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We provide an analysis and statement of the source term in the classical Kaluza field equations, by considering the 5-dimensional
(5D) energy-momentum tensor corresponding to the 5D geodesic hypothesis that is typically presumed in the Kaluza theory. By
providing the 5D matter Lagrangian, this work completes a Lagrangian analysis of the classical Kaluza theory that began by
establishing the proper form of the unique Kaluza field Lagrangian. This work considers the transformation properties
necessitated by general covariance of the Kaluza source terms, to establish the correct form for the source terms in the field
equations, and to establish the 5D matter Lagrangian that corresponds to the 5D geodesic hypothesis. In addition to the effects
of a scalar field expected from other scalar-tensor or scalar-electromagnetic theories, a peculiar Kaluza coupling coefficient arises
for charged matter which acts to vary the source strengths in ways unknown to conventional physics. We briefly evaluate the
implied modifications to source terms in the field equations. We find an ADM-like neutralization of gravity at high specific
charge states and a saturation in field strength at high specific charge-to-mass ratios.

1. Introduction and Previous Results

Kaluza [1] recognized that the tensor gravitational potential
of general relativity, and the vector potential of elec-
tromagnetism, could be understood as components of a
5-dimensional (5D) tensor gravitational potential. This uni-
fication implies an additional 15th component that behaves
as a scalar under 4D transformations. Kaluza originally set
the Kaluza scalar field (KSF) to a constant; indeed, the 4D
limit of the Kaluza ansatz occurs when the KSF goes to 1.
The full field equations including the KSF were developed
over succeeding decades, and by multiple independent
research groups, e.g., [2–6]. Ref. [7] provides a history of the
various groups, led by Scherrer in Switzerland, Lichnerowicz
in France, Jordan in Germany, and Dicke at Princeton. We
can also add associates of Einstein at Princeton in the 1930s.

Klein proposed a compact, microscopic interpretation of
the 5th dimension [8], which has informed “Kaluza-Klein”
theories since. There is no logical necessity to the micro-
scopic assumption [6], and it raises as many difficulties

as it resolves. We consider here instead the purely classical
theory, with the 5th dimension allowed to be fully open
and macroscopic.

The Kaluza ansatz is to write the Einstein equations in 5
dimensions:

~Gab =
8π~G
c4

~Tab, ð1Þ

where ~Gab is a 5D Einstein tensor for a 5D metric ~gab, ~G
is a 5D gravitational constant, c is the speed of light, and
~Tab is a 5D energy-momentum source term. Small roman
indices range over the 5 dimensions. Kaluza enforced the
lack of an apparent fifth dimension with the “cylinder
condition,” ∂~gab/∂x5 = 0, meaning that no fields depend
on the fifth coordinate. Without this condition, many
more degrees of freedom result, and there is no clear
mapping to familiar physics.
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The components of the 5D metric ~gab are given in terms
of the 4D metric gμν, the electromagnetic covariant 4-vector
potential Aμ, and a scalar field ϕ:

~gμν = gμν + ϕ2k2AμAν,

~g5ν = ϕ2kAν,
~g55 = ϕ2:

ð2Þ

where Greek indices range over the 4 dimensions of space-
time and the index 5 denotes the fifth dimension. We
allow the sign of ~g55 to be unspecified for now. Because
~gab~g

bc = δca, the inverse metric is given by:

~gμν = gμν,
~g5ν = −kAν,

~g55 = k2A2+ 1
ϕ2

:

ð3Þ

The constant k is the characteristic electro-gravitic
scale parameter of the Kaluza theory, combining the grav-
itational constant G and either the permittivity of free
space, ε0, or the permeability of free space, μ0:

kc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGε0

p
=

ffiffiffiffiffiffiffiffiffiffiffi
16πG
μ0c2

s
≃ 1:7 × 10−10 C/kg: ð4Þ

k is typically written in CGS units in other references,
so the electric dependence is somewhat obscured. Here we
use MKS units, which makes the electrical dependence
explicit. There are no free parameters in the Kaluza the-
ory, and k is the only characteristic constant. k is a classi-
cal quantity, closely related to the ADM mass [9]. Note
that kAμ is unitless.

