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AbstracL We investigate the causal structure of (1 f 1)dimensional spacelimes. For 
two sets of field equations we show that at least locally any spacetime is a solution 
for an appropriate choice of the matter fields. For the theories under consideration we 
investigate how smoothness of lheir black hole solutions affects time orientation. ut: 
show that if an analogue to Hawking’s area theorem holds in two spacetime dimensions, 
it must actually state lhat the sue of a black hole never mcreares, contrary lo what 
happens in four dimensions. finally, we discuss the applicability of the Penrose and 
Hawking singularity lhenrems to two spacetime dimensions, 

1. Introduction 

Relativistic theories of gravitation in two spacetime dimensions provide an interesting 
theoretical laboratory for understanding issues relevant to quantum gravity [l-lo]. 
Such theories reduce the complexity of (3 + 1)-dimensional general relativity signifi- 
cantly, thereby offering much hope for obtaining significant insights into its quantiza- 
tion, as well as an understanding of the issues associated with short-distance problems, 
topology change, singularities and the cosmological constant problem. Recent work 
has revealed interesting relationships between (1 + 1)dimensional gravitational the- 
ories and conformal field theory [9], the Liouville model [24], random lattice models 
[lo], and sigma models 111-141. 

Although Einstein’s field equations are trivial in two spacetime dimensions, there 
exist a variety of (1 + 1)dimensional generally covariant theories of gravitation [2-8] 
some of which have non-trivial dynamical structure. A close analogue of the Einstein 
equations is given by [15, 161 

R - A = S n G T  (1) 

along with the conselvation equation 

where R is the Ricci scalar, A is a cosmological constant, T is the trace of the 
stress-energy tensor, G is Newton’s constant and we have taken the speed of light 
to be unity. These equations can be derived from a local action principle [17] by 
incorporating an auxiliary field whose classical evolution does not affect the grav- 
@/matter system above. In the absence of matter this system reduces to the vacuum 
field equation used in the Liouville model [2-4]. The classical aspects of this theory 
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of gravity have been examined in some detail (15, 16, 181 and it has been shown that 
it has a remarkable similarity to four-dimensional general relativity in many of its 
features. These features include a Newtonian limit, Robemon-Walker cosmological 
solutions, interior solutions, gravitational waves and the gravitational collapse of dust 
into a black hole with an event horizon structure which is the Same as that of the 
four-dimensional Schwanschild solution. Indeed, the field equations of this theory 
follow from a dimensional reduction of Einstein's equations in a certain l i i i t  1191; _ .  in 
this sense they form a (1 + 1)dimensional version bf general relativity. 

These classical features are so closely analogous to ( 3  + 1)dimensional general 
relativity that one might hope its quantization would bear a similar resemblance to 
(3  + 1)dimensional quantum gravity. The semiclassical properties of this theory [17, 
20, 211 do indeed yield interesting effects such as Hawking radiation and black hole 
condensation. These properties are intimately connected with the non-trivial event 
horizon structures which can form in <he theory in a manner quite simiiar to their 
(3 + 1)dimensional general relativistic counterparts. 

Much more recently it has been shown that other (1 f 1)dimensional theories 
of gravity which arise in the context of non-critical string theory can also yicld a 
non-trivial went horizon structure. A spacetime exhibiting such features was recently 
discovered as a solution to a scale-invariant higherderivative theory of gravity [22], 
and was later found to be a solution to c = 1 Liouville gravity [23] as well as to 
a non-critical string theory in two spacetime dimensions [24, 251. This latter result 
suggests the possiblity of using string-theoretic technology to examine the formation 
and properties of black holes in more realistic cases. 
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The field equations associated with this theory are 

e-'4(Rab + 2V,Vb$) = 8?rGTab (3) 

R-4(Vd)'+4V2q5+ J + c = O .  (4) 

where a stress-energy tensor Tab and source J for the dilaton field q5 have been 
included. Fbr J = 0 = ,Tab, these equations reduce to those of non-critical (1 -t 1)-  
dimensional string theory in the absence of a tachyon field [24]. The black hole metric 
which follows from (3) and (4) in this case is unique; it is asymptotically flat, and may 
be matched to a soiution ior coiiapsing dust provided appropriate surface stresses are 
included, where the source J may be understood to arise from the tachyon sector 
[26]. The quantum properties of the above metric are similar to those found in [18, 
211 (see also [27-29]). 

