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This paper describes several relativistic phenomena in two spatial dimensions that can be
modeled using the COLLISION program of Spacetime Software. These include the familiar
aberration, the Doppler effect, the headlight effect, and the invariance of the speed of light
in vacuum, in addition to the rather unfamiliar effects like the dragging of light in a moving
medium, reflection at moving mirrors, Wigner rotation of noncommuting boosts, and
relativistic rotation of shrinking and expanding rods. All these phenomena are exhibited by
tracings of composite computer printouts of the COLLISION movie. It is concluded that an
interactive educational graphics software with pleasing visuals can have considerable

investigative power packed within it.

L. INTRODUCTION

In this paper we describe some relativistic phenome-
na in two spatial dimensions which can be modeled
using the COLLISION program of Spacetime Software.'
Spacetime Software mainly consists of two interactive
graphics utilities ‘developed by Edwin F. Taylor to help
students understand relativity better. These programs
enable the students to simulate, set up, solve, and inves-
tigate a variety of problems, posers, and paradoxes in
relativity.” The results of the simulation appear on the
screen of the monitor as pictures, movies, graphs, tables,
and perspective plots.

About a year ago we received a gift set of the soft-
ware from E. F. Taylor. Enclosed with the software were
the User’s and Teacher’s manuals and a set of projects
worked out by students at MIT during the last 2 years
using this software. The manuals were very helpful, and
learning to use these programs took only a few days.

After working out Taylor’s projects we began design-
ing some on our own. The animations and movies were
very enticing, and what started as a pastime proved to
be an absorbing affair. By the time we finished writing a
handful of projects we realized that we were seeing
well-known phenomena from perspectives that we
missed earlier.

For instance, we learned that the ray surface in a

moving medium® can come from velocity addition, the
relativistic rotation of a moving rod* from particle aber-
ration, the reflection of light at a moving mirror’ from
inverse Compton scattering, the Wigner rotation due to
noncommutative boosts® from velocity addition, etc.
" An inspection of the literature cited above shows that
some of these tidbits may be somewhat original, but
most of them can be found in textbooks and journals.
But the fact remains that we learned most of them not
while scouring the library for books and journals but
while playing with the PC, punching its buttons, and
watching the movies. The literature survey came later
on.” Clearly, our experience shows that an interactive
educational graphics software with pleasing visuals can
combine instruction with enjoyment and pack within it a
lot of investigative potential.
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II. THE COLLISION PROGRAM

Spacetime Software consists mainly of two programs:
SPACETIME and COLLISION. SPACETIME deals with Lor-
entz transformations in one spatial dimension.'
COLLISION, on the other hand, is a two-dimensional pro-
gram. It is built around the conservation of energy—mo-
mentum in relativistic collisions, creations, transforma-
tions, annihilations, and decays in two spatial
dimensions. The first display of this program is a Table.'
There is provision in the Table for entering the mass,
energy, momentum, and angle of motion of up to two
input particles A, B and up to three output particles C, D,
and E.

The student enters into the Table what he knows and
wants about the input and output particles and asks the
computer to complete the Table. It does so by solving
the collision and displays messages on the screen as it
goes about its task. After solving the collision one can
ask the computer to play the collision as a movie. (This,
without doubt, is the most charming part of Spacetime
Software.) Massless particles such as photons appear as
open circles whose size increases with the energy of the
photon (e.g., see Figs. 1 and 2). Massive particles ap-
pear as dark circles (see Fig. 3) whose size increases
with the mass of the particle. The student can command
the movie to go forward, backward, halt, step, restart,
etc. The movie adjusts its timings in such a way that, in
every frame, the collision takes place at t = 0.

The key feature of the COLLISION program is its ability
to transform quickly the solved collision to any other
frame moving with any desired speeds B, and B, with
respect to the original frame. After performing each
transformation, the movie displays the collision as seen
in the new frame. Each of these displays can be filed
and called back at will. Since the original collision is in
two spatial dimensions, the ability to jump to other
frames facilitates the modeling of many two-dimen-
sional relativistic phenomena using the COLLISION pro-
gram.

II1. ALL ABOUT LIGHT

The propagation of light in vacuum is surely the king-
pin of relativity. When a source sitting at the origin emits
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a flash of light, the wave front is an expanding sphere

centered on the origin. When the same flash is emitted

by a moving source, the wave front is again an expand-
ing sphere centered on the site of the emission. The
speed of the source does not add to the speed of light in
vacuum, as was first postulated by Einstein. Although
the speed of light is invariant, other features of light such
as its frequency, intensity, and angular distribution do
depend on whether the source is a moving source or a
static one in the given frame.

