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SUMMARY

The study of solutions of Einstein’s equations of general relativity is of long
standing, but has experienced a recent resurgence. New methods have been used,
and new results obtained, for problems concerned with general classes of solutions,
with approximate solutions and with exact solutions. Here a number of these
developments are reviewed. They concern the identification and classification of
solutions, the methods of finding new solutions, the properties of the space of
solutions and general properties of classes of solutions, and the physical and
astrophysical implications of particular solutions.

1 INTRODUCTION

Connoisseurs of this type of festive occasion will recognize my title as
one of those which one selects when one is not quite sure what one is going
to talk about, but wants to sound intriguing. After committing myself to it,
I realized it also sounds as if my enthusiasm ran away with me, since the
title suggests a technical character to the talk which would be inappropriate
for such an occasion. One might even think that the organizers, by allowing
me to choose such a title, had fallen into an error akin to that of an
orchestral conductor who violates the rule ‘Never encourage the brass,
even by so much as a glance’. So I decided, having had time to repent of my
choice, to mitigate its effects by working on the principle of the authors of
1066 and All That (1) who included only those two dates in English history
that everybody actually remembers: I prepared the talk by putting in only
those points which I could actually remember. (For similar reasons, this
written version follows the actual lecture quite closely, rather than
expanding the technical details.)

In a sense, all work using general relativity is concerned with
understanding properties of the solutions of Einstein’s equations.
However, what I want to talk about is the progress that has been made in
understanding (using rigorous mathematics) either the behaviour of the
space of all solutions or some subspace of it, or the properties of particular
exact solutions, and in particular to describe results obtained by methods
now in use among practitioners in the art of finding new solutions. I arrived
at a series of four headings: the identification and classification of solu-
tions; how to find solutions; the space of all solutions and general
properties; and how to extract the physics. Before discussing these I want

to sketch in a little of the background.
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The study of exact solutions began very early in the history of general
relativity. Karl Schwarzschild found his famous solution, the first of those
now identified as models of black holes, within a couple of months of
Einstein’s announcement of the basic equations of general relativity,
despite being at the time in the German army on the Russian front (where
he died a short time later). Quite a few more solutions, including most of
those which appear in introductory texts, were found in the next decade or
$O.

Looking at the bibliography of the recent monograph on exact solutions
of which I was a co-author (2), I noticed that among the 700 or so
references cited, I could find only 30 published between our new
octogenarian’s paper of 1933 (3) on a point particle in an expanding
universe, and his textbook of 1956 (4) (one of these, incidentally, being a
famous paper (5) by the preceding speaker). I would not go so far as to say
that McVittie’s diversion to other matters was the cause of this dearth,
another obvious reason being that the expanding relativistic cosmologies,
with zero cosmological constant, led, if Hubble’s distances to galaxies were
correct, to an age of the Universe less than the geologically-known age of
the Earth, a discrepancy only removed in 1952. But it is an interesting
coincidence.

In 1956 I was at school. However the impression of the influence of
Professor McVittie’s text given to me by senior colleagues is borne out by
the large number of citations of it (and its various revisions) which I found
in the Science Citation Index. To me one of its merits is the coupling of an
insistence on careful mathematics with a constant and detailed reference to
observational data.

First let us consider the problems that face us. Newton’s equation for the

gravitational field, as Professor Bondi reminded us, is
V% = 4nGo

a partial differential equation with one dependent variable and three
independent variables in which the coordinates are fixed up to constant
linear transformations and (after expansion into partial derivatives with
respect to the coordinates) there are just four terms. By contrast,
Einstein’s equations are a set of 10 equations in 10 dependent quantities
(the components of a space-time metric) with four independent variables,
in which the coordinates are completely arbitrary and which, when written
out in terms of coordinate components of a metric, contain, according to
Alan Held, 13 280 terms. We know that Newton’s equations are difficult
enough to deal with, so it is not surprising that we have even more trouble
with Einstein’s.

