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This article describes how one can use worksheets to guide undergraduate students through the

process of finding solutions to specific cases of the Einstein equation of general relativity. The

worksheets provide expressions for a metric’s Christoffel symbols and Ricci tensor components for

fairly general metrics. Students can use a worksheet to adapt these expressions to specific cases

where symmetry or other considerations constrain the metric components’ dependencies, and then

use the worksheet’s results to reduce the Einstein equation to a set of simpler differential equations

that they can solve. This article illustrates the process for both a diagonal metric and a metric with

one off-diagonal element. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4939908]

I. INTRODUCTION

We have argued elsewhere1 that the recent vitality of
general relativity research programs and new teaching
resources make teaching general relativity to undergradu-
ates more valuable and easier than ever before. Recent
research developments in cosmology, the physics of black
holes, and Gravity Probe B, the promise of gravitational
wave observatories such as the Laser Interferometer
Gravitational Wave Observatory (LIGO) and Virgo, and the
practical applications of general relativity in the context of
the Global Positioning System all have excited student in-
terest in the field and provide new opportunities for involv-
ing students in research. Resources including new
textbooks2–7 and computer software8–11 also make general
relativity more accessible to undergraduates than in even
the recent past.

Even so, the mathematics of general relativity can present
daunting challenges for undergraduates. One possibility for
reducing this complexity is to use computer algebra tools to
do the heavy lifting. For example, author James Hartle has
provided Mathematica notebooks8 to support his well-
regarded undergraduate textbook2 that allow students to
quickly calculate Christoffel symbols and components of the
Riemann, Ricci, and Einstein tensors for known metrics.
Similar tools are available elsewhere online.9

Such tools have many advantages, allowing undergradu-
ates to quickly move past tedious calculations to interesting
applications that decades ago would have required too much
work to pursue. However, Mathematica and similar tools
themselves have steep initial learning curves, and even with
proficiency do not necessarily help students understand the
process of solving the Einstein equations. For example,
Hartle’s notebooks allow students to easily verify that certain
known metrics satisfy the Einstein equation, but do not allow
one to solve for an unknown metric.

The core pedagogical problem is that we tell students
that one can solve the Einstein equation in a given physical
situation for the spacetime metric, but then typically give
them solutions that other people have found. We have
found it valuable for students to work through the entire
process a few times for themselves, starting with a realistic
physical situation, first developing a plausible trial metric
and then using the Einstein equation to solve for unknown

parts of that trial solution (while satisfying appropriate
boundary conditions). In this process, students gain a much
deeper appreciation of what actually goes into finding such
solutions, and ultimately a greater confidence in their
understanding of how the theory works. Going through the
process therefore delivers a priceless experience of
empowerment.

The main reason that students rarely get this experience in
an undergraduate general relativity course is that the calcula-
tions required to solve the Einstein equation by hand involve
literally hundreds of steps, each of which needs to be done
correctly for the solution to make sense. The tediousness of
this process, combined with the almost vanishing probability
of doing it correctly, makes solving the Einstein equation by
hand impractical in the context of a typical undergraduate
course. “Toy” problems involving fewer dimensions are not
available because nontrivial solutions to the empty-space
Einstein equation do not exist in fewer than three spatial
dimensions.

To make the calculation practical, one would like a tool
that automates enough of the most tedious (and least physi-
cally interesting) parts to make success more probable. Such
a tool must also have a shallow learning curve, be something
the students can trust (because they know how to check its
results if necessary, and have practiced doing just that), be
general enough to have a wide range of applications, and be
inexpensive and easy to deploy.

In this article, we describe just such a tool: a paper
worksheet that automates the most tedious and error-prone
aspects of solving the Einstein equation. This method
extends and further develops an approach that Rindler out-
lined in an appendix to his textbook Relativity: Special,
General, and Cosmological.12 The worksheet allows under-
graduates to experience actually solving the Einstein equa-
tion in a realistic context without experiencing the tool as a
black box or getting hopelessly bogged down in the details.
Moreover, the two versions of the worksheet described in
this article allow one to handle virtually any metric likely
to be encountered in a general relativity course. These
worksheets complement the strengths of the computer tools
mentioned above, because they are more transparent and
allow students to handle metrics with unknown compo-
nents (even if they don’t quite deliver results at the push of
a button).
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II. THE EINSTEIN EQUATION

The classic form of the Einstein equation of general rela-
tivity is

Gl� þ Kgl� ¼ 8pGTl�; (1)

where Gl� is the Einstein tensor (which expresses something
about the curvature of spacetime), K is the so-called cosmo-
logical constant, gl� is the inverse metric tensor, Tl� is the
stress-energy tensor (which expresses the density of energy
and momentum), and G is the universal gravitational constant
(here we choose units where c is 1 but G is not). The Einstein
tensor components are complicated nonlinear functions of the
spacetime metric components gl� and their first and second
derivatives. Since gl�; Gl� , and Tl� are all 4� 4 symmetric
tensors with ten independent components, the general
Einstein equation amounts to ten coupled nonlinear differen-
tial equations in the ten independent components of gl� .
However, the very nature of the Einstein equation ensures that
only six of these equations are actually independent, allowing
one the freedom to choose the four coordinates arbitrarily.

