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Abstract. Spacetime singularities are regarded as sources or sinks of a conserved gravita- 
tional Rux. The flux lines are viewed as curves belonging, not to lhe spacetime manifold 
&,’but to the tangent fibre bundle over A. These lines are determined by timelike and null 
geodesics referred to a suitable non-affine parameter. With the help of this approach to 
the study of singularides a simple proof is given of Penrose’s theorem on the occurrence 
of a singularity in a star undergoing asymmetric gravitational collapse. 

PACS number: 0420 

1. Introduction 

In classical electrodynamics a most useful way of visualizing an electromagnetic field 
is by drawing the electric and magnetic lines of force. They show not only the direction 
of the vector fields at any given point in space, but also provide a quantitative measure 
of the fluxes with the help of the related concept of tubes of force. On the other hand 
in general relativity no equivalent procedure has been developed so far. This is a 
consequence of the non-linearity of the Einstein field equations which implies that, 
even in the absence of external sources, the gravitational field itself acts as its own 
source. Furthermore the principle of superposition is no longer valid, so that we cannot 
add the fields created by the individual separate sources. However in general relativity 
there are families of curves which give a beautiful visualization of the gravitational 
field, namely, the geodesic lines. Besides, these curves provide a geometrical definition 
of the Riemann curvature tensor by means of the geodesic deviation equation. Unfortu- 
nately geodesics do not qualify as flux lines due to the following two reasons: ( a )  an 
infinite number of geodesics, either timelike, spacelike or null, pass through every 
point in the spacetime manifold; ( b )  even if we restricted ourselves to a single 
congruence of geodesics, the vector field defined by the unit tangent vectors to these 
lines would not be divergence-free. This means that the associated flux is not conserved 
in empty spacetime and, therefore, we cannot give a meaning to the flux tubes. 

In this paper we show that the first difficulty may be removed provided we consider 
the flux lines as curves belonging, not to the spacetime manifold A, but to the tangent 
fibre bundle T ( A ) .  This is possible because there is an intrinsic horizontal vector field 
defined in T(&) by the connection. The second difficulty may also be removed when 
geodesics are considered as sequences of events in spacetime. This fact allows us to 
introduce a non-affine parameter so that the new tangent vector is divergence-free. In 
section 2 we perfom the corresponding calculations in detail and identify the sources 
of the gravitational flux with spacetime singularities. In section 3 we work out two 
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simple examples of geodesic congruences where the Ruxes and sources may be explicitly 
determined. Finally, in section 4, we apply the law of conservation of gravitational 
flux to prove Penrose’s singularity theorem. 

2. Construction of a divergence-free vector field in T(& 

Let us consider the flux lines as curves belonging to the tangent fibre bundle T(&)  
over the spacetime manifold A. The connection r t u ( p ,  p, v = 0, 1,2,3)  defines a 
horizontal subspace H, in the tangent space to the bundle T(&) at the point U = ( p ,  k), 
where p E dL and k E  Tp(M).  In terms of a local coordinate basis {x”, k’} of T ( A ) ,  the 
horizontal subspace H, has the associated basis of vectors 

from which one obtains tbe dual basis of 1-forms 

{dx”}. 

Since this basis is isomorphic to the corresponding one on 4, it follows that in both 
manifolds the volume and surface integrals have the same measure-valued forms. 

The vector k itself corresponds to a horizontal vector field 6 defined in T ( A )  by 
the connection (see [l] section 2.9). In terms of the basis given by (1) this vector field 
has the expression 

The integral curve of 6 through a point u o = ( p o ,  k,) of T(A) is the horizontal lift of 
the geodesic in A with tangent vector k, at p o .  Therefore the vector field represents 
all geodesics on &. Each congruence of geodesics corresponds to a diserent cross 
section of the tangent bundle T(.&). The first difficulty mentioned in the introduction 
is thus removed since these curves are non-intersecting everywhere in T(dZ). 

is not divergence-free, so that its flux is not conserved 
outside the sources. However, when geodesics are considered as sequences of events 
in spacetime, one can describe them in terms of a non-affine parameter. By this token 
we can replace the field by another field tii =f(x)i  and choosef(x) such that tii be 
divergence-free. 

given by (3) is geodesic, and is parametrized by an affine 
parameter A, it satisfies the equations 

In general the vector field 

Since the vector field 

k”=dx”fdh (4) 

As mentioned earlier, this vector field is not divergence-free in empty spacetime, namely, 

krW # 0. 

Nevertheless, it is possible to obtain a conserved field m’ by parametrizing the geodesics 
with a suitable non-affine parameter q. Explicitly one has 

m” = dx”/dq (7) 

mrpm‘=K(q)m”. (8) 
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From (4) and (7) one obtains 

”‘(7) =fk’(h) (9) 
where f = dhjdq. 