" In practice, faced with this intractable set of equations, we do the
obvious thing — cheat. The ways of cheating are many and various (see (2) -
for some of them) but they are all just ways of reducing the problem to
mere specialized cases which can be handled. Typically, this is done by
assuming either that the solution has some symmetry, or simple initial and
boundary conditions, or that there is some algebraic simplification (i.e.
that terms which are present in the general case happen to vanish
identically).
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2 CLASSIFYING AND IDENTIFYING SOLUTIONS

It may seem perverse to start discussing the classification of solutions
before saying anything about finding solutions; the reason for doing so is
that we have to overcome the problem of the arbitrariness of the
coordinates, which means that a given solution can appear in an infinite
number of different disguises. Although this is in practice limited by
humans’ inability to solve the equations at all without the help of some
simplifying choice of appropriate coordinates (e.g. spherical polars for a
spherically symmetric solution), it still leads to a major problem, one which
it is helpful to resolve before trying to find new solutions.

There is in fact a workable answer, based on ideas of Cartan and others.
It is systematically to choose basis vectors (‘axes’) in directions fixed by
invariant properties of the solutions themselves, such as eigenvectors of the
energy-momentum tensor, and then compare quantities calculated using
these axes as a basis for vectors and tensors. The result is to reduce the
problem to a set of algebraic, rather than differential, equations which two
solutions must obey if they are really the same solution in different
disguises. For details see, e.g. (6-8). The quantities which have to be
calculated for this comparison are components of the curvature and its
derivatives, and are in fact invariants of the spaces, so that they are directly
related to (local) physical properties.

Moreover, the whole method is amenable to computer calculation, and a
set of programs to do just this, using the algebraic manipulation system
SHEEP (9), has been written by J.Aman, G.Joly, myself and others. For
some details see (8, 10). My standard example of an application is a family
of solutions given by Melnick & Tabensky (11), which were shown by
Bonnor and myself (12) to admit symmetries additional to those assumed
by the original authors and hence to be equivalent to known metrics —
including some studied by one G.C.McVittie!

The next stage of development using these methods is the construction
of a database of known solutions, with which any supposed new solution
could be compared, and it is in this that I, in collaboration with
R.A.d’Inverno, J.Aman and others, am now engaged.

3 FINDING SPECIFIC NEW SOLUTIONS

As I said already, finding solutions is done by intelligent, and to some
extent systematic, cheating. I do not propose to describe all possibilities
now; it would take far too long. All I will do is give two particular examples
(not entirely at random).

The first is the very classical problem of spherically symmetric perfect
fluid solutions, the natural simple models for the structure of relativistic
stars. The subclass whose properties have recently been further elucidated
are those in which the fluid expands (or contracts) without shear. Stephani
(13) has shown that the system of equations, having been reduced to a
single equation

L;xx = LzF(x)
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where L = L(t, x), can be studied by Lie’s method of analysis of the
invariance groups of differential equations in order to find all cases in
which the equation (on choice of the arbitrary function F) is integrable.
Remarkably, the same set of solutions, in a different coordinate choice,
was found in another paper by considering the cases in which the general
equations can be integrated in terms of elliptic functions or their specializa-
tions. In that same paper, the known occurrences of these solutions in the
literature were listed, and their identification with the standard forms
given. This tour de force is of course by Professor McVittie (14); it
completes his 1933 work, and I understand his methods for solving the
equations have applications to some problems in quantum theory, now
being investigated in collaboration with Professors Chisholm and Burt.