This form of the Einstein equation is the simplest concep-
tually, because it isolates all the terms relating to the curva-
ture of spacetime on the left and everything related to the
density of energy and momentum on the right. Moreover,
the most straightforward argument for how to construct the
Einstein tensor starts with this version of the equation.
Solving the Einstein equation, however, is easier when we
use the mathematically equivalent version

Rl� ¼ 8pG Tl�
all �

1

2
gl�Tall

� �
; (2)

where Rl� is the Ricci tensor, Tl�
all � Tl� þ Tl�

vac, with Tl�
vac �

Kgl�=8pG the effective stress-energy tensor for the vacuum,
and Tall � gl�T

l�
all . The reason it is simpler to solve Eq. (2)

compared to Eq. (1) is because the Ricci tensor is a signifi-
cantly simpler function of the metric components gl� than
the Einstein tensor is. It is well worth putting the complexity
on the right side of the equation, particularly because we are
often interested in vacuum solutions of the Einstein equation
with negligible vacuum energy. In this case, the equation

Rl� ¼ 0; (3)

is much easier to solve than the corresponding equation
Gl� ¼ 0. But even when we are interested in situations
where the stress-energy is nonzero (as in the case of solving
for the cosmological metric), Eq. (2) is still usually the easier
form to work with.

For the record, the definition of the Ricci tensor is

Rl� � @aC
a
l� � @�Ca

la þ Ca
acC

c
l� � Ca

�rC
r
la; (4)

where @a � @=@xa and where Ca
bl is a Christoffel symbol,

defined to be

Ca
bl �

1

2
gar @bglr þ @lgrb � @rgblð Þ; (5)

and the usual rules of index manipulations apply. Because
each of the indices can range over the four coordinate values,
we see that the expression for a Christoffel symbol could

involve up to 12 terms and that for a Ricci component could
involve hundreds of distinct terms. This is why solving the
Einstein equation can be so daunting.

III. THE DIAGONAL METRIC WORKSHEET

Consider a general diagonal metric of the form

ds2 ¼ �Aðdx0Þ2 þ Bðdx1Þ2 þ Cðdx2Þ2 þ Dðdx3Þ2; (6)

where dx0 is an arbitrary time coordinate, dx1, dx2, and dx3

are arbitrary spatial coordinates, and A, B, C and D are arbi-
trary functions of any or all of the coordinates. The Diagonal
Metric Worksheet (available online13) provides a complete
list of the Christoffel symbols and Ricci tensor components
for such a metric in terms of the functions A, B, C, and D
and their derivatives, using a compact notation where

A0 �
@A

@x0
; B12 �

@2B

@x1@x2
; and so on: (7)

To use the worksheet, one first crosses out terms that are
zero for the particular metric of interest, and then writes (in
the space provided above each term) what each nonzero term
becomes for the metric of interest. One then gathers simpli-
fied nonzero terms in a space provided at the bottom.

For example, suppose that we are looking for a time-
independent and spherically symmetric solution of the empty-
space Einstein equation Rl� ¼ 0 for a metric tensor based on a
time-coordinate x0 � t, a radial coordinate x1 � r, and angular
coordinates x2 � h and x3 � /. “Spherical symmetry” means
that in the spacetime of interest, one can define a concentric
set of two-dimensional spatial surfaces that have the same
intrinsic geometry as that of a sphere. We can therefore define
each such surface to correspond to a constant value of the coor-
dinate r and define the angular coordinates to correspond to the
usual angular coordinates h and / for a spherical surface. In
such a case, we can choose the r; h; and / coordinates so that
the metric for such a surface of constant r is the same as the
usual metric ds2 ¼ r2ðdh2 þ sin2h d/2Þ for the surface of a
sphere. If we do this, our more specific version of the general
diagonal metric reduces to the form

A ¼ AðrÞ; B ¼ BðrÞ; C ¼ r2; and D ¼ r2 sin2h: (8)

Figure 1 illustrates what someone might write on the
worksheet to determine the expression for R00 � Rtt for
the metric of interest. Note that since we are supposing that
the metric does not depend on the time coordinate t or the
angular coordinates (except for D, which depends on
h � x2), we can cross out all terms involving derivatives
with 0, 2, and 3 subscripts (except for D2). This leaves only a
handful of terms, which the user has simplified and gathered
at the bottom.

We strongly recommend that students be asked to verify
by hand at least some elements of the worksheet, such as a
few Christoffel symbols and perhaps one off-diagonal ele-
ment of the Ricci tensor. This will help convince students
that the tool is not a black box but rather a convenient sum-
mary that they could (in principle) verify, given enough time
and patience. The Appendix to this article illustrates such
calculations.