The 4D field equations are contained in the 5D Einstein
tensor ~Gab: the Einstein equations with electromagnetic and
scalar field energy-momentum are contained in ~Gμν; the

Maxwell equations modified by a scalar field are in ~G5μ; and
~G55 provides an equation for ϕ.

To resolve apparent contradictions among expressions
for the field equations found in the English language liter-
ature, ~Gab was evaluated using tensor algebra software
[10], and the associated Kaluza Lagrangian was established
from the 5D Hilbert Lagrangian density to be

L = g1/2 c4ϕ
16πG gαβRαβ −

ϕ3

4μ0
gαμgβνFαβFμν

� �
, ð5Þ

where Rμν is the Ricci tensor, Fμν ≡ ∂μAν − ∂νAμ is the elec-
tromagnetic field strength tensor, g is the determinant of
gμν, and the gravitational field equations are obtained from
variation with respect to gμν.

A review of the literature based on [10] shows that few
authors recover this Lagrangian, and the literature is littered

with algebraic errors in either the 5D curvature tensor ~Rab or
the 5D Einstein tensor ~Gab. Only Ref. [4] was found to accu-
rately capture the curvature and Einstein tensor components,
as well as the Lagrangian (5). Ref. [5] provides the correct
Einstein tensor components and Lagrangian but makes a
few errors in the curvature tensors. Refs. [3, 6] have the cor-
rect curvature tensors.

The expression (5) follows uniquely from a consideration
of the 5D Hilbert Lagrangian, ~g1/2~R. The form of (5) is quite
unusual, because it depends only algebraically on the KSF.
Even so, full scalar field dynamics are still obtained in the the-
ory, as we will see. Still, other authors reflexively add an addi-
tional standard scalar field kinetic term ∝ð∂μϕÞð∂μϕÞ, as in
the Brans-Dicke theory [11]; but this degree of freedom is
not naturally in the Kaluza theory once the cylinder condi-
tion is imposed.

It is true that a conformal transformation can remove the
scalar field from the gravitational term in (5), but it comes at
the expense of adding a scalar field kinetic term to the
Lagrangian. The frame with a scalar field is the “Jordan
frame,” and the conformally transformed frame with the sca-
lar field kinetic term is the “Einstein frame.” The conformal
transformation does not change the physics, however, and
particles still move on geodesics of the Jordan frame, not
the Einstein frame [12]. The electromagnetic term in (5) is
invariant under a conformal transformation [5].

Note that the KSF acts both as a variable gravitational
constant, as in [11], and as a variable dielectric constant, as
in [13]. This makes the theory quite unique among scalar-
tensor theories, and among scalar-electromagnetic theories.
The textbook, 4D limit is ϕ⟶ 1.

In this work, we provide an analysis of the source term in
(1) and thereby complete the Kaluza field equations. We find
that 5D covariance constrains the form of the source term.
We will then go on to consider implications for these source
terms in the electromagnetic, scalar, and gravitational field
equations.

2. Identification of Electric Charge

In addition to the correspondence in the field equations,
Kaluza [1] also recognized that the 5D geodesic equation
contained the 4D geodesic equation plus the Lorentz force
of electromagnetism, and identified electric charge with
motion along the fifth coordinate. However, many authors,
including Kaluza, considered weak charge states only, to
avoid the apparent modifications of the field equations that
occur in highly charged systems. An exact treatment for all
charge states will be provided here.

Various authors make different identifications of electric
charge in terms of the Kaluza theory parameters. The first
step is to precisely identify electric charge in terms of the
Kaluza theory parameters and relate it to choices made by
other authors. Therefore we start like Kaluza, with the 5D
geodesic equation for a particle with 5D proper velocity ~U

a
:

d ~U
a

ds
+ ~Γ

a
bc
~U
b ~U

c = 0, ð6Þ

2 Advances in Mathematical Physics



where

~U
a ≡

dxa

ds
,

ds2 ≡ ~gabdx
adxb:

ð7Þ

From (2), it follows that the 4D and 5D length elements
are related:

a2ds2 = gμνdx
μdxν + ϕ2 dx5 + kAνdx

ν� �2, ð8Þ

where a is an undetermined constant.
Consider first the equation for the fifth component of ~U

a
.

