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We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory
if an arbitrary classical gravitational background is present. The symmetry breaks in the process of
renormalization, as also happens with conformal invariance. We show that a similar duality anomaly
appears for a massless scalar field in 1þ 1 dimensions.
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I. INTRODUCTION AND SUMMARY

The Maxwell equations in vacuo are highly symmetric.
In addition to their relativistic (Poincaré) invariance in
Minkowski spacetime, they exhibit two additional sym-
metries: conformal—or Weyl—invariance and electric-
magnetic duality. The former is the symmetry under Weyl
transformations (or conformal rescalings) gμν → Ω2ðxÞgμν
[1]. This is a symmetry of the classical theory in arbitrary
spacetimes, and it is also an exact symmetry of the
quantum theory in Minkowski spacetime. However, as
first pointed out in [3], Weyl invariance cannot be
extended to quantum field theory (QFT) in curved back-
grounds. Weyl symmetry implies the tracelessness of the
energy-momentum tensor Tμν. Since Tμν is quadratic in
the field Fμν, renormalization is required to compute its
expectation values. It turns out that generally covariant
methods of renormalization in curved spacetime produce a
nonvanishing trace hTμ

μiwhich breaks the Weyl invariance
[4–6]. The value of this trace is independent of the state in
which the expectation value is evaluated, and is written in
terms of curvature tensors. The breakdown of Weyl
symmetry is a renormalization effect and therefore it is
only manifest when composite operators are considered,
such as Tμν (the equations of motion and correlation
functions are still Weyl invariant). This is the celebrated
Weyl or trace anomaly (also called the conformal
anomaly), which constitutes a robust prediction of
renormalization in curved spacetimes and has important
physical consequences [4–6].
Another important symmetry of electromagnetism

in the absence of charges is invariance under duality
transformations Fμν → �Fμν (see e.g. [7,8]) where the

(Hodge) dual tensor is defined in the standard way,
�Fμν ¼ 1=2jgj−1=2ϵμναβFαβ. In terms of the electric and

magnetic fields, this discrete transformation reads ~E → ~B;
~B → −~E. It can be also viewed as a particular case of the
electric-magnetic rotation ~E → ~E cos θ þ ~B sin θ, ~B →
~B cos θ − ~E sin θ. Maxwell’s equations

∇μFμν ¼ 0; ∇μ
�Fμν ¼ 0

are manifestly invariant. The classical (Maxwell) energy-
momentum tensor, which can be written in the symmetric
form

TM
μν ¼ −

1

2
ðFμαFν

α þ �Fμα
�Fν

αÞ; ð1Þ

is also invariant. This duality can be extended to the QFT
in Minkowski spacetime. One can show that the duality
transformation is implemented by a unitary operator in the
Fock space which leaves the Minkowski vacuum invariant.
As a consequence, vacuum-correlation functions are dual-
ity invariant, e.g.

hFμαðxÞFν
αðx0Þi ¼ h�FμαðxÞ�Fν

αðx0Þi

for all x ≠ x0. Vacuum expectation values of composite
(nonlinear) operators are also invariant, although renorm-
alization is required to make sense of the otherwise
divergent expressions. In Minkowski spacetime normal
order (i.e. subtraction of the vacuum expectation value)
does the job. As an example, one trivially obtains
hFμαðxÞFν

αðxÞi ¼ h�FμαðxÞ�Fν
αðxÞi ¼ 0.

The goal of this paper is to show that the classical
electric-magnetic duality symmetry cannot be extended to
QFT in curved spacetime. In order to show the influence
of the gravitational background in the sharpest way, we will
work as closely as possible to the theory in Minkowski
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spacetime. We will consider free electromagnetism,
L ¼ −1=4

