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Abstract. We investigate the causal structure of (1 + 1)-dimensional spacetimes. Far
two sets of field equations we show that at Jeast locally any spacetime is a solution
for an appropriate choice of the matter fields. For the theories under consideration we
investigate how smoothness of their black hole solutions affects time orientation. We
show that if an analogue to Hawking’s area theorem holds in two spacetime dimensions,
it must actually state that the size of a black hole never increases, contrary to what
happens in four dimensions. Finally, we discuss the applicability of the Penrose and
Hawking singularity theorems to two spacetimme dimensions.

1. Introduction

Relativistic theories of gravitation in two spacetime dimensions provide an interesting
theoretical laboratory for understanding issues relevant to quantum gravity [1-10].
Such theories reduce the complexity of (3 + I)-dimensional general relativity signifi-
cantly, thereby offering much hope for obtaining significant insights into its quantiza-
tion, as well as an understanding of the issues associated with short-distance problems,
topology change, singularities and the cosmological constant problem. Recent work
has revealed interesting relationships between (1 + 1)-dimensional gravitational the-
ories and conformal field theory [9], the Liouville model [2-4], random lattice models
[10], and sigma models [11-14].

Although Einstein’s field equations are ftrivial in two spacetime dimensions, there
exist a variety of {1 + 1)-dimensional generally covariant theories of gravitation [2-8]
some of which have non-trivial dynamical structure. A close analogue of the Einstein
equations is given by [15, 16]

R—A=8nGT ey
along with the conservation equation
TH, =0 - @

where R is the Ricci scalar, A is a cosmological constant, T is the trace of the
stress—energy tensor, G’ is Newton’s constant and we have taken the speed of light
to be unity. These equations can be derived from a local action principle [17] by
incorporating an auxiliary field whose classical evolution does not affect the grav-
ity/matter system above. In the absence of matter this system reduces to the vacuum
field equation used in the Liouville model [2-4]. The classical aspects of this theory
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of gravity have been examined in some detail [15, 16, 18] and it has been shown that
it has a remarkable similarity to four-dimensional general relativity in many of its
features. These features include a Newtonian limit, Robertson-Walker cosmological
solutions, interior solutions, gravitational waves and the gravitationa! collapse of dust
into a black hole with an event horizon structure which is the same as that of the
four-dimensional Schwarzschild solution. Indeed, the field equations of this theory
follow from a dimensional reduction of Einstein’s equations in a certain limit [19]; in
this sense they form a (1 4 1)-dimensional version of general relativity.

These classical features are so closely analogous to (3 + 1)-dimensiona! general
relativity that one might hope its quantization would bear a similar resemblance to
(3 + 1)-dimensional quantum gravity. The semiclassical properties of this theory [17,
20, 21] do indeed yield interesting effects such as Hawking radiation and black hole
condensation. These properties are intimately connected with the ron-trivial event
horizon structures which can form in the theory in a manner quite similar to their
(3 + 1)-dimensional general relativistic counterparts.

Much more recently it has been shown that other (1 4 1)-dimensional theorics
of gravity which arise in the context of non-critical string theory can also yicld a
non-trivial event horizon structure. A spacetime exhibiting such features was recently
discovered as a solution to a scale-invariant higher-derivative theory of gravity [22],
and was later found to be a solution to ¢ = 1 Liouville gravity [23] as weli as to
a non-critical string theory in two spacetime dimensions [24, 25]. This latter result
sugpests the possiblity of using string-theoretic technology to examine the formation
and properties of black holes in more realistic cases,

The field equations associated with this theory are

e_qu(Rab + 2Va'§7br;6) = STI'GTa‘b (3)
R—-4(Vo) + 4V + J+c=0. @)

where a stress-energy tensor T,, and source J for the dilaton field ¢ have been
included, For J =0 = T,,, these equations reduce to those of non-critical (1 + 1)-
dimensional string theory in the absence of a tachyon field [24]. The black hole metric
which follows from (3) and (4) in this case is unique; it is asymptotically flat, and may
be matched to a solution for coliapsing dust provided appropriate surface siresses are
included, where the source J may be undetstood to arise from the tachyon sector
{26]. The quantum properties of the above metric are similar to those found in [18,
21] (see also [27-29]).

