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This paper describes a simple applet for illustrating Lorentz transformations. The user specifies
stationary and moving objects and light pulses, and sees animations of two reference frames. Even
with minimal graphics~the objects are colored dots and the light flashes are expanding circles!, such
animations can make the concepts of redshift, length contraction, time dilation, and
non-simultaneity more intuitive than traditional spacetime diagrams. ©2003 American Association of

Physics Teachers.
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I. INTRODUCTION

Lorentz transformations are one of the enduring fasci
tions of doing physics. The heart of our fascination is t
transformation of time. We can cope with length contract
and velocity-dependent inertia, but our ordinary intuiti
balks at the relativity of ‘‘meanwhile.’’

Acquiring a good understanding of relativity requires d
veloping new intuition for time transformations. For thi
spacetime diagrams are helpful. But viewing time as ano
spatial dimension diminishes the full impact of time transf
mation. It is much more striking if we can perceive the tim
coordinate with the aid of an animated visualization. In t
paper I will argue that a very simple but interactive visu
ization can make nonsimultaneity and other Lorentzian
fects easy to appreciate and make the resolution of s
well-known paradoxes more obvious.

Visualizations of the Lorentz transformations have a lo
history. In Gamow’sMr. Tompkinsstories1 from the 1940s,
the hero dreams of a city where light travels at about 10 m
Textbooks often illustrate thought experiments: Taylor a
Wheeler2 is a fine example. Mermin used computer graph
to illustrate relativity;3 an older ink-and-paper incarnation o
it appears in his book on special relativity.4 More software
for teaching relativity may be found in the relativity series
Physics Academic Software.5 The internet has several relativ
istic ‘‘flight simulators,’’ of which Seeing Relativity6 is note-
worthy for its superb graphics. Hamilton has reviewed s
eral flight simulators in addition to providing animations a
detailed explanations.7 And yet computer graphics aren’t ev
erything: Relativity Visualizedby Epstein8 shows just how
much can be accomplished with simple ink drawings. T
little-known book overflows with insights and original way
of explaining both special and general relativity, such a
type of spacetime diagram with proper-time as an axis
coordinate-time as arc length; it has a half-genius-h
buffoon quality that surpasses even the Feynman lecture

This paper describes a simple computer program
shows$t,x,y% in two inertial frames related by a boost, wit
t represented by an animation rather than a spatial axis a
a spacetime diagram. It does not represent what we migh
from a relativistic ship~and in particular does not attemp
perspective, Terrell rotation, or color shifts!. Despite this
modest scope, however, it has two advantages that help
insight: ~i! it is highly interactive, and users can pose pro
lems that the author might not have thought of, and~ii ! it
1276 Am. J. Phys.71 ~12!, December 2003 http://aapt.org
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runs in a Web browser. The Java applet and source code
available at the author’s web site9 and EPAPS.10

In the following, I explain the ideas implemented, an
show some examples illustrating redshift, time dilatio
length contraction, and nonsimultaneity in a simple w
Viewing the animations over the Web is recommended,
not essential.

II. THE PROGRAM

Figure 1 shows how the program appears in a brow
There are two graphical panels, representing two iner
frames at a specified relative velocity~which is 0.8c for all
the examples in this paper!. On the screen, the red dots a
fixed in the left frame and move to the rightward in the rig
frame; for blue dots the converse is true. But this paper u
a different scheme~because animations have been replac
by still frames!: fixed dots in whatever frame are dark gra
moving dots are light gray. Circles represent wavefro
from light flashes.

A light flash is a convenient way of marking a spacetim
event. The user specifies a light flash by clicking with t
mouse while the animation is running, initiating an expan
ing circle. Let us represent an event by$t l ,xl ,yl% in the left
frame and$t r ,xr ,yr% in the right frame. The coordinates ar
related by~usingc51)

$t l ,xl ,yl%5$g~ t r1vxr !,g~xr1vt r !,yr% ~1!

and its inverse

$t r ,xr ,yr%5$g~ t l2vxl !,g~xl2vt l !,yl%. ~2!

Animations show the frames while keepingt l5t r .
Marking objects is a little more complicated, because

involves specifying a world line rather than just an eve
The user can ‘‘set the scene’’ with objects att l5t r50 and
then start the animation.~As mentioned above, light flashe
can be marked while an animation is already running.! Sup-
pose the user wants to mark an object stationary in the r
frame. To do so, she/he would select the blue button and
click in either frame, whereupon a blue dot appears in b
frames. Att l5t r50, we have from Eq.~2!