In this paper, we investigate the causal structure of solutions to these theories. 
We begin by motivating the various solutions in section 2 In section 3 we ask whether 

an appropriate choice of the matter fields, and we provide a partial answer. In 
section 4 we examine some black hole solutions and look at their causal structure in 
detail. We investigate how smoothness of solutions affects their time orientation. We 
mention that if an analogue to Hawking's area theorem [30] holds in two spacetime 
dimensions, it must actually state that the size of a black hole never increases, which 
is exactly the opposite of what happens in four dimensions, and we note the difficulty 
in interpreting-the 'sue' of a black hole. In section 5 we discuss the applicability of 
the Penrose and Hawking singularity theorems to two spacetime dimensions, focusing 
on Penrose's 1965 theorem [30, 311 which predicts that a spacetime containing a 
closed trapped surface must be singular. We explain the difficulty in defining a closed 
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trapped surface in two dimensions and show that the energy condition in Penrose's 
theorem is trivially true for all (1 t 1)dimensional spacetimes. A spacetime with a 
black hole which contains singularities of an unexpected type is used as an illustrative 
example. Finally, we summarize our results in a concluding section. 

__ 2. Rack%rnund an!! motivation 

Throughout this paper we will be examining many different spacetimes, so here we 
introduce each of them and describe the context in which they arise. In general our 
conventions follow those of Hawking and Ellis [30]. 

By a spacetime ( M , g a b )  we shall mean a Hausdorff Cm manifold h.I (without 
boundary) of dimension > 2 with a non-degenerate Lorentzian metric gab,  that is 
a metric of signature (-, +, . . . , +). We define a vector v a  to be rimelike, null or 
spacelike if gabvav* is negative, zero or positive, respectively. we also assume that 
the spacetime is time-orientable, Le. that there exists a continuous timelike vector 
field on M .  

We define the Riemann tensor, Ricci tensor and Ricci scalar as 

and 

respectively. 
For our purposes it will be useful to write the static metric in the form 

Such a choice of coordinates is always possible, at least locally. Spacetimes given by 
static metria of this form fall into four distinct categories distinguished by the sign 
of a at large 1 ~ 1 :  

case A f + 1  
^^^^ D I -; CQJG D lim sgn(a(s)) = 

Id-- sgn(x) case c (9) 

no limit case D, 
Case A is the spacetime one would expect to arise from the endpoint of gravitational 
collapse of a distribution of ( 1 t 1)dimensional matter. Before collapse the signature 

r 
event horizons. In this case cy must have an even number of roots (some pairs of 
which may be degenerate) We shall cite an example of this below. Physical (1 + 1)- 
dimensional observers (i.e. those abiding in a spacetime of signature (-,+), where 
1 is timelike) may be located at regions of large x, but will ultimately be unable to 
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receive signals from observers at large -z since all such signals must cross the event 
horizon once collapse has occurred. The second case is what one might expect in a 
spacetime which has a cosmological constant, as we will illustrate later. Again, a must 
have an even number of roots. In this situation, observers are located only in regions 
of 1x1 < R, (where R, is some constant), and are unable to receive information 
from more distant regions of their universe. Case C is somewhat unusual in that it 
has no (3 + 1)dimensional analogue: spacetime has signature (-,+) for large z 
and has signature (+, -) for large -z; without loss of generality z may be taken 
to be positive as above. Originally such spacetimes were considered in the context 
of a higher-derivative theory [22]; more recently they have become of interest in the 
context of Iinding solutions to the system (3) and (4) with J = T,, = 0 [24, U]. 
Finally, case D involves those spacetimes for which a has no definite sign for large 

We begin with solutions to the system (1) and (2). The symmetric, continuous 
and static solutions for a point particle situated at the origin are given by (8) where 
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1x1. 

a(.) = -$Ax2 f 2 M 1 ~  - C (10) 

on R2. M can be interpreted as the mass of the source and C is an arbitrary 
(but meaningful) constant. At z = 0 the metric is continuous but not differentiable 
for M # 0. When a( z) = 0 the metric is singular, but for I # 0 these are just 
coordinate singularities that result iTom writing the metric in the form (8). For various 
choices of A, M and C the spacetime represents a black hole, a white hole, a naked 
singularity or other more complicated structures. This spacetime can also be easily 
extended to multiple point sources. All of this is explored in detail in [16]. 

Spacetimes with A # 0 can have a qualitatively different structure than their 
(3 + 1)dimensional counterparts. In (3 + 1) dimensions the most general static 
isotropic metric may be written in the form 

ds2 = - B ( r ) d l ? + A ( r ) d r Z + r 2 ( d Q 2 + s i n Z 6 d 4 * ) .  (1 1) 

The rr and 11 equations of general relativity imply that AB is a positive constant C 
and that 

where B = B/C, whereas the 60 and 44 parts of Einstein's equations imply 

2 d B  
dr - r A = -1 + r- + B. 