In this paper, we investigate the causal structure of solutions to these theories.
We begin by motivating the various solutions in section 2. In section 3 we ask whether
an arbitrary spacetime can be considered to be a solution to the field equations for
an appropriate choice of the matter fields, and we provide a partial answer. In
section 4 we examine some black hole solutions and Jook at their causal structure in
detail. We investipate how smoothness of solutions affects their time orientation. ‘We
mention that if an analogue to Hawking’s area theorem [30] holds in two spacetime
dimensions, it must actually state that the size of a black hole never increases, which
is exactly the opposite of what happens in four dimensions, and we note the difficulty
in interpreting the ‘size” of a black hole. In section 5 we discuss the applicability of
the Penrose and Hawking singularity theorems to two spacetime dimensions, focusing
on Penrose’s 1965 theorem [30, 31] which predicts that a spacetime containing a
closed trapped surface must be singular. We explain the difficulty in defining a closed
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trapped surface in two dimensions and show that the energy condition in Penrose’s
theorem is trivially true for all (1 + 1)-dimensional spacetimes. A spacetime with a
black hole which contains singularities of an unexpected type is used as an iliustrative
example. Finally, we summarize our results in a concluding section.

kground and motivation
Throughout this paper we will be examining many different spacetimes, so here we
introduce each of them and describe the context in which they arise. In general our
conventions follow those of Hawking and Ellis [30}.

By a spacetime (M, g,,) we shall mean a Hausdorff C* manifold A4 (without
boundary) of dimension 2 2 with a non-degenerate Lorentzian metric g,;, that is
a metric of signature (—,+,..-,+4). We define a vector v* to be dmelike, null or
spacelike if g,,v®v® is negative, zero or positive, respectively. We also assume that
the spacetime is time-orientable, ie. that there exists a continuous timelike vector
field on M.

We define the Riemann tensor, Ricci tensor and Ricci scalar as

are.. ars

Ry = 52— =22 4 DTV — Dy T, Q)

Ryq = R%q4 (©)
and

— pa _ pa b

M T AR g T AN badd \rs

respectively.
For our purposes it will be useful to write the static metric in the form
ds? = —a(z) de? + 32 ®)
ofz)’

Such a choice of coordinates is always possible, at least locally. Spacetimes given by
static metrics of this form fall into four distinct categories distinguished by the sign
of e at large |z|:

41 case A
I _ -1 case B 9
i, o802 () 1sgn(m) case C ©)
no limit case D.

Case A is the spacetime one would expect to arise from the endpoint of gravitational
collapse of a distribution of (14 1)-dimensional matter. Before collapse the signature
of the metric is everywhere (—, 4}, but afterward certain regions of spacetime develop
event horizons. In this case « must have an even number of roots (some pairs of
which may be degenerate) We shall cite an example of this below. Physical (1 4 1)-
dimensional observers (i.e. those abiding in a spacetime of signature (—, +), where
t is timelike) may be located at regions of large x, but will ultimately be unable to
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receive signals from observers at large —x since all such signals must cross the event
horizon once collapse has occurred. The second case is what one might expect in a
spacetime which has a cosmological constant, as we will jllustrate later. Again, o must
have an even number of roots. In this situation, observers are located only in regions
of |x| < R, (where R, is some constant), and are unable t0 receive information
from more distant regions of their universe. Case C is somewhat unusual in that it
has no (3 + 1)-dimensional analogue: spacetime has signature (—,-+) for large x
and has signature (+,-) for large —ux; without loss of generality « may be taken
to be positive as above. Originally such spacetimes were considered in the context
of a higher-derivative theory [22]; more recently they have become of interest in the
context of finding solutions to the system (3) and (4) with J = T, = 0 [24, 25].
Finally, case D involves those spacetimes for which o has no definite sign for large

We begin with solutions to the system (1) and (2). The symmetric, continuous
and static solutions for a point particle situated at the origin are given by (8) where

a(z) = -tAz? + 2M|z| - C (10)

on R% M can be interpreted as the mass of the source and C is an arbitrary
(but meaningful) constant. At z = 0 the metric is continuous but not differentiable
for M % 0. When afx)} = 0 the metric is singular, but for = # 0 these are just
coordinate singularities that result from writing the metric in the form (8). For various
choices of A, M and C the spacetime represents a black hole, a white hole, a naked
singularity or other more complicated structures. This spacetime can also be easily
extended to multiple point sources. All of this is explored in detail in [16].

Spacetimes with A # 0 can have a qualitatively different structure than their
(3 + 1)-dimensional counterparts. In (3 4+ 1) dimensions the most general static
isotropic metric may be written in the form

ds? = —=B(r)dt® + A(r)dr?+ r? (d0% +sin® 6d¢?) . (11)

The »r and 11 equations of general relativity imply that AB is a positive constant C
and that

1d2B | 1dB
—A= st o e (12)

where B = B/C, whereas the 66 and ¢¢ parts of Einstein’s equations imply

_T2A=._1+r%§+é. (13)

As (13) implies (12), we obtain the solution

= _ AAX 2 Ca
B(r) = (1 i ) + " (14)
which is the (3 4 1)-dimensional analogue of (10). The metric (14) is of type B. Note
that the ratio between the 2 coefficient and the constant term is forced by (13} to be
—A/3, in contrast to the freedom available in choosing C in the (1 + 1)-dimensjonal
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solution (10). This freedom arises because of the lack of angular information in
(1 + 1) dimensions; there is no equation corresponding to (13). Consequently a
cosmological event horizon can only arise for A > 0 in (3 4 1) dimensions, whereas
such horizons can appear for either sign of A in (10). Hence in (1 + 1) dimensions,
metrics with cosmological event horizons of type A and B are both possible.