Since ∂5~gab = 0, the covariant component ~U5 is a constant of
the motion:

~U5 = ~g5b ~U
b = ϕ2 ~U

5 + kAν
~U
ν

� �
= constant: ð9Þ

It is important to note that the cylinder condition is far
from simplistic. It implies a meaningful and nontrivial con-
stant of the motion.

Joining (8) and (9) provides an expression that relates ds2

to the 4D length element c2dτ2 ≡ gμνdx
μdxν, and this expres-

sion depends only on the magnitude of the invariant ~U5 and
the scalar field

c2
dτ
ds

	 
2
= a2 −

~U
2
5

ϕ2
: ð10Þ

The relations (8), (9), and (10) are common in the Kaluza
literature.

Now we evaluate the spacetime components of the 5D
geodesic equation (6), for the metric (2) and using (9). The
various ~Γ

a
bc for (2) are tabulated in Ref. [10]. We find

d ~U
ν

ds
+ Γν

αβ
~U
α ~U

β + k~U5 ~U
α
gνμFαμ − gναϕ ∂αϕð Þ

~U5
ϕ2

 !2

= 0:

ð11Þ

This equation is obtained by Refs. [4, 5, 14]. The 4D grav-
itational, electromagnetic, and scalar force terms are cleanly
separated. Its remarkable simplicity results from a grouping

of terms according to ~U5, instead of ~U
5
.

The term in Fμν obviously must be identified with the
Lorentz force, and Ref. [14] stops here to assign the coeffi-
cient in (11) as electric charge. We continue instead, because
(11) does not yet involve the 4D proper velocity.

Therefore, we use (10) to transform (11):

dUν

ds
+ Γν

αβ
~U
α
Uβ = k~U5g

νμFμαU
α + ~U5U5 ∂αlnϕð Þ gνα −

UνUα

c2

� �
,

ð12Þ

where the 4D proper velocity of a particle is

Uμ ≡
dxμ

dτ
, ð13Þ

and where

U5 ≡U5 + kAμU
μ: ð14Þ

We choose to identify electric charge with the coefficient
in (12). Therefore, we identify the electric charge Q of a body
of rest mass m0:

kc ~U5 ⟶
Q
m0

: ð15Þ

The identification (15) and the 4D equation of motion
(12) are also obtained by Refs. [4] and [14]. While there is
some discomfort to still having the fields enter the definition
of electric charge (9), their grouping in the equations of
motion makes the identification unavoidable.

Note that this is a classical theory, and the ratio (15) does
not strictly apply to elementary charges. Instead, (15) is the
ratio of the electric charge to mass of a macroscopic volume
of charged, massive fluid. The differential volume elements
are assumed to be composed of a macroscopic amount of
charge carriers, and (15) can be considered specific charge.
Therefore, charge density σ = ρkc~U5, and the electromag-
netic 4-current Jν = ρkc~U5ðdxν/dtÞ.

There are two pieces to the scalar force in (12), and this is
indeed the form expected for a scalar force [15]. Therefore,
the term (10) in dτ/ds is critical to a proper representation
of the 4D scalar force, although other references overlook
the second term in the scalar force.

The scalar force couples to electrically charged bodies,
and it does so quadratic in the electric charge. This means
the scalar force depends only on the magnitude of electric
charge, not its sign. The scalar force vanishes for neutral
bodies, and the field equations and equations of motion
look very similar to their 4D counterparts in the neutral
limit, since dτ/ds⟶ a/c and ~U5 ⟶ 0. The radically dif-
ferent nature of the scalar field coupling makes the KSF
unique among other scalar-tensor theories that imagine
the scalar field coupling to neutral matter mass-energy, like
gravity itself.

Because ~U5 includes a dependence on ~U
μ
, the theory pre-

dicts an induced electric charge Qi =m0ck
2Aμ

~U
μ
for appar-

ently neutral bodies moving in an electromagnetic field. For
example, it seems to indicate deflection of neutral bodies in
magnetic fields, under particular circumstances. By the same
token, it appears that the induced electric charge could also
allow neutral bodies to couple to the scalar force.