361 Am. J. Phys., Vol. 84, No. 5, May 2016 Thomas A. Moore 361

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.195.64.2 On: Fri, 13 May 2016 21:03:47



IV. THE SCHWARZSCHILD SOLUTION

How might we use this tool to actually solve the Einstein
equation? The general process of solving the Einstein equa-
tion is similar to that for solving almost any complicated dif-
ferential equation. You first develop a plausible trial solution
(with perhaps some free parameters and/or functions) that is
consistent with the situation’s symmetry and/or the solu-
tion’s known behavior in some limit. You then substitute this
trial solution into the equation to be solved, and from that
derive mathematical conditions that the free parameters or
functions must satisfy to solve the differential equation. If
you can find a set of parameters or functions consistent with
those conditions, then you have successfully solved the equa-
tion. If you cannot satisfy the conditions, then you try a dif-
ferent trial solution until you find a solution that has enough
freedom to allow all of the conditions to be satisfied.

As an example, let’s use the Diagonal Metric Worksheet
to derive the well-known Schwarzschild solution of the
Einstein equation. The metric of Eq. (8) is actually a plausi-
ble guess for the spacetime metric in the empty space sur-
rounding a static (non-rotating), spherically symmetric
object. Because the object is spherically symmetric and inde-
pendent of time, we would plausibly expect the spacetime
should also be spherically symmetric and independent of
time (with a suitable definition of space and time coordi-
nates). The metric of Eq. (8) exhibits spherical symmetry
and time-independence, while still having some remaining
freedom in the undefined functions A(r) and B(r), which we
can adjust to satisfy the Einstein equation. It thus represents
a reasonable trial metric for this kind of situation.14

If one goes through the same process illustrated in Fig. 1
to evaluate all the components of the Ricci tensor for this
trial metric, one finds that

Rtt � R00 ¼
1

2B
þd2A

dr2
� 1

2A

dA

dr

� �2

� 1

2B

dA

dr

dB

dr
þ 2

r

dA

dr

" #
;

(9)

Rrr � R11

¼ 1

2A
� d2A

dr2
þ 1

2A

dA

dr

� �2

þ 1

2B

dA

dr

dB

dr
þ 2A

Br

dB

dr

" #
;

(10)

Rhh � R22 ¼ �
r

2AB

dA

dr
þ r

2B2

dB

dr
þ 1� 1

B
; (11)

and that R// � R33 ¼ sin2hRhh, with the off-diagonal com-
ponents of the Ricci tensor all identically zero. In empty
space, the Einstein equation requires that Rl� ¼ 0. If we
assume that A 6¼ 0 and B 6¼ 0, this means that we must have

0 ¼ 2BRtt þ 2ARrr ¼
2

r

dA

dr
þ 2A

Br

dB

dr
; (12)

in order to solve the Einstein equation. If we additionally
assume that r 6¼ 0, this expression reduces to

0 ¼ B
dA

dr
þ A

dB

dr
; (13)

so that

d

dr
ABð Þ ¼ 0 ) AB ¼ const: (14)

We also know that very far from a gravitating object, its gravi-
tational field becomes negligible, so in our case we would like
the metric at infinity to reduce to the flat-space metric (in
spherical coordinates), which is ds2 ¼ �dt2 þ dr2 þ r2

ðdh2 þ sin2d/2Þ. This means that AB will be 1 at infinity, and
since we have just established that AB is a constant, we must
have AB¼ 1 at all values of r if we are to simultaneously sat-
isfy the Einstein equation and this large-r limit.

If we substitute B ¼ 1=A and Eq. (13) in the form

dB

dr
¼ �B

A

dA

dr
(15)

Fig. 1. An example of what someone using the Diagonal Metric Worksheet might write for the specific case of the metric considered in Eq. (8).
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into Eq. (11), and require that Rhh ¼ 0 (because we are in
empty space), we find that we also must have

0 ¼ �r
dA

dr
þ 1� A ) 1 ¼ r

dA

dr
þ A ¼ d

dr
rAð Þ;

(16)

to satisfy the Einstein equation in empty space. Integrating
both sides of Eq. (16) with respect to r yields

r ¼ rAþ K ) A ¼ 1� K

r
; (17)

where K is a constant of integration. Since AB¼ 1, it imme-
diately follows that

B ¼ 1

A
¼ 1� K

r

� ��1

: (18)

One can now apply the geodesic equation to a particle falling
from rest at large r to establish that we must have K ¼ 2GM
(where M is object’s mass and G is the universal gravita-
tional constant) if our solution is to be consistent with the
Newtonian limit. The details for how one determines K can
be found in virtually any textbook on general relativity15

(though the Diagonal Metric Worksheet is handy for quickly
evaluating the Christoffel symbol that one needs to complete
the argument). With this identification, we have arrived at
the Schwarzschild solution.

Though using the Diagonal Metric Worksheet to evaluate
the Ricci tensor components in this case requires care and
diligence, you can see that it involves only algebra and fairly
simple calculus. Once we have these components in hand,
solving the Einstein equation is a matter of algebra and
straightforward calculus. The entirety of this calculation is
therefore well within the capability of an (appropriately
guided) upper-level undergraduate physics major. Of course,
the same could be said in principle of a process that involves
calculating the Christoffel symbols and Ricci tensor compo-
nents from their basic definitions. Evaluating these compo-
nents is the part of the calculation that is the least interesting
(and least physical) task, but it is also where one is most
likely to make careless but consequential errors. Using the
worksheet thus allows students to focus on parts of the calcu-
lation that will maximize their physical insight.