All these aspects of the propagation of light can be
modeled using the COLLISION program. Figure 1 is the
tracing of a composite printout generated by the COLLI-
SION movie. It shows the “still” picture of 12 identical
photons distributed uniformly on a circle®at z = 10. All
these photons were emitted at t = 0 by a source of light
sitting at the origin of the lab frame. We describe briefly
how to get such pictures using the COLLISION program
because all the printouts in this paper are obtained by a
similar procedure.

Since the COLLISION program has provision for a max-
imum number of three output particles (C, D, E), the 12
photons in Fig. 1 are obtained in four passes through the
printer on the same paper. The three photons, say, 1, 5,
9 are obtained by setting up the table to simulate the
decay of a massive particle (A) at rest into three identi-
cal photons (C,D,E) at the desired angles 0°, 120°, and
240°. We ask the computer to complete the table and
play the movie. The movie starts at r = — 10 and shows
the particle A sitting at the origin till £ = 0. It then ex-
plodes and the three decay photons are emitted in the
three chosen directions. These photons travel radially
out until # = 10. At this instant the screen would show the
three photons labeled 1, 5, 9 at the positions shown in
Fig. 1. We take a printout of this display. We repeat the
procedure, making necessary changes in the table to
shoot the photons 2, 6, 10 and take a printout of this

movie display at t= 10 on the same paper that con-
tained the prints of the photons 1, 5, 9. In this way we
get Fig. 1 in four passes.

It is now only a matter of punching buttons on the
computer to get Fig. 2 from Fig. 1, where Fig. 2 is the
Lorentz transformation of Fig. 1 to a rocket frame mov-
ing to the right with a 8, = 0.8 with respect to the lab
frame. Each of the four movie displays contained in Fig.
2 would show that in the rocket frame the source of light
(particle A) moves to the left from f = — 10 to ¢ = O with
the speed B, = — 0.8 and explodes at =0 releasing
the transformed photons. These move out in the new
directions shown in Fig. 2.

Figure 2 packs within it the following physics:

(i) Invariance of the speed of light in vacuum. The joining
of the 12 photons is seen once again to be a circle of the
same radius centered on the origin of the rocket frame.
This demonstrates the fundamental postulate of relativi-
ty.
(ii) Aberration of light. Each photon, say photon 10, of
Fig. 2 is the aberrated version of the same photon 10 of
Fig. 1. The change in the direction of motion can be
checked against the aberration formula. (Photon 10, in
particular, is falling vertically downward in Fig. 1 and can
be used to simulate the well-known stellar aberration.)

(iii) Doppler effect. Each photon, say photon 10, of Fig.
2 is also the Doppler-shifted version of the same photon
10 of Fig. 1. The change in the sizes of the photons
shows the systematic variation predicted by the
Doppler shift formula. (Photon 10, in particular, can sim-
ulate the transverse Doppler effect if carefully interpret-
ed. The transverse Doppler effect is a purely relativistic
effect due to time dilation and has been checked in the
laboratory by Ives and Stilwell.)

(iv) Headlight effect. Figure 2 shows that the distribu-
tion of photons in the rocket frame is tilted forward com-
pared to their distribution in the lab frame (Fig. 1) where

t=10.00
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Fig. 1. This figure shows the locus of 12 photons emitted by a static source
in vacuum. The wave front is a sphere although it looks squashed owing to
a slight difference in the scales along the x and y axes.
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Fig. 2. This is the transform of Fig. 1 to a rocket frame. It exhibits the
phenomena of aberration, Doppler effect, headlight effect, invariance of
the speed of light in vacuum, and the relativistic rotation of 66 moving
rods.
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the source was at rest. This bunching of the photons in
the direction of motion of the source is the well-known
headlight effect. It is a consequence of aberration and
contributes partly to the resolution of the “dark night sky
paradox” (or Olbers’ paradox).’