ffiffiffiffiffijgjp
FμνFμν, in a spatially flat Friedman-

Lemaitre-Robertson-Walker (FLRW) spacetime. This
background is conformally Minkowskian and, since the
electromagnetic field equations are Weyl invariant,
the quantum theory shares multiple properties with the
Minkowski spacetime formulation. In particular, both
theories have the same Hilbert space. This relation allows
the definition of a preferred vacuum state in FLRW
backgrounds (the so-called conformal vacuum), and also
implies the absence of particle (i.e. photon) creation by the
expanding spacetime, in sharp contrast with other non-
Weyl invariant fields [4]. However, the presence of a
nontrivial spacetime curvature manifests itself in an impor-
tant way in the process of renormalization. Although there
exists a preferred vacuum, the normal-order prescription is
not a satisfactory renormalization prescription in FLRW.
This is because that procedure for subtracting the ultra-
violet divergences is neither generally covariant nor local.
Therefore, out of Minkowski spacetime, normal order
does not satisfy the axioms on which the theory of
renormalization in curved spacetime relies [5]. Instead,
we will use the adiabatic renormalization method devel-
oped by Parker and Fulling [4,6,9]—which has been
proven to be equivalent to DeWitt—Schwinger point-
splitting renormalization [6,10]—adapted to the electro-
magnetic field. (See also [11], and see [12] for the
extension to fermionic fields.) We will show that the
quantity

Δμν ≡ hFμαðxÞFν
αðxÞi − h�FμαðxÞ�Fν

αðxÞi ð2Þ

takes a nonvanishing value given (we use the same geo-
metric conventions as in Refs. [4,6]) by

Δμν ¼
1

480π2

�
−
9

2
RαβRαβ þ 23

12
R2 þ 2□R

�
gμν; ð3Þ

where Rαβ is the Ricci tensor and R its trace. This
expression implies that the fluctuations of the electric
and magnetic field in the vacuum state—which is duality
invariant in FLRW—are different, i.e. h~E2i ≠ h~B2i, and
therefore the duality symmetry is broken.
We analyze the same issue in the case of a massless,

minimally coupled scalar field in an arbitrary 1þ 1-
dimensional spacetime. We use the Hadamard renormali-
zation method and reach similar conclusions: the presence
of a classical gravitational background breaks not only
Weyl invariance, but also the duality symmetry.

II. DUALITY ANOMALY FOR THE
ELECTROMAGNETIC FIELD

The goal of this section is to compute the vacuum
expectation values hFμαðxÞFν

αðxÞi, h�Fμν
�FμαðxÞ�Fν

αðxÞi,

and the energy-momentum tensor in a spatially flat FLRW
background with line element

ds2 ¼ aðηÞ2ðdη2 − d~x2Þ;

where η is the conformal time. All tensor components in
this section will refer to the coordinates η; ~x. As pointed
out above, the conformal invariance of the equations of
motion greatly facilitates the formulation of the theory.
The electromagnetic field operator can be written in
terms of the vector potential as Fμν ¼ ∇μAν −∇νAμ,
where the operator Aμ can be represented in terms of
Fourier modes of the two physical polarizations (we
work in the Lorenz gauge ∇μAμ ¼ 0) by

Aμð~x; ηÞ ¼
Z

d3k
ð2πÞ3

X2
α¼1

âðαÞ~k
ϵðαÞμ φ~kðηÞei

~k ~x þ H:c:; ð4Þ

where φ~kðηÞ ¼ e−ikη=
ffiffiffiffiffi
2k

p
, k ¼ j~kj is the length of the

comoving mode ~k, and âðαÞ~k
and âðαÞ†~k

are creation and

annihilation operators for the polarization α. The polari-

zation vectors ϵðαÞμ ð~kÞ depend on ~k and are transversal,

kμϵðαÞμ ¼ 0. It is convenient to choose them to be

mutually orthogonal, gμνϵðαÞμ ϵðα
0Þ

ν ¼ −a−2δαα0 .
Direct substitution shows that the quantity hFμσFν

σi is
ultraviolet divergent, and therefore requires renormali-
zation. In adiabatic renormalization the physically rel-
evant, finite expression is obtained by subtracting mode
by mode, i.e. under the Fourier integral sign, terms that
would produce state-independent ultraviolet divergences.
The terms to be subtracted are identified by performing
a Liouville or WKB-type asymptotic expansion for large
values of the physical frequency of the Fourier modes
ωðkÞ or, mathematically equivalently, an expansion for
small values of the time derivatives of the scale factor
aðηÞ (this is the reason for the name adiabatic, although
the method is primarily concerned with ultraviolet
issues). See [4] for further details.
A lengthy calculation produces (see Appendix A for

details)

hFμαFα
νi ¼ θμν þ

1

4
γðηÞgμν þ tμν; ð5Þ

h�Fμα
�Fν

αi ¼ θμν −
1

4
γðηÞgμν þ �tμν: ð6Þ

In these expressions tμν and �tμν are traceless tensors
encoding all the information regarding the quantum state,
and both vanish for the conformal vacuum. θμν is a
traceless, local geometric tensor given by
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θμν ¼
1