Another interesting solution to equations (1) and (2) arises in the symmetric
collapse of an initially static distribution of pressureless dust [18]. The metric for the
interior of the dust is given by

ds? = —dt? + (1 - bt?)?da? (15)

in the region § = {(t,2)}0 < t < 1/vb,|z| <= r}, whete & = +r are the
(constant) positions of the edges of the dust in the comoving coordinate system and
b = 2nGp;. The dust collapses from a static condition of uniform density p; at
t = 0 to one of infinite density as ¢t — 1/+/b. To match this metric to an external
vacuum solution we define

X(t,x) = x(1 - bt?) (16)
T(t,2) = = tannt | 2brt _| an
MR 2br |_\/bt2+eW’-f (1 —bi2y v

This transformation is a one-to-one transformation of S if br® < %; otherwise there
are cases in which (i,,«) and (t,,z) map to the same (T,X). However if we
restrict ourselves to t < 1br the transformation will again be one-to-one. Note that
this transformation always transforms the boundary @ = %r in a one-to-one manner.
In (T, X) coordinates the metric can be written

dx?
— 2
where
e oom nz.r_‘,i’,2___,..2\;. L} L9 _ NI VIV 25(5’.3_7._2\,_. _} ;2%
B(T, x) = B8+ P71 - be%) - 4BEARPILE 4 BETTN -0 g

etb(=7=1 — 4522242}
and in which x and ¢ are defined implicitly by (16) and (17). This matches the static
fiat outside metric

ax?
4br|X|+ 1 - 4br2

M
\ﬁ\),

at the edges z = %r, X = £r(1 ~ bt?) of the fluid. This represents a black hole

if 572 > 2 which is exactly when the transformanon (16} and (17) is not one-tG-one.
This COndltiOn can also be written as gy > ﬂ'Gr The ‘Schwarzschild’ radius is

1
([=r— — 21
so the dust becomes a black hole when ¢ = 1br, which is precisely the point at which
the coordinate transformation first fails to be one-to-one.
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The system (3) and (4) has similar solutions. The unique vacuum solution is given
by the metric (8) with

a(z) =1—ge~9* (22)
and dilaton field
qb = —-%Qm (23)

on % where a and Q% = J + ¢ are constants of integration. This solution has been
discussed in the context of a scale-invariant higher-derivative theory of gravity {22},
¢ = 1 Liouville gravity [23] and a non-critical string theory [24, 25]. This metric lacks
the spatial symmetry of (10) and is of type C; indeed the curvature scalar diverges
as z — —oo. If x is replaced with || in (22), the solution models a point source
[26]. This point source is, in fact, the endpoint of the gravitational collapse of a
pressureless dust. The interior region of the collapsing solution is given by

2
ds? = —dt? + (1 — Atan (-g-t)) dz? (24)

p=¢;—In (cos (gt)) (25)

where 0 <t < (2/Q)tan~? A~1 and |z} < r. The exterior vacuum solution is

dXx?

ds? = — (1 _ ae—QlXi) dT2+ TW: -

¢ = -3Q|X]| 27

where 0 £ T and

. 2 1 Q
X|g-= — — (1 — ae?¥° HZ
| X < quo-!- ) ln [1 (1 — ae’®*}tanh (2 T)]
and @ > O for asymptotic flatness. For ¢, < 0, the solution (26) and (27) may be
C°-matched to the solution (24) and (25) provided an appropriate surface stress—
energy tensor and dilaton current are included [26].

Finally, as an example of a metric of type D, consider

ds? = —cos260dt? + 2sin28dtdz + cos 26 d2? (28)

on R? where ¢ = @(x). Note that for @ constant this is Minkowski spacetime in
coordinates rotated by the angle 4. Thus when @ varies with z it determines the
tilting of the light cones throughout the spacetime. This metric can be expressed in
the form (8) by transforming to ¢’ = ¢ — f tan 26 d, which gives

ds? = —cos 26d2? + da? e : R ¢4
cos 28

For a wide variety of choices of #(x) this metric will have no definite sign for large
[z[. We shall make use of this metric in the form (28) as it has no coordinate
singularities.
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3. Do the field equations put a restriction on the spacetime?