As (13) implies (12), we obtain the solution 

( B(r) = 1 - - r Z  + -  (14) 

which is the (3 + 1)dimensional analogue of (10). The metric (14) is of type B. Note 
that the ratio between the rz coefficient and the constant term is forced by (13) to be 
- A / &  in contrast to the freedom available in choosing C in the (1 + 1)dimensional 
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solution (10). This freedom arises because of the lack of angular information in 
(1 + 1) dimensions; there is no equation corresponding to (13). Consequently a 
cosmological event horizon can only arise for A > 0 in (3 + 1 )  dimensions, whereas 
such horizons can appear for either sign of A in (10). Hence in (1 + 1) dimensions, 
metria with cosmological event horizons of type A and B are both possible. 

Another interesting solution to equations (1) and (2) arises in the symmetric 
collapse of an initially static distribution of pressureless dust [18]. The metric for the 
interior of the dust is given by 

ds2  = -d t2  + (1 - bt2)' d z z  (15) 

in the region S = { ( t , z ) l O  < t < l/v%lrl <= r} ,  where I = f r  are the 
(constant) positions of the edges of the dust in the comoving coordinate system and 
b E ??rGpo. The c!~t m!!apses from a s t l t ; ~  mndition of cgform defisiry po I t  
t = 0 to one of infinite density as t + l/&. lb match this metric to an external 
vacuum solution we define 

X ( t , I )  = x(1 - b P )  (16) 

This transformation is a one-to-one transformation of S if br2 < a; otherwise there 
are cases in which ( t l , r )  and ( t Z , z )  map to the same ( T , X ) .  However if we 
restrict ourselves to t < i b r  the transformation will again be one-to-one. Note that 
this transformation always transforms the boundary I = i r  in a one-to-one manner. 
In (T, X) coordinates the metric can be written 

dX2 
1 - 4b2x2t2 ds2 = - B ( T , X ) d T 2  + 

where 

and in which I and t are defined implicitly by (16) and (17). This matches the static 
flat outside metric 

at the edges I = i r ,  X = i r (1  - b t2 )  of the fluid. This represents a black hole 
if brZ > a which is exactly when the transformation (16) and (17) is not one-to-one. 
This condition can also be written as po > $aGr2. The 'Schwanschild' radius is 

1 l X l = r - -  
4br 

so the dust becomes a black hole when t = ibr ,  which is precisely the point at which 
the coordinate transformation first fails to be one-to-one. 
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The system (3) and (4) has similar solutions. The unique vacuum solution is given 
by the metric (8) with 

U( x) = I - ae-Qz (22) 

s$ = -$Qx (23) 

and dilaton field 

on Iw2 where a and Q 2  = J + c are constants of integration. This solution has been 
discussed in the context of a scale-invariant higher-derivative theory of gravity [U], 
c = 1 Liouville gravity 1231 and a non-critical string theory [24, U]. This metric lacks 
the spatial symmetry of (10) and is of type C; indeed the cuwature scalar diverges 
as x -+ -CO. If x is replaced with 1x1 in (22), the solution models a point source 
[26]. This point source is, in fact, the endpoint of the gravitational collapse of a 
pressureless dust. The interior region of the collapsing solution is given by 

d s 2 = - d t 2 +  ( 1 - A t a u  (:t))2dr2 

where 0 < t < (2/Q) tan- '  A-' and IzI 6 T. The exte r vacuum solution 

where 0 < T and 

and Q > 0 for asymptotic flatness. For s$o < 0, the solution (26) and (27) may be 
CO-matched to the solution (24) and (25) provided an appropriate surface stress- 
energy tensor and dilaton current are included [26]. 

Finally, as an example of a metric of type D, consider 

d s2  = -cos Z B d t 2  + 2sin 2 B d t  d z  -t cos 2Bdz2 (W 
on Iwz where 0 = S ( x ) .  Note that for 8 constant this is Minkowski spacetime in 
coordinates rotated by the angle B. Thus when 0 varies with x it determines the 
tilting of the light cones throughout the spacetime. This metric can be expressed in 
the form (8) by transforming to 1' = t - J tan  28 dz ,  which gives 

dx2 
ds2 = -cos28dt2 + - 

28.  

Fbr a wide variety of choices of B(z) this metric will have no definite sign for large 
1x1. We shall make use of this metric in the form (28) as it has no coordinate 
singularities. 
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3. Do the field equations put a restriction on the spacetime? 