The second development has also been in solutions depending on two
variables but these are solutions in which the two other variables disappear
completely from the metric (i.e. the symmetry generators commute) unlike
the spherical case where (known) functions of angular coordinates are
unavoidable. The metrics concerned are either stationary and axisym-
metric or ‘cylindrically symmetric’. The latter name covers the space-times
in which both ignorable coordinates are space coordinates, but they are not
necessarily truly cylindrical since it is not necessarily the case that one of
the ignorable coordinates is angular (with a finite period) and parametrizes
rotation about an axis. Moreover, ‘cylindrically symmetric’ spaces may
take two forms, depending on whether the metric of the two-dimensional
surfaces of symmetry is varying primarily in time or in space (more
precisely, on the nature of the derivative of the gradient of the deter-
minant of this metric); these are interpreted respectively as cosmological
models and as examples of gravitational waves.

The remarkable discovery is that within the class of solutions just
described there are methods of finding ‘new solutions for old’, that is to
say, of deriving new solutions (whose matter content can be vacuum,
electromagnetic fields, neutrino or massless scalar fields or the so-called
‘stiff’ fluids in which the speed of sound is the same as that of light) from
known solutions. In fact there are a variety of different ways of generating
such new metrics: Backlund transformations, the inverse scattering and
soliton methods, the homogeneous Hilbert problem (giving the answer as a
complex integral), and transformation groups of generating functions. All
these are known in several other areas of application in which similar
systems of non-linear partial differential equations arise, but one of the
interesting aspects of the cases arising in relativity is the extent to which the
interconnection of the different methods has been clarified. For full
reviews of the methods, see the forthcoming book (15).

Many of the results obtained by these methods are of interest, and I -
would like to mention a few here. The most obvious is that it becomes
possible to write an infinite number of papers giving new solutions of the
Einstein equations. Fortunately, once this was appreciated, it immediately
went out of favour; the aim now is not to give just any solution, but to find
some with interesting properties. For example, it is possible to model
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complex situations such as a cosmological model with a multiplicity of
gravitational waves. However, it is still not completely known how to
construct solutions to fit prior physical specifications, and this aspect needs
further investigation.

Secondly, it became possible to interrelate known solutions (see, e.g.
(2), chapter 30, and the work of Kitchingham reported in my contribution
to (15)). Thus one can now, for example, show how the well-known
Kantowski-Sachs and Taub—NUT solutions are related.

Finally, one very nice, and perhaps surprising, result, is that in the
stationary axisymmetric case (where the ellipticity of the equations enables
one to prove analyticity properties) the previous aspect achieves a
remarkable generalization: one can prove that all vacuum solutions,
providing they have non-singular points on their axes, are obtainable, by
transformations using the generating techniques, from the flat space of
special relativity, Minkowski space (49). Thus for this case one gets
everything from nothing!

4 GENERAL PROPERTIES OF SOLUTIONS

In recent years there have been studies of the complete system of
Einstein equations which have aimed at characterizing the space of all
solutions. (The work I mention here can be found in (16-18) and
references therein.) These have shown that in general the space has the
structure of an infinite-dimensional differentiable manifold which can be
locally represented as the space of four functions of three variables.
Moreover, the Einstein equations act on this space as a Hamiltonian
system. The two approaches to reduction to the essential degrees of
freedom of this space, that used by Fischer, Marsden and Moncrief and
that of York, have recently been shown to be equivalent (18), in that they
are related by canonical transformations; this is a nice result in that the
York decomposition is in some ways the more intelligible (it works with the

“ conformal structure of three-dimensional sections of space-time) but had

been thought to be non-canonical.

The more alarming aspect of these studies is that (at least for compact
spaces, to which many of the results are confined for technical reasons)
the space of solutions loses its general structure just exactly at the solutions
with symmetry. Instead the space, as represented in the standard way in
the space of four functions of three variables, becomes ‘cusped’ and small
variations are only permitted if they satisfy a quadratic condition first
written down by Taub (once a colleague of McVittie’s at Urbana). The
consequence is that at these solutions with symmetry not all solutions of
linearized perturbation theory are genuine tangents to families of solu-
tions; they are spurious unless they obey the Taub condition. This in
particular means that we must be careful when considering perturbations
of ‘closed’ cosmological models, for example when studying galaxy forma-
tion in such models. Marsden has shown similar results for other
Hamiltonian systems of equations with constraints.
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More recently, Ashtekar (at the conference in Oxford in 1984 March)
has announced the result that the spin coefficients of a null tetrad form a
local (infinite-dimensional) coordinate system for the space of solutions,
though I think only for the asymptotically flat spaces: details of this result
will be interesting, as it may be useful in the identification problem men-
tioned in Section 2.