480π2

�
−16
3

RμαRα
ν þ

61

18
RRμν þ

2

3
∇ν∇μR

þ 4

3
RαβRαβgμν −

61

72
R2gμν −

1

6
□Rgμν� ð7Þ

and

γðηÞ ¼ 1

480π2

�
−9RαβRαβ þ 23

6
R2 þ 4□R

�
:

Applying Eqs. (5) and (6) for the vacuum state, one obtains
Δμν ¼ 1=2γðηÞgμν, as anticipated in Eqs. (2) and (3). This
quantity is different from zero for a generic scale factor
aðηÞ. Also note that taking the trace of Eq. (5) one obtains

hF2i≡ hFμαFμαi ¼ h~E2i − h~B2i ¼ γðηÞ. Since the vacuum
state is duality invariant, these results indicate a breakdown
of duality.
As in Minkowski spacetime, in FLRW there also exists a

unitary operator implementing the duality transformation in
the representation of the (linear) Heisenberg algebra of field
operators. However, the previous result indicates that the
renormalized expectation values of composite (nonlinear)
operators do not transform as expected under this unitary
operator. The geometric quantities—curvature tensors—
involved in the renormalization procedure break the duality
symmetry.
We finish this section by providing the expression for the

renormalized energy-momentum tensor. The aim is to show
that our techniques are consistent with well-known results
on curved-space renormalization of the electromagnetic
field, which maintain general covariance and gauge invari-
ance [10,13]. From expression (1) the vacuum expectation
value of the Maxwell tensor is

hTM
μνðxÞi ¼ −

1

2
ðhFμαFν

αi þ h�Fμα
�Fν

αiÞ ¼ −θμν: ð8Þ

By construction, this tensor is traceless. However, hTM
μνðxÞi

is not a suitable candidate for the source of the gravitational
field, i.e. for the right-hand side of the semiclassical
Einstein equations Gμν ¼ −8πGhTμνi, since hTM

μνðxÞi is
not conserved, ∇μhTM

μνðxÞi ≠ 0. Explicit computations
show that

∇μhTM
μνi ¼ −

1

2ð4πÞ2
�
∇μvμν −

3

4
∇νv

ρ
ρ þ∇νv

�
; ð9Þ

where vμν and v are objects constructed from curvature
tensors:

vμν ¼
1

3
RμαRα

ν −
3

10
RRμν −

1

45
∇ν∇μRþ 1

180
RαβRαβgμν

þ 113

2160
R2gμν −

1

360
□Rgμν; ð10Þ

v ¼ 13

1080
R2 þ 1

30
□Rþ 1

180
RαβRαβ: ð11Þ

One can construct a suitable conserved energy-momentum
tensor from hTM

μνðxÞi in two different ways. The shortest
one is to use the procedure commonly employed in
Hadamard renormalization [5,13–15]. It consists of simply
adding to hTM

μνi a geometric tensor that makes it conserved.
From Eq. (9) we find that a solution is

hTμνi ¼ hTM
μνi þ T Ad

μν þ c1H
ð1Þ
μν ; ð12Þ

where

T Ad
μν ¼ 1

2ð4πÞ2
�
vμν þ

�
−
3

4
vρρ þ v

�
gμν

�
:

Of course, this method can only define hTμνi up to a
conserved tensor. In FLRW this ambiguity is all encoded in
the last term of the previous equation, where c1 is an

arbitrary real number and Hð1Þ
μν is the tensor obtained by

functional variation of
ffiffiffiffiffiffi−gp

R2 with respect to the metric;

therefore it is conserved, ∇μHð1Þ
μν ¼ 0. Note that the

freedom in the value of c1 in (12) coincides with the
well-understood ambiguity in the renormalized energy-
momentum tensor in curved spacetimes [5,14].
Another way of finding hTμνi in adiabatic renormal-