In ( 3  + l)-dimensional general relativity, the field equations can be written 

- +&,a + Ag,b = 8xGT,b. (30) 
It is clear that given any spacetime ( M , g , , )  we can use (30) to d e h e  Tab and then 
the spacetime will be a solution to these equations for this choice of Tab. Thus 
any restrictions on the spacetime metric in general relativity are a consequence of 
requiring the distribution of matter to be physically reasonable, Le. to be locally causal 
and to respect either the weak or dominant energy conditions. Whether or not such 
a property holds for the (1 + 1)dimensional theories of gravity considered here is 
the subject of the present section. 

Consider fist the theory based on the equations (1) and (2). Since the Ricci scalar 

holds. That is, given a spacetime ( M , g a b )  does there exist a symmetric tensor field 
Tab satislying (1) and (2)? We prove that locally such a tensor field always exists 
for a sufficiently smooth metric and give an intuitive argument conjecturing that the 
global result is also true, at least for simply connected manifolds. Note that (1) and 
(2) represent three equations and that the tensor field Tab has three independent 
components. 

Theorem I .  Let (M,g,,) be a ( 1  + 1)dimensional spacetime and assume that gab 
is C4 and that p E M. ?hen there exists a symmetric tensor field Tab defined on a 
neighbourhood U of p satisfying (1) and (2). 

Proof. Since (1 + 1)dimensional spacetimes are locally conformally fiat, we can find 
a neighbourhood N of p and a conformal factor eo where U = u ( t , x )  is C4, such 
that in N the metric can be written 

cGp;s *& +*,e of ;he stiGMEsigy., k i i ~ i  ~ &<iouS .&,at .&,e ~ i i i c  piopejtji 

dsz = e"(-dt2 f do'). (31) 

In this coordinate system equation (1) becomes 

and equation (2) becomes 

We now must show that this system of three equations in three unknowns has a 
solution in a neighbourhood of p. Let F = T" + T"", G = 2T'" and 4 = -2u. 
Then using (32), equations (33) and (34) become 

(35) 

(36) 

a F  aG -34 -+ - = - F +  -G+ M ,  at ax at 8 X  
a F  aG 84 84 - + - = -F + -G+ Mz ax at ax at 
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where M ,  and hf2 are expressions involving 4 and its derivatives up to third order 
and A,  and thus are C'. Now define = F + G and e = F - G. Then (35) + 
(36) becomes 
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and (35) - (36) becomes 

Equations (35) and (36) have a solution if and only if equations (37) and (38) 
Co. 
neighbourhood U of p .  (In fact, the theorem shows that for any C' Cauchy data 
defined on a C' non-characteristic initial curve D in N, there exists a unique C' 

0 

For the system based on (3) and (4) it is clear that (3) can be used to define 
Ta5. What is not so clear is whether given a spacerime ( M . g C g )  there exists a scalar 
field 4 satisfying (4). We prove that locally such a scalar field always exists for a 
sufficiently smooth metric. 

Theorem 2. Let (h l ,g ,*)  be a (1 + 1)dimensional spacetime and assume that gab 
is C2 and that p E 1M. Then there exists a scalar field 4 defined on a neighbourhood 
U of p satisfying (4). 

Proof. As before, we can find a neighbourhood A' of p and a conformal factor em 
where U is Cz, such that in A' the metric can be written 

c,eoiem 2: of i33l Ch 4 shews that (37) and (38) %i!! h a c  sG!CtiGr& k a 

solution to (37) and (38) in a neighbourhood of D.) 

ds2  = e"(-dt2 + dx'). (39) 

th.3 Garfl&.n.ate system eq..tiga fd) hemmm 
\ ' I  

Define new coordinates t' and x' by 1' = t + x and 2' = t - r. Then (40) can be 
written 

- t j$(-Rtt + R,, + ( J  + e ) e + ) .  ax'at' at1 8x1 

Theorem 7.1 of [33, eh 41 shows that (41) will have Cz solutions in a neighbourhood 
U of p since the right-hand side is a continuous function of W / a t ' ,  a $ / 6 x ' ,  t' 
and 5' and also satisfies a Lipschitz condition in ad/ax' and a$/at'. Since the 
solution will be Ca, it will also satisfy (40). (In fact, the theorem shows that for any 
appropriate Cauchy data defined on a C' noncharacteristic initial curve D in N, 
there exists a unique solution to (41) in a neighbourhood of D.) n 
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We conjecture that these results can be extended to any simply connected region 
S of a spacetime and that theorem 1 is valid for C3 metria. It may be possible 
to construct proofs of these conjectures by investigating the field equations without 
using conformal coordinates or by using a 'quilting' argument that patches together 
conformal neighbourhoods using the Cauchy property of the solutions. Starting with 
a point p E S we find a region on which a solution exists, by the above theorem. 
Then along the boundary of this region we apply the theorem repeated!y and use the 
parenthetical remarks at the end of theorem 1 and 2 to extend the solution to all of 
the spacetime S. 