The spaces which are asymptotically flat, and which therefore provide
models of those isolated physical systems such as two orbiting bodies for
which ‘infinity’ can be taken to be at a distance small compared with
cosmological scales, have been the arena for three interesting recent results
on general properties of solutions. (Incidentally, it would be of interest to
have more detailed work on the influence of exterior solutions which
represent the cosmological environment more realistically.)

The most impressive of these is the proof that the energy of the space, by
which is meant the mass (or monopole term in the gravitational field) as
measured at infinity, has been shown to be non-negative, and to be zero
precisely at flat space alone, so that flat empty space is energetically stable.
This result was sought for many years, and eventually proved by Schoen &
Yau (19), but even more remarkably it has been given a much shorter and
more intelligible proof which is in a way simply a dressed-up version of the
first-year undergraduate proof of the uniqueness of the solutions of
Laplace’s equations. The twist is that this proof, due to E.Witten (20),
uses, in an essential way, spinor fields defined on space-like hypersurfaces
and satisfying a special equation (the Witten equation), perhaps the first
time spinors have been seen to be more than just a convenient way of
rewriting tensorial equations.

The second topic, in which results have also been sought for a long time,
is cosmic censorship. The aim, first enunciated by Penrose (21), is
essentially to prove that singularities in the gravitational field can only be
formed if they lie inside an event horizon (like the surface of a black hole)
so that they are censored from the view of a distant observer. In fact we
now have not just one theorem, but several, due to Krolak (22-24) and
Newman (25-27). These have been proved under different technical
assumptions whose relative merits have been the subject of some debate.
As a spectator, I got the impression that Newman’s conditions, which
relate to the strength of the gravitational field, may prove the more useful,
but probably both versions will have interesting applications. In any event,
both sets of papers represent quite an achievement. Incidentally, Newman
had G.C.McVittie as supervisor for his PhD thesis (and myself as an
examiner).

The third result, due to Gibbons & Stewart (28), resolves a third long-
standing debate, in this case about whether freely-falling bodies really
radiate. What they proved, by a fairly simple integration of some of the
Newman—Penrose (29) equations near the null infinity of an empty
asymptotically flat space-time, is that such a space-time cannot be periodic
and non-radiative. Hence in particular one cannot have an isolated binary
orbiting system in periodic motion which does not radiate, even though
each body may be in free-fall.
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5 EXTRACTING THE PHYSICS

This is of course easily the most difficult part of the process of
understanding solutions of the equations, whether these solutions are
approximate or exact.

One example is that the problem of observations in cosmological models
which have some of the lumpiness of the real universe has been tackled by
using the ‘Swiss cheese’ model, in which spherical pieces of the usual
isotropic homogeneous cosmologies are replaced by Schwarzschild black
holes (30, 31), and by using the McVittie point-mass models (32, 33) and
these models give quantitatively different results (33).

Another approximate calculation which has been put under the micro-
scope recently is the derivation of the quadrupole formula for the emission
of gravitational wave energy from an isolated system. This, for long
of only theoretical interest, suddenly became observationally relevant
with the discovery of the binary pulsar (34). Theoreticians knew that the
derivation, which paralleled that for the dipole radiation of electro-
magnetism, was based on methods with very strong physical motivation but
without mathematically rigorous proof, and indeed some authors claimed
to have found counter-examples (35). This argument continues, but the
present weight of opinion seems to be that the quadrupole approximation
was indeed the correct one to apply to the binary pulsar, and hence the
observations really do give a good test of the theory of general relativity
(36).