Let us write an alternative form for (10):

ds
dτ

	 
2
= c2

a2 − ~U
2
5/ϕ2

: ð16Þ
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Now put together (9), (14), and (16) to find

U5 =
c~U5/ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ~U

2
5/ϕ2

q : ð17Þ

Expressions (10), (16), and (17) enter as effective cou-
pling coefficients in the field equations, and they behave dif-
ferently depending on whether Q≪m0kc or Q≫m0kc. The
coefficient (10) can be identified as an effective mass [4, 14].

3. 5D Energy-Momentum Tensor

Kaluza also originally considered a 5D energy-momentum
tensor for dust, and subsequent authors have as well. They
typically consider the form ~Tab ∝ ρ~Ua

~Ub, which is only
covariant if the density is referred to a comoving frame.
Additionally, some treatments were not exact or were
restricted to weak charge densities. Here we provide a careful
consideration of the transformation properties necessary to
construct a proper energy-momentum tensor.

Like other authors, we consider 5D dust, consistent with
(6). This choice for the form of the energy-momentum tensor
is necessitated by our previous considerations of the geodesic
equation, because the geodesic equation (6) follows from rel-
ativistic conservation of energy applied to dust. By dust, we
mean massive fluid particles, with no internal energy. It is
an ensemble of particles. This dust is electrically charged,
with no quantized charge carriers, but a specific charge per
unit mass.

We can merely write down the form of a covariant dust
energy-momentum tensor, based on standard results [16]:

~Tab =
~ρ

~g1/2
~Ua

~Ub

dt/dsð Þ , ð18Þ

where ~Ua = ~gab ~U
b
. The time coordinate is picked out as inde-

pendent against the other 4 coordinates.
By construction, ~ρ is a 4D density, with units of mass per

volume per unit fifth coordinate. An integration over the 5th
coordinate is implied whenever an invariant integral is taken
over the spatial coordinates, ∝

Ð
~ρg1/2d3xϕdx5. Because of

the cylinder condition, the x5 integral has no functional
dependence and can be set to 1. Therefore we can collapse
~ρ⟶ ρ, with units of mass per volume as usual.

The factor ~g1/2 in (18) is crucial to the 5D covariance of
~Tab, thereby matching the 5D covariance of ~Gab in (1) and
making it a tensor. There is some confusion, because a stan-
dard description for dust, for example in cosmology, refer-
ences the fluid density to a comoving frame, and the factor
g1/2 is ignored. Yet its presence here affects the field equa-
tions because, as shown in Ref. [10], ~g1/2 = ϕg1/2.

Recall that the energy-momentum tensor can be defined
in terms of a variation of the matter action:

~Tab =
−2
~g1/2

δSM
δ~gab

, ð19Þ

where SM =
Ð
LMd

4x. Therefore, we can write the matter
Lagrangian density corresponding to (18) and expand it
using the 5D metric (3):

LM = g1/2L̂M = −
1
2 ~ρc

~Ua
~Ub

dt/dsð Þ ~g
ab

= −
1
2 ρc

ds
dt

gμν ~Uμ
~Uν − 2kAν ~U5 ~Uν + k2gμνAμAν + 1/ϕ2

� �
~U
2
5

h i
:

ð20Þ

The matter Lagrangian (20) complements the field
Lagrangian (5) to provide a full description of the 5D the-
ory. While the field equations are more easily obtained
from the field Lagrangian than from direct evaluation of
the curvature tensors, the source terms can be obtained
with equal effort from the matter Lagrangian or from the
5D energy-momentum tensor.

Having now established the necessary form of the source
term from 5D covariance principles, we turn to its implica-
tions for modifications to the Maxwell and Einstein equa-
tions for charged matter.

4. Field Equations with Sources

Many Kaluza references consider only the vacuum equations,
consider an additional term in the field Lagrangian, restrict
attention to low charge densities, or consider an energy-
momentum tensor valid only in a comoving frame. Here
we present new results that describe the modifications to
the source terms in the Einstein gravitational field equations,
and Maxwell electromagnetic field equations, that arise ines-
capably from a 5D covariant source term (18) that is consis-
tent with the 5D geodesic equation (6).