(v) Relativistic rotation. Suppose we join photons 1
and 4 of Fig. 1. This simulates an expanding rod orient-
ed at — 45° to the x axis and moving normal to itself

with a speed B(u) = 1/42 in the lab frame. In the rocket
frame we take the join of the transformed photons 1
and 4 of Fig. 2. As Fig. 2 is a “still” of photons 1 and 4, the
line joining them shows that the 1-4 rod has now under-
gone a relativistic rotation. (Both the rods considered
are expanding while moving forward, but this aspect
will be discussed in detail in Sec. VII.) Since Fig. 1 con-
tains 12 photons, it follows that there are as many as 66
rods in Fig. 1, each moving with a different speed in a
different direction with a different orientation. Figure 2
contains the relativistic rotation data of all these 66 rods.

IV. RAY SURFACE IN A MOVING MEDIUM

We saw in Sec. III that an expanding sphere in one
frame remains an expanding sphere in every other
frame provided it expands with the speed of light in
vacuum. We now ask what happens to a sphere ex-
panding with a speed less than the speed of light in
vacuum. This simulates the wavefront generated by a
flash of light emitted by a static source in an isotropic
homogeneous transparent medium at rest, like still wa-
ter. If the medium has a refractive index n (n =4, say),
the speed of the light signals in the lab frame is reduced
to B, = 1/n ( = 0.75 for water).

A printout of this signal velocity (or ray) surface in such
a medium is shown in Fig. 3. Figure 3 is obtained from
the COLLISION program precisely like Fig. 1 except that
the output particles C, D, E, instead of being photons, are
now chosen to be massive particles moving out with
speeds 3, = 0.75. These particles simulate the light sig-
nals in the medium as far as the kinematical properties
of light propagation are concerned.'” Figure 3 is a
sphere expanding with a speed [, =0.75 centered
around the flash at the origin.

We now jump to a subluminal rocket frame moving to
the right with a speed 3, = 0.6 and ask the computer to
transform the ray surface of Fig. 3 to this frame. In the
rocket frame the entire medium, together with the
source,'” is moving to the left with the speed
B. = — 0.6. Isotropy is now reduced to axial symmetry
and we no longer expect the ray surface to remain a

J

Forward

Fig. 3. This figure shows the ray surface of light in a static medium like
water. It is a sphere (although it looks a little squashed ) expanding with a
speed less than the speed of light in vacuum.

sphere. This is indeed borne out by Fig. 4, which is the
computer-generated printout of the transform of Fig. 3.
It shows that the ray surface in a moving medium is an
oval® that is partially dragged by the medium but still
encloses the origin of the flash.

Now, all that the collision transform function could be
doing is to apply the particle aberration formula to each
of the outgoing particles C, D, and E. Equivalently it is just
applying the velocity addition formulas. We therefore
conclude that the ray surface in a moving medium
should be derivable from the well-known relativistic ve-
locity addition formulas:

B,cos = (B cos +B)/(1+ B [cos®’), (1)
B,sin@=(B.sind'y1—-B2)/(1+BB,cosb’), (2)

where the primed quantities refer to the rocket frame
(Fig. 4). (We dropped the suffix x over 3, to save writ-
ing.) Squaring and adding Egs. (1) and (2) we note that
6 drops out and gives a quadratic equation for 5 ; The
solution of this quadratic equation 3 [(6') is the desired
equation of the ray surface:

B

where # is the refractive index (n = 1/8,) of the medi-
um in its rest frame. It is gratifying to note that the result
of this simple derivation tallies exactly with the equation
for the ray surface in a moving medium obtained from
the electrodynamics of moving media.''

The dragged oval of Fig. 4 can be put to some inter-
esting pedagogical uses. For instance, one can use it to
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, _ | Bt = 1)cos 8’ +{n*(1 —BH[(1 —B) — B>(n* — L)sin® ']} (3)
(n* — B%)cos* 8’ +n*(1 —f3?)sin® 6’

r

predict the results of celebrated experiments like the
Fizeau’s running water experiment or a Michelson-Mor-
ley experiment in a possible ether wind or refractive
index n>1. The arms of the Michelson interferometer
could have unequal length, and may be arbitrarily ori-
ented relative to the direction of the ether wind. It is
easy to check that as n—1, Eq. (3) goes back to the

G. P. Sastry and T. R. Ravuri 1068
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Forward

Fig. 4. This is the transform of Fig. 3 to a subluminal rocket frame, in
which the medium flows to the left. Notice that the ray surface is actually

adragged oval (although it looks more like a sphere—for an actual sphere .

in these scales see Fig. 3). The dragging is not complete and the oval still
encloses the flash at the origin.

equation of the spherical wavefront in vacuum, as it
should, and we get back the null result of the usual Mi-
chelson-Morley experiment.

