and its first 2kth derivatives. The
first few coefficients of the asymptotic kernel expansion
are E0ðxÞ ¼ I, E1ðxÞ ¼ 1

6
RI −Q, and

E2ðxÞ ¼
�
1

72
R2 −

1

180
RμνRμν þ 1

180
RαβμνRαβμν

�
I

−
1

30
□Rþ 1

12
WμνWμν þ 1

2
Q2 −

1

6
RQþ 1

6
□Q;

where Wμν ¼ ½∇μ;∇ν�, and Q is defined by writing the
wave equation as −β̄μβν∇μ∇νΨ≡ ð□þQÞΨ ¼ 0.
Explicit computations produce

Q≡
�
Qi

j 0

0 Q̄i
j

�
ð25Þ

with Qi
j ¼ −½þΣμν�ikRμναβ½þΣαβ�kj. Now, bringing the

expansion (24) to Eq. (23) one finds that all terms in the

sum (24) with k > 2 clearly give a vanishing contribution
in the τ → 0 limit. One can also check that for k < 2 the
terms in the sum vanish because the trace with β5 selects the
imaginary part, and ImfTrQg ¼ 0. Henceforth,

h∇μj
μ
Di ¼

i
8π2

Tr½β5E2ðxÞ�: ð26Þ

The crucial point is then to evaluate this quantity. Using
Eq. (25) one has Tr½β5E2� ¼ 1

12
Tr½β5WμνWμν� þ 1

2
Tr½β5Q2�.

Notice that the values of Wμν and Q are related to the
representations of the Lorentz group associated with the
physical degrees of freedom of the electromagnetic theory,
namely (1,0) and (0,1). This is in close analogy with the
chiral anomaly for spin-1=2 fermions, where the ð1=2; 0Þ
and ð0; 1=2Þ representations play an important role.
After a long calculation, one arrives at Tr½β5WμνWμν� ¼
2iRμναβ⋆Rμναβ and Trðβ5Q2Þ ¼ −iRμναβ⋆Rμναβ (details will
be published elsewhere). Taking all factors into account,
one gets

h∇μj
μ
Di ¼

1

24π2
Rμνλσ

⋆Rμνλσ: ð27Þ

Since the heat kernel asymptotic series (24) does not
depend on the vacuum state chosen, this expectation value
is (vacuum) state independent.
Conclusions and final comments.—The above result

implies that the charge QD associated with the duality
symmetry of the Maxwell action is no longer conserved in
the quantum theory in a general spacetime; its time
derivative is given by the spatial integral of Eq. (27).
Since in flat spacetime QD represents the difference in
number between photons of opposite helicity [8], this result
can be interpreted as a nonconservation of the helicity of
the quantum electromagnetic field in curved spacetimes.
A physical background where this anomaly may lead

to observational consequences is rotating astrophysical
objects, described approximately by a Kerr metric
(Rμνλσ

⋆Rμνλσ is proportional to the angular momentum of
the source [19]). Light rays coming from different sides of a
rotating object such as a black hole, galaxy, or cluster not
only would bend around, but an effective difference in
polarization could also be induced between them. In
particular, this effect would affect the polarization of the
cosmic microwave background photons. The quantitative
details for phenomenological implications will be analyzed
in a future work.
Interestingly, the anomaly (27) can be understood as a

physical realization of the Hirzebruch signature (index)
theorem [20]. The anomaly arises as the difference in the
number of right-handed and left-handed zero-eigenvalue
solutions of the operator βμ∇μ,

R
d4x

ffiffiffiffiffiffi−gp h∇μj
μ
Di ¼

2½nL − nR�. nL and nR can be computed from the (0,1)
and (1,0) irreducible representations of the Lorentz group
[21], respectively, and one obtains agreement with Eq. (27).
This is also in analogy with the fermionic chiral anomaly,
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which can also be obtained froman index associatedwith the
ð1=2; 0Þ and ð0; 1=2Þ irreducible representations of the
Lorentz group.
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