In the rest of the paper we are not concerned with specific field equations and 
deal with arbitrary spacetimes, many of which are bown solutions to the theories 
discussed earlier. If our conjectures are true then every spacetime we discuss below is 
a solution, since each connected component of these spacetimes is simply connected. 

4. The causal structure of (1 + 1)-dimensional black holes 

Penrose diagrams are invaluable tools in the investigation of the causal structure of 
a spacetime. The causal structure of a spacetime depends only on its conformal 

cones. As all (1 + 1)dimensional metria are conformally flat, it is straightforward 
to choose coordinates so that 

..+-..m+n,*a c:-e.p - p r i m  rkqr or- rn1ntc.A h.. n . -n-Cn--- l  F n r + n r  kn.,n tho 1:nl.r 
O U U ~ L U L ~ ,  .,ULCI L L L I I I I W  u q l  l l b  I b I l L b Y  "J L. W","I"I',I ,a.LV, L l a " l  L l l b  *,.,I "p, 

for any particular timelike or spacelie region. However it is not, in general, possible 
to carry out such a transformation for the entire two-dimensional space, as any 
event horizons are located at 101 = W. In contrast to this, writing the metric 
in the form (8) is especially useful in that it clearly illustrates the full event horizon 
structure of the spacetime in a manner similar to the (3+l)dimensional Schwarzchild 
metric. In general a(.) will take on both positive and negative values, corresponding 
repective!y to timelike icd spicc!ike reginns. Pnintc zt ~ E c h  the metric changes 
signature are given by a( z) = 0; these are coordinate singularities and locate the 
event horizons. 

The spacetime in (8) with a = a( z) may be maximally extended by carrying out 
the KruskalSzekeres transformation: 

which yields 

where a ( u v )  is implicitly defined via equation (43). As in the (3 + 1)dimensional 
case, the ( u , v )  space is a double cover of the ( t , z )  space and the horizons are at 
uv = 0. 
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Using the metric in the form (8) makes it easy to identify the generic structure 
of Cuwature singulanties for static metria. From (5) and (6) it may be shown that 
both the Riemann and Ricci tensors are uniquely determinable in terms of the Ricci 
scalar in two spacetime dimensions. Since R = -d2a/dr2, all curvature singularities 
will manifest themselves in terms of divergences in the second derivative of  cy(^). 
This will not necessarily occur at a point where the metric diverges. Consider the 
(1 +- 1)dimensional analogue of a spherically symmetric black hole, a black hole for 
which cy = a( 1.1). This will correspond to a spacetime of type A or B. The curvature 
is 

R = -a’‘( r )  - 26(e)o’(o) (4) 

where r = 111 and the prime denotes d/dr. If a’(0) # 0 then there will be a 
deim-function singularity in the curvature. if a::(rj and a(0j are finite over &e 
entire range of r (0 4 r < 03) this will be the only singularity in the curvature. 

1x1 * 0 

Faun 1. Penrase diagram for the (1  +. 1)dimensional spherically symmetric black hole. 

Using the coordinates given in ( 4 9  the Penrose diagram for such a black hole 
may be easily constructed. The result is given in figure 1. It is qualitatively the Same 
as the diagram for the (3 + 1)dimensional Schwarzchild case, except that each point 
on the diagram represents a @sphere instead of a 2-sphere. Since a 0-sphere consists 
of two points, an alternative representation of the entire spacetime -CO < I < 03 

may be given by taking two copies of figure 1, one for I > 0 and the other for I < 0,  
and joining them at each of the lines at 111 = 0 at the respective top and bottom of 
each copy leading to a singular curvature at the junction. A simple visualization is 

A = 0 and by (26). 
The Penrose diagram for the collapsing fluid discussed in section 2 equations (15) 

and (20) is given in figure 2. Each point in this diagram represents a @sphere. As 
above, this can be represented by two copies of the figure joined along 111 = 0. 

Note that the time orientation on each copy of these diagrams is the same, and 
so closed timelike curves are not present in the spacetimes described by 1 and 2. 
Indeed, for the collapsing ffuid observers on either side of it can travel through the 
fluid to verify before collapse that they have the Same time orientation; smoothness 
of the metric implies that this is maintained after collapse. The static black holes 
(10) and (26) model the endpoint of such a collapse and so are taken to have the 

sides of paper, iw.euics describing such spaceiimes Bre given wirb 
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Figure 2 Penrose diagram for a mllapsing fluid. 

same time orientation for positive and negative x outside the horizon. One might 
consider taking multiple copies of figure 1 and joining them in sequence at 1 1 1  = 0. 
However such joinings at 1x1 = 0 (which are not at coordinate singularities but are at 
delta-function curvature singularities) would make the entire manifold non-Hausdorff 
since each point on each individual copy represents a 0-sphere [21]. 