It can be checked from Eq. (3) that the dragged oval
of Fig. 4 encloses the origin of the flash only as long as
the speed of the rocket frame (f3) is less than the signal
speed (f,) in the lab frame. Let us ask the COLLISION

program to transform Fig. 3 to a superluminal rocket
frame moving with 8> f3,, say, [, =0.9. The result is
the printout shown in Fig. 5. An inspection of Fig. 5
shows that the dragging of light by the medium is now
overwhelming and the oval no longer encloses the ori-
gin of the flash that generated it. As a result, there exists
a “Mach” cone in this frame, outside of which no light
signal ever reaches and inside which light is doubled up,
with two pulses of light in each direction. The situation is
somewhat similar to the sound of a bell ringing in a su-
personic wind tunnel. It can be checked from Eq. (3)
and tallied from Fig. 5 that the half-angle 8, of this
Mach cone is given by

tan 8, =1 B2/ B —1. (4)

A careful analysis would lead us from Eq. (4) of the Mach

cone to the equation of the well-known Cerenkov cone
by means of a simple Lorentz transformation.'?

V. REFLECTION OF LIGHT AT A MOVING
MIRROR

Let us first model the reflection of light at a static mirror
using the COLLISION program. By definition, a mirror can
absorb a lot of momentum with little change in its veloc-
ity. So we simulate the mirror by a very heavy particle
(a) at rest (see Fig. 6). The incident beam of light can be
modeled by the input photon (b) and the reflected
beam by the output photon (d). We choose the direc-
tions of the input and output photons such that the law
of reflection / = r is obeyed in this lab frame. But this is
nothing but a Compton scattering event of a soft photon
by a supermassive target, and the completed COLLI-
SION table would show that there is neither a frequency
shift of the photon nor any appreciable recoil of the
massive target. We therefore see that the computer
printout of this event (Fig. 6) correctly simulates the re-
flection of light at a static mirror.

[l
N I T I W D N N
T 1T 11T T 1

i 1T 1

®
N S I |

- t=10.00
Forward

Fig. 5. This is the transform of Fig. 3 to a superluminal rocket frame.
Notice that the dragging is overwhelming. The ray surfaces develop an
envelope (the Mach cone) outside of which no light ever reaches.
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Fig. 6. This is a simulation of the reflection of light at a static mirror
viewed as a Compton scattering of a soft photon by a supermassive target.
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Fig. 7. This is the transform of Fig. 6 to a rocket frame moving with
B, = 0.5. In this frame the mirror is moving to the left parallel to itself.
Note that the law of reflection is still obeyed (i = r).

We now jump to a rocket frame with, say 5, = 0.5
with respect to the lab frame. In the rocket frame the
mirror (a) would be moving parallel to itself leftward
with B, = — 0.5. The transform of Fig. 6 generated by
the computer is shown in Fig. 7. It shows the rather unex-
pected result that the law of reflection i=r is still
obeyed in this rocket frame.'> The accompanying table
(not given here) would show that there is no Doppler
shift either.

Let us next jump from the lab frame to a rocket frame
moving with a speed 8, = 0.5 along the y axis of the lab
frame. The transformed printout is shown in Fig. 8. It is
now seen that in this frame the mirror (a) moves normal
to itself and swoops down on the incident photon (b). It
is evident that the reflected photon (d) no longer obeys
the usual law of reflection. The table accompanying this
event (not given here) would show that the reflected
photon suffers a considerable blue shift. All these results
can be shown to agree quantitatively with the standard
formulas for the reflection of light at moving mirrors.’

The event shown in Fig. 8 is actually an inverse Comp-
ton scattering event that is of some importance in astro-
physics. The COLLISION program would show that at
near normal incidence on a high-velocity target, the
boost in energy of the scattered Compton photon can
be tremendous. It is believed that some of the interga-
lactic x-ray emission could be due to such an escalation
of energy of the microwave background photons suffer-
ing inverse Compton scattering by energetic cosmic ray
particles."*

VI. WIGNER ROTATION DUE TO
NONCOMMUTING BOOSTS

It is well known that finite spatial rotations do not
commute. Therefore, the result of a product of two rota-
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Fig. 8. This is the transform of Fig. 6 to a rocket frame moving with
B, = 0.5. In this frame the mirror swoops down on the incident photon.
The law of reflection is no longer obeyed (i r). There is also a blue shift
of the incident photon.

tions depends in general on the order in which the rota-
tions are performed. Since a Lorentz boost is a rotation
in four-space, the resultant of two successive boosts in
general depends on the order in which the boosts are
applied. The commutator of two generators of pure
boosts is a generator of spatial rotation.'* It is therefore
reasonable that the resultants of two boosts applied in
different orders should differ by a spatial rotation. This
spatial rotation is generally called the Wigner rotation.®
The relativistic rotation of moving rods mentioned in Sec.
III(v) and discussed in more detail in Sec. VII is an indirect
consequence of the Wigner rotation.