$xr ,yr%5$gxl ,yl%, ~3!

or equivalently

$xl ,yl%5$g21xr ,yr%. ~4!
1276/ajp © 2003 American Association of Physics Teachers
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For objects stationary in the left frame, replace blue by
and swap the subscriptsl andr . Note that clicking in either
frame specifies coordinates in both frames.

The asymmetry between Eqs.~3! and~4! might seem puz-
zling. However, note that these equations represent not
boosts, but boosts followed by a mapping to zero time co
dinate. Because$xr ,yr% is stationary, mapping tot r50 in
Eq. ~3! makes no difference; whereas because$xl ,yl% is
moving. the mapping tot l50 changes the appearance of E
~4!. From the user’s point of view, Eqs.~3! and ~4! simply
illustrate length contraction.

III. EXAMPLES

Users can set up their own scenarios, but four exam
are included. Unfortunately, the program cannot illustrate
locity addition or the twin paradox because those proble
require at least two Lorentz transformations, whereas
program is restricted to one.

A. Redshift

Figure 2 shows wavefronts of light flashes for a station
and moving source. The moving source produces noncon
tric circles, illustrating how light spreads around the event
emission, not around the worldline of the source. It becom
obvious that observers behind will see a redshift and obs
ers ahead will see a blueshift. Moreover, it is clear that
servers perpendicular to the source motion will also se
redshift. ~Incidentally, sound spreads with respect to t
worldline of the medium. So a wind can produce a Dopp
shift with neither source nor listener moving.!

B. Time dilation

Figure 3 represents light moving forward and back alon
moving rod. The rod is stationary in the right frame and h
length,; in the left frame it is moving and has length,/g. In
the right frame, light takes time, on each of the forward and
return trips~note that we are usingc51). In the left frame,
light takes a time,/@g(12v)# going forward~much longer

Fig. 1. A screen shot of the applet. Common browsers will run the prog
if Java is enabled, but the exact appearance will vary. Subsequent fig
will show only the two main graphical panels. In all the figures, dark g
dots are stationary, light gray dots are moving, and circles represent exp
ing wavefronts.
1277 Am. J. Phys., Vol. 71, No. 12, December 2003
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than in the right frame! and,/@g(11v)# going back~shorter
than in the right frame!, resulting in a total time of
2,/@g(12v2)# or 2g,.

Playing with this animation invites the user to think abo
the following paradox. If the user sets off a light flash b

Fig. 2. Illustration of redshift. The circles represent light flashes from
source stationary in the right frame but moving to the right in the left fram
~Under Galilean transformation, the left frame would have concentric circ
all moving with the source.!

m
res

nd-

Fig. 3. Illustration of time dilation. The two dots~sayA andB) are station-
ary in the right frame and moving in the left frame. Light travels fromA to
B and back again. In the upper panels,A has emitted a light flash for which
t l,t r . In the middle panels the light has reachedB and been reflected, a
t l.t r . In the lower panels the light reachedA and has been reflected agai
and this event hast l5t r .
1277Prasenjit Saha
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clicking at somet r in the right frame, the left frame ma
have the same flash att l,t r . But how does the left frame
‘‘know’’ at t l what the user will do in the right frame att r

.t l?

C. Length contraction in one dimension: The javelin
paradox

The third example is a well-known length-contractio
paradox. One version of it involves a long javelin, a sh
barn, and a relativistic sprinter. The sprinter runs with
javelin into the barn fast enough to shorten the javelin to
barn’s length; as the rear of the javelin enters the barn, so
one closes the barn door. Does the javelin really fit into
barn?

Figure 4 resolves the paradox. In the javelin frame,
barn door does close. But the tip of the javelin has reac
the far wall of the barn before that. The tip must either c
through the wall or get stopped by the wall, but the news w
not have gotten to the rear of the javelin before the barn d
closes.

D. Length contraction in two dimensions: The frisbee
paradox

You are in the back seat of a car, and having nothing be
to do you open the sunroof and throw a frisbee up and
ward through it. The frisbee is actually wider than the su
roof, but thanks to your relativistic frisbee-throwing skill
length contraction shortens the frisbee to fit. But in the fr
bee frame it is the sunroof that has contracted, so how
the frisbee possibly fit?