Black hole spacetimes of type C have a different structure. The Penrose diagram 
is still qualitatively the same as figure 1, except that each point on the diagram 
represents only one point in the spacetime (as opposed to being a 0-sphere). Hence 
there is now a k1 mapping between points in spacetime and points on the diagram, 
instead of a 21 mapping as before. If no curvature singularities are present, it is 
possible to extend this diagram by making multiple copies of figure 1 and joining 
them in sequence along the horizontal lines as in figure 3. Again, instead of each 
point representing a 0-sphere, there would also be a 1:l mapping between points in 
the (extended) spacetime and points on the diagram. 

In constructing Penrose diagrams for (1 + 1)dimensional metria, it is important 
to note that the criterion for asymptotic flatness is slightly more general than in higher 
dimensions. It is sufficient to require that a(.) i Klxl + C for large 1x1, since a 
Rindler transformation may then be applied IocaUy to obtain a flat metric. Tiking 
Q = ln(cosh(Kz)) + C, for example, satisfies this criterion; it has no curvature 
singularities and its Penrose diagram is of the type given in figure 3. In general 
such metria are solutions of the field equations only for physically unreasonable 
(1 + 1)dimensional stress-energy tensors. 

Diagrams for the cosmological cases may also be easily constructed. Consider the 
metric (10) with A4 = 0. For C = -1 this yields either the metric for de Sitter space 
i f A > O :  

F ~ w e  3 An unfolded Penrose diagram 

dsz = -cosz ’ I I A I y )  dlz  + d y z  v- (47) 

(using the transformation sin( my) = mz) or anti-de Sitter space if A < 0:  