One can also use the Diagonal Metric Worksheet in con-
junction with the Einstein equation to prove Birkhoff’s theo-
rem,16 to prove that the only plane-symmetric solution to the
Einstein equation is flat spacetime,17 to find the metric in the
vacuum around an infinite straight cosmic string,18 to deter-
mine the metric for a homogeneous and isotropic universe,19

and even to calculate the second-order corrections to the lin-
earized theory of gravitation that are necessary to determine
the energy carried by a gravitational wave.20 The Diagonal
Metric Worksheet can also facilitate the calculation of the
Christoffel symbols needed to determine the implications of
given metrics (without the learning curves associated with
computer software), making a number of other applications
more practical for undergraduates.

V. THE OFF-DIAGONAL METRIC WORKSHEET

We have documented the Diagonal Metric Worksheet and
its applications elsewhere.21 Here, we announce the

availability of an extension of this tool for off-diagonal met-
rics of the form

ds2 ¼ �Aðdx0Þ2 þ Bðdx1Þ2 þ Cðdx2Þ2 þ Dðdx3Þ2

þ 2Fðdx0Þðdx1Þ; (19)

where F is (like A, B, C, and D) an arbitrary function of the
coordinates. This metric is sufficiently general to embrace
virtually any metric one is likely to encounter in a general
relativity course. Like the Diagonal Metric Worksheet, the
Off-Diagonal Metric Worksheet (also available online13)
provides a complete list of the Christoffel symbols and Ricci
tensor components for such a metric in terms of the functions
A, B, C, D, and F and their derivatives. For simplicity, this
worksheet also uses the shorthand that

H � ABþ F2; (20)

a combination that occurs often as a factor in terms (though
we have broken down derivatives of H into derivatives of A,
B, and F). The calculations were so complicated that we had
to write a custom computer program to do the algebra
(Mathematica was ill-suited to this particular task). The
source code for this program is also available online.13

Figure 2 shows the worksheet page for R00 in this particu-
lar case. As one can see, the presence of the single off-
diagonal term in the metric approximately doubles the num-
ber of nonzero terms in the Ricci tensor components, which
obviously makes solving the Einstein equation more compli-
cated. Even so, one can still practically use the Off-Diagonal
Metric Worksheet to find solutions to the Einstein equation,
as Sec. VII illustrates.

VI. WHAT AN OFF-DIAGONAL METRIC MEANS

An obvious application of the Off-Diagonal Metric
Worksheet would be to derive the Kerr metric from the
Einstein equation in the same way we did the Schwarzschild
solution. However, because the Kerr metric depends on two
variables (r and h) instead of one, this calculation is chal-
lenging even with the worksheet and is ill-suited as an exam-
ple in this short paper. Instead, in Sec. VII we will use the
Off-Diagonal Metric Worksheet to find an alternative solu-
tion to the Einstein equation in the vacuum surrounding a
static spherical object, a solution called “rain coordinates”22

or “global rain coordinates.”23 In this section, we will
address why we might be interested in such a solution, and
(in the process) illustrate the process for interpreting an off-
diagonal metric.

Imagine constructing a lattice for measuring the
Schwarzschild coordinates of events around a static spherical
object. We can (without reference to any coordinate system)
determine concentric surfaces of symmetry around our
spherical object, and define the radial direction to be perpen-
dicular to such surfaces. Let’s then construct our lattice so
that one of the girders at each lattice intersection is radial,
and the other two are orthogonal and lie on one of these
spherical surfaces. If we also put a “t-meter” (a device that
displays the coordinate time t) at each lattice intersection,
then in principle, we can determine the spacetime coordi-
nates of any event occurring in the lattice by noting the coor-
dinates of the nearest lattice intersection and the coordinate
time displayed by the t-meter there. But how do we connect
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the locations of lattice intersections and t-meters in our lat-
tice to Schwarzschild coordinates?

The metric is the only thing that gives physical meaning to
coordinates (which are otherwise completely arbitrary). The
Schwarzschild metric

ds2 ¼ � 1� 2GM

r

� �
dt2 þ 1� 2GM

r

� ��1

dr2

þ r2 dh2 þ sin2h d/2
� �

; (21)

tells us that because r2ðdh2 þ sin2h d/2Þ is the metric for a
spherical surface of radius r in ordinary angular coordinates
h and /, then a surface of constant r (dr¼ 0) at a specific
instant of time t (dt¼ 0) in Schwarzschild spacetime must be
one of those spheres of symmetry. So the Schwarzschild h
and / coordinates correspond to the standard angular coordi-
nates on the surface of each sphere on the lattice, and r is a

radial coordinate whose value on any spherical lattice sur-
face corresponds to the area of that sphere divided by 4p.