In (3 4 1)-dimensional general relativity, the field equations can be written
Ra.b - %Rgab + Agab = stTab' (30)

It is clear that given any spacetime (M, g,;) we can use (30) to define T, and then
the spacetime will be a solution to these equations for this choice of T,,. Thus
any restrictions on the spacetime metric in general relativity are a consequence of
requiring the distribution of matter to be physically reasonable, ie. to be locally causal
and to respect either the weak or dominant energy conditions. Whether or not such
a property holds for the (1 4 1)-dimensional theories of gravity considered here is
the subject of the present section.

Consider first the theory based on the equations (1) and (2). Since the Ricci scalar
couples to the trace of the stress—energy, it is not so obvious that the same property
holds. That is, given a spacetime (M, g,;,) does there exist a symmetric tensor field
T,, satisfying (1) and (2)? We prove that locally such a tensor field always exists
for a sufficiently smooth metric and give an intuitive argument conjecturing that the
globa] result is also true, at least for simply connected manifolds. Note that (1) and
(2) represent three equations and that the tensor field T,, has three independent
components,

Theorem 1. Let (M,g,;) be a (1 + 1)-dimensional spacetime and assume that g,
is C* and that p € M. Then there exists a symmetric tensor field 7% defined on a
neighbourhood U of p satisfying (1) and (2).

Proof. Since (1+ 1)-dimensional spacetimes are locally conformally flat, we can find
a neighbourhood N of p and a conformal factor e” where o = o(t,z) is C*, such
that in IV the metric can be written

ds? = e”({—~d#* 4 dz?). (31)
In this coordinate system equation (1) becomes

o7 (8% 3%\ -

Yood
i

(55~ 57 A =8O CT 4 T @)
and equation (2) becomes
aT+ it aT”’ 8o . 8o
——— _— T Iy a2 = 3
2 3 +3 T +2 +4awT +BtT 0 (33)
di FE 00 ez d-'[ i tr O .
—}-33 T 4 20— +4—T "_8mT = 0. G4

We now must show that this system of three equations in thrée unknowns has a
solution in a neighbourhood of p. Let F = T 4+ T°% G = 27T and ¢ = ~20.
Then using (32), equations (33) and (34) become
oOF L 9¢ dG _ 08¢
Bt " dx T Bt

F 3
3 5o+ 5 G a¢ +-EG+M (36)

F+-—G+M (35)
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where M, and M, are expressions involving ¢ and its derivatives up to third order

and A, and thus are C'. Now define ' = F + G and & = F — G. Then (35) +
{36) becomes

aF 8F (8¢ 8o\ -
FTI a—m‘—-( +—)F+ﬂ;ﬂ+1\ffz (37

and (35) — (36) becomes

TelTe: (qu a¢

B 8t~ Bz

e )G‘+M M,. (38)

Equatlons {35) and (36) have a solution if and on]y 1f equations (37) and (38)

Tha 11 nf M2} Al A chrmue tha A all ha ey
UU 1IEorenm .f...]. 01 l..?.)_l Cil &4 S{0OWS I.ual, \.Jf} ana \JUJ Wi nave DUI!.II.IUI[D lll a

neighbourhood U of p. (In fact, the theorem shows that for any C! Cauchy data
defined on a C' non-characteristic initial curve D in N, there exists a unique C!
solution to (37) and (38) in a neighbourhood of D.) O

For the system based on (3) and (4) it is clear that (3) can be used to define
T.,. What is not 5o clear is whether given a spacetime (M, g,,} there exists a scalar

field ¢ satisfying (4). We prove that locally ‘such a scalar field always exists for a
sufficiently smooth metric,

Theorem 2. let (M,g,;) be a {1+ 1)-dimensional spacetime and assume that g,
is C? and that p € M. Then there exists a scalar field ¢ defined on a neighbourhood
U of p satisfying (4).

Proof. As before, we can find a neighbourhood N of p and a conformal factor e”
where o is C?, such that in N the metric can be written

ds? = e?(—dt? + dx?). (39)
In this coordinate system equation (4) becomes
e i | AN
6 6, (9N (8N _yp g _.; ¢ 4
at2+'a'—'§+ _{ - -8_.7,‘ _Z( t1 :!:a.'_( +C)e ) (0)

Define new coordinates ¢’ and =’ by ' = ¢t + = and 2’ = t — z. Then (40) can be
written

9% B84 1 .
3.1.“'31" - (_9}_;-3_3‘,.7 + E(HRH + R.’rz‘ + (J + ,c)e ) (41)