4.1. Gravitational Field Equations. We consider first the
Kaluza gravitational field equations with covariant derivative
∇μ. There are modifications from the KSF expected from the
vacuum equations, but also new, unexpected effects from the
matter source terms.

Gμν = ϕ−1Tϕ
μν +

8πG
μ0c

4 ϕ
2TEM

μν

+ 8πG
c3ϕ

dτ
ds

ρ

g1/2
gμα

dxα

dt
gνβ

dxβ

dτ
,

ð21Þ

where dτ/ds is given by (10), and where

Tϕ
μν ≡ ∇μ∇νϕ − gμν∇α∇

αϕ, ð22Þ

is the KSF energy-momentum tensor, and where

TEM
μν ≡ gαβFμαFνβ −

1
4gμνFαβF

αβ, ð23Þ

is the electromagnetic energy-momentum tensor. There is an
effective variable gravitational constant, G/ϕ, in the matter
term of (21), as expected from the Brans-Dicke theory. But
the term cdτ/ds acts as a Kaluza coupling coefficient that is
not anticipated in standard scalar-tensor gravity.
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Both the KSF and the electromagnetic (EM) field energy-
momentum in (21) contribute to curvature of the 4D metric.
The KSF coupling is algebraically different between matter,
EM field, and scalar field—a departure from standard
scalar-tensor theory.

The KSF energy-momentum tensor is dimensionless in
(21); there is no explicit coupling constant. This is different
than the standard scalar-tensor theory. Here, the KSF
energy-momentum is more akin to a cosmological constant,
which also is without any scaling parameters.

The trace of the field equations (21) yield

R = 3
ϕ
∇α∇

αϕ + 8πG
cϕ

dτ
ds

ρ

g1/2
dτ
dt

: ð24Þ

Note that unlike in standard GR, the Ricci scalar R does
not vanish when ρ vanishes, because the KSF still contributes
to R. This is also unlike the EM field, because the trace of TEM

μν

vanishes and does not contribute to R. The KSF behaves
more like an expression of spacetime curvature than like an
independent source of spacetime curvature, because it is a
source of gravitational field deforming spacetime that is inde-
pendent of G.

4.2. Electromagnetic Field Equations. Now we provide the
modified Maxwell equations, with source terms, for the
EM field:

∇ν ϕ3Fνμ� �
= ρ

g1/2
μ0kc

dxμ

dt
~U5: ð25Þ

Note that the KSF behaves in the Maxwell equations (25)
like a dielectric constant, whereas in the gravitational equa-
tions, it behaves like a variable gravitational constant—as
expected from the field Lagrangian (5).

The current source in (25) reproduces the usual Maxwell
source term, with the usual charge density σ⟶ ρkc~U5.

4.3. Scalar Field Equation. Now we provide the Kaluza scalar
field equation, with sources

ϕ2
3
4 ϕ

2k2FαβF
αβ − R

	 

= 16πG

c3ϕ
ds
dt

ρ

g1/2
~U
2
5: ð26Þ

This is a relatively new equation to physics, with no well-
studied analog outside the Kaluza theory.

In terms of electric and magnetic fields, E and B,
FαβF

αβ = 2ðB2 − E2/c2Þ.
The form (26) of the scalar field equation is algebraic in ϕ.

Yet R depends on ϕ through (24), and so the algebraic field
equation for ϕ has its own energy-momentum as a source.
This means ϕ acts nonlinearly as its own source, very much
like how gravitational energy-momentum acts nonlinearly
as its own source. We already noted that ϕ energy-
momentum is not modulated by G in the field equations
(21), like other forms of mass-energy.

Equation (26) is new to physics for its source term,∝~U
2
5,

which translates to quadratic in electric charge. Where the

Brans-Dicke scalar field finds its source in neutral matter,
the KSF finds its source in electrically charged matter. Due
to the quadratic source term, positively and negatively
charged sources produce the same KSF. The KSF apparently
coexists with electric fields, because both are produced by
charged matter. Is the KSF weak enough that such a field
could have gone undetected? Or is it just swamped by the
strength of the Coulomb electric field? In fact, this question
was addressed by Ref. [4], who found significant theoretical
modifications to the Coulomb force. This question will be
addressed in further detail in a subsequent work.