ization is by direct application of the method. But to
follow this route one has to deal carefully with the
gauge invariance. A convenient approach in curved
backgrounds is provided by the Faddeev-Popov scheme
(see e.g. [6]). This method introduces new contributions
to the energy-momentum tensor, namely the so-called
gauge breaking terms and the contribution of a ghost
field. Explicit computations produce results that agree
with (12).
From (12) it is easy to check that the trace of the

renormalized energy-momentum tensor is nonzero and is
given by

hTμ
μi ¼ 1

2880π2

�
−62

�
RαβRαβ −

1

3
R2

�

− ð2þ 6 × 2880π2c1Þ□R

�
: ð13Þ

This is the well-known trace anomaly. Any other renorm-
alization method would provide an expression for hTμνi
that would possibly differ from (12) in the value of the
coefficient c1. Note that the existence of the anomalous
trace does not imply the duality anomaly. The trace arises
from the geometric term T Ad

μν in (12), while the duality
anomaly appears already in the expectation values (5)
and (6).
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III. RESULTS IN DE SITTER UNIVERSE

For the de Sitter—FLRW solution [aðtÞ ¼ e−Ht in
cosmic time and aðηÞ ¼ −1=ðHηÞ in conformal time, with
dt ¼ adη] the conformal vacuum—also called the Bunch-
Davies vacuum—is de Sitter invariant. Evaluation of
Eq. (1) produces hTM

μνi ¼ 0. This result is expected from
symmetry arguments, since there are no two-covariant
tensors which are simultaneously de Sitter invariant and
traceless. If one (incorrectly) assumes, following the stan-
dard lore, the validity of electric-magnetic duality (see e.g.

[13,16]), one would conclude that h~B2i ¼ 0 ¼ h~E2i in this
spacetime [16]. However, particularizing Eqs. (6) and (5) to

de Sitter space one obtains, instead, h~B2i¼ 19
160π2

H4—in

agreement with [17]—and h~E2i¼−h~B2i. The negative value
of the quadratic quantity h~E2i should not be surprising since
that is common for renormalized quantities. The same
happens in the usual Casimir effect (see e.g. [18]).

IV. DUALITY ANOMALY IN A 2D
CONFORMAL SCALAR THEORY

The duality anomaly in curved spacetimes can also be
illustrated in a simpler scenario: a minimally coupled,
massless scalar field in 1þ 1 dimensions. This theory is
very similar to free electromagnetism in the sense that it can
be described by an Abelian 1-form Fμ [19], and classically
it shows both Weyl and duality invariance. This framework
has been extensively discussed in the context of conformal
field theory and string theory [20].
The classical stress-energy tensor can be expressed as

Tμν ¼
1

2
ðFμFν þ �Fμ

�FνÞ;

where �Fμ ¼ jgj1=2ϵμνFν is the dual of Fν. The classical
field equations are ∇μFμ ¼ 0 and ∇μ�Fμ ¼ 0, where the
scalar field ϕ plays the role of the potential of the field Fμ,
Fμ ¼ ∇μϕ. The classical equations are invariant under
both Weyl and duality transformation Fμ → �Fμ. In this
section we consider an arbitrary spacetime metric (not
necessarily homogenous), which can always be written
as ds2 ¼ e2ρdxþdx−, in terms of the null coordinates
x� ≡ t� x. Because the spacetime is not necessarily
homogenous, we cannot use adiabatic regularization. We
will use instead the Hadamard point-splitting method
[5,13,15], which gives us the chance to show the existence
of the duality anomaly for a different renormalizaton
prescription. In this theory there is once again a preferred
vacuum state, the conformal vacuum. This state is dual
invariant, and so are the vacuum-correlation functions:

hF�ðxÞF�ðx0Þi ¼
−1

4πðx� − x0�Þ2 ¼ h�F�ðxÞ�F�ðx0Þi

hFþðxÞF−ðx0Þi ¼ 0 ¼ h�FþðxÞ�F−ðx0Þi;

for x ≠ x0. However, for x ¼ x0 the subtractions required
for renormalization are no longer dual invariant. These
subtractions are obtained from the singular part of the
Hadamard two-point function, 1=4π½Vðx; x0Þ ln σðx; x0Þ�,
where 2σðx; x0Þ is the square of the geodesic distance
between x and x0 and V is a geometric biscalar [15,23]. We
obtain (see Appendix B for details)

hFμðxÞFνðxÞi ¼ ~θμν þ
1

4
~γgμν ð14Þ

h�FμðxÞ�FνðxÞi ¼ ~θμν −
1

4
~γgμν; ð15Þ

where ~θμν is a traceless tensor with components [22]