Theorem 7.1 of [33, ch 4] shows that (41) will have C? solutions in a neighbourhood
U of p since the right-hand side is a continuous function of 8¢/8t', 8¢ /8!, t
and z’ and also satisfies a Lipschitz condition in 8¢/8x" and 8¢/8t". Since the
solution will be C?, it will also satisfy (40). (In fact, the theorem shows that for any
appropriate Cauchy data defined on a C' non-characteristic initial curve I in N,
there exists a unique solution to (41} in a neighbourhood of D) 0
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We conjecture that these results can be extended to any simply connected region
S of a spacetime and that theorem 1 is valid for C* metrics. It may be possible
to construct proofs of these conjectures by investigating the field equations without
using conformal coordinates or by using a ‘quilting’ argument that patches together
conformal neighbourhoods using the Cauchy property of the solutions. Starting with
a point p € 5 we find a region on which a solution exists, by the above theorem.
Then along the boundary of this region we apply the theorem repeatedly and use the
parenthetical remarks at the end of theorems 1 and 2 to extend the solution to all of
the spacetime S,

In the rest of the paper we are not concerned with specific field equations and
dea! with arbitrary spacetimes, many of which are known solutions to the theories
discussed earlier. If our conjectures are true then every spacetime we discuss below is
a solution, since each connected component of these spacetimes is simply connected.

4. The causal structure of (1 4 1)-dimensional black holes

Penrose diagrams are invaluable tools in the investigation of the causal structure of
a spacetime The causal structure of a spacetime depends only on its oonformal

cérmmtntra  cines matmor fhaé ara ralaftad he a annfaesmal fantar hava fha samma
oLl u\.ol.“l\.f’ Dulu\- LW A%) LGl R 1w idtwhl UJ' G MAJLIIVA MG LAawrl LIAYW Lilw Jallle ublll

cones. As all (1 + 1)-dimensional metrics are conformally flat, it is straightforward
to choose coordinates so that

g= e (";)1 2) (“2)

for any particular timelike or spacelike region. However it is not, in general, possible
to carry out such a transformation for the entire two-dimensional space, as any
event horizons are located at |o| = oo. In contrast to this, writing the metric
in the form (8) is especially useful in that it clearly illustrates the full event horizon
structure of the spacetime in 2 manner similar to the (341)-dimensional Schwarzchild
metric. In general «(xz) will take on both positive and negative values, corresponding
respectively to timelike and spacelike regions. Points at which the metric changes
signature are given by o(z) = 0; these are coordinate singularities and locate the
event horizons.

The spacetime in (8) with o = «{z) may be maximally extended by carrying out
the Kruskal-Szekeres transformation:

¥ dz
-
% = —sgn(a)exp(t) (44
which yields
Ldudu

@)

ds® = da(uv)

where a(uv) is implicitly defined via equation (43). As in the (3 4 1)-dimensional
case, the (u,v) space is a double cover of the (¢,«) space and the horizons are at
uv = 0.
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Using the metric in the form (8) makes it easy to identify the generic structure
of curvature singularities for static metrics. From (5) and (6) it may be shown that
both the Riemann and Ricci tensors are uniquely determinable in terms of the Ricci
scalar in two spacetime dimensjons. Since R = —d?«/d2?, all curvature singularities
will manifest themselves in terms of divergences in the second derivative of a(z).
This will not necessarily occur at a point where the metric diverges. Consider the
(1 -+ 1)-dimensional analogue of a spherically symmetric black hole, a black hole for
which o = o([z|). This will correspond to a spacetime of type A or B. The curvature
is

R =-a"(r) - 28(x)a'(0) (46)
where r = [z| and the prime denotes d/dr. If a’(0) % 0 then there will be a
deiia-function singuiarity in the curvature. If o”(r) and {0} are finite over ihe
entire range of r (0 § r < co) this will be the only singularity in the curvature.

Ix=0

Ixl=2M

Figure 1. Penrose diagram for the {1 - 1)-dimensional spherically symmetric black hole,

Using the coordinates given in (45), the Penrose diagram for such a black hole
may be easily constructed. The result is given in figure 1. It is qualitatively the same
as the diagram for the (3 + 1)-dimensional Schwarzchild case, except that each point
on the diagram represents a O-sphere instead of a 2-sphere. Since a 0-sphere consists
of two points, an alternative representation of the entire spacetime —oo < z < oo
may be given by taking two copies of figure 1, one for » > 0 and the other for » < 0,
and joining them at each of the lines at || = 0 at the respective top and bottom of
each copy leading to a singular curvature at the junction. A simple visualization is
both sides of the papér. Meirics describing Such Spacetimes are given by {i0) with
A =0 and by (26).

The Penrose diagram for the collapsing fluid discussed in section 2 equations (15)
and (20) is given in figure 2. Each point in this diagram represents a O-sphere. As
above, this can be represented by two copies of the figure joined along [z| = 0.