The comparison with the binary pulsar data complemented the very
extended calculations of Nordtvedt, Thorne, Will, Ni and others on the
effects of non-Newtonian theories on the dynamics of the Solar System and
gravitational effects on the Earth, which on comparison with observation
have shown that general relativity does indeed give correct predictions
while most of its competitors do not (see (37, 38) for some details). (These
calculations are for ‘metric’ theories; their extension to non-metric theories
of the ‘metric-affine’ type, involving a non-metric connection specifying
particle paths, was considered by Coley, a former student of mine, in his
PhD work (39—41).)

Turning back to exact solutions, there are a number of recent results of
interest.

Ibafiez & Verdaguer (42), and Carr & Verdaguer (43), have used
metrics obtained by the generating techniques mentioned in Section 3 to
study the influence of gravitational waves in cosmology, finding solutions
that look like shock waves in the early Universe but settle to small
perturbations in the far future.

Siklos (44) and Wainwright (45) have shown that certain spatially
homogeneous cosmologies asymptotically approach plane-wave solutions,
while if the cosmological constant is non-zero stationary solutions which
are regular and asymptotically de Sitter are de Sitter space (46). This last
result is of relevance to some popular variants of quantum gravity.

As a spin-off from the techniques used on the ‘equivalence problem’
(Section 2) Karlhede, Lindstrom & Aman (47) showed that there is an
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invariant, in principle measurable, which passes through zero exactly at the
horizon of a Schwarzschild black hole. This invariant is composed of first
derivatives of the curvature, and its properties mean that although the
geometry shows no local singularity one can detect the approach to passing
through the horizon and hence avoid it. Since the quantities used in the
equivalence problem characterize the space, they must encode all its
(local) properties so one might reasonably hope for further insights of this
kind.

Goode (48) has taken the Szekeres metrics, almost the only known
cosmological metrics in which the cheating to obtain a solution does not
take the usual form of the imposition of symmetry, and shown that they
can be rewritten in such a way that the time-dependent functions involved
are the functions governing the standard cosmologies and their linearized
perturbations. This means one has in some sense exact perturbations of the
usual cosmologies.

Finally I would like to mention another solution obtained by the
generating techniques. In the case of stationary axisymmetric solutions,
one can start from the static Weyl solutions, which are writable in terms of
axisymmetric Newtonian potentials (though these do not directly match
the physical content, since for example the Schwarzschild solution is
derived from the potential for a rod along the axis). Taking a pair of
negative mass rods and applying four distinct transformations, one at each
end of each rod, Hoenselaers & Dietz (15) have found a solution for a paii
of spinning masses. Computing the mass M and angular momentum J for
each body by integrals over surfaces surrounding the bodies, one can relate
these to the properties of the singularity which is in general required on the
axis joining the two bodies. Interpreting this singularity as representing the
force necessary to keep the two bodies apart against their gravitational
attraction, one finds that while it can be zero with certain choices of
parameters, the forces for the spinning and non-spinning cases in general
obey

FSpinning_ 3 L+]_22

—_— I = —
Fstatic —JZ Ml M2

where d is the separation of the bodies. The upshot is that if laboratory
equipment could measure the Newtonian constant of gravity to 1 in 10’ it
could measure this gravitational spin-spin interaction, although it is a truly
non-linear effect (a linearized approach gives only the J,J, term). This is a
fascinating prospect for the future.

6 CONCLUSION

I hope the methods and results I have described in this talk have shown
that the study of approximate and exact solutions of Einstein’s equations,
far from being an outdated and dry subject, can play a very important part
in advancing our understanding of gravitational physics and the world
around us. Its continued and renewed vitality has much in common with,
and owes something to, the characteristics of the man, slightly older than
my subject, in whose honour this talk was presented.
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