Our purpose now is to find a function f such that ml;. = 0. This is equivalent to 

(log f ),,k” = 4:’. (10) 

Writing a ( A )  = - k r p ( A ) ,  and taking into account (4), one obtains 

(11) 
d 

-log f ( A )  = a(A).  dh 

The general solution of this equation reads 

f ( U =  K exp[ I 4 A )  dA] (12) 

where K is the constant of integration. We are always going to set K 2 0  so that the 
vector fields k’ and m’ point in the same direction. When dealing with non-spacelike 
geodesics, this is equivalent to choosing the positive sense of the gravitational flux as 
the one followed by a test mass or photon. 

Having determinedf(h) we can obtain the function ~ ( q )  in (8) by combining (9, 
(9) and (10). The result is 

K ( n )  =f(ll)a(q). (13) 
Therefore, the second difficulty has also been removed. 

Having constructed a divergence-free vector field ”(7) defined on the tangent 
bundle T ( A ) ,  we can obtain all congruences of geodesics referred to q by taking cross 
sections of T ( A ) .  Note that two field lines lying on the same cross section of T ( A )  
cannot intersect at a non-singular event unless m p  = 0. Otherwise the field vector would 
have two directions at the point of intersection. Therefore the caustics, defined as 
points where geodesics meet, are either zeros or singularities of the field m’. According 
to (12) this situation takes place when kr, = fa. 

The procedure we have followed to construct the vector field mu. makes use of a 
coordinate patch in A, so that this field has only been defined locally. However, on 
choosing a covering of .II by coordinate neighbourhoods, this construction may be 
extended over the whole congruence. 

Since m* is divergence-free we can build tubes of flux for any non-spacelike 
congruence of geodesics by considering the field lines which pass through the points 
of a simple closed curve in spacetime. Let us consider now a segment of a flux tube 
between two sections Z, and &. By applying Gauss’ theorem and assuming there are 
no sources or sinks of flux inside the tube, we obtain 

Thus, the gravitational flux (P is constant along any segment of a flux tube containing 
no sources. 

The timelike or null flux lines can be extended up to infinity unless they hit a source 
or sink of gravitational flux. This situation means that the corresponding geodesic ends 
at a finite value of its affine parameter, so that these sources or sinks must be identified 
with spacetime singularities (see e.g. [ l ]  section 8.1). On the other hand spacelike 
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geodesics are not associated to 0ux lines since it is impossible to define for them an 
invariant sense of Bux circulation. 

Notice that the reparametrization has eliminated not only the spurious gravitational 
sources associated to the energy pseudotensor t+., but also the genuine sources 
associated to the energy tensor Ter. However, the action of this tensor on the Bux lines 
is determined by the geodesic deviation equation, much in the same manner as the 
electric and magnetic fields give rise to the Faraday tensions and pressures acting on 
the electric and magnetic lines of force in electrodynamics 

The identification of spacetime singularities with sources of the divergence-free 
vector field fii, in the tangent bundle T(&, allows us to explore the nature of these 
singularities by studying the behaviour of the flux in a neighbourhood of the source. 
One can thus avoid the conceptual trouble introduced by the fact that singularities 
cannot be regarded as being part of the spacetime manifold. 

3. The Schwarzschild and Kerr geometries 

To illustrate the procedure described in the preceding section we work out here two 
simple examples of geodesic congruences. Let us consider first the congruences of 
ingoing and outgoing timelike radial geodesics in the Schwarzschild geometry. Taking 
curvature coordinates referred to the affine parameter A, the tangent vector k” reads 
(see [2] section 25.3) 

dx‘/dA = [( 1 - rzr-’)-’, * (i-zr-’)’’2, 0, 01 (15) 

where we have introduced natural units so that c = 1, G = 1. The plus sign here refers 
to the outgoing congruence and the minus sign to the ingoing one. 

From (9) we see that m’ is determined by the functionf(A), which in turn is given 
by (12) with a(A)  = -ky*(A). Taking into account that \i-g= ?s in  6, we obtain 

a ( ~ )  = - ~ ~ ; / 2 ~ - ( 3 / 2 )  (16) 

k’’(A) 

and consequently 

f ( A )  = Kr- (3 /2 ) .  (17) 

Combining now ( 9 )  and (17) and recalling that f=dA/dv we arrive at 

m ~ ( ? ) ~ d x ’ / d v = [ K r - ( 3 / z ) ( l - r ~ / r ) - ’ ,  *Krbi2r-2,0,0] (18) 

showing the presence of a singularity at r = 0. Starting from a finite value of r, this 
singularity is reached after a finite interval of the non-affine parameter q. 