5. Saturation Effects in the Field Equations

We can now combine expressions (10), (16), and (17) for the
Kaluza coupling coefficients with the preceding field equa-
tions. We find two distinct limits in the source terms,
depending on the presence of charged matter and depending
on the electric charge relative to the critical electric charge
Qcrit =m0kc.

5.1. Fields of Weakly Charged Sources, Q≪m0kc. In the limit
of low specific charge, Q≪m0kc, then dτ/ds ≃ a/c and
U5 ≃ c~U5/aϕ2. Under the identification of charge (15), the
Maxwell equations have their standard scalar-electromagnetic
form irrespective of the magnitude of ~U5:

∇ν ϕ3Fνμ� �
= μ0

σ

g1/2
dxμ

dt
= μ0 J

μ: ð27Þ

The gravitational field equations assume their standard
scalar-tensor form in this limit:

Gμν ≃ ϕ−1Tϕ
μν +

8πG
μ0c

4 ϕ
2TEM

μν

+ 8πG
c4ϕ

aρ
g1/2

gμα

dxα

dt
gνβ

dxβ

dτ
:

ð28Þ

The scalar field equation assumes the form

3
2 ϕ

3k2 B2 − E2/c2
� �

− 3∇α∇
αϕ ≃

8πG
c2

aρ
ϕg1/2

dτ
dt

+ μ0
σ

aϕg1/2
Q
m0

:

ð29Þ

It is quite interesting that the theory specifies separate
sources in the KSF from charged particles and their electric
fields.

5.2. Fields of Strongly Charged Sources, Q ~m0kc. In the limit
of high specific charge,Q ~m0kc, we must use the full form of
(10), (16), and (17).

Consider now the gravitational field equations (21) in
this limit. As specific charge increases and ~U5 ⟶ a, the
Kaluza coupling coefficient (10) dτ/ds⟶ 0, and it acts to
neutralize the gravitational effect of the source, so that the
matter term goes to zero in the gravitational field equations.

This is not a new effect to the Kaluza theory. It is rather
the same sort of antigravitational effect of electrostatic energy
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discussed by Ref. [9] and seen in the Reissner-Nordstrom
metric. For the gravitational effect of a highly charged parti-
cle to go to zero is an ADM mass effect that we might have
expected from standard 4D theory alone.

The Maxwell equations (25) are invariant with respect to
the magnitude of ~U5 and have the same form as in (27).

Consider now the high-charge limit for the KSF (26).
Now the value of ds/dt∝ ds/dτ in (16) is driven to a large
value, depending on the magnitude of a. Furthermore, the
variation is inversely proportional to ~U5, implying that the
scalar charge saturates and becomes linear in electric charge
at high charge values.

6. Discussion and Conclusions

This work has considered 5D covariance requirements to
construct a 5D energy-momentum source term for the 5D
Einstein equations (1). The energy-momentum tensor and
associated matter Lagrangian (20) were established. Com-
bined with the field Lagrangian (5) established by Ref. [10],
a complete Lagrangian specification of the unique Kaluza
classical Kaluza theory is now provided.

A proper form for the energy-momentum tensor is
important for establishing the correct modifications to the
electromagnetic and gravitational field equations. In addition
to the effects of a scalar field expected from other scalar-
tensor or scalar-electromagnetic theories, a peculiar Kaluza
coupling coefficient (10) arises for charged matter which acts
to vary the source strengths in ways unknown to conven-
tional physics.

The peculiar effects at high specific charge include a neu-
tralization of gravitational mass-energy, and a saturation in
scalar field sources in a way that goes from quadratic in elec-
tric charge to linear in electric charge. Previous authors have
calculated significant modifications of the Lorentz force law
[4], and some of the new physical effects described here
may be detectable in ordinary electrical laboratories.

Finally, we note that the saturation effects discussed
above depend on the identification of electric charge (15)
and on the value fixed for a in (8). An alteration of these
parameters can shift the saturation effects onto the Maxwell
equations, but they cannot be made to disappear from the
theory altogether. The proper assignment of electric charge
and a, and therefore isolation of the saturation effects, should
be constrained by correspondence with 4D physics. This will
be addressed in a subsequent work.
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