Note that the time orientation on each copy of these diagrams is the same, and
so closed timelike curves are not present in the spacetimes described by 1 and 2
Indeed, for the collapsing fluid observers on either side of it can travel through the
fluid to verify before collapse that they have the same time orientation; smoothness
of the metric implies that this is maintained after collapse. The static black holes
(10) and (26) model the endpoint of such a collapse and so are taken to have the
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Figure 2, Penrose diagram for a collapsing fluid. Figure 3. An unfolded Penrose diagram.

same time orientation for positive and negative z outside the horizon. One might
consider taking multiple copies of figure 1 and joining them in sequence at |z} = 0.
However such joinings at || = 0 (which are not at coordinate singularities but are at
delta-function curvature singularities) would make the entire manifold non-Hausdorff
since each point on each individual copy represents a O-sphere [21].

Black hole spacetimes of type C have a different structure. The Penrose diagram
is still qualitatively the same as figure 1, except that each point on the diagram
represents only one point in the spacetime (as opposed to being a 0-sphere). Hence
there is now a 1:1 mapping between points in spacetime and points on the diagram,
instead of a 2:1 mapping as before. If no curvature singularities are present, it is
possible to extend this diagram by making multiple copies of figure 1 and joining
them in sequence along the horizontal lines as in figure 3. Again, instead of each
point representing a O-sphere, there would also be a 1:1 mapping between points in
the (extended) spacetime and points on the diagram.

In constructing Penrose diagrams for (1 + 1)-dimensional metrics, it is important
to note that the criterion for asymptotic flatness is slightly more general than in higher
dimensions. It is sufficient to require that o{z) — Klz| + C for large |z|, since a
Rindler transformation may then be applied locally to obtain a flat metric. Taking
o = In(cosh( K'z)) + C, for example, satisfies this criterion; it has no curvature
singularities and its Penrose diagram is of the type given in figure 3. In general
such metrics are solutions of the field equations only for physically unreasonable
(1 + 1)-dimensional stress—energy tensors.

Diagrams for the cosmological cases may also be easily constructed. Consider the
metric (10) with M = 0. For C = —1 this yields either the metric for de Sitter space
ifA>O

ds? = —cos? ( %|A|y) dt? + dy? 47
(using the transformation sin(y/%|Aly) = 1/1]|Alx) or anti-de Sitter space if A < 0:

ds® = —cosh® ( %iAEy) dt? +dy® (43)
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(using the transformation sinh(y/%|Aly) = y/1|Alz). The Penrose diagrams for
these cases are the same as in the (3 + 1)-dimensional case. However, for C = 1 an
alternate version of anti-de Sitter space is possible with the metric

ds? = ~(1|A]z? — 1) d2? + _.ﬁ__ o (49)
2 2Ajz? -1
which may be written as
ds? = —sinh? ( %|A|y> dt? + dy? (50)

using the transformation cosh(/3[Aly) = (/i|Alz. For large y the spacetime
described by (50) is the same as that described by (48). However there is an event
horizon at ¥ = 0 (xz == \/2/|A[} which is absent in the usual anti-de Sitter case.

We close this section by making some general comments on the thermodynamics
of (1 + 1)-dimensional black holes. It is straightforward to show using either naive
Wick-rotation arguments [16, 26] or a more formal quantum-field-theoretic treatment
[20, 21] that the temperature T of a black hole is given by

T=M/27 (51}

where A is the mass parameter. One can then define the entropy S of the black
hole via the thermodynamic relation [16]

dM =Tds (52)

since one can relate the mass parameter to the energy for both of the theories given
by (1), (2) and (3), (4). In the former case one can appeal to the Newtonian limit
of the theory [15] and in the latter case one can compute the ADM mass [25). Hence
the entropy varies logarithmically with the mass parameter

S ~In(M/M,) (53}

where M, is a constant of integration which appears as a fundamental mass scale in
the theory; its origin presumably lies within a fully quantized version of the (14 1)~
dimensional gravitation theories discussed here. A more detailed investigation of the
general thermodynamics given by (52) and (53) may be found in [21].

Relating this definition of entropy to an area parameter associated with the black
hole is somewhat more problematic. In (3 4+ 1) dimensions Hawking’s area theorem
says that the area of a closed trapped surface will never decrease. The association
of an entropy with the area of the horizon then implies that the entropy of a black
hole will never decrease in any physical process. In (1 + 1) dimensions the ‘area’
of a closed trapped surface is meaningless because the horizon is a zero-dimensional
surface. However it may be true that the volume of a black hole (that is the geodesic
length enclosed by the horizon) has a similar property. If the metric js C° within
the horizon (i.e. if the horizon encioses only delta-function singularities) then the
geodesic length between the horizons is well defined and is given by

£=f:ds (54)
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where a and b are any two opposing points on the horizon’s worldlines. For the static
black hole given by (10) with A = 0 we obtain

¢ 1/2M dz 1/2M dx 2 s
= —— = 2 —_—
f_l/zM V1 —2M|z| o V1i—-2Mz M (53)

Also, the volume of the string-theoretic black hole (26) is given by

In2/2M dz In2/2M dz -
I A Y L S S
—inz/2pm V2e2M= 1 o VoeMz _ 1~ 2M

Thus for these cases we find that in (1 4+ 1) dimensions the volume of a black hole
decreages as matter is adrlpd as follows from the fn“nwmu dimensional nrgnmpnfq

ARSI ARANS X,

Suppose we have a static black hole in the form (8) Thcn dimensionally we must
have o = a(M ). Let the horizons occur at «;, and xg. Then we have that

(56)

dy

£= / . fyﬂ——-— 67
\/a(M'a: M vely)

where y = Mex.