The metric also tells us that a t-meter at rest (dr¼ 0,
dh ¼ 0; d/ ¼ 0) at a lattice intersection registers a proper
time ds ¼

ffiffiffiffiffiffiffiffiffiffi
�ds2
p

¼ ð1� 2GM=rÞ1=2 dt. Thus, we can con-
struct a Schwarzschild t-meter by modifying an ordinary
clock so that it displays on its face a value ð1� 2GM=rÞ�1=2

times the (proper) time s that the clock actually measures.
(Note that clocks at r !1 register t directly.)

Finally, because the Schwarzschild metric is independent
of time and is invariant under the transformation dr ! �dr,
a radially moving light flash takes the same Schwarzschild
coordinate time Dt to travel between two lattice intersections
separated by a given radial displacement Dr, whether it is
going outward or inward. Therefore, we can synchronize lat-
tice clocks on the same radial line but on different spherical
surfaces by having a t-meter on one surface send a radial
light flash to a t-meter on the other, which then reflects the

Fig. 2. This figure shows the portion of the Off-Diagonal Metric Worksheet that lists the nonzero terms for the R00 component of the Ricci tensor for the metric

given by Eq. (19). Note that adding just one off-diagonal term to the metric roughly doubles the number of terms in the expression for R00 (compare with Fig. 1).
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flash back to the first. The two t-meters are synchronized if
the reflecting t-meter registers the coordinate time of the
reflection event to be the coordinate time halfway between
the emission and reception events as registered by the send-
ing t-meter.

Now, the Schwarzschild solution exhibits well-known dif-
ficulties at r ¼ 2GM, because B ¼ grr ¼ ð1� 2GM=rÞ�1

is
singular at that radius. This singularity turns out to be an arti-
fact of the choice of coordinate system, for reasons that our
previous discussion helps us better understand. Inside
r ¼ 2GM, no physical object can remain at rest; that is, Eq.
(21) tells us that jdrj must be nonzero for the object to have
a timelike (ds2 < 0) worldline. So we cannot even begin to
construct a lattice with fixed intersections and t-meters inside
this radius, meaning that our scheme for assigning coordi-
nates falls apart. The singularity in the B ¼ grr term of the
metric at r ¼ 2GM is one indication that our coordinate sys-
tem is breaking down there.

One can change coordinates to find non-singular diagonal
metrics (such the Kruskal-Szekeres coordinate system24) for
the same spacetime, but the metrics for such coordinate sys-
tems have the disadvantage of not reducing to the flat-space
metric at infinity, making them very difficult to interpret.
Also, the coordinate transformations to such coordinates are
themselves necessarily singular at r ¼ 2GM, making many
students suspicious that we are actually just brushing the
problem under the rug.

The global rain coordinate system gets around this prob-
lem by introducing an off-diagonal term gtr (¼ grt) in the
metric. What does this off-diagonal term do? A nonzero term
2grt dr dt in the metric equation means that the metric is no
longer invariant under the transformation dr ! �dr. This in
turn means that ingoing and outgoing light flashes no longer
take the same coordinate time (as defined by the new metric)
to travel between two given spherical surfaces. The result is
that t-meters synchronized using the Schwarzschild scheme
described above will not be synchronized according to the
new coordinate time we are defining.

We see that introducing the off-diagonal term changes the
way we synchronize t-meters on different spherical shells in
our lattice. (To say it another way, introducing the off-
diagonal term redefines the hypersurfaces in spacetime cor-
responding to fixed values of the new coordinate time t.) It
turns out (as we will see) that we can use our freedom to
adjust both t-meter rates on a given spherical shell and the
relative synchronization of t-meters on different shells to
align the coordinate times registered by our lattice t-meters
so that they agree with the actual clock time s displayed by
clocks that are falling through the lattice after being
synchronized to clocks at some extremely large radius
(r � 1) and dropped from rest there. In essence, we are
choosing to synchronize our lattice t-meters using these
dropped clocks instead of using light flashes.

Better yet, we can replace our fixed lattice clocks by an
endless “rain” of clocks dropped from r � 1. The rain coor-
dinate time of a given event will simply be the time dis-
played by the nearest falling clock. Because freely falling
clocks can exist and display well-defined values even inside
r ¼ 2GM, this procedure extends our definition of coordinate
time meaningfully to all nonzero values of r, and suggests
that introducing an off-diagonal term in the metric might
allow us to sidestep the problem with the Schwarzschild
coordinate time and so avoid the problems that make the
Schwarzschild metric singular.

The usual treatments22,23 of global rain coordinates arrive
at the global rain metric via a (singular) coordinate transfor-
mation from Schwarzschild coordinates. In Sec. VII, we will
instead use the Off-Diagonal Metric Worksheet to look for a
direct solution of the empty-space Einstein equation with an
off-diagonal grt term. Indeed, we will find a whole family of
solutions (corresponding to different ways of defining con-
stant-t hypersurfaces in Schwarzschild spacetime), one of
which is the non-singular global rain coordinate system
described in this section. By deriving this non-singular solu-
tion directly from the Einstein equation, we also sidestep the
criticism that we are simply masking the Schwarzschild
problem by using an equally problematic coordinate
transformation.