dsz = -coshZ (my) dlz  + dy2 
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~ ~~~ ~~~~~ ~ 

~~~~ ~~~ ~ 

(using the transformation s i n h ( f i y )  = Penrose diagrams for 
these cases are the same as in the (3+ 1)dimensional case. However, for C = 1 an 
alternate version of anti-de Sitter space is possible with the metric 

which may be witten as 

~~ 

using the transformation c o s h ( m y )  = m x .  For large y the spacetime 
described by (50) is the same as that described by (48). However there is an event 
horizon at y = 0 (z  = m ) , w x c h  

We close this section by making some general comments on the thermodynamics 
of (1  + 1)dimensional black holes. It is straightforward to show using either naive 
Wick-rotation arguments 116, 261 or a more formal quantum-field-theoretic treatment 
[20, 211 that the temperature T of a black hole is given hy 

absent in the usual anti-de Sitter case. 

T = M / 2 n  (51) 
where M is the mass parameter. One can then d@e the entropy S of the black 
hole via the thermodynamic relation [16] 

d M  = T d S  (52) 
since one can relate the mass parameter to the energy for both of the theories given 
by (l), (2) and (3), (4). In the former case one can appeal to the Newtonian limit 
of the theory [15] and in the latter case one can compute the ADM mass [Z]. Hence 
the entropy varies logarithmically with the mass parameter 

S - I n ( M / M , )  (53) 
where MO is a constant of integration which appears as a fundamental mass scale in 
the theory; its origin presumably lies within a fully quantized version of the (1 + 1)- 
dimensional gravitation theories discussed here. A more detailed investigation of the 
general thermodynamics given by (52) and (53) may be found in [21]. 

Relating this definition of entropy to an area parameter associated with the black 
hole is somewhat more problematic. In (3 + 1 )  dimensions Hawking’s area theorem 
says that the area of a closed trapped surface will never decrease. The association 
of an entropy with the area of the horizon then implies that the entropy of a black 
hole will never decrease in any physical process. In (1 + 1) dimensions the ‘area’ 
of a closed trapped surface is meaningless because the horizon is a zero-dimensional 
surface. However it may be true that the volume of a black hole (that is the geodesic 
length enclosed by the horizon) has a similar property. If the metric is CO within 
the horizon (i.e. if the horizon encloses only delta-function singularitics) then the 
geodesic length between the horizons is well defined and is given by 
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where a and b are any two opposing points on the horizon's worldlines. Fbr the static 
black hole given by (10) with A = 0 we obtain 

Also, the volume of the string-theoretic black hole (26) is given by 

Thus for these cases we fmd that in (1 + 1 )  dimensions the volume of a black hole 
decrcse  s mitter 6 sdded, s fo!!m frnm the fo!!owhg dimefisiofi~! zrg:men!s. 
Suppose we have a static black hole in the form (8). Then dimensionally we must 
have ci = ~ ( M x ) .  Let the horizons occur at xL and xR. Then we have that 

where y = Mx. 
So it seems to be a general property of static ( 1  + 1)dimensional black holes that 

their volume decreases as their mass (and entropy) increases. A (1 + 1)dimensional 
analogue of the area law would then involve demonstrating that in any physical 
process the volume of the black hole never increases (and hence the entropy never 
decreases, since it would vary as S - -ln(V/Vo) [16]). Note that for spacetimes 
of type C there Will be a region of signature (+, -) which is not enclosed by two 
regions of signature (-,+), yielding an infinite geodesic length for such a region 
and a breakdown of the entropyflength relation. Such objects more closely resemble 
cosmological event horizons than black holes, since it is dXicult to see how they could 
arise as the endpoint of gravitational collapse of some distribution of matter [26]. 

5. Comments on singularity theorems in hvo dimensions 

As mentioned in the previous section, the structure of curvature singularities is easily 
analysed using the metric in the form (8). Extending the well hown singularity the- 
orems [30, 311 to two dimensions is somewhat more problematic. Consider Penrose's 
1965 theorem, which states: 

Theorem 3. (Penrose 1965) A four-dimensional spacetime ( M ,  gab)  cannot be null 
geodesically complete if 

(i) Rab1iaKb > 0 for all null vectors IC"; 
(ii) there is a non-compact Cauchy surface in M ;  and 
(iii) there is a closed trapped surface in M. 

A proof of this theorem is given in [U), 311. 
A spacetime is said to be null (respectively rimelike, spacelike) geodesically com- 

plete if all null (respectively timelike, spacelike) geodesics can be extended to arbitrary 
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affine parameter wlues. A spacetime is usually said to be singular if it is not geodesi- 
a l l y  complete. 

The first two conditions are easily generalized to (1 + 1) dimensions. Condition 1 
is called the null energy condition and implies in higher dimensions that the expansion 
of congruences of null geodesics monotonically decreases along the geodesics. This 
condition is trivially true for all (1 + 1)dimensional spacetimes because the identity 
R,, = fgabR implies that for all null vectors IC" 
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R,,ICaKb = $gabRICaICb = 0. (58) 

A Cauchy surface is a spacelike hypersurface which every inextendible non-spacelike 
curve intersects exactly once, a concept which may also be extended to (1 + 1) 
dimensions. If a spacetime admits a Cauchy surface, one can predict the state of the 
spacetime at any time in the past or future if one knows the relevant data on the 
surface. See [30] for more discussion of these definitions. 

Although these definitions make sense for spacetimes of arbitrary dimension (2 
2), the following definition only applies to spacetimes of dimension 3 or greater. 
Let ( M , g , , )  be an ndimensional spacetime. A closed Pupped surface S is a Ca 
compact spacelike ( n  - 2) surface without boundary such that the two families of 
null geodesics orthogonal to S are converging at S, that is l%ibbg(lb and Zkobgnb 
are negative, where and 2+ are the two null second fundamental forms of 
S. Intuitively this definition is saymg that the gravitational field is so strong at S 
that even light cannot escape. Extending this definition to two spacetime dimensions 