Since a product of two boosts is nothing but addition
of two three-velocities, it follows that velocity addition is,
in general, noncommutative in the theory of relativity
(ie., B, + B, #B, + B, ) unlike in classical physics. The
correct application of relativistic velocity addition would
show that the result of combining two perpendicular
velocities B, and B, in different orders results in boosts
with the same magnitude:

“312‘=|321|=[B%+ﬁ§—ﬁ%ﬁ§]m, (5)

but which are rotated by the Wigner rotation angle ¥
given by

tan ¥ =B, 8,717/ (Vi + 72, » (6)

where the symbols have their usual meaning.

Figure 9 shows the composite printouts of the addi-
tion of two perpendicular velocities 8, =8, =0.9 in
different orders. It can be checked from the printout that
the magnitude of the resultant velocity and the Wigner
rotation angle ¥ agree with Egs. (5) and (6).
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Fig. 9. This figure shows that the addition of two velocities £, and /3,
depends on the order of their addition. The resultants 5,, and §,, have
the same magnitude but are inclined to one another by the Wigner rota-
tion angle .

VIL RELATIVISTIC ROTATION OF A MOVING
ROD

Suppose that a rod lies in the xy plane of the lab
frame parallel to the x axis and moves normal to itself
along the y axis with a speed S(u). We now jump to a
rocket frame moving with the speed S(v) along the x

axis. Relativity predicts the surprising result that the rod is -

now rotated by an angle ¢ and no longer moves nor-
mal to itself. This spatial rotation and aberration of the
rod is crucial to the resolution of a number of two-dimen-
sional length contraction paradoxes.*

Let us try to simulate this rod using the COLLISION pro-
gram. Any rod can be simulated by just two particles,
say, the end particles of the rod as shown in Fig. 10. But
there is no way to show a rod moving parallel to itself
and keeping a constant length using the COLLISION pro-
gram that requires that all its particles (such as a and b)
must collide at the origin. The collision shown in Fig. 10 is
therefore actually the simulation of a shrinking and ex-
panding “elastic” rod moving perpendicular to itself

with a speed B(u) = 0.9.

We now jump to a rocket frame moving with the
speed B, = 0.9 and ask the computer to transform Fig.
10 to this frame. The result is Fig. 11 which does show a
relativistic rotation by a large angle ¢. Out of curiosity
we checked whether this rotation angle ¢ of the “elas-
tic” rod checks with the known result* for the “rigid” rod.
It turned out that it precisely agrees with the predicted
result for the *“‘rigid” rod. Now, all that the COLLISION
program could be doing is to apply effectively the ve-
locity addition formulas to particles a and b. It therefore
follows that the formula for the relativistic rotation of a
rod that is usually derived by Lorentz transforming the
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Fig. 10. This figure shows a rod ab that moves perpendicular to itself along
the Y axis with the speed S(u) = 0.9.

equation of motion of the rod can also be derived from
the velocity addition formulas. The interested reader
can check the general case for himself.'¢

Let us now revert to Sec. ITI(v) which describes the rela-
tivistic rotation of 66 rods. Since we joined the 12 photons
by a smooth wave front in Fig. 1, the number 66 in reality
tends to infinity, for we can consider any photon, say, pho-
ton 3 of Fig. 1. If we now imagine the rod connecting this
photon 3 with another photon (not shown) infinitesimally

{
LA

Forward

Fig. 11. This is the transform of Fig. 10 to a rocket frame moving to the
right with the speed S(v) = 0.9. Notice that the rod appears tilted by a
large angle ¢.
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separated from it on the wave front, the connecting rod
goes over to the tangent to the wave surface at the site of
photon 3. We now jump to the rocket frame (Fig. 2) and
ask where this tangent rod has gone. We see that it suffers a
rotation by the same angle that photon 3 suffers aberration.
The locus of the photons is still a circle centered on the
origin, and tangents at all points of a circle are normal to
the corresponding radius vectors. Hence follows the
known result that photons and the wave normals associat-
ed with their electromagnetic waves aberrate and rotate
jointly in vacuum.