VII. THE GLOBAL RAIN METRIC AND ITS

SIBLINGS

Following the path proposed in Sec. VI, let’s consider a
trial metric of the form

ds2 ¼ �A dt2 þ B dr2 þ r2dh2 þ r2 sin2h d/2 þ 2F dt dr;

(22)

where t � x0 is some kind of time coordinate, r � x1 is a ra-
dial coordinate, and h � x2 and / � x3 are the usual angular
coordinates. The r; h, and / coordinates in this metric have the
same physical meaning as the corresponding Schwarzschild
coordinates, but the time coordinate t does not. Spherical sym-
metry and time independence again suggest that A, B, and F
should be functions of r alone, so we will assume that. We
would also like the metric to reduce to the flat-space metric at
infinity, so we will also assume that A and B both go to 1 at
r !1 and F goes to zero in the same limit.

In this case, one can use the Off-Diagonal Metric
Worksheet (in the same way as described in Sec. III) to show
that

Rtt ¼
A

4H2

�
þ2H

d2A

dr2
� B

dA

dr

� �2

� A
dA

dr

dB

dr

þ 4H

r

dA

dr
� 2F

dA

dr

dF

dr

�
; (23)

Rrr ¼
B

4H2

"
�2H

d2A

dr2
þ B

dA

dr

� �2

þ A
dA

dr

dB

dr

þ 4AH

Br

dB

dr
þ 2F

dA

dr

dF

dr
þ 8FH

Br

dF

dr

#
; (24)

and

Rhh ¼ �
A

H
þ 1� r

H

dA

dr
þ ABr

2H2

dA

dr
þ A2r

2H2

dB

dr
þ FAr

H2

dF

dr
:

(25)

We also see that R// ¼ sin2hRhh (as before),
Rtr ¼ Rrt ¼ �ðB=FÞRtt, and that all other components of Rl�

are zero. Thus, the vacuum Einstein equation will be satisfied
as long as Rtt ¼ Rrr ¼ Rhh ¼ 0.

If we assume that A 6¼ 0 and B 6¼ 0, the Einstein equation
requires
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0 ¼ BRtt þ ARrr ¼
AB

Hr

dA

dr
þ A2

Hr

dB

dr
þ 2AF

Hr

dF

dr
: (26)

If we also assume that H 6¼ 0 and r 6¼ 0, then this becomes

0 ¼ B
dA

dr
þ A

dB

dr
þ 2F

dF

dr
¼ d

dr
ABþ F2ð Þ ¼ dH

dr
;

(27)

implying that H is a constant. Since we are requiring that
A ¼ B ¼ 1 and F¼ 0 at infinity, we find that H must be 1 at
infinity, and therefore H¼ 1 everywhere to satisfy the
Einstein equation.

Substituting this result into the equation Rhh ¼ 0 yields

0 ¼ �Aþ 1� r
dA

dr
þ Ar

2
B

dA

dr
þ A

dB

dr
þ 2F

dF

dr

� �

¼ �Aþ 1� r
dA

dr
þ 0½ �: (28)

This is the same equation we solved in Eq. (16), so the solu-
tion A ¼ 1� K=r is the same as well. Requiring that the
gravitational field corresponds to the Newtonian limit once
again results in K ¼ 2GM. Substituting this into the condi-
tion H¼ 1 implies that

1 ¼ H ¼ ABþ F2 ¼ 1� 2GM

r

� �
Bþ F2: (29)

At this point, we have exhausted the constraints that the
Einstein equation puts on B and F. Even though we have
three equations (Rtt ¼ 0;Rrr ¼ 0, and Rhh ¼ 0) to solve for
the unknowns A, B, and F, the three equations are actually
not independent. We can see as follows. If we put A ¼
1� 2GM=r back into either Rtt¼ 0 or Rrr¼ 0, the compo-
nents become zero no matter what B or F might be.
Therefore, the Einstein equation tells us that we are free to
choose B and F subject to the constraints that B! 1 and
F! 0 at infinity and H ¼ ð1� 2GM=rÞBþ F2 ¼ 1. This
freedom allows us to specify how to synchronize clocks on
surfaces with differing r.

If we choose F¼ 0, then we end up with AB¼ 1, meaning
that B ¼ 1=A, recovering the Schwarzschild solution (as we
must). The most straightforward alternative is to choose
B¼ 1, which leads to

F ¼
ffiffiffiffiffiffiffiffiffiffi
2GM

r

r
; (30)

yielding the metric

ds2 ¼ � 1� 2GM

r

� �
dt2 þ dr2 þ 2

ffiffiffiffiffiffiffiffiffiffi
2GM

r

r
dt dr

þ r2 dh2 þ sin2h d/2
� �

: (31)

As desired, this is a metric for Schwarzschild spacetime that
is non-singular at all values of r> 0 and reduces to the flat-
space metric at infinity.