is ditficult in that the closed trapped surface would have to be zero dimensional, 
most Likely consisting of two distinct poina. We have been unable to fmd a rigorous 
definition of this concept in two dimensions. Part of the problem is that the idea is a 
local o n e i t  only depends on the properties of the spacetime near S. But, as shown 
in section 4, in two dimensions there exist black holes for which spacetime is flat over 
large regions, so locally the event horizon (which is a likely candidate for the closed 
trapped surface) has no distinguishing properties. Also, when a ( 1  + 1)4imensionaI 
black hole contains a singularity, the spacetime is often disconnected and part of the 
event horizon is in one half and part in the other, complicating definitions based on 
the tolume' enclosed by the surface (although this may not be a serious problem for 
delta-function type singularities). And, the 'area' of the surface is no help since the 
surface is zero dimensional. 

As an attempt to see if some form of Penrose's theorem applies in two space- 
time dimensions, we have been investigating the causal structure of various (1 + 1)- 
dimensional spacetimes containing a surface satisfying the intuitive idea behind the 
definition of a closed trapped surface, and also containing a Cauchy surface. If such 
a spacetime were found that was non-singular, it would show that either Penrose's 
theorem was false in two dimensions, or that the conditions need to be strengthened. 
Recall that we need not wony about the null energy condition, as it is always true is 
two dimensions. 

Consider the static spacetime defined by the metric (28). Although this metric 
is smooth for smooth choices of El(+), the spacetime is null geodesically incomplete 
whenever 0 is non-constant and cos 28 = 0 for some x. This is seen as follows. Let 
xa(X) = ( t ( X ) , x ( X ) )  be a geodesic. Then the geodesic equations 

d x b d z e  + r = -  - = o  d2xa 
dX2 ,'dX dX 
- (59) 
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can be witten 

d21- dB [sin220 (g)' + 2 cos28sin 20-- d t  d x  + (cos'20 + 1) 
dX2 d z  dX dX 

(61) 

Note that the factor in brackets in equation (61) is precisely g,,(dz/dX)a(dx/dX)b, 
so for a null geodesic this equation becomes simply d2z/dX2 = 0. Thus for non- 
vertical null geodesics, we may choose X = z as our affine parameter. This justifies 
the claim earlier that these spacetimes are null geodesically incomplete when cos 20 = 
0 for some z since the vertical lines through these points are null geodesics and so 
null geodesics going in the same direction (i.e. 'left' or 'right') cannot cross these 
lines (by the uniqueness property of geodesics through a specific point with a specific 
tangent vector). Since x is an affine parameter for these geodesics, they must be 
L"p!ete. 

Equation (60) can be integrated for null geodesics to give 

t = J t a n ( B ( z ) f a ? r ) d z + c  (62) 

where the choice of sign selects right- or left-moving null geodesics. 
~ An interesting ~~~ . ~ ~ ~~.. choice of 8( z )  is 

= tan-'[2z/(1 + x 2 ) ]  (63) 

(see figure 4). This has the nice properties that it tends to 0 as r i f m  and equals 
0 at 0 and +$T at 51. Thus at i l  the light cones are tilting inwards at 45" and no 
non-spacelike geodesic can leave the region -1 < I < 1. Also, since the metric is 
independent o f t ,  the distance between the points ( t , - l )  and ( t , l )  is independent 
of t. So intuitively it would seem that this is a black hole and that for each 1, 
( t , - l ) , ( t , l )  should be called a 'closed trapped surface', whatever that means in 
two dimensions. (The independence- of 1 is important, for if we take the portion of 
Minkowski spacetime with t > 0 in the standard ( t ,  x) coordinates and transform to 
the coordinates ( t ,  z ' )  where 2' = x/t it would seem at fust glance that the resulting 
metric has a black hole with horizons at z' = 5 1 .  But clearly the distance between 
( t ,  I' = -1) and ( t ,  z' = 1) is 26 so the horizons do not enclose a bounded region.) 

This black hole is interesting in that there are no coordinate singularities in the 
metric. (In fact, it is Cm and non-degenerate everywhere.) But according to the 
earlier discussion, the null geodesics are incomplete. The integral (62) is easy to 
calculate for this choice of B and we find that the null geodesics are given by 

4 
1 F X  

(64) t = f r + - -  +41n 11 r +I + c. 

(See figure 5.) Although the geodesics are unbounded as z --t +.l, they still have 
finite affine length since I is an affine parameter. It is curious how different this 
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e 

-1 

Fipum 5. Some right-moving null geodesics for the metric with S ( z )  = tan-'[Zz/(l+ 
zl)]. All null geodesics cm be obtained @om lhose in the figure by shirring venically 
and/or reflecting in the I-axis. 

singular behaviour is from that typically found within black holes: the incomplete 
null geodesics approach the event horizon on the opposite side of the black hole 
instead of encountering a singularity at the centre of the black hole, and the metric 
is C" everywhere. Nevertneiess Penrose's theorem is found to hoid in this case and 
in several other cases that we investigated. 

Although we have not yet found a counterexample, we speculate that if a reason- 
able definition of a closed trapped surface in two dimensions is discovered, Penrose's 
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theorem will be found to be false as stated earlier, but will be true with a stronger 
energy mndition such as the weak energy condition (R,,iCaiCb 2 0 for all non- 
spacelike vectors #.). We suspect that the weak energy condition will be sufficient 
because all of the examples that we experimented with that were 'close' to violating 
Penrose's theorem also violated the weak energy mndition. 

6. Conclusions 

Theories of gravitation in two spacetime dimensions possess a wealth of solutions 
whose causal structure is far from trivial. Many of these have counterparts in (3 + 
1)dimensional general relativity, but a number of them have features which are 
quite distinct from the higher dimensional case. A more complete understanding 
of the implications of these spacetimes for (1 + 1)dimensional gravity will entail a 
deeper exploration of the singularities, the entropyivolume law and, ultimately, full 
quantization. 
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