The situation is drastically different in a medium, as
can be seen by an inspection of Figs. 3 and 4. The ray
surface is now a dragged oval and no longer a sphere.
The tangent at an arbitrary point on the oval is in gen-
eral not normal to the radius vector from the origin. It
therefore follows that one has to distinguish the wave
normal velocity from the ray velocity in a moving medi-
um. We have already seen that the wave normals can
be tracked by the tangent rods while the rays can be
simulated by radially moving particles. This bears out
the well-known “pedal” relationship between the ray
surface and the wave normal surface. Further, we have
shown that the ray surface in a moving medium can be
derived from the particle aberration formula. It then can
be surmised that the wave normal surface should be
derivable from the relativistic rotation formula.

It is considerations such as these that led de Broglie to
associate waves with particles moving with speeds less
than that of light in a relativistically invariant manner,
and led to the birth of quantum mechanics.'’
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boosts,” Am. J. Phys. 54, 550-552 ('1986); C. B. van Wyk, “Rotation
associated with the‘product of two Lorentz transformations,” Am. J.
Phys. 52, 853-854 (1984 ); James T. Cushing, ““Vector Lorentz transfor-
mations,” Am. J. Phys. 35, 858-862 (1967) and citations in these pa-
pers.

"However, the textbook by Wolfgang Rindler, Introduction to Special
Relativity (Clarendon, Oxford, 1982) was lying on our desk throughout
last year and our indebtedness to this slim but splendid volume may be
more than we are conscious of. Problems 13-15 of Chap. III, p. 53, Sec.
24 onp. 67, and Sec. 33 on p. 94 have a bearing on the topics discussed in
this paper. In view of the variety of topics discussed in this paper, our
citations are merely representative and by no means exhaustive.

® The circle appears a little squashed in the printout because the scales on
its two axes are slightly different. Similarly, the circle in Fig. 3 also looks
alittle squashed, while the oval of Fig. 4 looks more like a circle. Hence a
little care is required in measuring distances and angles from the print-
out. [t must be remembered, however, that the Tables accompanying the
movie displays contain numerical output upto seven figures and any
exact comparison with analytical formulas is best done on the Tables,
which are not given here.

“See, e.g., @. Grén, “Expansion of the universe and a hierarchical struc-
ture of the universe as solutions of the dark night sky paradox,” Am. J.
Phys. 46, 923-927 (1978).

'%In this section we shall be simulating only the “shape” of the ray surface
and not the intensity distribution of light, or its Doppler effect in mov-
ing media. The shape of the wave and ray surfaces are well known to be
independent of the motion of the source because they depend only on
the speed of light to which the speed of the source does not add, as is true
in any wave theory.

'"See O’Dell’s book cited in Ref. 3 above.

'2The jump to Cerenkov effect needs a little explanation. Figure 5 shows
the “Mach” cone emitted by a “flash’ at the origin. If we now imagine a
source “sitting” at the origin of the superluminal rocket frame and emit-
ting light continuously, the ray surfaces keep leaving the source one by
one and travel backward filling the “Mach” cone. If we now jump back
to the lab frame, the source that was “sitting” at the origin of the rocket
frame appears to move forward with a superluminal speed, while the
water comes to rest. Thus we simulate a particle moving above the
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Cerenkov threshold in a static medium. Due to the jump in the frames
and the accompanying length contraction, the cone angle gets narrowed
down. Further, the particle will now carry its “Mach” cone convective-
ly forward (much as a moth carries vits wings along). The complemen-
tary cone of this Mach cone is the Cerenkov cone, whose semivertical
angle can be checked against the computer printout. For further materi-
al on the Cerenkov cone in a moving medium, see R. T. Compton, Jr.
“The time dependent Green’s function for electromagnetic waves in
moving simple media,” J. Math. Phys. 7, 2145-2152 (1966). See also G.
P. Sastry, “Coulomb’s law in a moving medium—a review exercise in
advanced undergraduate electromagnetism,” Am. J. Ph\):s. 46, 554-559
(1978). For an interesting paradox associated with the Cerenkov cone,
see G. M. Volkoff, “Electric field of a charge moving in a medium,”
Am. J. Phys. 31, 601:605 (1963) and G. P. Sastry, “Gauss’s law para-
dox and the melting Cerenkov cone,” Am. J. Phys. 44, 707-708 (1976).
For the important role played by the ray surface as against the wave
ngrmal surface in Cerenkov effect, see G. P. Sastry and K. Kumar,
“Cerenkov ray cones in crystalline media,” Proc. R. Soc. Lond. Ser. A
411, 35-47 (1987).