So it seems to be a general property of static (1 4 I }-dimensional black holes that
their volume decreases as their mass (and entropy) increases. A (1 + 1)-dimensional
analogue of the area law would then involve demonstrating that in any physical
process the volume of the black hole never increases (and hence the entropy never
decreases, since it would vary as S ~ —1n(V/V;) [16]). Note that for spacetimes
of type C there will be a region of signature (+,—) which is not enclosed by two
regions of signature {—,+), vielding an infinite geodesic length for such a region
and a breakdown of the entropy/length relation. Such objects more closely resemble
cosmological event horizons than black holes, since it is difficult to see how they could
arise as the endpoint of gravitational collapse of some distribution of matter [26].

5. Comments on singularity theorems in two dimensions

As mentioned in the previous section, the structure of curvature singularities is easily
analysed using the metric in the form (8). Extending the well known singularity the-
orems [30, 31] to two dimensions is somewhat more problematic. Consider Penrose’s
1965 theorem, which states:

Theorem 3. (Penrose 1965) A four-dimensional spacetime (M, g_,) cannot be null
geodesically complete if

(i) R,, K®K*® 2> 0 for all null vectors K°;

(ii) there is a non-compact Cauchy surface in M and

(iii) there is a closed trapped surface in M.

A, proof of this theorem is given in [30, 31].
A spacetime is said to be null (respectively fimelike, spacelike) geodesically com-
plete if all null (respectively timelike, spacelike) geodesics can be extended to arbitrary
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affine parameter values. A spacetime is usually s2id to be singular if it is not geodesi-
cally complete.

The first two conditions are casily generalized to (1 + 1) dimensions. Condition 1
is called the nuil energy condition and implies in higher dimensions that the expansion
of congruences of null geodesics monotonically decreases along the geodesics. This
condition is trivially true for all (1 4+ 1)-dimensional spacetimes because the identity
R, = 1g,; B implies that for all null vectors K*

R,y K Kb=1g RK°K®=0. (58)

A Cauchy surface is a spacelike hypersurface which every inextendibie non-spacelike
curve intersects exactly once, a concept which may also be extended to (1 + 1)
dimensions. If a spacetime admits a Cauchy surface, one can predict the state of the
spacetime at any time in the past or future if one knows the relevant data on the
surface. See [30] for more discussion of these definitions.

Although these definitions make sense for spacetimes of arbitrary dimension (3
2), the following definition only applies to spacetimes of dimension 3 or greater.
Let (M,g,;) be an n-dimensional spacetime. A closed trapped surface S is a C?
compact spacelike {n — 2} surface without boundary such that the two families of
null geodesics orthogonal to S are converging at S, that is ;%,,¢%° and ,%,;9%
are negative, where ;x., and ,%,, are the two nuil second fundamental forms of
5. Intuitively this definition is saying that the gravitational! field is so strong at S
that even light cannot escape. Extending this definition to two spacetime dimensions
is difficult in that the closed trapped surface would have to be zero dimensional,
most likely consisting of two distinct points. We have been unable to find a rigorous
definition of this concept in two dimensions. Part of the problem is that the idea is a
Jocal one—it only depends on the properties of the spacetime near S. But, as shown
in section 4, in two dimensions there exist black holes for which spacetime is fiat over
large regions, so locally the event horizon (which is a likely candidate for the closed
trapped surface)} has no distinguishing properties. Also, when a (1 4 1)-dimensional
black hole contains a singularity, the spacetime is often disconnected and part of the
event horizon is in one half and part in the other, complicating definitions based on
the ‘volume’ enclosed by the surface (although this may not be a serious problem for
delta-function type singularities). And, the ‘area’ of the surface is no help since the
surface is zero dimensional.

As an attempt to see if some form of Penrose’s theorem applies in two space-
time dimensions, we have been investigating the causal structure of various (1 + 1)-
dimensional spacetimes containing a surface satisfying the intuitive idea behind the
definition of a closed trapped surface, and also containing a Cauchy surface. If such
a spacetime were found that was non-singular, it would show that either Penrose’s
theorem was false in two dimensions, or that the conditions need to be strengthened,
Recall that we need not worry about the nuil energy condition, as it is always true is
two dimensions.