We can see that this is indeed the global rain metric as fol-
lows. As many general relativity texts show,25 the proper ra-
dial velocity dr=ds for an object dropped from rest at infinity

is given by dr=ds ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=r

p
. Since the metric definition

of the r coordinate is the same in both the Schwarzschild
metric [Eq. (21)] and the metric in Eq. (31), and every ob-
server must agree on what time s the dropped clock’s face
reads, the same result must apply in the coordinate system of
Eq. (31). If we multiply Eq. (31) by �1, divide through by
ds2 ¼ �ds2, and substitute dr=ds ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=r

p
and

dh=ds ¼ d/=ds ¼ 0, we see that

1 ¼ 1� 2GM

r

� �
dt

ds

� �2

þ 2
2GM

r

� �
dt

ds

� �
� 2GM

r
:

(32)

Applying the quadratic equation yields the solution dt=ds ¼ 1
(as one can check by direct substitution) and a negative solu-
tion that we discard (because our coordinate time can’t go
backward as s marches forward). So we see that a falling
clock’s proper time s does indeed coincide with the coordi-
nate time t defined by this metric up to an additive constant,
which we can set to zero by synchronizing our falling clocks
to master clocks at rest at infinity (which also measure coordi-
nate time t) before dropping them. Therefore, this metric does
indeed define the global rain coordinate system described in
Sec. VI. We note that because grr¼ 1 in Eq. (31), the spatial
part of the metric is the same as that for flat space, meaning
that this metric’s particular definition of t ¼ constant hyper-
surfaces means that such hypersurfaces happen to have a spa-
tially flat geometry.

One of the insights we gain by approaching the problem
this way is that other potentially interesting solutions might
exist as well. For example, another simple solution results if
we choose B ¼ ð1þ 2GM=rÞ, which, when combined with
Eq. (29), implies that

F ¼ 2GM

r
: (33)

This choice leads to a coordinate system called advanced
Eddington-Finkelstein coordinates,26 whose metric equation
is

ds2 ¼ � 1� 2GM

r

� �
dt2 þ 4GM

r
dt dr

þ 1þ 2GM

r

� �
dr2 þ r2 dh2 þ sin2h d/2

� �
: (34)

In this coordinate system, one can show that a radially
ingoing light flash travels at coordinate speed dr=dt ¼ �1,
so an observer at any event can determine the coordinate
time t by noting the time registered by a clock at essentially
infinite r (as carried in by a radially ingoing light signal from
that clock) and adding the radial coordinate distance jDrj
between that clock and the observer’s current position. Since
we can carry out this procedure at any radial position
(including inside r ¼ 2GM), this metric for Schwarzschild
spacetime is also well-defined and nonsingular at all r.

We see that solving the Einstein equation directly for such
off-diagonal metrics is useful for three reasons. First, it
addresses the worry that a singular coordinate transformation
simply masks the problem with Schwarzschild coordinates.
Second, it helps us better understand what freedoms we have
in choosing the time coordinate. And third, it yields a whole
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family of possible new metrics for Schwarzschild spacetime
that are worth exploring.

Besides this application and the Kerr metric, other possi-
ble applications of the Off-Diagonal Metric Worksheet
might be in the study of rotating universes or to directly solv-
ing the Einstein equation for the metric of the vacuum sur-
rounding a rotating object in the large-r limit (without going
through the formalism of linearized gravity or gauge
transformations).

VIII. CONCLUSION

We have seen that the Diagonal Metric Worksheet and the
Off-Diagonal Metric Worksheet provide useful tools that
make it practical for upper-level undergraduates to have the
experience of solving the Einstein equation in a number of
interesting contexts. We believe such experiences are a cru-
cial element in helping students gain “ownership” of the
Einstein equation, by helping them see how one can start
from the definition of the Christoffel symbols and Ricci ten-
sor and proceed to deriving solutions.

Moreover, both worksheets (particularly the new Off-
Diagonal Metric Worksheet) allow one to explore applica-
tions of the Einstein equation in situations previously inac-
cessible to undergraduates and not yet treated in textbooks.
We offer these tools to the community in the hope that they
will open up a variety of interesting new areas for
exploration.
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APPENDIX: VERIFYING WORKSHEET RESULTS

This appendix will illustrate the calculations that lie
behind the Diagonal Metric Worksheet. These are the kind
of calculations that students should duplicate for themselves
to ensure that the worksheet is not simply a black box. We
start with the diagonal metric given in Eq. (6), repeated here
for convenience to be

ds2 ¼ �Aðdx0Þ2 þ Bðdx1Þ2 þ Cðdx2Þ2 þ Dðdx3Þ2;
(A1)

where A, B, C, and D can be functions of any or all of the
four coordinates x0, x1, x2, and x3. Suppose we would like to
check the Diagonal Metric Worksheet’s result for C0

11.
According to Eq. (5), this should be

C0
11 ¼

1

2
g0r @1g1r þ @1gr1 � @rg11ð Þ; (A2)

with an implied sum over r. But the metric gab is diagonal by
hypothesis, and the components gab of the inverse of a diago-
nal metric are simply gab ¼ 1=gab for all choices of a and b,
so the metric inverse is also diagonal. This in turn means that
all terms in the implied sum over r in Eq. (A2) are zero unless
r¼ 0. Therefore, since g00 ¼ 1=g00 ¼ �1=A; g11 � B, and
the off-diagonal metric components are zero, we have

C0
11 ¼

1

2
g00 @1g10 þ @1g01 � @0g11ð Þ

¼ � 1

2A
0þ 0� @B

@x0

� �
¼ 1

2A
B0; (A3)

using the worksheet’s compact notation. This is the result
given in the worksheet.