¥ It is interesting to note that this result is a priori assumed, often without
mention, in practically all the conventional treatments of the Michel-
son—-Morley experiment. See, e.g., Robert Resnick, Introduction to Spe-
cial Relativity (Wiley Eastern, New Delhi, 1972), p. 22, Fig. 1-7.

'4See Steven Weinberg, Gravitation and Cosmology (Wiley, New York,
1972), p. 527.

'5See, e.g., J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975), p. 541.

'®Suppose we want to simulate an expanding rod by its radially moving
particles. Let the rod move normal to itself with a speed S(u) along a
direction making an angle £ with the X axis of the lab frame. A typical
particle of the rod whose radius vector to the origin makes an angle 5
with the X axis moves radially with the speed B(u) sec (7 — &). It can
then be deduced rigorously from either the velocity addition formulas
or the Lorentz transformation formulas that the relativistic rotation of
such an elastic rod in the rocket frame turns out to be exactly the same as
that of a rigid rod, with the parameter # dropping out from the final
expression, as it should!

'7See Mgller’s textbook or Rindler’s textbook cited in Refs. 3 and 7.

Computer simulation of ergodicity and mixing in dynamical systems
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This article discusses the microcomputer simulation of dynamical systems that have a few degrees
of freedom but which illustrate the properties associated with ergodicity and mixing shared by
more realistic many-particle systems. The models discussed are a stadium-shaped billiard table
model, and a particle moving in a regular array of hard disks or two-dimensional Lennard-Jones
particles. The examples show the need for a statistical description and are very useful for

pedagogical purposes.

L INTRODUCTION

Introductory teaching of statistical mechanics describes
this science as having the special function of providing rea-
sonable methods for treating the behavior of many-particle
systems. The statistical averaging process is introduced to
take into account our lack of knowledge of (or interest in)
the exact dynamical state of the system, and not as a conse-
quence of any objective aspect of the physical phenomena.

In order to apply the averaging process some fundamen-
tal hypotheses must be accepted. They have a reasonable
character but must nevertheless be regarded as postulates,
as for example:

(a) the hypothesis of equal a priori probabilities in the
phase space for a system in equilibrium;

(b) the hypothesis that an isolated system left to itself
will ultimately attain a final equilibrium situation in which
it is likely to be found in any one of its accessible states.

Many thermodynamic systems can be described using
simple dynamical models, for example, hard spheres or
particles interacting through simple potentials. Students
very soon are confused in understanding the relationships
between the dynamical description with its reversible and
deterministic laws of evolution and the thermodynamic de-
scription with its law of monotonic increase of entropy.

A goal of the teaching of classical mechanics is still to
make students conscious of the complete predictability of
systems based on Newton’s laws of motion. Some phenom-
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ena, like the roll of the dice, are said to be random only
because it is difficult (but not impossible) to gather and to
process a sufficient amount of information, but there is no
reason to doubt that a precise predictability could be
achieved in principle. ‘

A pedagogical problem in justifying or establishing a sta-
tistical mechanics for classical dynamical models may be to
demonstrate that they may exhibit phase space trajectories
(generated by f= ma) which are ergodic and mixing.
Mathematical demonstrations of these properties are far
from easy and an “experimental” demonstration by com-
puter model simulation can be a useful teaching strategy at
an introductory level.

In this paper we will report some examples of computer
simulation programs whose main objective is to show that
deterministic equations can yield solutions strongly de-
pending on the initial conditions of the systems, and for
them only a predictability horizon' is definable. The re-
ported examples are simple dynamical systems with few
degrees of freedom but connected with simple models of
the structure of matter. For these systems it will be shown
that the instability of motions with respect to initial condi-
tions only gives the possibility of a statistical description.

The first example is the billiard table system that enables
us to introduce easily some concepts connected with the
meaning of mixing and ergodic behavior. These concepts
are successively applied to the study of hard-disk and Len-
nard—Jones particle systems.
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