Consider the static spacetime defined by the metric (28). Although this metric
is smooth for smooth choices of 8(x), the spacetime is null geodesically incomplete
whenever ¢ is non-constant and cos 26 = 0 for some 2. This is seen as follows. Let
z®(A} = (t(A), z(A)) be a geodesic. Then the geodesic equations

d?z* . de’dz®
o Tl g3 =0 (59)
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can be written

et _do| . , dt\’ . adt dr ) dz\?}
- [ 29( )+2c052951n293—jﬁ+(cos 26+1)(-&T) =0

Az~ dz dA

(60)
42,  Je TR dt do 7 a.\21
;—;—-{-; sin 26'- cos 28 ku—;) +2sin26§—§-§—3+c05229 K-u—;—) J = Q

(61)

Note that the factor in brackets in equation (61) is precisely g,,(dz/dA)*(d=/d)\)?,
so for a pull geodesic this equation becomes simply d?z/dA% = 0. Thus for non-
vertical null geodesics, we may choose A = x as our affine parameter. This justifies
the claim earlier that these spacetimes are null geodesically incomplete when cos 26 =
0 for some z since the vertical lines through these points are null geodesics and so
null geodesics going in the same direction (ie. ‘left’ or ‘right’} cannot cross these
lines (by the uniqueness property of geodesics through a specific point with a specific
tangent vector). Since x 5 an affine parameter for these geodesics, they must be
incompiete.
Equation (60) can be integrated for null geodesics to give

1= /tan(ﬂ(x) +im)de+ec (62)

where the choice of sign selects right- or left-moving null geodesics.
An interesting choice of () is

8(z) = tan~!{2z/(1 + z?)] (63)

(see figure 4). This has the nice properties that it tends to 0 as » — *co and equals
0 at 0 and +1n at +1. Thus at +1 the light cones are tilting inwards at 45° and no
non-spacelike geodesic can leave the region —1 < z < 1. Also, since the metric is
independent of ¢, the distance between the points (,—1) and (#,1) is independent
of t. So intuitively it would seem that this is a black hole and that for each %,
(t,—1),(¢,1) should be called a ‘closed trapped surface’, whatever that means in
two dimensions. (The independence of i is important, for if we take the portion of
Minkowski spacetime with 1 > 0 in the standard (¢, x) coordinates and transform to
the coordinates (t, ') where =’ = x /¢ it would seem at first glance that the resulting
metric has 2 black hole with horizons at ' = 1. But clearly the distance between
(t,2’ = —1) and (¢,2' = 1) is 2¢ so0 the horizons do not enclose a bounded region.)
This black hole is interesting in that there are no coordinate singularities in the
metric. (In fact, it is C* and non-degenerate everywhere.) But according to the
earlier discussion, the null geodesics are incomplete. The integral (62) is easy to
calculate for this choice of ¢ and we find that the null geodesics are given by

A
t=:|:m+ﬁ:—-5+4ln|1:]:a:i+c. 64)

(See figure 5.) Although the geodesics are unbounded as ¢ — =1, they still have
finite affine length since = is an affine parameter. It is curious how different this
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Figure 4. Plot of 8(z) = tan~—*[2z /{1 + z?)].
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Fipure 5. Some right-moving null geodesics for the metric with #{z) = tan~'[2z /(1 +
z%)]. All null geodesics can be obtained from those in the Bgure by shifting vertically
and/or reflecting in the {-axis.

singular behaviour is from that typically found within black holes: the incomplete
null geodesics approach the event horizon on the opposite side of the black hole
instead of encountering a singularity at the centre of the black hole, and the metric
is C® everywhere. Nevertheless Penrose’s theorem is found to hoid in this case and
in several other cases that we investigated.

Although we have not yet found a counterexample, we speculate that if a reason-
able definition of a closed trapped surface in two dimensions is discovered, Penrose’s
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theorem will be found to be false as stated earlier, but will be true with a stronger
energy condition such as the weak energy condition (R,,/*K® > 0 for all non-
spacelike vectors K*®). We suspect that the weak energy condition will be sufficient
because all of the examples that we experimented with that were ‘close’ to violating
Penrose’s theorem also violated the weak energy condition.

6. Conclusions

Theories of gravitation in two spacetime dimensions possess a wealth of solutions
whose causal structure is far from trivial. Many of these have counterparts in (3 +
1)<dimensional general relativity, but a number of them have features which are
quite distinct from the higher dimensional case. A more complete understanding
of the implications of these spacetimes for (1 + 1)-dimensional gravity will entail a
deeper exploration of the singularities, the entropy/volume law and, ultimately, full
quantization.
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