Once one has come to trust the Christoffel symbol results,
one can use that part of the worksheet to check the Ricci ten-
sor components. For example, consider the component R12.
According to Eq. (4), we have

R12 � @aC
a
12 � @2C

a
1a þ Ca

acC
c
12 � Ca

2rC
r
1a: (A4)

If we expand the implied sums in the first two terms of this
expression and note that (according to the Diagonal Metric
Worksheet) Christoffel symbols of the form Ca

12 are nonzero
only if a¼ 1 or 2, we get

@aC
a
12 � @2C

a
1a ¼ @1C

1
12 þ @2C

2
12 � @2C

0
10

� @2C
1
11�@2C

2
12 � @2C

3
13: (A5)

Note that the underlined terms cancel. Substituting in the
worksheet values of the other Christoffel symbols and evalu-
ating the derivatives yields

@aC
a
12 � @2C

a
1a ¼ @1

1

2B
B2

� �
� @2

1

2A
A1

� �

� @2

1

2B
B1

� �
� @2

1

2D
D1

� �

¼ � 1

2B2
B1B2 þ

1

2B
B12 þ

1

2A2
A2A1

� 1

2A
A21 þ

1

2B2
B2B1 �

1

2B
B21

þ 1

2D2
D2D1 �

1

2D
D21: (A6)

Note that the four terms involving the Bs cancel because nei-
ther the order of multiplication nor that of partial differentia-
tion matters.

To simplify the third and fourth terms, we first use the
Diagonal Metric Worksheet to identify nonzero terms.
Christoffel symbols of the form Cc

12 are nonzero only if c¼ 1
or 2, so the third term becomes

Ca
acC

c
12 ¼ ðC0

01 þ C1
11 þ C2

21 þ C3
31ÞC1

12

þ ðC0
02 þ C1

12 þ C2
22 þ C3

32ÞC2
12: (A7)

Of the sixteen terms in the double sum expressed by the
fourth term in Eq. (A4), the Diagonal Metric Worksheet tells
us that only following six terms are nonzero

�Ca
2rC

r
1a ¼ �C0

20C
0
10 � C1

21C
1
11 � C1

22C
2
11

� C2
21C

1
12 � C2

22C
2
12 � C3

23C
3
13: (A8)

(One can check this by noting that for a diagonal metric, a
Christoffel symbol is only nonzero if two of its three indices
are the same.) If we recall that Christoffel symbols are
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symmetric in their lower indices, then we see that the three
underlined terms in Eq. (A8) each cancel a corresponding
term in Eq. (A7). The remaining terms are

Ca
acC

c
12 � Ca

2rC
r
1a ¼ ðC0

01 þ C3
31ÞC1

12

þ ðC0
02 þ C1

12 þ C3
32ÞC2

12

� C0
20C

0
10 � C1

22C
2
11 � C3

23C
3
13:

(A9)

Substituting in the worksheet values of these components,
we find that

Ca
acC

c
12 � Ca

2rC
r
1a ¼

1

4AB
A1B2 þ

1

4BD
D1B2

þ 1

4AC
A2C1 þ

1

4BC
B2C1

þ 1

4DC
D2C1�

1

4A2
A1A2

� 1

4BC
B2C1 �

1

4D2
D1D2: (A10)

Note that the underlined terms also happen to cancel (though
this is not obvious from the Christoffel symbols). So, gather-
ing the surviving terms in Eqs. (A6) and (A10) yields

R12 ¼ þ
1

2A2
A2A1 �

1

2A
A21 þ

1

2D2
D2D1 �

1

2D
D21

þ 1

4AB
A1B2 þ

1

4BD
D1B2 þ

1

4AC
A2C1

þ 1

4DC
D2C1 �

1

4A2
A1A2 �

1

4D2
D1D2

¼ þ 1

4A2
A2A1 �

1

2A
A21 þ

1

4D2
D2D1 �

1

2D
D21

þ 1

4AB
A1B2 þ

1

4BD
D1B2 þ

1

4AC
A2C1

þ 1

4DC
D2C1: (A11)

Here, we have again used the fact that multiplication is com-
mutative to combine some terms. If we compare with the
worksheet (and note that A21 ¼ A12 and D21 ¼ D12), we see
that Eq. (A11) delivers exactly what the worksheet says R12

should be.
The calculation for, say, R12 is the kind of thing that you

will want to do at most once in your life (if you can help it).
(Note that the calculation for a diagonal component of the
Ricci tensor will be even more complicated.) But if you have
done it once, then subsequently using the Diagonal (or Off-
Diagonal) Metric Worksheet means that you can solve the
Einstein equation for even novel situations without having to
do a calculation like those in this appendix ever again, while
at the same time knowing that you thoroughly understand
where its results come from (and that you could verify them
all if necessary).
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