~θ�� ¼ −1=12π½ð∂�ρÞ2 − ∂2
�ρ�; ~θþ− ¼ 0; ð16Þ

and ~γ ¼ 1=ð12πÞR. Therefore
~Δμν ≡ hFμðxÞFνðxÞi − h�FμðxÞ�FνðxÞi ¼ 1=2~γgμν:

From (14) one can also obtain the vacuum expectation
value of the energy-momentum tensor following the
procedure summarized for the electromagnetic case.
Taking into account that ∇μ ~θμν ¼ 1

48π gσν∇σR, one obtains

hTμνi ¼ ~θμν − R
48π gμν, in agreement with [22].

It is well known that for x ≠ x0 the correlation function
h∂þϕðxÞ∂−ϕðx0Þi vanishes, as mentioned before, which is
commonly referred to as the decoupling of left- and right-
moving modes. A consequence of the duality anomaly is
that this is no longer true for x ¼ x0. Rather, Eqs. (14)
and (15) provide h∂þϕ∂−ϕi ¼ 1

4
~γe2ρ ¼ 1

12π ∂þ∂−ρ.

V. CONCLUSIONS AND FINAL COMMENTS

QFT is intrinsically more involved than a quantum-
mechanical system having a finite number of degrees of
freedom. This difference arose in the early stages of quantum
electrodynamics due to the emergence of divergent expres-
sions in physical quantities. It was nicely solved with the
renormalization program, which has provided many impor-
tant and surprising results. In particular, when applied in the
presence of a classical gravitational background, renormal-
ization has been shown to break some of the important
symmetries of the theory under consideration. The chiral
current anomaly for free massless fermions and the Weyl
anomaly are examples with important physical conse-
quences. In this paper we have proven that the duality
symmetry cannot hold in QFT in arbitrarily curved space-
times. We have shown this explicitly with some of the most
common renormalization methods. However, it could still be
possible to build a renormalization scheme for which the
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symmetry is preserved. Even in the case such a method
exists, which we believe is unlikely, it would be highly
unnatural or fine-tuned.
The breakdown of these symmetries mentioned above

have a common origin. The generally covariant singularity
structure of the two-point function only knows about the
local properties of the geometry, i.e. the metric, curvature
tensors, and their derivatives. Those singularities do not
need to share the symmetries of the theory. The renorm-
alization process subtracts those local and covariant sin-
gularities, and therefore may break the symmetries of the
vacuum. This is precisely the case for the duality anomaly
discussed here, as can be seen from the renormalization
subtractions written in the appendixes.
Phenomenologically, although the duality is an exact

physical symmetry of the classical theory only in the
absence of charges, it still plays an important role in
certain situations in which charge density is negligible.
This happens, for instance, during cosmic inflation. At the
conceptual level, electric-magnetic duality has been the
focus of several theoretical developments, and an important
ingredient in different scenarios, like in the Montonen-
Olive dualities [24] in non-Abelian gauge and supersym-
metric theories. Therefore, the duality anomaly presented in
this paper may have interesting physical and theoretical
consequences which merit further exploration.
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APPENDIX A: ADIABATIC
RENORMALIZATION OF hFμαFα

νi
In this appendix we provide some details of the adiabatic

renormalization of the vacuum expectation value
hFμαðxÞFν

αðxÞi. The formal (unrenormalized) expression
can be obtained by using Eq. (4). One obtains

hFμαðxÞFν
αðxÞi ¼ −uμν

1

π2a4ðηÞ
Z

∞

0

dk k2
k
2
: ðA1Þ

where uμν ≡ diagð1; 1=3; 1=3; 1=3Þ. Note that the same
formal integral is obtained for h�FμαðxÞ�Fν