Let us proceed now to the evaluation of the flux of the ingoing field. Since (18) 
does not depend of time it is advantageous to choose the surface Z in (14) to be a 
segment of a timelike circular hypersurface of constant radius r and length At. Thus 

m‘(?)tL~inBdOdrp=4~Xrb/~ht  (19) 

where the surface element has been evaluated according to (2). It is convenient to 
choose K = (47r)-tr;(”2)M in order that the flux per unit time take the simple form 
d@/df = M. This means that there is a sink at r = O  which absorbs M units of flux per 
second. We recall that r = O  is not a point but a spacelike hypersurface. 

J AQ, = - A t  
r=m”Sfanl 
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Let us consider now the gravitational field of a static spherically symmetric star of 
radius ro> rg.  In this case there is no spacetime singularity at r = 0. Therefore, on 
crossing the symmetry axis, each ingoing geodesic becomes an outgoing one. In the 
spacetime manifold A, all geodesics lying on the surface of a cone intersect on the 
line r = 0, where the polar coordinates are singular. However in T(&) each geodesic 
crosses the axis at a different point of the fibre defined by the event ( r  = 0, t = constant), 
so that there is no singularity of the field tit. Hence, the cross section defined by the 
ingoing congruence is connected with the cross section defined by the outgoing one 
through the fibres associated to the points of the symmetry axis. By this token the 
gravitational flux is conserved everywhere in T(rld). 

The second example we want to discuss refers to the principal null congruences 
of the Kerr geometry. In Boyer-Lindquist coordinates the vector field k’(A) is given 
by (see [2] section 33.6) 

(20) k’(h) = [E(rz+a2)A-’, &E, 0, EaA-’1 

where A is the affine parameter. Furthermore, 

A = r 2 f a 2  -2Mr 

J-g= ( r2+a2  cos2 e) sin e = pz sin e. 
A straightforward calculation gives 

m p =  Kp-’k’. 

From the results obtained by Carter r31 we know that the lines c - .  flux of the ingoing 
congruence come in from r = CO, pass through the equatorial disc r = 0 towards a ‘new 
universe’ with a negative radial coordinate r, travelling out to r = -W. The sole exception 
are those lines lying on the equatorial plane which hit the singularity at p2=0 .  The 
total flux per unit time across the pseudospheres r = constant is equal to 47iEK since 
the contribution of the equator is of measure zero. We can again choose the constant 
K so that d@/dt is equal to M. To observers in the ‘new universe’ this flux is outgoing 
and therefore they see a source having the mass -M. 

4. Penrose’s singularity theorem 

In this last section we want to exhibit the power of our approach by applying the law 
of conservation of gravitational flux we have discussed in this paper to give a simple 
proof of Penrose’s singularity theorem [4]. There is no loss in generality in assuming 
the deviation from spherical symmetry is small when the collapsing star crosses its 
event horizon. Therefore, we can depict its history in a spacetime diagram very similar 
to the corresponding one in the symmetrical case as shown in figure 1. 

Consider now a spacelike hypersurface S bounded by two trapped 2-surfaces TI 
and ’I; lying outside the collapsing star. This hypersurface may be thought of as 
generated by a continuous sequence of trapped 2-surfaces. We can next build a flux 
tube whose walls consist of two lightlike hypersurfaces L,  and L2 generated by the 
outgoing null geodesics orthogonal to the 2-surfaces TI and T2. Assuming the local 
energy density is non-negative, these geodesics will be steadily convergent until they 
merge. Since we are dealing here with the outgoing radial congruence, these geodesics 
remain confined to a single cross section of T ( A ) .  This fact implies that the meeting 
points must be cusps, i.e., points where the geodesics share the same tangent vector. 
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\ Singularity 

trapped 
flux 

Figure 1. The law of conservation ofgravitational Bux applied to prove Penrose's singularily 
theorem. Here the time coordinate is vertical and the space coordinates are horizontal, 
with one spatial dimension suppressed. 

Hence the future directed flux crossing the hypersurface S remains trapped inside the 
tube. On the other hand this 'trapped flux' must be conserved in empty spacetime. 
Therefore the result of the collapse must be either the occurrence of a singularity or 
the formation of a Cauchy horizon joining 'another universe' to the original one in 
which the star collapsed. In the first case the singularity acts as a sink of the trapped 
flux, like in the Schwarzschild geometry. In  the second case a topological hole develops 
inside the tube, allowing the trapped flux to escape through it towards the 'new 
universe'. This second altemative resembles the situation we found with the Kerr 
geometry. However, there is strong support for the argument that Cauchy horizons are 
unstable, so that the development of a singularity will be unavoidable in any realistic 
collapse process (see [5] chapter 12, section 12.3.2). 

The proof we have given here of Penrose's theorem illustrates the strong physical 
insight we can gain with the simple intuitive approach introduced in this paper. 
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