Fig. 4. Illustration of the javelin problem. The row of five dots represe
the barn and is stationary in the left frame, while the other two dots re
sent the javelin and are stationary in the right frame. Light flashes go
when the head of the javelin reaches the right end of the barn and whe
tail of the javelin reaches the left end of the barn. These light flashes
simultaneous in the left~barn! frame. But in the right~javelin! frame, the tail
event occurs after the head event butbeforea light flash from the head even
can reach the tail.
1278 Am. J. Phys., Vol. 71, No. 12, December 2003
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This is one version of a less well-known lengt
contraction paradox.~See Ref. 8 for more versions.! Figure 5
illustrates it.~We neglect problems concerning the rotation
the frisbee here.! The point is that a moving object that is no
aligned with the direction of motion will be tilted as well a
contracted.

IV. DISCUSSION

The initial motivation for writing two-frame animations o
$t,x,y% was to present standard examples in a simple
appealing way. But after setting up and viewing a number
examples, such animations became quite interesting, in
pendently of the particular examples.

Consider the following features of the animations:

~1! A moving pattern of dots is length-contracted. The co
traction factor noticeably increases with velocity, but t
exact dependence is not obvious.

~2! Light wavefronts are immune to length contraction. Th
remain circles in both frames.

~3! An event can be marked in several ways: by a light fla
by a light wavefront crossing a dot, or by a moving d
crossing a stationary dot. If two event markers coinc
in one frame~for example, a light flash goes off just a
the tip of the javelin reaches the far end of the bar!,
they will coincide in both frames.

The assertions 1 and 3~that is, length contraction and th
event concept! imply time dilation. Gamow makes this poin
with beautiful simplicity. Mr. Tompkins in his dream city
notices length contraction first: a passing cyclist appears
believably shortened, and when Mr. Tompkins gets on a

-
ff
the
re

Fig. 5. Illustration of the frisbee problem. The frisbee is represented by
dots stationary in the right frame and the sunroof by ten dots stationar
the left frame.~The orientation is awkward in this figure; the ‘‘road’’ is to
the upper left.! Light flashes go off as the edges of the frisbee cross
edges of the sunroof. Because length contraction affects only the directio
motion, the orientations of frisbee and sunroof depend on the frame. C
sequently the edge-crossings are simultaneous in the left~sunroof! frame but
not in the right~frisbee! frame.
1278Prasenjit Saha
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cycle himself, the street appears shortened. Time dilation
the non-invariance of simultaneity follow as consequence
length contraction: because the street is shortened,
Tompkins can cycle past five blocks in a few breaths.

We can translate Mr. Tompkins’s experience into more f
mal language as follows. Supposex1 represents a dot station
ary in the left frame andx2 is stationary in the right frame
~that is, x1l constant,x2r constant!. If we write v for the
velocity andg for the length-contraction factor, assertion
implies that

x2l5g21x2r1vt l , x1r5g21x1l2vt r ~5!

with the functiong(v) as yet unspecified. Now letx1 cross
x2 . By assertion 3, we may express this event asx1l5x2l

5xl in the left frame and atx1r5x2r5xr in the right frame.
If we substitutexl andxr in Eq. ~5! and rearrange the terms
we obtain

$t r ,xr%5$g~ t l2wxl !,g~xl2vt l !%, w[~121/g2!/v.
~6!

If we takeg51/A12v2, or equivalentlyw5v, then Eq.~6!
is a boost. If we take a differentg(v), then Eq.~6! still
retains two of the familiar properties of a boost:~i! it can be
inverted by replacingv by 2v, as may be verified by direc
substitution; ~ii ! it produces a time dilation ofg, that is,
(]t r /]t l)xl

5g.
Assertions 2 and 3~that is, the constancy of the speed

light! then imply thatg(v) can only be 1/A12v2. To see
this, recall the time-dilation example~Fig. 3 and the accom
panying discussion!. In that example we used kinematics a
1279 Am. J. Phys., Vol. 71, No. 12, December 2003
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the constant speed of light to calculate the back-and-fo
light travel time in the left frame as 2l /@g(12v2)#, and then
usedg51/A12v2 to derive the dilated time 2g l . A different
g(v) would give a time-dilation factorÞg, thereby contra-
dicting the previous paragraph.

We have now expressed Lorentz transformations
‘‘animation-oriented’’ language. Statements 1–3 carry all t
quantitative information about a boost, but without equatio
and without mentioning time-transformation explicitly at a

a!Electronic mail: p.saha@qmul.ac.uk; http://ankh-morpork.ma
.qmul.ac.uk/;saha
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