αðxÞi. This
integral diverges as the fourth power of the comoving
momentum k. In adiabatic regularization, and also in the
DeWitt-Schwinger method, to find the renormalization
subtraction terms that make the above integral finite, one

has to first temporarily introduce a mass in the theory, then
take the limitm → 0 at the end of the calculation. On top of
that one has to introduce also the familiar gauge breaking
term −1=2ð∇μAμÞ2, ghost term ∇μc∇μc�, and the corre-
sponding (temporary) mass terms 1=2m2AμAμ −m2c�c
(see, for instance, [6,10]). The ghost field is required to
maintain gauge invariance when taking m → 0. The intro-
duction of a temporary mass is a fundamental requirement
in the adiabatic and DeWitt-Schwinger methods [9,10]. The
role of the auxiliary mass is to avoid the emergence of
artificial infrared divergences when timing the UV ones.
Note that the DeWitt-Schwinger expansion of the Feynman
propagator is an asymptotic expansion in inverse powers of
m2 [18].
Therefore, the adiabatic expansion of the vector poten-

tial, AðAdÞ
μ , contains two transverse and one longitudinal

polarization. The expansion of both polarizations up to
fourth adiabatic order provides the subtraction terms
needed to renormalize the expectation values we are
looking for. Note that one must include terms of up to
fourth adiabatic order in the subtractions because this is the
order at which divergences appear for generic spacetime
metrics, not necessarily conformally flat, and for general
values of the mass. In the m → 0 limit there are no
divergences at fourth order, but one still must apply the
general prescription.
The transverse polarizations take the same form as in

Eq. (4), with the only difference that now the mode

functions φðAdÞ
k ðηÞ satisfy the equation

∂2
ηφ

ðAdÞ
k þ ωðk; ηÞ2φðAdÞ

k ¼ 0; ðA2Þ

with ωðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2aðηÞ2

p
. This expression is identi-

cal to the equation satisfied by the modes of a scalar field
conformally coupled to the FLRW metric. The adiabatic

expansion of φðAdÞ
k , up to fourth order, is

φðAdÞ
k ðηÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Wtrsðk; ηÞ
p e−i

R
η dη0Wtrsðk;η0Þ; ðA3Þ

with Wtrsðk; ηÞ ¼ W0 þW1 þW2 þW3 þW4, where

W0 ¼ wðk; ηÞ

W2 ¼
2w02 − 2ww00

8w3

W4 ¼
1

128w7
ð−297w04 − 396ww02w00 − 52w2w002

− 80w2w0w000 þ 8w3w0000Þ
W1 ¼ W3 ¼ 0: ðA4Þ

The prime in the previous equations indicates derivative
with respect to conformal time.
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The longitudinal polarization of AðAdÞ
μ can be chosen as

ϵð3Þμ χðAdÞk ðηÞ, where ϵð3Þμ has components

ϵð3Þμ ð~kÞ ¼

0
BBB@

fðk; ηÞ
k1
k2
k3

1
CCCA; fðk; ηÞ ¼ −i

k2

ω2

∂ηχ
ðAdÞ
k

χðAdÞk

;

ðA5Þ

and the rescaled mode ψkðηÞ ¼ km
ω χðAdÞk ðηÞ satisfies the

equation

ψk
00 þ 2

a0

a
ψ 0
k þ

�
ω00

ω
þ 2

a0

a
ω0

ω
− 2

�
ω0

ω

�
2

þ ω2

�
ψk ¼ 0:

ðA6Þ

The adiabatic expansion of ψkðηÞ is given by

ψkðηÞ ¼
1

aðηÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wlongðk; ηÞ

p e−i
R

η dη0Wlongðk;η0Þ; ðA7Þ

with Wlongðk; ηÞ ¼ ~W0 þ ~W1 þ ~W2 þ ~W3 þ ~W4, where

~W0 ¼ wðk; ηÞ
~W2 ¼

8wa0w0 − 5aw02 − 4w2a00 þ 2aww00

8w3

~W4 ¼
1

128a3w7
ð−64w3a03w0 − 288aw2a02w02 − 400a2wa0w03 þ 455a3w04 þ 32w4a02a00 þ 240aw3a0w0a00

þ 312a2w2w02a00 − 32aw4a002 þ 64aa02w3w00 þ 288a2w2a0w0w00 − 540a3ww02w00 − 80a2w3a00w00 þ 60a3w2w002

− 32aw4a0a000 − 112a2w3w0a000 − 32a2w3a0w000 þ 96a3w2w0w000 þ 16a2w4a0000 − 8a3w3w0000Þ
~W1 ¼ ~W3 ¼ 0: ðA8Þ

By substituting the adiabatic modes in the expression for hFμαFν
αi and keeping terms up to fourth adiabatic order, one

obtains the renormalization subtraction terms. As an example, the renormalized expression of the time-time component has
the form (recall we work here in conformal time)

hF0αF0
αi ¼ −

a04 − 14aa02a00 þ 4a2a002 þ 12a2a0a000 − 5a3a0000

480π2a6

þ −58a04 þ 122aa02a00 − 36a2a0a000 þ a2ð−17a002 þ 4aa0000Þ
480π2a6

: ðA9Þ

In the above expression the transverse adiabatic modes
have exactly canceled the quartic divergence of the
vacuum contribution (A1), and provide, additionally,
the finite term showed in the second line of the pre-
vious equation. The third line of that equation is the
contribution of the longitudinal adiabatic polarization.
Expression (A9) agrees with the time-time component
of Eq. (5) for tμν ¼ 0. The rest of the components are
computed in the same way. In sharp contrast, the
longitudinal adiabatic modes make no contribution to
h�F0αðxÞ�F0

αðxÞi. This explains the difference between
(5) and (6).

APPENDIX B: HADAMARD
RENORMALIZATION OF hFμFνi

In Hadamard renormalization (for details of the specific
Hadamard prescription used here the reader is referred
to [15,23]) the physically relevant, finite expectation values
are obtained as

hFμðxÞFνðxÞi ¼ lim
x0→x

∇μ∇ν0 ½hϕðxÞϕðx0Þi −Hsingðx; x0Þ�:
ðB1Þ

In this equation ∇ν0 indicates the covariant derivative with
respect to x0. Hðx; x0Þ is a bidistribution with Hadamard’s-
type singularity structure, which in 1þ 1 dimensions takes
the form [23]

Hsingðx; x0Þ ¼
1

4π
½Vðx; x0Þ ln σðx; x0Þ�; ðB2Þ

where σðx; x0Þ is half of the square of the geodesic distance
between the points x and x0, and Vðx; x0Þ is a biscalar
which admits an expansion of the form

Vðx; x0Þ ¼
X∞
n¼0

Vnðx; x0Þσn: ðB3Þ

The field equations provide recursion relations which
uniquely determine the coefficients Vnðx; x0Þ from
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V0ðx; x0Þ ¼ −Δðx; x0Þ1=2, where Δðx; x0Þ is the Van Vleck
—Morette determinant (see e.g. [6]).
The vacuum two-point function of the field ϕðxÞ takes

the same form as in Minkowski spacetime, due to the
conformal symmetry of the field equations. In terms of the
null coordinates that were introduced in Sec. IV, it reads

hϕðxÞϕðx0Þi ¼ −
1

4π
ln jðxþ − x0þÞðx− − x0−Þj: ðB4Þ

This correlation function can be written in Hadamard form:

hϕðxÞϕðx0Þi ¼ 1

4π
½Vðx; x0Þ ln σðx; x0Þ þWconfðx; x0Þ�;

where Wconfðx;x0Þ¼ωðxÞþωμðxÞσ;μþ1=2!ωμνðxÞσ;μσ;νþ
…. is the biscalar that encodes the state dependence of the
two-point function. Substituting in Eq. (B1), we have

hFμðxÞFνðxÞi ¼
1

4π
lim
x0→x

∇μ∇ν0 ½Wconfðx; x0Þ�

¼ 1

4π

�
−ωμν þ

1

2
ω;μν

�
: ðB5Þ

In our case, ω�� ¼ 2=3∂2
�ρ − 5=3ð∂�ρÞ2, ωþ− ¼

2=3∂þ∂−ρ, and ω ¼ 2ρ. Hence, one obtains

hFμðxÞFνðxÞi ¼ lim
x0→x

∇μ∇ν½Wconfðx; x0Þ� ¼ ~θμν þ
R
48π

gμν;

ðB6Þ

where ~θμν was defined in (16). This is the result shown in
Eq. (14). From this it is very easy to get (15).
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